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A B S T R A C T

Home-based physical therapies are effective if the prescribed exercises are correctly executed and patients
adhere to these routines. This is specially important for older adults who can easily forget the guidelines
from therapists. Inertial Measurement Units (IMUs) are commonly used for tracking exercise execution giving
information of patients’ motion data. In this work, we propose the use of Machine Learning techniques to
recognize which exercise is being carried out and to assess if the recognized exercise is properly executed
by using data from four IMUs placed on the person limbs. To the best of our knowledge, both tasks have
never been addressed together as a unique complex task before. However, their combination is needed for
the complete characterization of the performance of physical therapies. We evaluate the performance of six
machine learning classifiers in three contexts: recognition and evaluation in a single classifier, recognition of
correct exercises, excluding the wrongly performed exercises, and a two-stage approach that first recognizes
the exercise and then evaluates it. We apply our proposal to a set of 8 exercises of the upper-and lower-limbs
designed for maintaining elderly people health status. To do so, the motion of 30 volunteers were monitored
with 4 IMUs. We obtain accuracies of 88.4% and the 91.4% in the two initial scenarios. In the third one, the
recognition provides an accuracy of 96.2%, whereas the exercise evaluation varies between 93.6% and 100.0%.
This work proves the feasibility of IMUs for a complete monitoring of physical therapies in which we can get
information of which exercise is being performed and its quality, as a basis for designing virtual coaches.
1. Introduction

Nowadays, the number of older adults worldwide is over one billion,
which means about the 13.5 % (WHO, 2021) of the population. This
aged population leads to a high demand for health care and social
services, with the cost that this entails. Health systems are moving
from the original disease management to a functional perspective with
the objective to get and maintain a healthy ageing (Rodriguez-Mañas,
Rodríguez-Artalejo, & Sinclair, 2017). The World Health Organization
defines healthy ageing as ‘‘the process of developing and maintaining
the functional ability that enables well-being in older age’’ (WHO,
2021).

The regular practice of physical exercise improves the functional
capacity of elderly people (Lazarus, Izquierdo, Higginson, & Har-
ridge, 2018) and delays adverse events usually associated with frailty,
a clinical syndrome characterized by the vulnerability of the indi-
vidual and the considerable risk to develop negative health-related
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events as disability (Rodríguez-Mañas et al., 2013). The combination of
strength, resistance, balance and flexibility training in physical routines
has shown great improvements in functional capacity (de Asteasu,
Martinez-Velilla, Zambom-Ferraresi, Casas-Herrero, & Izquierdo, 2017;
Izquierdo, 2019). But these therapies are frequently performed in
clinics or hospitals where patients are supervised by therapists or
physicians. It compromises patients’ autonomy since they have to go
expressly to these centers and many times it hardly fits in their activities
of daily living. Moreover, due to its high cost, this approach is not
suitable for long-term therapies, as those for maintaining elder people
health status.

For these reasons, home-based supervision systems, sometimes
called virtual coaches, are becoming increasingly important. These
virtual coaches contribute to patients’ adherence to physical treatments
based on exercises (Kyriazakos et al., 2020; Palazzo et al., 2016), which
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is crucial to obtain the benefits of those long-term therapies. Since they
work as a support for the absence of a personal supervisor, virtual
coaches have to achieve three main objectives: obtain information
about the human motion (Bavan, Surmacz, Beard, Mellon, & Rees,
2019; Mancini et al., 2017); monitor the physical activity, evaluating
its performance (Gauthier et al., 2017; Maciejasz, Eschweiler, Gerlach-
Hahn, Jansen-Troy, & Leonhardt, 2014; Pereira, Folgado, Cotrim, &
Sousa, 2019); and provide feedback to patients (Kyriazakos et al.,
2020).

Inescapably, virtual coaches rely on the development of techno-
logical solutions to achieve those three objectives. The technological
solutions have to be portable and everywhere usable in order to avoid
the limitation to controlled environments and increase their avail-
ability, so external systems such as the optical ones are dismissed.
Portable systems, such as Inertial Measurement Units (IMUs) have
increased their use during the last decade because of its low cost and
processing simplicity (Lopez-Nava & Angelica, 2016). These sensors
measure motions in terms of turn rate and specific force, which is
the linear acceleration with the influence of the gravity acceleration.
The suitability of IMUs has been demonstrated in several applications
related to motion analysis, as joint angle tracking (Fantozzi et al., 2016;
Saito, Kizawa, Kobayashi, & Miyawaki, 2020), analysis of kinematic
parameters in motor diseases (Goodwin et al., 2021; Romano et al.,
2021) and injury risk assessment (Maurer-Grubinger et al., 2021).

Additionally, there are several proposals for the sport motion recog-
nition using IMUs, most of them based on Machine Learning (ML)
algorithms. IMUs and ML algorithms have been jointly applied to
recognize fitness exercises (Preatoni, Nodari, & Lopomo, 2020), swim-
ming, tennis or basketball (Zhao & Chen, 2020), among others (Cust,
Sweeting, Ball, & Robertson, 2019). However, fewer proposals exist for
the recognition of motions during the rehabilitation process. As afore-
mentioned, besides the recognition, another problem related with the
monitoring of physical routines is the evaluation of the exercises. This
evaluation classifies exercises between correct or wrong performances
and, in some works, different errors in performance are evaluated.
But these works use different ML algorithms for evaluating the perfor-
mance of particular known exercises individually (Bevilacqua, Huang,
Argent, Caulfield, & Kechadi, 2018; Giggins, Sweeney, & Caulfield,
2014; Huang, Giggins, Kechadi, & Caulfield, 2016; García de Villa,
Parra, Jiménez Martín, García Domínguez, & Casillas-Perez, 2021; Whe-
lan, O’Reilly, Ward, Delahunt, & Caulfield, 2016). These individual
evaluation implies the knowledge of the classifier of the exercise to be
evaluated, without requiring its previous recognition.

However, during a remote physical therapy, we do not have such
information, and from a practical point of view, not only different
exercises are carried out, but also they can be correctly and wrongly
performed. Then we have to consider both tasks (recognition and
evaluation), that can be carried out separately or as a single task
including the whole characterization of the performed exercises. As a
consequence, both get more complicated. On the one hand, including
correct and wrong performances of the exercises implies that their
recognition entails a higher variability than if only accurate perfor-
mances are taking into account. On the other hand, the evaluation of
exercises relies on the correct recognition of motions. An error in the
first stage will condition the result of the evaluation. If we combine
both stages it results in an increase of the number of data classes, since
they do not only include the kind of motions, but also their correctness.
In conclusion, the complete characterization of exercises in prescribed
routines is a complex task to study. To the best of our knowledge,
no previous works deal with the whole exercises characterization as
a single classification problem.

