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Abstract— Cognitive impairment diseases are becoming more and
more prevalent mainly due to population ageing and the increase
in life expectancy. Sensory and monitoring systems may allow
people with mild cognitive impairments (MCI) or at early stages
of dementia to live at home for longer with more independence
and security. This work presents a Wireless Sensor Network (WSN)
based on wearables that obtains indoor and outdoor location and
step information, reporting them over a LoRaWAN network. Each
Wireless Wearable Sensor (WWS) uses a Global Navigation Satellite
System module for outdoor positioning, a proposed indoor room-
level localization system based on infrared sensors, an accelerom-
eter for a step detector algorithm, and a LoRa (Long-Range) radio
link to send the measured information with low power consumption
achieving a large coverage range. These sensory data are recorded
in a database and presented to the medical services and caregivers
through a user web application. This can be used to detect anomalous changes in daily patients’ routines, as well as to
know the user’s position in cases where the patient may be disoriented. In addition, alerts are launched in caregivers’
smartphones to report about any risky situation, such as the patient leaving an allowed area or staying in one place for
too long. Therefore, the proposed sensory system may support and extend the ability of people with MCI or at early stages
of dementia to live independently, it helps detect behavioural changes and it keeps caregivers’ peace of mind.

Index Terms— Wireless Sensor Network (WSN), LoRaWAN, Indoor Positioning, Infrared Sensors, Step Detector, GNSS,
Mild Cognitive Impairments.

I. INTRODUCTION

THE World is experiencing a huge increase in population
ageing mainly due to the rise in life expectancy and

the decreasing birth rates. During the next three decades, the
global number of elderly (aged 65 and over) is projected to
more than double, reaching over 1.5 billion in 2050 worldwide
[1]. Associated with this increase, diseases such as dementia
are rising significantly. Dementia is the seventh leading cause
of death in the World, with approximately 55 million people
suffering it [2]. Furthermore, it is one of the main causes of
dependency in most developed countries, affecting patients and
caregivers psychologically, physically, socially and financially.
Indeed, it reports high levels of stress, anxiety and depression
related to caregiving [3]. Hospitalisation and institutionaliza-
tion due to dementia and other cognitive disorders are also
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common, what implies an additional burden to the long-term
sustainability of public health systems and services. In this
context, reducing hospitalisations by applying technological
and monitoring solutions in the patients’ households may
improve their quality of life and that of their caregivers, while
reducing the cost of care [4]. Hence, research on new models
and sensors for technology-based cognitive assessment, to
complement medical follow-up of patients, can introduce sig-
nificant benefits for healthcare systems, particularly in remote
or rural environments, where there are more difficulties in
accessing common healthcare services due to depopulation [5],
[6].

A key factor in the medical follow-up of dementia patients
is to examine their performance on basic essential and rou-
tine tasks that most healthy people can carry out without
assistance. The loss of ability to perform these tasks, known
as activities of daily living (ADL), is a defining feature
of dementia that results in a progressive loss of indepen-
dence, thus increasing caregivers’ burden [7]. Information
and communication technologies (ICT) have a great potential
for supporting the measurement and monitoring of patients’
ADLs through Ambient Assisted Living (AAL) solutions, as
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long as they are implemented thoughtfully, sensitively, and
ethically. Real-time location, tracking, and physical activity
monitoring through ICTs, both indoors and outdoors, enable
Human Activity Recognition (HAR), which can help detect
disorientation episodes or changes in the patient’s behaviour,
alerting caregivers or medical services. This supervised auton-
omy helps enhance the independence, cognition, mood, and
social functioning of patients in the early stages of cognitive
decline, while providing peace of mind to caregivers [8], [9].

ICT-based AAL solutions should be characterized by a
permanent connection between patients, caregivers and smart
objects deployed in the environment or carried by the patients.
This can leverage the capabilities of Internet of Things (IoT)
systems to develop Wireless Sensor Networks (WSN) solu-
tions that provide care for people with cognitive impairments
[10], [11]. The use of different IoT connectivities allows
patients’ data to be measured and collected for analysis, to
inform caregivers and/or to take early actions [12]–[14].

