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versitat Politècnica de València.

Organizing Committee

The organizing Committee of the MME&HB 2023 is composed by:

Juan Ramon Torregrosa Universitat Politècnica de València
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J.M. Montañana, A. Hervás, S. Morillas, and J. Pellicer

Competitiveness of Formula 1 championship from 2012 to 2022 as
measured by Kendall corrected evolutive coefficient . . . . . . . . . . . . . . . . . . . . 394

Francisco Pedroche

VIII Mathematical Models in Population Dynamics

Constructing exact numerical solutions and nonstandard difference
schemes for second order linear delay differential equations . . . . . . . . . . . . . 407
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Modeling interference on interference
competition models

M. C. Vera1, M. Marvá1, R. Escalante1, and V. Garćıa1

Universidad de Alcalá,
Departamento de F́ısica y Matemáticas,

Alcalá de Henares 28807, Spain.
carmen.vera@uah.es

Abstract. Paradoxically, prior interference competition models did not
account for the effect of both intra- and inter-species interference. We
do so by adapting the works of Beddington [2] and DeAngelis [7] on
predator-prey models to the classical Gause interference competition
model [8]. The established theory estates that global species coexistence
(i.e., regardless of the initial amount of individuals) is only possible,
roughly, when the ratio of the inter-species effects over the intra-species
effects is less than 1. This feature was intended to support the Gause’s
Competitive Exclusion Principle (two species competing for the same
resource can not -hardly- coexist) and the Coexistence Paradox (this
hypothesis is at odds with Nature). We have found that taking into ac-
count intra-species interference in competition allows competing species
to global coexistence even if the above mentioned ratio is larger than 1.
This feature was not allowed in previous works on interference competi-
tion that introduced herd-type behavior [1], [3], [13], the time spent in
competition [4] or group defense [5]. We have also found multi-stability
scenarios not allowed by the classical model [8] but found in the above
mentioned references which, in turn, here are feasible in a wider range of
the parameters space due exclusively to intra-species interference when
competing heterospecifics. Therefore, accounting for interference con-
tributes to unveil the Paradox of coexistence.

Keywords: interference competition, interfering time, species competi-
tion

1 Introduction

The Competitive Exclusion Principle [9] states, roughly, that two species that
compete for the same resource can not coexist. Two classical works support this
Principle: the Gause [8] (Lotka-Volterra like) competition model was derived for
ordinary differential equations based on laboratory experiments with Parame-
cium. The Leslie-Gower difference equations competition model [12] was inspired
on the famous experiments with Tribolium carried out by Park and collaborators.

Both models share a handful of features. Let xi(t) be the number of individ-
uals of species i = 1, 2 at time t. The Gause model reads as

x′i(t) = rixi(t)− aiix2i (t)− aijxi(t)xj(t), (1)
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414 M. C. Vera et al.

while the Lelie-Gower model is

xi(t+ 1) =
rixi(t)

1 + aiixi(t) + aijxj(t)
, (2)

where ri stands for the intrinsic growth rate, aii for the intra-species competition
coefficient, while aij measures the competitive effect of species j on species i.

The nullclines of both models are straight lines. Also, assuming that the
trivial equilibrium point E∗

0 = (0, 0) is unstable, both models allow for four
different competition outcomes: either species 1 or species 2 wins regardless of
the initial values, global coexistence, or priority effects: one species will go extinct
depending on the initial amount of individuals. Interestingly, the competition
outcome depends essentially1 on the same combination of parameters

Gause:
aij
ajj

rj
ri
, Leslie-Gower:

aij
ajj

rj − 1

ri − 1
. (3)

The above expressions, that we denote indistinctly by cij , are interpreted as
follows: forget for a moment of the r’s ratio. Coefficient cij < 1 means that the
effect of species j on species i is softer than the effect of species j on species j.
Recall that species j would survive in the absence of species i. Thus, cij < 1
means that species j can not drive species i to extinct. Note that condition
aij/ajj < 1 can be reversed by multiplying by the ratio of the intrinsic growth
rates, i.e., being not harmful enough can be compensated by a sufficiently larger
reproduction rate, which must be taken into account [11].