In this work, we analyze the problem of exercises characterization,
recognizing and evaluating them, with the aim of establishing a first
approach for its remote monitoring. We focus on eight upper-and lower-
limb exercises included in a multidisciplinary routine found in the
2

literature (Casas-Herrero et al., 2019), although it can be extrapolated t
to any exercise routine. The main objective is to characterize these
exercises using inertial data from four IMUs placed on the person upper-
and lower-limbs, in order to determine which one is being carried out
and whether it is correctly or wrongly performed. The inertial data used
are publicly available at Zenodo (see Data Availability Section). We
evaluate several proposals by using the processed data from IMUs as in-
put data for six different ML algorithms (Bishop, 2006): Support Vector
Machines (SVM), Decision Trees (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), extreme learning machines (ELM) and Multi-layer
Perceptron (MLP). The objective is to know which algorithm performs
better.

Our main contribution is the proposal and validation of complete
methods that cover the recognition of physical exercises considering
also the quality in their performance. For the best of our knowledge,
this is the first work that studies the combination of both tasks as a
complex one. We evaluate the proposals with different ML algorithms
and determine the most suitable one. In this way, we provide insights
for the basis of exercises characterization using ML algorithms.

This work is organized as follows: Section 2 gives an overview
of the works related to the motions and exercises characterization;
Section 3 describes the proposals for the recognition and evaluation of
exercises, together with the different ML classifiers considered in this
work; Section 4 describes the sensory system, the information about
volunteers that participated in this study and the exercises they carried
out; Section 5 details the features used as inputs in the proposals, the
training and validation setup of the classifiers and the metrics used
to compare the proposals; Section 6 details and discusses the results
obtained for each proposal; and finally, Section 7 summarizes the main
conclusions referred to the exercises recognition and evaluation and the
feasibility of performing both tasks by using IMUs.

2. Related works

The efficacy of physical physiotherapy programs relies on the pa-
tient’s adherence and the correct performance of the prescribed rou-
tines. Therefore, there is a need for a systematic monitoring of their
execution. Recent research has explored the application of technologi-
cal advances in physical routines monitoring. Video-based and portable
technologies are the main alternatives proposed for the monitoring of
exercises (Cust et al., 2019).

Video-based solutions are frequently used because of their accuracy
and real-time visual feedback. Vision-based methods can be divided
into marker-based and marker-less. Marker-based methods provide ac-
curate measurements, about 1mm, of the position of markers in the 3D
pace. It is used in Vieira, Sousa, Arsénio, and Jorge (2015) to guide pa-
ients during rehabilitation exercises. However, despite their accuracy
n motion capture, the difficulties in marker placing and recognition
ake these systems impractical for virtual coaches (Viglialoro et al.,
019). Furthermore, these technologies have been fused with surface
lectromyography (sEMG) (Aung, Al-Jumaily, & Anam, 2014) or depth
ensors (Colomer, Llorens, Noé, & Alcañiz, 2016) for rehabilitation
urposes. However, video technologies are limited to those places
here the systems are installed, suffer occlusions and entail patients’
rivacy concerns (Komukai & Ohmura, 2019; Zihajehzadeh, Member,
ark, & Member, 2016). These limitations are overcome by wearable
echnologies as IMUs.

For a practical characterization of physical routines, recent research
as investigated the feasibility of IMUs to provide accurate recognition
nd evaluation of exercises in different human motion fields, as sports
nd rehabilitation (Camomilla, Bergamini, Fantozzi, & Vannozzi, 2018;
ust et al., 2019).

Regarding the recognition of the performed exercise or motion,
n Zhao and Chen (2020), Zhao and Chen recognized four basket-
all motions using four IMUs placed on the upper-limbs. They used

he mean, variance and absolute value of the maximum fast Fourier
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transform (FFT) coefficient of each second of the turn rate and spe-
cific force signals. They tested combinations of these features and
the features obtained with a principal component analysis (PCA) as
different possible inputs of SVMs with Gaussian kernel. The results,
obtained with four-fold cross-validation, proved that the PCA features
provided the highest accuracy, 96%. Also focused on the upper-limbs,
ut directly related to rehabilitation, in Bavan et al. (2019), Bavan
t al. recognized three shoulder rehabilitation motions performed by
atients with subacromial shoulder pain. They used only one IMU on
he arm that recorded the turn rate, specific force and magnetic field,
hich were segmented by selecting unique data segments through a
eak analysis function. This study evaluated nine time domain fea-
ures (mean, root mean square, standard deviation, variance, range,
nter-quartile range, percentiles and vector pair Pearson correlation
oefficients) and four frequency domain features (maximum frequency
omponent, mean frequency component, energy spectral density, en-
ropy and kurtosis). Four ML algorithms (DT, SVM, KNN and RF) were
valuated using a ten-fold cross-validation and obtained an accuracy
ver 90%. However, when they used a leave-one-subject-out (LOSO)
ross-validation with the best algorithm (RF), the accuracy decreased
o a maximum of 80%. For the analysis of more complex motions that
ncluded the complete body, in Preatoni et al. (2020), they used five
MUs placed on the upper-and lower-limbs and one on the trunk of
ne side of the body. The motions of study were clean and jerk, box
ump, American swing and burpees, and they also took into account
nd classified the transition intervals when no exercise was being
erformed. Nine time domain features (mean, standard deviation, root
ean square, mean absolute deviation, maximum, minimum, kurtosis,

kewness and quartiles) and seven frequency domain features (mean,
ower, higher frequency, lower frequency, median frequency, mean
requency and spectral entropy) were the inputs for the SVM and
NN algorithms. They evaluated different SVM and KNN kernels and
liding window sizes until 600ms. They found that the cubic kernel
VM with 600ms window length obtained the best results for the
ive-fold cross-validation, with an average accuracy of 99.1 %. With a
OSO cross-validation, this algorithm obtained an average accuracy of
7.6 %.

On the other hand, for the exercises evaluation, the performance
f a variety of exercises have been individually assessed. In Whelan
t al. (2016), they evaluated the lunge exercise using five IMUs on the
umbar spine and lower-limbs. They used sixteen features per signal
signal peak, valley, range, mean, standard deviation, skewness, kurto-
is, signal energy, level crossing rate, variance, first and third quartiles,
edian and the variance of both the approximate and detailed wavelet

oefficients). The binary classification between correct and incorrect
erformances was evaluated using RF and achieved an accuracy of
0%. They also analyzed the classification of the specific deviations,
s external rotation of foots or short or long starting stances, and
ound an accuracy around 70%. Similarly, in Kianifar, Lee, Raina, and
ulic (2017), they studied the single-leg squats exercise evaluation
sing three IMUs on the low back and on one leg. They used an
xtended Kalman filter with a biomechanical model proposed in Lin
nd Kulić (2012) to estimate the human pose. As in Whelan et al.
2016), signals are segmented into exercises repetitions, but in this
ase only time domain features are used (root mean square, standard
eviation, variance, mean, mean absolute deviation, skewness, kurtosis,
ange, minimum, and maximum). They used a LOSO cross-validation
or the binary classification between correct and wrong performances,
nd they reported an accuracy of 90% with Naive Bayes (NB), closely
ollowed by SVM, which obtained 89% of accuracy.