IoT cameras can be considered for use in monitoring,
tracking, and assisting dependent people, either deployed in
the environment, carried by users or embedded in robots.
Nevertheless, cameras are often dismissed due to their intru-
siveness [15], [16]. In this context, one of the most widespread
and least intrusive IoT sensory system for these purposes is
based on Wireless Wearable Sensors (WWS). These devices
are a promising solution for multi-user HAR [17], as they pro-
vide individualised and identifiable measurement, tracking and
assessment of patients’ physical location in any environment
(outdoors or at home), while supporting patient’s independent
daily life [18], [19].

Among the different sensory technologies that wearables
can integrate, outdoor tracking is already possible with Global
Navigation Satellite System (GNSS) sensors that can be easily
found in commercial devices, and which allow any possible
disorientation to be detected [20]. On the other hand, for
indoor tracking, there is no such established solution. The
most common approach with wearable devices is the use of RF
technologies based on received signal strength (RSS). Never-
theless, there are other technologies that may be involved, such
as cameras, acoustic signals, radio frequency identification
(RFID), ultra wideband (UWB), visible light, infrared (IR),
or other options with different levels of accuracy [21]–[23].
Another important aspect, in addition to patient tracking, is
the physical activity monitoring that can be obtained through
the use of inertial sensors [24], [25]. Daily physical activity
improves cognition and mobility, delays psychiatric symptoms,
and generally increases the quality of life in patients with
cognitive disorders [26].

Tracking and monitoring data should be reported by the
wearable at all times, inside the patient’s home as well
as outdoors. Established IoT solutions do not often satisfy
these requirements, since technologies such as Bluetooth Low
Energy (BLE), WiFi or ZigBee, do not achieve a larger range
than 100 m [27]. Cellular networks can provide the long-
range required by this type of applications [28], [29]. However,
due to their high power consumption and maintenance cost,
innovative low-power wide area networks (LPWANs) are
also promising alternatives. These networks enable low-power

wireless connectivity over large areas, at the cost of low data
rates. This becomes a suitable WSN solution for sending
information occasionally in large spaces where patients can
move around and with low wearable battery consumption.
Narrow-Band Internet of Things (NB-IoT), Sigfox, DASH7, or
long-range WAN (LoRaWAN) are possible LPWAN networks
to be used [30]. One of the most widespread for this purpose
is LoRaWAN, since it allows the transfer of information over
long distances (2-5 km in urban areas and up to 15 km in
rural areas) with a low transfer rate that could be acceptable
for this type of applications [31]–[33].

In this context, this work proposes a WSN composed of
WWS that allows to estimate the user’s position, both outdoors
and indoors, using GNSS and IR technology respectively. For
indoor, a novel symbolic or room-level localization sensor
system has been deployed, based on a set of IR beacons
that emit a unique code that identifies each room. These
sequences are received and decoded by a WWS carried by the
patient. The WWS also measures the steps taken by the user
throughout the day, providing an indication of the patient’s
daily physical activity, and it includes LoRaWAN connectivity.
In addition, several application services are proposed that
allow caregivers to visualise the patient’s position in real time
through an accessible website, as well as recording relevant
data to detect changes in the patient’s routine in the long term.
Therefore, the main contributions of this work are:

• The design and implementation of an innovative in-
door/outdoor low-power, long-range wearable tracking
system to support and extend the ability of people with
Mild Cognitive Impairment (MCI) to live in their own
household.

• The definition and implementation of a novel room-
accurate IR-based positioning sensor system, together
with the use of a GNSS module.

• The development of a step detector based on the measure-
ments coming from an accelerometer, used to monitor the
patient’s activity.

• The use of of state-of-the-art LoRaWAN communications
to enable access to remote locations where mobile net-
work coverage and healthcare may be poor.

• The use of several application services for collecting
and visualising measurements and data from multiple
patients in a friendly way for relatives and caregivers. For
this purpose, a Node-Red programme has been dedicated
to gather patients’ data, to store them in an InfluxDB
database, which is finally displayed through a Grafana
web platform, and to launch alert messages via Telegram.

This manuscript is organised as follows: Section II presents
some related works; Section III describes the architecture of
the proposed system, the WWS, the IR room positioning
system, and the LoRaWAN gateway; Section IV explains the
algorithms and software implemented; Section V shows some
experimental tests carried out to validate the proposal; and,
finally, conclusions are discussed in Section VI.

