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Abstract—

This paper presents a complete traffic sign recognition sys-
tem, including the steps of detection, recognition and tracking.
The Hough transform is used as detection method from the
information extracted in contour images, while the proposed
recognition system is based on Support Vector Machines (SVM),
and is able to recognize up to one hundred of the main road
signs. Besides a novel solution to the problem of discarding
detected signs that do not pertain to the host road is proposed,
for that purpose vehicle-to-infrastructure (V2I) communication
and stereo information is used. This paper presents plenty of
tests in real driving conditions, both day and night, in which
a high success rate and low number of false negatives and
true positives were obtained, and an average runtime of 35 ms,
allowing real-time performance.

I. INTRODUCTION

The importance of safety for drivers, occupants and pe-

destrians has experimented an increasing interest in the last

times, and traffic sign recognition (TSR) systems, within

the Advanced Driving Assistance Systems (ADAS), play an

important role, allowing alert drivers to potential dangerous

situations, for example when a driver may be speeding. But

not only it is useful as a driving-assistance system, TSR also

has other possible applications, such as inventory system

of traffic signs [1], or building and maintaining maps of

signs, furthermore it can be used as automatic inspection

of signs. For example, VISUALISE system [2] provides

automatic retro-reflection measurement of traffic signs and

panels, allowing better maintained roads resulting in better

and safer signposting.

In this paper we present a complete traffic signs recogni-

tion system able to detect both circular and triangular signs

and recognize up to one hundred of the main road signs. In

outdoor detection, lighting conditions cannot be controlled,

for this reason analysis of the edges from grey-scale images

have been used instead of colour-information that presents,

in general, worst results under adverse lighting conditions,

such as at night. The classification stage is carry out by

two support vector machines (SVM) with Gaussian kernels.

In detection stage circular and triangular road signs can be

distinguished, so a SVM for circular signs and another SVM

for triangular signs are applied. Finally, tracking of traffic

signs is implemented using Kalman filtering techniques, for
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this purpose, a dynamic state model is defined, where mea-

surements are obtained by means a stereo pair of calibrated

cameras.

One of the challenge still open in traffic sign recognition

is to discard detected signs that do not pertain to the host

road. The position of each detected traffic sign is obtained

from stereo pair of cameras and those whose position are far

from the vehicle lane will be discarded. However, there are

some scenarios where the 3D relative position is not enough

for discarding signs that do not apply to the host road, in

those cases information from vehicle-to-infrastructure (V2I)

communication system is proposed as solution, so V2I

communication system using, wireless technology, works as

support of the traffic sign recognition system.

II. RELATED WORK

An automatic traffic sign recognition system can detect

signs by their colour and shape, just as a driver. However,

in the literature we can find two main approaches to solve

the problem of traffic sign recognition; segmentation, using

colour-information, or analysis of the edges obtained from

grey-scale images. In working with colour-information rela-

tions between red-green-blue (RGB) components are used,

[3], [4], but RGB colour-space is highly dependent on the

light, so other researchers work with hue-saturation-intensity

(HSI), [5], [1], [6], this colour-space is more immune to

lighting changes, thus in [5] two look-up tables (LUTs) for

hue and saturation components are used to enhancement

red and blue colours, while in [1] a threshold over hue

and saturation components is applied to find regions with

high probability of having a traffic sign. However, the

captured image is not completely invariant against changes

in the chromaticity of the received light. The hue component

changes with shades, climatic conditions or aging. Some

works improving the colour segmentation are carried out.

For example in [7] a human vision colour appearance model

CIECAM97 is applied to extract colour information and to

segment and classify traffic signs.

Among the works in which edge-analysis starts from the

grey-scale image, [8] must be highlighted, where Gavrila

uses a template-based correlation method to identify potential

traffic signs in images; this involves the so-called distance

transforms (DT), starting form an edge-image, a matching

with the template of those signs searched is carried out.