A variety of exercises have been individually evaluated in other
tudies, based on the knowledge of the type of exercise executed.
n Giggins et al. (2014), they used a logistic regression to individually
lassify between correct and incorrect variations of seven leg exercises.
en features (mean, standard deviation, skewness, kurtosis, signal en-
3

rgy, level crossing rate, signal range, first and third quartiles and the
ariance of the wavelet coefficients) were obtained from the measured
urn rate, specific force and from the estimated acceleration magnitude
nd orientation angles, pitch and roll. They monitored the motions
ith three IMUs placed on the thigh, shin and foot and reported an
ccuracy between 81 and 83%. Using the same placement of IMUs

on legs, in Huang et al. (2016), more ML algorithms were applied to
evaluate a set of seven leg rehabilitation exercises in order to study the
optimal IMU placement and combination. In that work, they evaluated
logistic regression, together with DT, MLP, SVM, RF and Adaboost clas-
sifiers, which combine different ML algorithms to improve their final
classifications, and averaged the metrics reported by all the methods.
They segmented signals into exercises repetitions and obtained ten time
domain features (mean, standard deviation, skewness, kurtosis, maxi-
mum, minimum, range, first and third quartiles and cross-correlation),
sixteen coefficients of the FFT as frequency domain features and thirty-
two wavelet coefficients as time–frequency features. They obtained
an averaged accuracy for all the classifiers between 78–97 % in the
exercises evaluation. More recently, in Bevilacqua et al. (2018), four
different knee rehabilitation exercises were evaluated. To do so, they
used a single inertial sensor placed on the shin that measured the turn
rate and specific force, and they estimated the turn rate magnitude and
the pitch and roll angles. They segmented the exercises repetitions and
obtained fifteen time domain features (mean, median, standard devia-
tion, variance, range, kurtosis, skewness, maximum, minimum, positive
mean, negative mean, sum of absolute differences, first and third
quartiles, and the correlation index between pitch and roll signals) and
twenty-five frequency domain features (energy, energy ratio, energy
average, harmonic ratio, energy entropy, and the first 20 coefficients of
the FFT). They achieved a binary classification using RF and DT with
accuracies that ranged between 88–97 %.

IMUs have also been used for the upper-limb exercises evaluation.
In Pereira et al. (2019), Pereira et al. combined two inertial sensors
with sEMG sensors to supervise two upper-limb exercises and one
lower-limb exercise. The inertial sensors were placed on the arm in
all exercises whereas the sEMG sensors were placed according to the
exercises on the back or lower-limbs. Three statistical features (skew-
ness, kurtosis and histogram) and nine time domain features (mean,
median, maximum, minimum, variance, temporal centroid, standard
deviation, root mean square, and auto correlation) were used. Feature
selection was based on the study of their correlations. They carried out
the exercises evaluation with DT, KNN, SVM and RF and obtained an
accuracy about 92% with all the classifiers.

With respect to the gait assessment, in Alcaraz, Moghaddamnia,
and Peissig (2017), they studied the quality of gait in order to classify
30 volunteers as healthy or unhealthy. They used seven IMUs placed on
the lower-limbs and the lumbar zone to record the turn rate and specific
force and fuse their signals to estimate the joint angles through an EKF.
They used nine features (motion intensity, peak asymmetry factor, step
period, stride period, regularity, sum of power spectral density, spectral
entropy, sum signal-to-noise-modulation-ratio and wavelet entropy) for
the classification. They applied a Linear Discriminant Analysis (LDA),
PCA and NB to obtain accuracies of 100%, 86% and 100%, respectively.

Finally, the authors individually evaluated seven upper-and lower-
limbs exercises in García de Villa et al. (2021). Four IMUs recorded the
inertial data of the volunteers during the physical routine execution. We
used four time domain features (mean, standard deviation, maximum
and minimum) of the turn rate and specific force signals as inputs for
NB, SVM, RF and KNN. Signals were segmented by a sliding window
whose size was adapted to each exercise and the algorithms were
evaluated with a random cross-validation with ten iterations. SVM
reported the highest accuracy, precision, sensitivity and specificity in
the exercises evaluation, with an accuracy between 98–99 %.

As can be inferred, there is a great diversity of algorithms used in the
exercise recognition and evaluation. Although, according to Camomilla

et al. (2018) and Cust et al. (2019), the most promising algorithms
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for these objectives are SVM, RF, KNN and neural networks. A va-
riety of features are also extracted from the IMU signals, although
the most common are the statistical features in the time domain,
such as mean, standard deviation and maximum and minimum of
signals. In addition, signal segmentation is approached from two main
perspectives: window-based and repetition-based. Repetition-based seg-
mentation involves further signal processing to detect the start and end
of repetitions, and window-based segmentation involves determining
the most appropriate window size. In the methods found in the liter-
ature, window sizes go up to 6 s, although in Banos, Galvez, Damas,
Pomares, and Rojas (2014) the window interval of 1–2 s was shown to
be the best trade-off solution between accuracy and speed of activity
recognition.

This review of the state-of-the-art approaches highlights the need
of studying the recognition and evaluation of exercises as a single
and complex task, specially for the monitoring of prescribed routines
related to health. Virtual coaches, aimed for being used in unsupervised
environments, are required to provide a complete characterization of
the executed routines. Therefore, it is important to find the most
suitable approach for this complex characterization.

3. Methods

The main goal of our proposal is to determine which exercise is
carried out by a person in a therapeutic session and whether it is being
performed according to its prescription (correct performance - C) or not
(wrong performance - W). We refer to the process of determining the
exercise as recognition, whereas the evaluation corresponds to the per-
formance assessment, as correct (C) or wrong (W). Thus, our proposals
both recognize and evaluate the exercises by measuring the turn rate
and acceleration with four IMUs placed on the body of volunteers.

We detail three different approaches in Section 3.1. We relate the
formal classification problem with the objective of exercises character-
ization in Section 3.2 and we provide a brief explanation of the ML
algorithms used in this work in Section 3.3.