II. RELATED WORK

Several wearable systems for tracking and monitoring pa-
tients with cognitive impairments have been presented in



GARCÍA-REQUEJO et al.: ACTIVITY MONITORING AND LOCATION SENSORY SYSTEM FOR PEOPLE WITH MILD COGNITIVE IMPAIRMENTS 3

the literature by using different connectivity and positioning
technologies. One of the most common indoor localization
solutions in wearable devices is the use of RF technologies
based on RSS, such as BLE or WiFi. Although these solutions
are low-cost and easily deployed, continuous RSS scanning
consumes a large power, which limits their use in wearables
[34], [35]. Furthermore, many of these solutions are often
inaccurate and require Machine Learning (ML) algorithms
to estimate the user’s location, which implies an additional
challenge when dealing with real-time running and power
consumption [36], [37].

Other RF-based alternatives are also available for this type
of systems. Lin et al. [38] propose a sensory system that
applies RFID technology to a surveillance system, by placing
tags in indoor and outdoor spaces. The system can automati-
cally warn caregivers whenever an elderly person approaches
a dangerous area or wanders too far away. NOTECASE [39]
is another use case; it is a real-time tracking system to monitor
elderly people, both indoors and outdoors, by combining the
RFID technology and a Global Positioning System (GPS)
receiver in the wearable. Data are presented to caregivers on
both mobile and web applications, whereas communications
are based on WiFi, which constrains the range of the system.

UWB solutions offer more accurate people tracking esti-
mations. The NITICS [40] system allows the coordinates of
the patient’s position to be obtained in indoor environments,
based on the distribution of some encoded beacons, as well
as on measuring the TOAs (Times-of-Arrival) between the
beacons and the receiver for later multilateration. This pro-
posal achieves an accuracy below one meter. Indeed, better
accuracies (10-30 cm) can be achieved using UWB [41].
On the other hand, some works merge UWB with additional
technologies, such as BLE or Inertial Navigation Systems,
by means of fusion filters in order to improve the final
performance [42], [43].

Apart from RF solutions, Escort [44] is a sensory system
where patients carry network cards that obtain indoor room-

level localization through a modulated lighting-based system.
Fluorescent and night lights deployed in a building transmit an
unique identification code that is measured by a phototransistor
integrated in the patient’s card. This information is sent in
real time via Zigbee to a central server that delivers a Short
Message Service text when a user is at risk.

Another approach for monitoring and tracking users deals
with motion sensors, such as accelerometers, gyroscopes,
or even magnetometers [45], [46]. In [47] they are used
to identify ADLs by merging the pose estimated from the
magnetometer and the distance travelled during the activity
transition. ML algorithms are applied here to recognize the
user’s current activity.

All the aforementioned alternatives based on different sen-
sory technologies present some drawbacks outdoors. When
they are out of the coverage range from the WiFi access
point in the household under study, it is necessary to pro-
vide the system with a communication channel to upload
measurements, while keeping a low power consumption to
maximize the duration of batteries in portable devices. In
this context, solutions based on LPWAN networks, such as
LoRaWAN, achieve longer battery life, as well as larger range.
Hadwen et al. [48] propose a LoRa GPS tracker capable
of supporting up to 40 hours with a location update rate
of 60 seconds, and a range of 3 km, what allows effective
monitoring of patient’s position. A comprehensive solution
is shown in [49], where an indoor and outdoor localization
system is proposed by using UWB, GNSS, and LoRaWAN as
the communication protocol. This provides sub-meter accuracy
indoors, positioning outdoors, and the advantages of using
LoRaWAN.

III. SYSTEM ARCHITECTURE OVERVIEW

Fig. 1 summarizes the architecture of the proposed sys-
tem. As can be observed, a different coded IR beacon is
deployed for each room/space in the monitored patients’ home
or care facility. The WWS worn by each patient acquires
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the IR signal, then identifies the transmitting beacon and
the associated room. Hence, the individual estimation of the
patient’s position within the indoor space is achieved. In
addition, the user’s position can be obtained outdoors by
means of a GNSS receiver embedded in the WWS. All these
data, together with the steps walked by the user, the battery
level and the environmental information, are transmitted to
a gateway via LoRaWAN at a 868.9 MHz frequency. Then
the data is uploaded to the cloud. An application server is in
charge of gathering this information, storing it in a database
to be displayed through a web service, and issuing alarms
to caregivers under certain circumstances. Note that a non-
limited number of users can be monitorized simultaneously,
each one carrying its own unique wearable that will compute
autonomously the location and activity of the person. Typical
constraints of crowdy environments in which occlusions or
disturbances of the IR signal or bottleneck communications
can appear will be dealed in future works. Hereafter, the details
of the hardware components in this architecture are discussed
below.