The outcomes of both the Gause (1) and the Leslie-Gower model (2) are
summarized in Figure 1 in terms of the above defined cij , i ̸= j coefficients,
the so-called competitive strengths [4]. In terms of cij , coexistence or extinction
depends on the balance between intra- and inter-species competition [14], [15].

Coexistence seems to be much more common in Nature than species exclu-
sion, which is at odds with the Competitive Exclusion Principle and gives rise to
the Paradox of Coexistence. Ecologist have done many work to explain this con-
tradiction (find a recent review in [4]). However, from the deterministic models
viewpoint not too much work has been done apart from the recent works as-
suming herd behavior [1], [3], [13], accounting for the time spent on inter-species
competition (individuals interference) [4], and group defense [5].

In this work we set a model that accounts for intra-species interference in
competing species in Section 2. Then we summarize the possible outcomes of
the model in Section 3 and briefly discuss the results in Section 4.

1 If λi are the eigenvalues of the Jacobian at an equilibrium point E∗, it is asymptoti-
cally stable if λi < 0 (|λi| < 1, respt.) for differential equations (difference equations,
resp.)
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Fig. 1: Outcomes of the classical competition model (1) as function of the com-
petitive stregths c12 and c21.

2 The model

Beddington [2] and DeAngelis [7] modelized the effect of interference between
predators when hunting preys. This effect can be easily adapted to competing
species.

Let us make a comment to clarify the effect we are accounting for. Note
that we deal with interference competition (also known as contest competition)
which means that, in contrast to exploitative (or scramble) competition, after
disputing for a resource one of the competitors will take the whole resource they
are competing for. Two heterospecifics may compete for a resource, and the effect
of the resulting interference was addressed in [4]. Instead, here, we account for
the mutual interference between conspecifics that compete for a resource with a
heterospecific. This effect is different from that due to logistic behavior, i.e., that
of two individuals of the same species competing for a resource in the absence
of an individual of the other species.

The complete competition interference model reads as follows

x′i = rixi − aiix2i −
aijxixj

1 + aixi + ãj(xj − 1)
i ̸= j, i, j = 1, 2. (4)

The model analyzed in [4] is (4) with ãj = 0. Here, instead, we are aimed
to understand the net effect of intra-species interference when competing het-
erospecifs. Thus, we consider that the inter-species interference in competition
is negligible, so that ai = 0 and system (4) becomes

x′i = rixi − aiix2i −
aijxixj

1 + ãj(xj − 1)
i ̸= j, i, j = 1, 2. (5)

The analysis of the complete model (4) is beyond the scope of this contribution
and will be available somewhere. We rewrite system (5) accordingly to ui =
aiixi/ri, cij = aijrj/(riajj), and Ki = ri/aii, that yields

u′i = ri

(
ui − u2i −

cijuiuj
1 + ãj(Kjuj − 1)

)
, i ̸= j, i, j = 1, 2. (6)
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where cij is the competitive strength as defined in the left hand side of (3), Ki

is the carrying capacity, and aii/ri is the absolute competition coefficient [6]
of species, i = 1, 2. It is clear that ãj = 0 in (5) yields the classical system
(1). Assuming ãj > 0 gives rise to a new model, the competition model with
Beddington-DeAngelis competitive response.

3 Results

We analyze system (6) by assuming that 0 < ãi < 1 for i = 1, 2. From now on
we assume that ri > 0 for i = 1, 2, which implies that the trivial equilibrium
point E∗

0 = (0, 0) is unstable. Thus, in the absence of species j, species i behaves
according to the logistic equation

u′i = riui(1− ui), (7)

and u∗i = 1 (that is equivalent to x∗i = ri/aii, the corresponding carrying capac-
ity) is a global attractor for the solutions of (7).

A first result states that the dynamics of system (5) evolves eventually in the
region [0, 1]× [0, 1]:

Proposition 1. The non-negative cone is invariant for system (6). Besides,
any solution of such a system with positive initial values will eventually enter
the region [0, 1]× [0, 1] and will not leave it.