3.1. Proposals for the exercises recognition and evaluation

Simultaneous exercise recognition and evaluation is a complex prob-
lem to solve. To deal with this issue, we propose three different
approaches with the only prior knowledge of the type of exercises
included in the dataset. Since the applied ML approaches are highly
non-linear, the three proposals have to be characterized because they
are not expected to be equivalent. These proposals are explained in the
following:

• The first proposal, called ‘‘ReEv’’, makes the recognition and
evaluation in one single step providing as outputs the type of
exercise and its correctness. Its working scheme is shown in
Fig. 1. In this way, with one single classification process we
obtain the complete characterization of the performed exercise.
However, the number of classes doubles because we have the
correct and wrong performance of exercises. That increment of
classes complicates the classification task and, as a consequence,
is expected to increase the error rates.

• From a practical point of view, we can assume that the recogni-
tion of exercises is relevant only if they are correctly performed.
Therefore, the characterization of motions, i.e. determining the
motion angles or the number of repetitions, is specially interesting
in the correct repetitions. On the contrary, the wrongly performed
exercises are required to be detected in order to get information
about the correct comprehension of the description of exercises.
The wrongly performed exercises of lower-or upper-limbs drive
to quite similar features, easy to confuse even by humans, what
reduce the accuracy rates. Our second approach, called ‘‘ReC-W’’,
tries to surpass this issue by eliminating of the recognition process
the wrongly performed exercises.
4

Fig. 1. Scheme of the different classification approaches for the recognition and
evaluation of exercises used in this study: ReEv, ReC-W and 1Re-2Ev. The scheme
shows three different exercises, used as example: exercise A (EXA), exercise B (EXB)
and exercise C (EXC); including also their correct (-C) and wrong (-W) performance
label. Labels correct (C) and wrong (W) after the recognition of exercises are gray
depicted, similar to the wrong label which specifies the kind of limb moved, called
WK. In this label, K changes according to the limbs moved during the exercises, being
WU when it refers to upper-limb exercises and WL when it does to lower-limb exercises.

The main difference of ReC-W with respect to the first proposal,
ReEv, is that ReC-W considers all wrongly performed exercises as
two kind of motions, those performed with the upper-limbs and
those performed with the lower-limbs. So this method only rec-
ognizes the correctly performed exercises, but assigns the generic
labels, WU and WL (Wrong Upper-limbs, Wrong Low-limbs), to
the wrong performances, as depicted in Fig. 1.

• The last proposal, called ‘‘1Re-2Ev’’, divides the complete process
of determining the kind of exercise and its performance quality
into two different stages of classification. It is based on the
hypothesis that separating the recognition and the evaluation into
two different stages, both classifications would improve their ac-
curacy rates. This would be a consequence of three different facts:
(1) the reduction of the number of classes; (2) the increase of
variability of each class in the recognition (by the mix of correct
and wrong classes); and (3) the simplification of the evaluation
of each exercise separately after its previous recognition.
Then, we separate both classifications as follows: the initial stage
consists in a multi-class classification for the recognition of the
exercise; and the second stage evaluates the recognized exercise
making a binary classification, as schematized in Fig. 1.

3.2. Classification problem

Formally, we consider a set of input–output pairs  = {(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1
where 𝐱𝑖 ∈ R𝑛 are the 𝑁 samples of the input feature space obtained
from the IMU signals recorded during the exercises and 𝑦𝑖 ∈  = {𝐶𝑗 ∣
1 ≤ 𝑗 ≤ 𝐽} are the class to which these features correspond. The number
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of classes 𝐽 ∈ N depend on each proposal. ML classifiers look for a
decision function 𝑓 :

𝑓 ∶R𝑛 → 

𝐱 ↦ 𝑦 = 𝑓 (𝐱, 𝜔)
(1)

which given a sample, that in this work contains features from IMU
signals, determines the output class, i.e. the one that includes the kind
of exercise and its performance correctness.

The so-called parametric ML methods are characterized by a set
of parameters 𝜔. During the training process, the ML classifier finds
the parameters 𝜔 that best fit the given training data set. The aim of
these methods is to find a function 𝑓 capable of generalizing its good
accuracy to the given new data, which corresponds in this study to a
person motion features recorded by the IMUs.

3.3. ML algorithms evaluated

We evaluate the performance of the following ML algorithms: SVM,
RF, KNN, ELM, MLP and DT. All of them are supervised methods which
require a labeled data set to be trained. We choose SVM, RF, KNN
and the two neural networks, MPL and ELM, because they are the
most promising algorithms for the sport monitoring and performance
evaluation (Camomilla et al., 2018) and recognition (Cust et al., 2019).
Besides, we include DT as baseline method.

SVMs are classifiers which look for the maximum separation among
different classes, i.e. their decision function is a separation hyperplane
that maximally separates samples from different classes (Scholkopf &
Smola, 2018). Usually, SVMs apply appropriate non-linear maps to the
input space 𝜙∶R𝑁 → R𝑝 in order to guarantee that the transformed
samples are more likely to be linearly separable in a higher-dimension
feature space R𝑝. This is the so-called kernel trick, which we employ to
mprove the performance of the classifier.

DTs are non-parametric methods based on simple decision rules in-
erred from data features (Breiman, 2001), but their overfitting problem
s widely known. RFs are ensemble learning methods that construct

classification decision trees to predict the outputs (Breiman, 2001).
hey fix the characteristic overfitting problem of individual DT.

RF is one of the most accurate classification algorithms, with
ood scalable properties: it efficiently deals with large amount of
ata and multiple input variables without consuming lot of resources
uch as memory. RFs are trained by the bootstrap aggregating tech-
ique (Breiman, 1996), selecting random feature trees during the
raining process.

KNN classification is a non-parametric ML method which finds a
roup of 𝑘 objects in the training set which are the closest to the test
bject (Shakhnarovich, Darrell, & Indyk, 2008). Frequently, it uses the
uclidean distance, weighting the importance of each feature, which
s the distance used in this study. The assignment of a specific class is
ased on the predominance of a particular class in its neighborhood.
he 𝑘 parameter specifies the size of the neighborhood, which votes
or labeling the input data.

MLPs are a kind of feed-forward Artificial Neural Network (ANN)
rganized as a set of sequentially interconnected layers (Bishop et al.,
995; Kubat, 1999). Each layer is fully connected, which means that
ll neurons of a layer have links to the neurons in the previous one,
hrough which they receive information, emulating the synaptic links
f the human brain. Links have associated weights that adjust the
ropagation of the information to the output. MLP has a high capacity
f generalization, but suffers from overfitting if the number of layers, or
eurons in each layer, is not well chosen. During the training process,
he different algorithms search the best combination of link weights
n order to optimize a goodness-of-fit function. The sequential network
opology benefits the efficiency of the optimization methods. Optimiza-
ion methods such as the backpropagation algorithm combined with the
5

evenberg–Marquardt algorithm (Levenberg, 1944; Marquardt, 1963)
re possible due to this topology. In this work, both methods have been
sed for training the MLP.