A. Description of the IR Beacons
Every deployed beacon emits a 4-bit coded IR signal that

can identify up to 16 different indoor spaces. The IR signal is
transmitted every 2 seconds, and it is received and processed
by the wearable worn by the user to identify its location.

Fig. 2 shows the IR emitting beacon in a 64 × 44 × 25
mm3 package. The main component of the beacons is the
ESP32-PICO-D4 System-on-Chip (SoC) [50], developed by
Espressif Systems Co., Ltd., which generates a 4-bit pulse
width modulated (PWM) signal with a 38 kHz carrier, using a
general-purpose input/output (GPIO) port. This PWM signal
drives an IR led through a resistor. The emission power of each
beacon can be adjusted depending on the value of that resistor,
since it may be interesting to have different powers depending
on the region to be identified. For instance, it may be advisable
to transmit at low power within two adjacent small rooms, so
that they do not interfere each other; whereas, it is better to
emit at higher power in large isolated rooms.

B. Description of the WWS
The WWS prototype is based on the RAK5205 commercial

board [51], to which an external battery and an IR receiver
module have been added. This receiver enables the signals
emitted by the beacons to be acquired, then being possible to
identify the position of the user after processing them. On the
other hand, the battery is a 1-cell Lithium Polymer (LiPo) of
2 Ah, which enables the device to last up to 24 hours without
being recharged. All these components have been packaged in
a 64× 44× 25 mm3 box as shown in Fig. 3(a).

The RAK5205 contains several sensors that have been
involved here. The Ublox Max-7Q GNSS module handles
multiple satellite constellations and has a maximum posi-
tioning error of 2.5 m [52]. In addition, it incorporates the
BME680 environmental sensor, which provides information on
temperature, humidity, atmospheric pressure and gas resistance
[53]. Finally, the three-axis linear accelerometer LIS3DH

Fig. 2. General view of an IR emitting beacon packing.
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Fig. 3. (a) General view and (b) block diagram of the WWS prototype
based on the RAK5205 board.

[54] has been devoted to the detection of the user’s steps.
The design also includes the RAK811 SoC module [55],
which integrates the SX1276 LoRa transceiver [56], used for
the information transmission, and the ultra-low power ARM
Cortex-M3 STM32L1 microcontroller [57], considered as the
core. It is worth noting that both the LoRa and the GNSS
antennas have also been connected to the design through the
UFL connectors. Fig. 3(b) represents the WWS block diagram.

C. Description of the LoRaWAN Gateway

The sensory data collected by the aforementioned blocks are
sent to a gateway using the inbuilt LoRa module, which man-
ages the physical communication layer, through the LoRaWAN
1.0.2 Class A protocol at 868.9 MHz. The gateway works as a
transparent bridge, relaying messages from the wearables to a
network server over regular IP connections. For this purpose,
it converts LoRa packets into IP packets and vice versa.

The gateway used is the Lorix-One 868 MHz model [58],
which implements the LoRaWAN specifications, and it is
especially designed to be installed outdoors, reaching from
2 km in urban areas to 12 km in rural areas. This is a
relevant feature whether the patient is outdoors. Furthermore, it
incorporates an operating system to facilitate its configuration,
and it includes a Power over Ethernet (PoE) module for power
supply and connectivity.

IV. PROPOSED ALGORITHMS AND METHODS

The principle of operation of the proposed system involves
three software modules, corresponding to the aforementioned
hardware elements: the wearable device software, the IR bea-
con software for the room-level localization, and the high-level
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Fig. 4. Flowchart of the tasks implemented in the wearable.

application services for data management, alert generation, and
visualization.