These templates are organized hierarchically in order to

reduce the number of operations, however, this method has a

high computational cost for a real-time system. Another work

to be explained a bit more deeply is the one developed by [9],

2011 14th International IEEE Conference on
Intelligent Transportation Systems
Washington, DC, USA. October 5-7, 2011

978-1-4577-2196-0/11/$26.00 ©2011 IEEE 1003



related to our work, as a variation of the Hough-transform

(HT) is used. The method used by Barnes is based on [10], a

fast method to detect points of interest using a system with

radial symmetry. It uses the information of the magnitude

and phase of the gradient of a grey-scale edge-image for

different radii. Although the method is able to detect only

circular signs it has been extended to detect triangular,

square and octagonal signs in [11]. A self-organizing map

(SOM) has been used in [12] to extract contours in order

to recognize shapes of traffic signs. Histograms of oriented

gradient (HOG) have been used in [13] for pedestrian and

road sign detection, which is suitable within boosting frame-

works. In recent times, new approaches in object detection

have been applied. In [14] a set of colour-sensitive Haar

wavelet features has been obtained from AdaBoost training

and temporal information propagation, while in [15] a novel

binary classifier through an evolutionary version of AdaBoost

has been proposed.

The following stage is the classification one; the resultant

image from the first stage is analysed in this one by a

classifier that determines whether the previously detected

candidate regions are actual traffic signs or not. Neural

networks, in their different topologies, are one of the most

common tools employed [5], [8], [3]. A normalized image

of the possible traffic signs is used in all cases as input

vector. Although neural networks constitute the main tool

used in the classification stage, it is not the only possibility,

another huge group of works make use of template-matching

techniques. In [9] a normalized cross-correlation between

the templates stored in data-base and the possible traffic

signs is used, while in [16] a representation of road-sign

data, based on extending the traditional normalized cross-

correlation approach with a trainable similarity measure, is

proposed. On the other hand, in recent times new approaches

have been proposed, for example in [17] or [1] where a SVM

with Gaussian kernel is used to perform the classification

stage.

Finally the tracking stage provides memory to the system

so that it takes into account not only a unique punctual instant

for detection, but a whole sequence of images instead. Not all

the works in this area include this feature, but those in which

this approach is implemented reach better results. Among

the latter, [4], [1], [14], may be highlighted. All of them

make use of an extended Kalman filter [18], and use the 3D-

position of the centre of the traffic sign as the state-vector.

III. TRAFFIC SIGNS DETECTION

A. Vision-based traffic signs detection

The aim of the image processing algorithm first step is to

detect the precise location of the signs. In order to achieve

this goal, an analysis of the shapes obtained from an edge-

image is carried out. A Hough transform for straight lines is

used to detect triangular, while a Hough transform for circles

is applied to detect circular signs as well as the Stop sign,

although the proposed method can also be used to detect

rectangular or arrow signs, as shown in [2].

The algorithm used for edge detection is the Canny

method. This method preserves contours, which is very

important for detecting traffic signs using shape information

because they are usually closed contours. With the aim of

making the detection more reliable, we have chosen to adapt,

the two canny-thresholds in a dynamic way, depending on the

histogram-distribution of the image. The contours obtained

applying Canny method are codified using the chain code.

By making use of this codification the area and perimeter

are obtained, and it can also determine whether a contour is

closed or not. The contours are accepted if they are closed

contours, or almost closed contours. In addition, they must

also fulfill a certain aspect-ratio constraint. Actually, the

Hough transform is only applied to accept contours after

being filtered with this kind of restrictions. If all the contours

in the image were analyzed the computational cost would

be prohibitive, so all those contours that do not meet some

requirements, typical of traffic signs, will be removed from

the image, so that the computational time is reduced.

A straight line in the image plane can be defined in polar

coordinates as it is depicted in (1) with a distance to the

origin, ρ, and an angle between the normal line and the

abscissa axis, θ.

xi · cos(θ) + yi · sin(θ) = ρ (1)

Where the parameter space, p = (ρ, θ), must be quanti-
zed and expressed in a 2D accumulation matrix a, whose

elements are initially set to zero. So, an element a(ρ, θ)
is incremented by 1 for every contour point (xi, yi) in the
image-domain, contained in the straight line with parameters

(ρ, θ) as expressed in (2), where a precision margin ǫ

is introduced to compensate for quantization error when

digitizing the image [19].

|xi · cos(θt) + yi · sin(θt) − ρr| < ǫ (2)