Proof. It follows from direct calculations using the fact that the solution of
u′i = ri(ui − u2i ) upper bounds the solution of the corresponding equation in
system (6).

Indeed,

Proposition 2. The solutions of system (6) converge eventually monotonically
to an equilibrium point.

Proof. It follows from direct calculations computing the conditions stated in [10].

Proposition 3. Consider the semi-trivial equilibrium points. E∗
1 = (1, 0) and

E∗
2 = (0, 1). Then, E∗

j is locally asymptotically stable if cij > c̃∗ij for i ̸= j,
i, j = 1, 2 respectively, where

c̃∗ij = 1 + ãj(Kj − 1), i = 1, 2, i ̸= j. (8)

Proof. The existence of E∗
i follows from direct calculations. The stability condi-

tions follow from a standard analysis of the eigenvalues of the Jacobian matrix.

We next classify the possible outcomes of system (6) in terms of the coefficients
of the model. It will turn out that the quantities

Γi =
1 + ãi(Ki − 1)

ãiKi
= 1 +

1− ãi
ãiKi

, i = 1, 2 (9)
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play a key role. Note that Ki ≥ 1 since they are carrying capacities. Indeed, we
divide the c12c21 positive cone into four regions

Rcoex := {0 < c12 < c̃∗12, 0 < c21 < c̃∗21}

Rpe := {c̃∗12 < c12, c̃
∗
21 < c21}

R1 := {0 < c12 < c̃∗12, c̃
∗
21 < c21}

R2 := {c̃∗12 < c12, 0 < c21 < c̃∗21}

(10)

that define the possible outcomes of system (6) (see Figure 2).

Proposition 4. Consider system (6). Then:

1. Global coexistence. There exists an equilibrium point in the non-negative cone
that is GAS for any (c12, c21) ∈ Rcoex.

2. Priority effects. There exists a saddle equilibrium point in the non-negative
cone that is unstable for any (c12, c21) ∈ Rpe. Indeed, E

∗
1 and E∗

2 are locally
asymptotically stable, and the stable manifold of the positive (component-
wise) equilibrium defines the basins of attraction of each semi-trivial equilib-
rium point.

Proof. The non-trivial equilibrium points are the solutions to the equation result-
ing from equating the nullclines of system (6). The number of solutions included
in the non-negative cone follows from applying the Descartes’ rule of signs to
that equation. The stability conditions of the semi-trivial equilibrium points E∗

1

and E∗
2 were proved in Proposition 3. The stability of the non-triVial equilibrium

points follows from the above considerations and Proposition 2.

Proposition 5. Consider system (6). Then:

1. Assume now that Γ1 = Γ2, that is

K2

K1
=
ã1(1− ã2)
ã2(1− ã1)

(11)

Then, it follows that:
(a) Species 1 wins: E∗

1 is GAS whenever (c12, c21) ∈ R1.
(b) Species 2 wins: E∗

2 is GAS whenever (c12, c21) ∈ R2.
2. Instead, if Γ1 < Γ2, that is equivalent to

K2

K1
<
ã1(1− ã2)
ã2(1− ã1)

(12)

Then, it follows that:
(a) Species 1 wins: E∗

1 is GAS whenever (c12, c21) ∈ R1.
(b) Consider the second degree equation on u1 that raises from equating the

nullclines of system (6). Then, there exists a curve, Ψ+, arising from
solving on c21 the result of equating to zero the discriminant of the solu-
tion of the above-mentioned second degree equation such that
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i. Species 2 wins: E∗
2 is GAS whenever

{(c12, c21) ∈ R2} ∩ {(c12, c21); c21 < Ψ+(c12)} (13)

ii. Conditional coexistence in favour of species 2. On the contrary, if

{(c12, c21) ∈ R2} ∩ {(c12, c21); Ψ+(c12) < c21} (14)

then E∗
2 is locally asymptotically stable and E∗

1 unstable. In addition,
there exist two equilibrium points in the positive cone, one locally
asymptotically stable and one unstable. The latest is a saddle equi-
librium point whose stable manifold separates the basins of attraction
of E∗