Fig. 4 depicts the tasks running on the ARM Cortex-M3
microcontroller available in the wearable. The main routine
initializes all its sensors, establishes a connection with the
Gateway and leaves the ARM in an idle state. A timer is set
to wake it up every 10 s, so it reads the data from the sensors,
creates the payload and sends them through LoRaWAN. The
IR code from the beacons is processed by an interrupt service
routine (ISR) that is run when the IR receiver module is
triggered, thus processing the incoming IR signal and updating
the code information. If the WWS is not in any room, and
therefore no code is obtained, the position is determined
through the GNSS module. This might imply an issue if
some rooms are not beaconed, thus resulting in a GNSS
position with a significant error due to signal attenuation
indoors. In this situation, the GNSS module may even fail
to obtain a position, so the final location sent is flagged as
unknown. Finally, the battery level and the environmental
sensor information are also transmitted, as well as the number
of steps estimated by the step detector algorithm. This step
detection algorithm, together with the symbolic localization
system and the application services, are discussed in detail
hereinafter for clarity’s sake.

A. IR-based Indoor Symbolic Localization System
The proposed indoor symbolic or room-level localization

system is based on the reception of encoded IR signals emitted
by a set of beacons deployed in the household’s rooms under
analysis. These signals are received and decoded by the IR
wearable sensor to identify the room where it is located over
time. This system, similar to the well known Active Badge
System [59], may be especially useful for room-level local-
ization when dealing with wearable devices, since it provides
a low battery consumption compared to other technologies, as
well as a high room hit rate at low updating frequencies. This
performance is possible thanks to the fact that the emitted IR
signals are confined into the room and, therefore, they cannot
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Fig. 5. Positioning test for a setup with 4 rooms during an interval of 10
minutes (0: user not in the room; 1: user in the room).

be acquired in other rooms. In cases where rooms are open
concept (with no doors), it is advisable to place the beacons
facing away from the entrances, so that there is no interference
between adjacent rooms. On the other hand, there is also a
main constraint to be considered for its operation: the WWS
should be worn in a visible area, so the receiver can acquire
the IR signals without issues.

As an example, Fig. 5 shows a test for a 4-room positioning
system with a beacon emission period of 2 seconds during an
interval of 10 minutes. It is worth noting the high accuracy,
although some errors can be observed in the positioning during
transitions from one room to another when the rooms have
their door opened. This aspect is more noticeable between the
hall and the corridor since they are open rooms. In this exam-
ple, worst-case room hit percentages of over 80% are obtained
in all rooms (Laboratory: 88.33%, Bathroom: 96.66%, Hall:
93%, Corr: 80.33% ). Further evidence and discussions will
be presented in the experimental results section.

B. Step Detector Algorithm

The readings from the 3-axis accelerometer available in the
WWS are obtained by the ARM processor at a rate of 10 Hz
to detect the user’s steps. This updating rate has been selected
in order to avoid any prior low-pass filtering in the processing
of the incoming signals. In addition, it does not increase either
the computational load or the wearable’s power consumption
significantly.

Firstly, the Step Detector algorithm (algorithm 1) computes
the Euclidean norm acck of the three-axis acceleration to
minimize the dependency on the orientation from the X, Y
and Z axes. The average meank of the last 10 samples (1
s) of the norm signal acc(k−10):k is obtained to discard any
possible offset and make it possible to analyze if there is a zero
crossing between the last two previous samples. In this case,
the number ZC of zero crossings is increased, and the last
sample at which the zero crossing has been detected is stored
in NZC . Afterwards, when two consecutive zero crossings are
identified, the signal is analyzed between the samples NZC1

and NZC2 at which the crossings were detected to obtain its
maximum and minimum. Finally, if the difference between the
maximum and minimum of the signal exceeds a predefined
threshold, a new step is validated and the number Nstep is
increased.



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, NOVEMBER 2022

Algorithm 1 Step Detector Algorithm

acck =
√
a2x,k + a2y,k + a2z,k

if(k > 10) then
meank = mean (acc(k−10):k)
StepSignalk = acck −meank

if (ZeroCrossing(StepSignal(k−1):k)) then
ZC ++
NZC = k

end if
if (ZC == 2) then

[max,min] = MaxMinDetection(StepSignalNZC1:NZC2
)

if ((max−min) > Threshold) then
Nstep ++

end if
ZC = 0

end if
end if
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Fig. 6. Processed acceleration norm signal without offset at a 10 Hz
sampling rate for a 10-step walk detection.