The aim is detecting three straight lines intersecting each

other, forming a triangular sign. Different algorithms have

been proposed in order to decrease the computational time

of the Hough transform, a multi-dimensional quadtree struc-

ture for accumulating is suggested in [20] (coarse-to-fine

method), or in [21] a method based on the fact that a

single parameter space point can be determined uniquely

with a pair, triple, or generally n-tuple of points from the

original picture (many-to-one mapping method). In this work

a constrained accumulation matrix a is proposed as a method

to decrease the computational time, as it can be seen in

Fig. 1. The aim is to search for lines only in the shaded

areas. The strategy is to apply the Hough transform to

every contour, one after the other, hence every straight-line-

parameters estimation is calculated by means of (3) and

(4), where (x1, y1) and (x2, y2) are points belonging to the
contour under study.

ρ =
x1 · y2 − x2 · y1

√

(x1 − x2)2 + (y1 − y2)2
(3)
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θ = arctan
x1 − x2

y1 − y2
(4)

Fig. 1. Constrained Hough transform applied to detect triangular, rectan-
gular and arrow signs.

Fig. 2. Constrained Hough transform applied to detect circular signs.

A similar strategy is followed for circular sign detection.

Hough transform for circles is applied to detect circular signs

and the stop sign too. A circumference in the image plane

with center (χ, ψ) and radius ρ can be expressed as (5).

(x − χ)2 + (y − ψ)2 − ρ2 = 0 (5)

Where the parameter space, p = (χ, ψ, ρ), must be
quantized. For circumference detection the accumulator a

will be a three-dimensional matrix with all elements initially

set to 0. The element a(χ, ψ, ρ) is incremented by 1 for
every contour point (xi, yi) in the image-domain, contained
in the circumference with centre (χr, ψs) and radius ρt as

expressed in (6), where a precision margin for the radius

ǫ is introduced to compensate for quantization error when

digitizing the image [19].

|(χr − xi)
2 + (ψs − yi)

2 − ρ2
t
| < ǫ (6)

The circumference-parameters estimation is calculated

using the direction of the contour-gradient under study, as

in [10]. The search ranged into accumulator matrix a is

constrained, the circumference-parameters are only searched

inside shading areas, as it can be seen in Fig. 2.

B. Recognition stage

The selected candidates are classified by means two SVM

classifier with Gaussian kernel and probability estimate

output. In previous detection stage circular and triangular

road signs can be distinguished, so a SVM for up to 56

circular signs and another SVM for up to 44 triangular signs

are applied to reduce the complexity of the problem. All

candidates are resized to a fixed size of 32x32 pixels to
facilitate the features extraction process, and moreover only

those pixels that are inside the signal are taken into account

by means a triangular or circular mask, thus the feature

vector is reduced from 1024 to 798 pixels for circular signs

and 532 for triangular ones.

Although the SVM classifiers are binary classifiers, they

are easily combined to handle the multiclass case [22],

following the one-versus-rest classification algorithm (say,

one positive, rest negative). The classifier has been trained

using 432 samples per class, which represents more than

43000 samples in total for 100 clases. In the test phase a

sign is assigned to the class with highest probability estimate

output if this probability exceeds a threshold, but noisy object

(no sign) is considered.

C. Tracking

After detecting consecutively an object classified as sign

a predefined number of times (empirically set to 3 in this

work), data association and tracking stages are triggered.

Tracking is implemented using Kalman filtering techniques.

For this purpose, a dynamic state model and a measurement

model must be defined. The proposed dynamic state model

is simple. Let us consider the state vector xn , defined as

follows:

xn = [u, v, r, u̇, v̇, ṙ]T (7)

In the state vector u and v are the respective horizontal

and vertical image coordinates for the centre of every sign,

and r the radius in the image plane. A dynamical model

equation can be written like this:

xn+1 = A · xn+1 + ωn (8)

where A represents the system dynamics matrix and ω is

the noise associated to the model. Although the definition

of A is simple, it proves to be highly effective in practice.

The model noise has been modelled as a function of distance

and camera resolution. The state model equation is used for

prediction in the first step of the Kalman filter. The next step

is to define the measurement model. The measurement vector

is defined as zn = [u, v, r]T . Then, the measurement model
equation is established as follows:

zn = H · xn + υn (9)

In last equation H represents the measurement matrix and

υn is the noise associated to the measurement process. The

purpose of the Kalman filtering is to obtain a more stable

position of the detected signs as shown in Figure 3.
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Fig. 3. Measurements and prediction obtained during a tracking of a sign.