ELM is a special kind of multi-layer perceptron, with one single
idden layer, characterized by being trained with a method compu-
ationally faster than the traditional backpropagation method (Huang,
hou, Ding, & Zhang, 2011; Huang, Zhu, & Siew, 2006). The ELM
raining process randomly chooses the link weights of the hidden
eurons, that frequently follows a uniform probability distribution.
he weights of the links that connect the hidden layer to the output
re computed establishing a linear least-squares problem which is
olved calculating a fast pseudo-inverse, which considerably reduce
he computation time during the training. ELMs have less capacity of
eneralization than MLPs, but suffer less overfitting during the training.
he number of neurons of the hidden layer is the only hyperparameter
o be determined.

. Experimental protocol

The data for this study were recorded by inertial sensors placed
n the volunteers’ bodies while they performed the exercises com-
only found in physical therapies. In this section, we detail the study
opulation, the sensory system and the studied exercises.

.1. Study population

Thirty volunteers participated in this study, 13 of them were women
and the other 17were men. They were all healthy people aged between
22 and 70 years old. Ten of them were between 20 and 29 years old, and
the other forty were groups of five people for each ten years of age. In
average, they were 169.1±7.9 cm tall and had a weight of 69.5±10.3 kg.
In this way, we evaluate the proposed methods in a set of volunteers
with variability in their age and anthropometric measures. Guadalajara
University Hospital approved the study protocol (Institutional Review
Board No. 2018.22.PR, protocol version V.1. dated 21/12/2020), and
a written informed consent was obtained from all participants.

4.2. Sensory system

During the performance of the physical routine, volunteers’ motions
were recorded with four IMUs. We used the commercial IMUs called
NGIMU, by X-io Technology (x-io Technologies Limited, 2021), which
has a size of 56 × 39 × 18 mm, what makes them practical for wearing
during the performance of the studied motions. These IMUs include
a 3-axis gyroscope, accelerometer and magnetometer, which have a
range of 2000 ◦/s, 16 g and 1300 μT, respectively. In this particular work,
we only use the gyroscope and the accelerometer that have a 16-bit
resolution, and a maximum sample rate of 400Hz. For the experiments,
these devices measure the turn rate and specific force in each axis (six
signals) during the exercises performance at a sample rate of 100Hz.
The signals of each device are stored into one micro SD card and
processed off-line. However, the NGIMU has wireless communication
what would meet the requirements of virtual coaching. The inertial
data recorded during the experiments are publicly available at Zenodo.

The experiments were carried out in the MoCap laboratory of the
University of Alcalá. This is a controlled environment where volunteers
were recorded one at a time. IMUs were placed on the volunteers’
thighs and shins during lower-limb exercises and on arms and fore-
arms during upper-limb exercises. We used Velcro straps to secure the
attachment of the sensors, while ensuring that their placement and
tightness did not affect their freedom of movement. On the lower-
limbs, we placed IMUs in the anterior surface of their limbs and, on
the upper-limbs, IMUs were placed on the exterior lateral location, as
Fig. 2 shows. In all cases, the orientation of IMUs is the same, with
the 𝑋-axis pointing to the ceiling when volunteers kept standing with

their arms along their bodies and their hands pointing to the floor. We



Expert Systems With Applications 199 (2022) 116990S. García-de-Villa et al.
Fig. 2. IMUs placed at the right lower-limb and at the right upper-limb, marked with
red circles. On the left limbs, there are two more IMUs at similar placements than
in the right upper-and lower-limbs, respectively. Passive reflector sensors, which are
commonly used to obtain optical reference data in biomechanical studies as in García-
de Villa, Jiménez-Martín, and García-Domínguez (2021), are also shown. However, the
optical data are not used in this study.

selected those sensors location on the body because of the easiness of
their placing.

Our proposals rely on maintaining this location of IMUs because
the training data only covers this configuration. As a consequence,
following applications of these methods are limited to data obtained
using the same IMU locations on the body.

4.3. Experimental tests: exercises

A set of eight exercises were carried out by the volunteers, which
are focused on the lower-or upper-limbs. Since two of them divides into
their performance with the corresponding side of the body, right (R)
of left (L), we study 10 types of exercises. These exercises consist in
repetitive motions, commonly prescribed to older adults, that have to
be performed in a specific way. In this study, volunteers mimicked the
instructions found in Casas-Herrero et al. (2019) in order to perform
the exercises explained in the following. First, they carried out a set of
lower-limbs exercises:

• Knee flex-extension (KFL/R): seated on a stable surface, from the
initial position of 90 ◦ of knee flexion, keeping the left leg still, the
right one moved until its extension and returned to knee flexion.
After all repetitions moving the right leg, the right leg remained
still and the left one moved, as shown in Fig. 3-KFL/R.

• Squats (SQT): from standing position, volunteers made the motion
of sitting on a chair and, when touching the chair with their
back thighs, they stood up again. This exercise is depicted in
Fig. 3-SQT.

• Hip abduction (HAL/R): standing up, keeping the left leg still,
the right one moved doing an abduction–abduction with the leg
straight, as Fig. 3 schematizes. After all repetitions moving the
right leg, the right leg remained still and the left one moved.

Besides these exercises of legs, we studied different variations of
gait (see second row of Fig. 3). We consider the gait variations as
leg exercises because IMUs were placed on the volunteers’ lower-limbs
during their execution, even though they are more complex. Volunteers
performed two gait variations:

• Gait (GAT): volunteers walked freely in the room.
6

Fig. 3. Exercises considered in this study, based on Casas-Herrero et al. (2019).
The first row includes knee flex-extension (KFL/R), squats (SQT) and hip abduction
(HAL/R). The row below contains natural gait (GAT) and heel-tiptoe gait (GHT).
Finally, the column in the right shows squeezing (SQZ), elbow flex-extension (EFE)
and extension of arms over head (EAH).

• Gait with heel-tiptoe (GHT): during walking, volunteers placed
first the heel on the floor and then they stood on tiptoe. Keeping
their weight on their tiptoe, they placed the other heel on the
floor and repeated the motion.

Furthermore, volunteers performed the following exercises of the
upper-limbs, which are depicted in the third row of Fig. 3:

• Squeezing (SQZ): using a clothing and keeping arms straight
forward, wrists moved anti-symmetrically squeezing the clothing.

• Elbow flex-extension (EFE): both arms moved from the straight
position to the maximum flexion of elbows, keeping the shoulders
still.