2 and the positive (coexistence) equilibrium point.
3. Finally, if Γ1 > Γ2, that is equivalent to

K2

K1
>
ã1(1− ã2)
ã2(1− ã1)

(15)

Then, it follows that:
(a) Species 2 wins: E∗

2 is GAS whenever (c12, c21) ∈ R2.
(b) Consider the second degree equation on u1 that raises from equating the

nullclines of system (6). Then, there exists a curve, Ψ−, arising from
solving on c21 the result of equating to zero the discriminant of the solu-
tion of the above-mentioned second degree equation such that
i. Species 1 wins: E∗

1 is GAS whenever

{(c12, c21) ∈ R1} ∩ {(c12, c21); Ψ−(c12) < c21} (16)

ii. Conditional coexistence in favour of species 1. On the contrary, if

{(c12, c21) ∈ R1} ∩ {(c12, c21); c21 < Ψ−(c12)} (17)

then E∗
1 is locally asymptotically stable and E∗

2 unstable. In addition,
there exist two equilibrium points in the positive cone, one locally
asymptotically stable and one unstable. The latest is a saddle equi-
librium point whose stable manifold separates the basins of attraction
of E∗

1 and the positive (coexistence) equilibrium point. See the right
panel of Figure 3.

Proof. When equating the nullclines of system (6) we get a second degree equa-
tion for u1. The solutions of such an equation are the u1 component of the
equilibrium points of system (6). Letting the discriminant of the solution of that
equation equal to zero, the curves Ψ+ and Ψ− are obtained. These curves bound
the regions on the c21c12 plane where there are two, one or none equilibrium
points (that is, the algebraic equation has either real or complex solutions).

Signs of the coordinates of the equilibrium points are determined by using
the Descartes’ rule of signs. The number of equilibrium points inside the non-
negative cone, in addition with stability of the semi-trivial equilibrium points
(Proposition (2)) yield the stability of the non-trivial equilibrium points.
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Fig. 2: Competition outcomes of system (6) as function of the competitive
strengths c12, c21 for increasing values of ã2 = 0.1, 0.3, 0.5 (from left to right).
Other parameter values are: r1 = 6.8, r2 = 2, K1 = 5, K2 = 3, ã1 = 0.2. The
code colour is the same as in Figure 1 except for the dark blue and dark red
regions, that represent conditional coexistence in favour of species 2 or 1, re-
spectively. Note ã1 = 0.2 is kept fixed in the three figures and ã2 varies. As a
consequence, c̃∗21 remains the same while c̃∗21 varies accordingly. Fixing ã2 and
varying ã1 would let fixed c̃∗21 and change c̃∗12.

Fig. 3: Conditional coexistence in favour of species 1 (left panel, either species
1 wins or there is species coexistence) or species 2 (right panel, either species 2
wins or there is species coexistence).
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4 Discussion

It is intuitive that spending time on interfering with conspecifics softens the
competitive effect on heterospecifics. In this work we are able to translate into
numbers such a consequences as described in Proposition 4.

Qualitatively, the new dynamical scenarios are equivalent to those found in
the recent literature. However, the driving process is different: it is not interfer-
ence between heteropecifics [4], neither group defense [5] or herd behavior [13]
nor the result of a competitive-cooperative balance [15].

A key result is that the global coexistence region is larger than that in [1],
[4], [5], [13] or [15]. This feature constitutes an explanation (not unique) of the
Paradox of Coexistence. Also, conditional coexistence (items 2b) and 3b) in
Proposition 5) expands the scenarios permitted by the classical model allowing
for coexistence.

It is of full interest to analyze system (4) for ai > 0 and ãi > 0 to fully
understand the combined effect of interfering with con- and hetero-specifics when
competing.
Acknowledgments: this work is supported by the research project PIUAH22CC-
041 funded by the universidad de Alcalá, Spain. M. Marvá is also partially sup-
ported by the Programa de Recualificación del Profesorado Universitatio funded
by the Ministerio de Universidades (Spain) and Next Generation funds (Euro-
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