D. Stereo refinement

An accurate estimation of the relative position between

the vehicle and the traffic sign has an important impact on

further stages such as tracking and geometrical discarding.

On top of that, it also helps to reduce the probability of

considering detected signs that do not pertain to the host road

as pertaining to the host road. In order to minimize the error

position, the relative distance is computed by using stereo

vision. Monocular approaches have to apply some constraints

such as flat terrain assumption and previous knowledge about

the extensions or the height of the traffic sign, that introduce

strong errors in the relative position estimate.

Stereo parameters such as separation between cameras,

sensor focal length and images resolution have been defined

to reduce the error of the stereo measurements. As described

in [23] we use a graphical method to define the sensor setup

according to the application requirements. The calibration

process is carried out on a supervised fashion in order to

minimize the calibration errors. Both images are undistorted

and the epipolar geometry is computed. The content of the

detected bounding boxes is matched along the epipolar line

on the other stereo image by using the ZNCC function

(Zero mean Normalized Cross Correlation) as in [24]. The

search space can be reduced considering the minimum and

maximum ranges. The correlation values are obtained and

the values near the optimum are approximated by a second

degree polynomial in order to compute the 3D position with

subpixel accuracy [25]. This process is illustrated in Figures

4 and 5.

Fig. 4. (Left) Left image and bounding box of the detected speed sign.
(Middle) Search space along the epipolar line corresponding to the upper-
left part of the bounding box on right image. (Right) Final match on right
image.

Fig. 5. Correlation function along the epipolar line and second degree
polynomial approximation.

Once we have the 3D relative position between the vehicle

and the detected traffic signs, a simple discarding process can

be applied in order to reject traffic signs that are located too

far from the vehicle position (i.e., traffic signs that belong

to other roads). However, there are some scenarios like the

one depicted in Figure 6, where the 3D relative position is

not enough for discarding signs that do not apply to the

host road. Some of these cases can be extremely dangerous

in the context of intelligent speed adaptation or assistance

applications.

The vehicle global position is obtained from the GPS.

However, the GPS sample frequency is 1Hz which implies

that the system obtains one GPS measurement per each 20-

30m approximately (depending on the host speed). As the

detection process is carried out at 20 Hz, we apply a linear

interpolation between two consecutive GPS measurements.

Finally, a global reference for each one of the detected signs

is obtained by combining the global position of the vehicle

and the relative position between the vehicle and the traffic

sign. The global position of the traffic signs is very useful

for inspection and inventory tasks, but we propose to also

use this global position for solving scenarios like the one

described in Figure 6 including V2I communications.

Right

lane

Left

lane

Exit

lane

Exit

lane

Fig. 6. Left: conflict scenario with two different speed signs. Right: sample
image.

E. V2I Communications

In order to improve the traffic signs detection and solve

the scenario of Figure 6, we propose a V2I communication

system. The system is based on RF wireless sensor motes

that will be available in all the traffic signs. Actually, we

are using a general purpose platform, Waspmote built by

Libelium, and we have installed and set up several motes on

traffic signs as transmitters. In addition, we have installed one
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of them as receiver in our test-car. Transmitter and receiver

are shown in Figure 7.

Fig. 7. Left: Waspmote transmitter installed on a signal. Right: Waspmote
receiver in the test-car.

Transmitter motes have been equipped with GPS sensors

in order to send the global position of the signs to the all

cars in the range of coverage. In addition, all the motes have

been setting up to transmit a message with the following

information at a frequency of 1Hz, according to the GPS

updating rate:

• Type of signal: max speed (X Km/h), stop, give way,

etc.

• Road name: useful to distinguish between main road

and deceleration lane.

• Direction of the movement: increasing or decreasing.

• GPS: coordinates of global position.

Waspmote platforms can be configured with several com-

munication topologies (tree, mesh, p2p), but in any case,

transmitter can always send a broadcast message. This cha-

racteristic has been exploited by our system to send the

message of the traffic signal to all the cars that are in the

coverage area. This area ranges from 500m up to 7Km,

by using XBee-ZB or XBee-ZB-Pro model of transmitting

module. In our case, we have selected the 500m model

because is enough for the application purpose.