• Extension of arms over head (EAH): with both hands together,
arms, as straight as possible, made an arch until reaching the
maximum elevation of hands.

Volunteers repeated each motion between 10 and 20 times, accord-
ing to their age, except for the squats. The squats were repeated only
between 7 and 15 times to prevent a wrong performance of the exercises
caused by physical fatigue, as observed during the experiments with
more repetitions. Volunteers performed four times each exercise series.
Two of these series consisted in the corresponding repetitions properly
done; and the other two series were wrongly performed, with a total
motion freedom to modify the original exercise. The last two series
are the ones labeled as wrong. Since volunteers made various motions
for the wrong performances, data of this wrong exercises include a
high variability. The gait exercises are an exception since we consider
only one kind of wrongly gait variation, in which volunteers walked
freely mimicking a tired gait or joint locking. So, gait divides into three
variations: correct GAT, wrong GAT and GHT.

5. Data analysis

Fig. 4 depicts the overview of the data analysis for the exercises
recognition and evaluation using signals from four IMUs. The four
dotted rectangles refer to the following sections: Section 5.1 details
the signal segmentation and feature extraction; Section 5.2 defines the
classes for each proposed method; Section 5.3 introduces the optimiza-
tion parameters or configuration for the ML algorithms; and Section 5.4
describes the metrics used to evaluate the proposals.
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Fig. 4. Flowchart of the data analysis. Using the IMU signals, we split them in windows and extract, from each one, its mean, average, minimum and maximum. Then, we label
the data according to the corresponding proposal. The labeled data are the inputs in the ML algorithms, which are then assessed using five metrics. Each process box, squared
with dashed lines, indicates the corresponding section of this document in which this process is detailed.
5.1. Signal processing

In this study, we use a sliding window to segment the raw IMU
signals, as depicted in the green rectangle of Fig. 4. Three window sizes
are analyzed: 100, 200 and 300 samples, which correspond to windows
of 1, 2 and 3 s, respectively. We limit the window size to 300 in order
to find a balance between the algorithms’ performance and the possible
motions included in one single window. The larger the window, the
more likely to mix different motions in them. Also, according to Banos
et al. (2014), the interval 1–2 s was proved to provide the best trade-
off between recognition speed and accuracy when a high variety of
features is employed. We limit the interval to 3 s because we use simple
features in our analysis and they proved a direct relation between
the features and the window size. In all cases, the overlap between
consecutive windows is set to the 50% of the window size. We use four
time-domain features commonly found in the literature: mean, standard
deviation, maximum and minimum of signals over each axis. Since
motions were recorded with four IMUs that record six signals each, the
data set includes 96 features per window.

5.2. Data labeling

The proposals are based on supervised algorithms, that require
the labeling of samples for their training. We manually selected the
beginning and the end of each exercise series and we associated the
corresponding label to each group of features. We know the exercise
performed and its quality by the design of the experiments and their
supervision, as explained in Section 4.3. However, the separation of
the data between the different classes depends on the proposed method,
since their output labels differ. It implies that the data labeling depends
on the proposal and, more specifically, on the definitions of the classes
into which the data are to be divided, as shown in the yellow rectangle
of Fig. 4. In the following, we explain this labeling process together
with the labels assigned to each data class.

5.2.1. ReEv
In this proposal, labels include information of the kind of exercise

and whether the exercise is correctly or wrongly performed, e.g. the
EAH exercise, divides into EAH-C and EAH-W, which correspond to
its correct and wrong performances. The only exercise that does not
include the performance information is GHT because its wrong perfor-
mance is included in the wrong performance of normal gait, so it is
considered as the wrong GAT exercise. We study eight exercises, and
7

two of them are divided into the right or left sides of performance. As
ReEv separately considers their correct and wrong performances, this
proposal includes 19 classes, 9 kinds of exercises with their correct and
wrong performance, and GHT.

5.2.2. ReC-W
The labels of the second proposal for the properly performed mo-

tions include the information about which exercise is being carried
out. On the contrary, the wrong performances of the exercises are
considered as only two kind of motions, those performed with the
upper-limbs, labeled as WU, and those performed with the lower-limbs,
labeled as WL. In this way, this proposal contains 12 classes (10 kinds
of exercises, WU and WL).

Another main difference with the other two proposals is that in the
design of ReC-W, we establish the number of samples in WU and WL (it
means that we do not use the total number of samples, but we establish
a quantity of them in order to ensure balance and variability). The other
two methods include in their wrong-labeled classes those number of
samples in which each exercise is wrongly performed because it is al-
ready balanced with the correct-labeled classes. In ReC-W, the number
of samples in WU and WL has to ensure that the training set of the ML
algorithms includes a high variability of wrongly performed motions so
the test set can be properly classified. To do so, we separately double
the number of samples in the largest class of the upper-and lower-limb
exercises to establish the number of samples in WU and WL.

5.2.3. 1Re-2Ev
Since this proposal consists of two classification stages, we separate

the labels depending on the objective of each stage. In the recognition
stage, labels correspond to the kind of exercise, so we have 10 classes,
whereas in the evaluation stage, the two possible labels indicate only
if the classification is correctly (C) or wrongly (W) performed.

5.3. Classifier training and validation

After the extraction of the features and the labeling of associated
windows, we trained the algorithms detailed in Section 3.3. For the
optimization of hyperparameters, we split data into training set and val-
idation set. The training set includes the data of twenty-four volunteers,
the validation set includes the data of five volunteers. In this way, we
have one volunteer left in order to test the algorithms through a LOSO
cross-validation (Arlot & Celisse, 2010), as explained in the following
section. We study these algorithms using the Matlab R2020b software

as follows:
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• We evaluate SVMs with three different kernel mappings: linear
(SVML), polynomial (SVMP) and Gaussian (SVMG).

• We optimize the minimum leaf size of DT.
• We validate the number of neighbors in KNN, analyzing from 1 to
20 of them and selecting the one that obtains the highest accuracy
in the validation test.

• In MLP, we set the number of hidden layers to 1 since we do not
observe any improvement of performance using more than one.
We set the number of neurons as the average of the number of
inputs (which is always 96 features), being the outputs the number
of classes identified by the proposals, according to Mukhopadhyay
(2018).

• Since ELM is a fast algorithm, we validate the number of neurons
from 10 to 1000neurons and select the number that reports the
highest accuracy.

.4. Proposals assessment

The proposals are evaluated with a LOSO cross-validation, using
he data of each volunteer as test data set, so the training-test pro-
ess is carried out 30 times, one for each volunteer. This is the most
obust type of cross-validation in studies that involve human subjects,
ecause it allows the subject-to-subject variability and avoids the auto-
orrelation in time series data obtained with one subject. It is also a
ore demanding cross-validation method than k-fold or random cross

alidation, so its results are expected to be worse than with those last
ypes of cross-validation.