Fig. 6 shows the norm signal without offset (StepSignal
in Agorithm 1), together with the maximum and minimum
peaks detected during a 7 second test in which 10 steps were
performed. This signal proves the cyclic nature of the steps
while walking, thus implying an easily identifiable pattern.
This algorithm, based only on the accelerometer, has been
derived from [25], [60] and it has been adapted for the case
of the WWS worn in the arm.

C. Application Services Diagram

The application services used for the wearable sensory
data management have been implemented into several stages,
using different software tools that run in a remote server
on the cloud network and an application server in the user
network, as illustrated in Fig. 7(a). The data collected by the
gateway are transmitted to the network server, The Things
Stack (TTS) [61]. TTS is an open and decentralised LoRaWAN
network server that supports the use of different integrations
to process the data. In this scenario, it has been attached
to a Message Queuing Telemetry Transport (MQTT) server
or broker. This allows to communicate with a MQTT client,
which can subscribe to uplinks and publish downlinks.

The MQTT client, as well as the decoding of the payload
sent by the WWS, the generation of alerts for caregivers and

The Things Stack

Telegram
Telegram

InfluxDBNode-Red

Grafana

Application Server
Network Server

MQTT Broker

(a)

(b)

Fig. 7. (a) Network and application server diagram; and (b) Node-Red
flowchart.

the registration of these information in the database, have been
implemented with the Node-Red tool [62]. This is a flow-
based programming IoT tool developed by IBM to connect
hardware devices, APIs, and online services. Fig. 7(b) shows
the flowchart in the Node-Red-based approach. The alarms
are triggered when the patient crosses a perimeter defined
outdoors, spends a certain amount of time in a room, or does
not enter a room for a specific time interval previously defined.
All the parameters to fire the alarms are fully configurable
depending on the application. They give useful information
to caregivers and allow to detect changes in routines. For
instance, it can send warnings if the patient remains an unusual
amount of time in the bathroom or if the number of visits
to the bathroom per day differs significantly from the usual
patterns; another example might be to trigger an alarm if the
patient does not go to the kitchen in the expected timetable
associated to lunch. These alarms are sent to the caregivers’
smartphones via Telegram messages. Note that the proposal is
flexible enough to support new definitions of alarms, according
to the specialists and caregivers needs.

The database used here is InfluxDB [63], which has been
chosen for its optimisation for IoT, its easy integration with
the Node-Red tool, and the visualisation tool Grafana [64].
Grafana allows the monitoring of the information stored in
the database through a web application with a powerful
user interface. The application updates the information to be
displayed in panels as it is stored in the database. It also allows
the user to choose different time slots and days to consult the
information. In this way, caregivers and healthcare assistants
can plot all the data measured since the beginning to the
present day on different dashboards or panels, allowing the
patient’s routines to be evaluated over time and to track the
real-time positioning of the user.

V. EXPERIMENTAL RESULTS

A. Indoor Localization Results
In order to measure the accuracy of the IR-based localiza-

tion system, five different tests have been carried out at the
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Fig. 8. Indoor map of the test area with the four IR beacons.

School of Engineering from the University of Alcalá. For this
purpose, four IR beacons emitting every 2 seconds have been
deployed in different areas, corresponding to a laboratory, a
bathroom, a hall and a corridor, as shown in Fig. 8. Each
test was carried out for 1 000 seconds (what leads to 500
samples per test) following the different trajectories shown
in Fig. 9(a), where the accuracy for each room was derived
in the worst case, i.e. when the doors are open and, therefore,
there might be confusion in the codes received. Fig. 9(b)
illustrates the occupancy results obtained for each sample,
while Table I shows the percentage of times the system is able
to correctly estimate the room with respect to the ground truth.
The system mostly identifies the rooms correctly; whereas the
misdetections come when signals from two adjacent rooms
are simultaneously received, as it can happen when the user
is in the entrance of a room and still close to the corridor.
Thus, the hit percentage decreases in the corridor, which is
an open and a transition area. Also, location rates below the
average can be observed in test no. 3, since during this test in
the laboratory the user was close to the entrance and in some
occasions the detected signals were those from the corridor.
Still, the system offers high enough results to ensure the
localization of the patient in the building with low deviation.
Note that many errors can be later corrected by filtering
spurious measurements and by considering the information
from the accelerometer as well (if there is no movement of
the user, the room may remain the same).