F. RF mapping

Finally, in order to solve the GPS reception problems,

we propose a RF mapping process that helps our process

to maintain the traffic sign positioning even when the GPS

signal have been loosen.

The RF mapping process that we propose is based on our

previous work [26]. It makes possible to estimate the position

of the Waspmotes using the distance between them and the

vehicle. First of all, the distance is obtained by means of

using a path loss propagation model, and then the position of

the signs are obtained using the distance and the knowledge

of the car trajectory.

A particle filter [27] is used to achieve this aim, which is a

sequential Monte Carlo algorithm, i.e., a sampling method to

approximate a distribution that uses its temporal structure. A

”particle representation” of distributions is used, in particular,

we will be concerned with the distribution P (Xbt|z0:t) where
Xbt = (xbt, ybt, θbt) is the observed traffic sign at time t, and

z0:t = (r1, r2, ..., rn) is the sequence of observations from
time 0 to time t.
The transition and sensor models, P (Xbt|z0:t) are repre-

sented using a collection of N weighted samples or particles,

{X
(i)
bt

, π
(i)
t
}N

i=1 where π
(i)
t
is the weight of particle X

(i)
bt

(Equation (10)).

P (Xbt|z0:t) ≈
∑

i

πt−1δ(Xbt − X
(i)
bt−1) (10)

Firstly, the particles are uniformly distributed around a

”ring” with radius equal to the first range measurement, we

make this ”ring” wide enough in order to absorb the signal

noise.

Secondly, the particles are not propagated using any mo-

tion model since we know that the traffic signs are static,

instead we apply a small random noise to the position of the

particles in order to avoid that all the particles stay at the

same position.

Finally, the particles are updated by the previous actions

at−1 and the actual observation zt. Finally, it is important to

highlight that this algorithm does not need to collect a high

number of samples to estimate the beacon position.

IV. RESULTS

The results presented in this paper were obtained from

video sequences in real traffic performance under different

lighting conditions, in sunny or cloudy days, in the rain and at

night. We calculate the performance of the whole system over

a test set of 30.000 stereo pair of images, which correspond
to 80 km road. The accuracy obtained in the detection stage
is summarized in the table I, where P (positive) represents the

detected signs and N (negative) represents noisy objects (no

signs) detected. We can highlight the detection rate obtained,

over 95% in both circular and triangular signs, and the low

number of false positives obtained, especially for triangular

signs.

TABLE I

SUMMARY OF DETECTION RESULTS

Signs P N detection rate

Circular 207 197 72 95.16%

Triangular 133 130 12 97.74%

In the recognition stage, the results obtained are shown

in the table II, where the recognition rate and accuracy

obtained, as in the detection, are very high, between 89
and 98%. Moreover we can highlight that more 35 signs
that do not pertain to the host road have been detected and

recognised, 25 of them have been discarded by means of

geometrical constraints using stereo vision, while the rest

have been located and discarded thanks to the information

of V2I communication system.

Finally, all these results have been obtained by means of

an offline process, however, the average runtime obtained, 35

ms with 19ms deviation, would allow real-time performance.

A real-time implementation is an improvement consider as

future work.
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TABLE II

SUMMARY OF RECOGNITION RESULTS

Signs TP FN FP TN recognition rate accuracy

Circular 176 21 5 67 89.34% 90.33%

Triangular 128 2 6 6 98.46% 94.36%

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a complete traffic sign recognition

system that works under different light conditions, at day

and night. An important aspect to be highlighted is that

either the detection algorithms is adaptive, this adaptation is

achieved mainly due to two factors, first the use of adaptive

thresholds applied to canny algorithm to obtain contours, that

change their values depending on the histogram function at

any time, and second, the application of Hough transform

depending on the information received form every candidate

contour. The experimental results in detection indicate that

the proposed method is reliable and accurate since it has

obtained an average detection rate of 95%, and also can be
applied not only for circular or triangular signs but also to

rectangular or arrow signs.

Two different SVM model have been proposed to clas-

sify signs, and up to 100 different traffic signs have been

recognised with high recognition rate. On the other hand,

stereo information and V2I communication system is a novel

solution to the problem of discarding detected signs that do

not pertain to the host road.
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