The assessment of the proposals is carried out in terms of the
verage metrics for the thirty volunteers. This is the final step, high-
ighted with a purple rectangle in Fig. 4. The metrics considered operate
eparately for each class, which correspond to the kind of exercise and
ts performance quality. In this way, the positives (𝑃 ) of a class are
heir number of sample, and the negatives (𝑁) are the samples that
orrespond to the rest of classes. Positives are divided into true positives
𝑇𝑃 ) and false positives (𝐹𝑃 ) according to whether the samples really
elong to the recognized class or they are misclassified, respectively.
egatives are also divided intro true negatives (𝑇𝑁) and false negatives

(𝐹𝑁). 𝑇𝑁 are those samples which do not belong to the considered
class whereas 𝐹𝑁 refer to the samples which really are members of
the considered class but they are wrongly classified.

We study the proposals in terms of their accuracy (2), which mea-
sure the percentage of cases that the model has correctly predicted,
although it must be combined with other different metrics for a mean-
ingful analysis of the model. We also use the precision (3) to measure
the quality in the detection of each class; sensitivity (4) to determine
the effectiveness in the identification of each class; the F1-score (5) that
combines those two previous metrics assuming that both of them are
equally important; and finally the specificity (6) relates to the model’s
ability to correctly classify a sample that does not correspond to a class
in this way, so it measures the ability to detect negative labels.

acc (%) = 𝑇𝑃 + 𝑇𝑁
𝑃 +𝑁

100 (2)

prec (%) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

100 (3)

sens (%) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

100 (4)

1 (%) = 2 𝑇𝑃
2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

100 (5)

spec (%) = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

100 (6)

We study the average values for all classes and volunteers. In order
to provide an in-depth study on the results, including the differences in
the identification quality of each class, we also analyze the confusion
matrices.
8

6. Experimental results

In this section, we describe and discuss the results of the pro-
posals for the recognition and evaluation of exercises. We initially
analyze the best window lengths and ML algorithms for the proposals
in Section 6.1. Then, we separately provide a detailed study of the
three proposals. Section 6.2 contains the results obtained using ReEv,
combining both classifications in one single step. Section 6.3 includes
the results of ReC-W, which recognizes the correctly performed ex-
ercises and labels the wrong performances as WU or WL, depending
on whether the motions are performed with the upper-or lower-limbs.
Section 6.4 details the results of 1Re-2Ev, the two-stage method that
firstly recognizes the exercises and secondly evaluates them. Finally,
Section 6.5 provides a comparison of the three proposals.

6.1. Windows length analysis and ML algorithms performance

In order to analyze the most suitable window length for the propos-
als and the best ML algorithm, we separately study the metrics with
each proposal. For the case of ReEv, we provide in Table 1 its resultant
accuracy, F1-score, precision, sensitivity and specificity, using the three
window sizes of 100, 200 and 300 samples. The first column for each
window size shows the accuracy of each method, which in most of
cases is about 80%. As expected, the method that obtains the lowest
metrics is DT, which is used as baseline, resulting in an accuracy lower
than the 80% with all the window sizes. This poor results are mainly
caused by its common overfitting problem. Conversely, the two best
algorithms are SVML and RF. We focus on SVML to study the best
window size because it gives the highest metrics in most cases. All
its metrics improve with the enlargement of the window size from 100
to 300 samples. The accuracy increases from 83.5 % to 88.3 %, the F1-
score from 84.0 % to 88.1 %, the precision from 83.9 % to 88.6 % and
the sensitivity from 83.9 % to 89.2 %. So the most suitable window size
is 300 samples. Conversely, specificity is above 99% with all the ML
methods and windows sizes, so this metric cannot be the criteria to
choose the best proposal. This specificity value is due to the fact that
the number of false positives of a single class is highly lower than its
number of true negatives, which are the addition of the other correctly
labeled exercises.

For the case of ReC-W, Table 2 shows its metrics. The best al-
gorithms are SVML and RF, whose results are written in green bold,
and the worst is DT, whose results are highlighted in red. As in the
previous method, the algorithm that obtains the best metrics is SVML,
which range between 87.2 % and 99.2 %, improving with the window
lengthening. Using SVML the best metrics are obtained with a window
size of 300 samples, it reaches an accuracy of 91.4 %, being the rest
metrics about 90.7 %.

Finally, we analyze the results of 1Re-2Ev. Since this method divides
the recognition and the evaluation of exercises into two different
classifications, we study their results separately. Firstly, we evaluate
the initial stage, the exercise recognition, in which each class collects
the correct and wrong performances of the corresponding exercises.
Secondly, we focus on the last stage, the exercise evaluation, whose
inputs are the recognized exercises of the previous stage and classifies
these exercises between correct or wrong.

Table 3 shows the resultant metrics of the recognition stage. The
two best algorithms, printed its metrics in bold green, are SVM with
the Gaussian and the polynomial kernels. These configurations obtain
results above 95.2 % with all the window sizes. The kernel difference
with respect to the previous methods is remarkable. It means that
gathering the correct and wrong performance of each exercise into
one class, what implies an increment of variability in each class, the
data distribution in the classes changes and their best separation is no
longer with a linear hyperplane. The increase in variability also makes
more difficult the generalization of the exercise recognition with RF,

whose metrics are no longer included between the best ones. The worst
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Table 1
Classification results obtained with ReEv expressed in terms of accuracy, F1-score, precision, sensitivity and specificity. The first row specifies the window size for the signals
cutting to obtain those metrics. The highest metrics of the two best methods are in bold and green, and the lowest metrics are in red color.