For comparison’s sake, after having described the architec-
ture and algorithms proposed, Table II provides a qualitative
analysis between our proposal based on IR and some previous
works using technologies such as ultrasound (US), RFID,
BLE, WiFi, or even LoRa for room-level positioning [39],
[65]–[69]. Our proposal offers wide coverage, in contrast to
RFID, low sensor prices, and suitable localization results at
low computational cost through the code identification method
run in the wearable itself. This is due to the confinity of
IR signals, what is not fulfilled by RF technologies such as
BLE, WiFi or Lora. These require Received Signal Strength
Indicator (RSSI) fingerprinting techniques with previous train-
ing stages. As a result, portable devices must send the RSSI
obtained to a localization server where these techniques are
run for power saving. The aforementioned RF technologies are
widely used in wearable devices since clothing does not hinder
their reception. On the other hand, technologies with similar
properties to IR, such as US, allow better results to be obtained
by correlating the encoded signals, thus making the system
more robust with open doors, despite a higher computational
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Fig. 9. Trajectories followed in the room localization tests for 1 000
seconds. (a) Ground truth; and (b) the experimental results.

TABLE I
PERCENTAGE OF VALID MEASUREMENTS IN THE IR SYMBOLIC

LOCATION EXPERIMENTAL TESTS

Room Hit Percentage (%)
Area Test 1 Test 2 Test 3 Test 4 Test 5 Mean Std

Laboratory 93.6 96.6 80 92.4 93.4 91.2 6.45
Bathroom 98 91.8 97.8 93.2 98 95.76 3.02

Hall 98.6 95.2 99 93.8 96 96.52 2.23
Corridor 92.2 84.8 77.6 85 88.2 85.56 5.37

cost. To the best of the authors knowledge there is no previous
work using IR technology for room-level localization, with
the exception of the aforementioned Active Badge System
[59], which does not offer a power consumption or reliability
analysis.

B. Experimental Results for the Step Detector

Four different tests have been performed following different
gaits to evaluate the step detector in a variety of situations,
where a user has worn the WWS on the arm. The different
considered gaits correspond to a normal, a fast way of walking,
a slow one and a random one, while daily activities, such as
opening doors or picking up objects, were carried out. In order
to assess the step detector, the count success CS has been
defined as the hit percentage between the number of steps
Nstep counted by the WWS and the reference steps Nref (i-
th test performed):

CS(i) = 100 − |Nref (i)−Nstep(i)|
Nref (i)

100 [%],

i = 1, ..., 5

(1)
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TABLE II
COMPARISON OF ROOM-LEVEL POSITIONING SYSTEMS WITH PREVIOUS WORKS

References Technology Power Consumption Reliability Method Advantages Disadvantages

[39], [65] Passive
RFID Very Low High Code identification No batteries Expensive readers

for high coverage

[66] BLE Low High RSSI fingerprint Widely available Localization server usage
Training required

[67] WiFi Medium Medium RSSI fingerprint Widely available
Localization server usage

Training required
Multipath sensitive

[68] LoRa Low High RSSI fingerprint High interference
immunity

Localization server usage
Training required

[69] US Moderate Very
High

Correlation
of encoded signals Room-confined signals Ambient noise

Open doors
Our

Proposal IR Very Low High Code
identification Room-confined signals Open doors

No clothing penetration

TABLE III
EXPERIMENTAL RESULTS FOR THE STEP DETECTION ALGORITHM

Count Success (CS) %
Gait Types Mean Max Min Std

Normal 92.8 94 91 1.16
Fast 91.6 93 90 1.20
Slow 91 94 88 2.00

Random 89.6 94 86 3.38

The results obtained are shown in Table III, where each
test has been repeated five times, while executing 100 steps at
every repetition. The CS in the tests performed is around 90%
in all the cases, decreasing, as expected, when random move-
ments are performed. Note that, in this type of application,
where caregivers or medical services want to have information
about the patient’s level of physical activity over time, the
accuracy provided by this step detection algorithm should be
enough. The obtained accuracy is comparable to the one in
[25].

C. Experimental Results Visualisation
To evaluate the functionality of the visualization system,

some initial tests were carried out by a volunteer that wore the
WWS on his arm for three days, performing different routes,
both indoors and outdoors the School of Engineering from the
University of Alcalá. For this purpose, different dashboards
have been created in Grafana using several database queries
and operations, which show the steps taken by patients,
their location, and their evolution over time, as well as the
occupancy statistics in the different areas or spaces. These
sensed areas are the same as those shown in Fig. 8, with the
addition of the outdoor area around the building to monitor
the patient out of home.

The first panel shown in Fig. 10(a) displays the patient’s
location and the number of steps walked during the selected
time slot when the user took a route on the first test day.
Initially, the user was at the laboratory, then he came into the
hall, through the corridor, and went outdoors where he stayed
for about 20 minutes. Afterwards, he returned to the laboratory,
passing through the hall, the bathroom and the corridor. It can
be observed how the user increased his steps during the test,
until he reached the laboratory, where he remained seated.
Finally, the user returned to the bathroom where he stayed

for 8 minutes, until he came back again to the laboratory. It
should be noted that some slots present some missing data
due to LoRaWAN communication or GNSS signal failures
caused by possible building obstructions. Fig. 10(b) illustrates
the three different routes taken by the user over the days in
a map (test 1, test 2 and test 3). It’s worth noting that the
user took an unexpected trajectory on the third test to get
from one point to another, which can indicate caregivers or
medical services that the user may be disoriented, in order to
take action in response. Finally, the panel in Fig. 10(c) shows
the occupancy percentage in the different areas while the tests
were performed. This can provide information about possible
routines followed by the patient that may be indicative of an
evolution in the disease. For instance, on the third day test,
it can be also observed that the user spent too much time
in the corridor compared to the other days, which may be
indicative of unusual behaviour. It may also be observed that
on the first day he used the bathroom longer than the rest
of the days, which can be also translated into a variation in
the hygiene routines if it persists in the long term. Finally,
as an example of the generated alerts that can be sent to the
caregivers’ smartphones via the instant messaging software
Telegram, a screenshot of their content is shown in Fig. 11.

VI. CONCLUSION

This work presents a WSN for location and activity mon-
itoring of people with mild cognitive impairment, such as
dementia in the early stages, by wearing a WWS. For this
purpose, a prototype of a WWS has been developed based
on a commercial board. The wearable contains an IR receiver
module for indoor room-level location, a GNSS module for
outdoor positioning, and an accelerometer to measure patient’s
steps by using a proposed algorithm, which is also detailed.
LoRaWAN communications are used to transmit the informa-
tion indoors and outdoors. Room-level sensor localization is
achieved by deploying IR coding beacons at each room in
the house, whose periodic sequences are detected by the IR
receiver module in the wearable and decoded to estimate the
location. More than 90% of the times the system is able to
correctly estimate in which room the patient is. On the other
hand, the proposed step detector, based on a low sampling rate
(10 Hz) of the accelerometer data, achieves a 92.8% accuracy.
The use of LoRaWAN results in a low power consumption
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Fig. 10. Visualization of Grafana dashboards in a 45-minute time slot for the three test days. (a) Location and accumulated number of steps for the
first day test; (b) trajectory map; and (c) occupancy statistics.

Fig. 11. Snapshot of alert messages received on caregivers’ smart-
phones.

with a battery life of up to 24 hours and long-range coverage,
thus allowing the patient to move freely in and around the
home without the need for other communication. The sensory
information is displayed over time via a user-friendly web
application that allows to analyze the evolution of the patient’s
routines. Furthermore, alerts can be launched to caregivers’
smartphones, whether the patient might be in danger. In this
way, the proposed WSN enhances independent living for mul-
tiple patients in the early stages of cognitive diseases, provides
caregivers with peace of mind, and supports further follow-ups
by the medical services. Future works will deal with reducing
the dimensions of the proposed IR wearable prototype for
better acceptance by users. Furthermore, experimental tests

will be extended to households with multiple MCI tenants,
in order to validate how the proposal behaves in a real case
scenario.
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Alcalá, Alcalá de Henares, Spain, in 2013. He is currently an Associate
Professor of Electronic Digital Systems at the Electronics Department,
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