Window size = 100 samples Window size = 200 samples Window size = 300 samples

acc (%) F1 (%) prec (%) sens (%) spec (%) acc (%) F1 (%) prec (%) sens (%) spec (%) acc (%) F1 (%) prec (%) sens (%) spec (%)

SVMG 82.0 82.0 81.8 82.6 99.0 85.8 86.2 85.3 86.2 99.2 87.4 87.9 86.8 88.4 99.3
SVML 𝟖𝟑.𝟓 𝟖𝟒.𝟎 𝟖𝟑.𝟗 𝟖𝟑.𝟗 𝟗𝟗.𝟏 𝟖𝟕.𝟒 𝟖𝟖.𝟏 𝟖𝟕.𝟕 𝟖𝟖.𝟔 𝟗𝟗.𝟑 𝟖𝟖.𝟑 𝟖𝟗.𝟖 𝟖𝟖.𝟔 𝟖𝟗.𝟐 𝟗𝟗.𝟒
SVMP 82.7 82.6 82.6 83.0 99.0 86.1 86.9 86.3 87.6 99.2 87.5 88.3 87.6 88.7 99.3
RF 𝟖𝟑.𝟔 𝟖𝟑.𝟏 𝟖𝟑.𝟕 𝟖𝟑.𝟔 𝟗𝟗.𝟏 𝟖𝟔.𝟑 𝟖𝟔.𝟓 𝟖𝟔.𝟕 𝟖𝟕.𝟎 𝟗𝟗.𝟐 𝟖𝟖.𝟒 𝟖𝟖.𝟖 𝟖𝟖.𝟕 𝟖𝟗.𝟒 𝟗𝟗.𝟒
KNN 77.1 77.2 77.5 76.6 98.7 80.6 81.3 81.4 80.8 98.9 84.1 85.1 84.9 84.8 99.1
ELM 82.1 81.5 82.2 80.4 99.0 85.0 84.5 85.2 85.0 99.2 88.0 88.2 87.8 88.5 99.3
MLP 81.2 81.1 81.7 80.1 99.0 81.7 83.0 81.0 82.7 99.0 81.9 84.2 81.6 83.5 99.0
DT 69.3 69.7 70.0 69.2 98.3 72.8 72.9 73.7 73.9 98.5 75.5 75.5 76.2 76.3 98.6
Table 2
Classification results obtained with ReC-W expressed in terms of accuracy, F1-score, precision, sensitivity and specificity. The first row specifies the window size for the signals
cutting to obtain those metrics. The highest metrics of the two best methods are in bold and green, and the lowest metrics are in red color.

Window size = 100 samples Window size = 200 samples Window size = 300 samples

acc (%) F1 (%) prec (%) sens (%) spec (%) acc (%) F1 (%) prec (%) sens (%) spec (%) acc (%) F1 (%) prec (%) sens (%) spec (%)

SVMG 86.3 85.6 84.4 90.4 98.7 86.7 88.1 84.5 91.0 98.8 88.4 89.9 84.8 92.1 99.0
SVML 𝟖𝟕.𝟐 𝟖𝟖.𝟐 𝟖𝟖.𝟓 𝟖𝟗.𝟏 𝟗𝟖.𝟖 𝟖𝟗.𝟗 𝟗𝟎.𝟗 𝟗𝟎.𝟎 𝟗𝟏.𝟕 𝟗𝟗.𝟏 𝟗𝟏.𝟒 𝟗𝟐.𝟔 𝟗𝟎.𝟕 𝟗𝟐.𝟗 𝟗𝟗.𝟐
SVMP 85.8 85.9 84.8 88.6 98.7 88.1 89.6 87.5 91.6 98.9 89.3 𝟖𝟗.𝟗 87.4 𝟗𝟐.𝟒 𝟗𝟗.𝟏
RF 𝟖𝟕.𝟎 𝟖𝟕.𝟑 𝟖𝟕.𝟓 𝟖𝟗.𝟓 𝟗𝟖.𝟖 𝟖𝟗.𝟓 𝟗𝟎.𝟎 𝟖𝟗.𝟔 𝟗𝟐.𝟏 𝟗𝟗.𝟎 𝟖𝟗.𝟒 89.8 𝟖𝟖.𝟕 92.3 𝟗𝟗.𝟏
KNN 80.6 82.3 83.4 82.4 98.2 84.5 86.7 87.1 85.7 98.5 85.8 87.5 88.0 86.5 98.7
ELM 86.0 87.7 89.8 85.7 98.7 88.8 90.4 91.6 89.5 98.9 89.4 90.3 91.5 90.2 99.0
MLP 85.4 85.9 86.9 85.7 98.6 85.0 87.7 86.9 87.0 98.6 85.1 88.7 86.7 87.1 98.7
DT 75.7 77.0 76.4 79.5 97.7 79.1 80.1 79.6 82.1 98.0 77.2 77.6 76.6 80.5 98.0
Table 3
Classification results obtained in the first stage of 1Re-2Ev expressed in terms of accuracy, F1-score, precision, sensitivity and specificity. The first row specifies the window size
for the signals cutting to obtain those metrics. The highest metrics of the two best methods are in bold green and the lowest metrics are in red.

Window size = 100 samples Window size = 200 samples Window size = 300 samples

acc (%) F1 (%) prec (%) sens (%) spec (%) acc (%) F1 (%) prec (%) sens (%) spec (%) acc (%) F1 (%) prec (%) sens (%) spec (%)

SVMG 𝟗𝟓.𝟒 𝟗𝟓.𝟔 𝟗𝟓.𝟏 𝟗𝟐.𝟏 𝟗𝟗.𝟓 𝟗𝟓.𝟗 𝟗𝟔.𝟏 𝟗𝟓.𝟔 𝟗𝟔.𝟐 𝟗𝟗.𝟓 𝟗𝟔.𝟐 𝟗𝟔.𝟒 𝟗𝟔.𝟎 𝟗𝟓.𝟕 𝟗𝟗.𝟔
SVML 94.8 94.8 94.7 92.0 99.4 𝟗𝟓.𝟖 𝟗𝟓.𝟖 𝟗𝟓.𝟕 𝟗𝟓.𝟓 𝟗𝟗.𝟓 96.0 96.0 95.9 𝟗𝟓.𝟖 99.6
SVMP 𝟗𝟓.𝟐 𝟗𝟓.𝟏 𝟗𝟓.𝟎 𝟗𝟐.𝟔 𝟗𝟗.𝟓 𝟗𝟓.𝟖 𝟗𝟓.𝟖 𝟗𝟓.𝟕 𝟗𝟓.𝟎 𝟗𝟗.𝟓 𝟗𝟔.𝟏 𝟗𝟔.𝟏 𝟗𝟔.𝟎 94.8 𝟗𝟗.𝟔
RF 93.8 93.8 93.6 91.5 99.3 94.6 94.6 94.4 93.3 99.4 95.1 95.2 94.8 94.4 99.5
KNN 92.0 92.2 92.2 88.5 99.1 92.8 92.9 93.0 90.9 99.2 94.4 94.9 94.7 92.7 99.4
ELM 93.4 93.2 93.0 90.3 99.3 95.4 95.5 95.2 93.8 99.5 95.8 95.6 95.5 95.1 99.5
MLP 94.3 94.4 94.3 90.5 99.4 94.9 94.9 94.8 93.9 99.4 95.5 95.7 95.3 94.9 99.5
DT 87.5 87.9 87.7 84.4 98.6 89.8 89.9 89.8 87.4 98.8 89.9 89.8 89.9 87.9 98.9
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algorithm is DT again, written in red in Table 3, as expected because
of its results in the previous proposals.

With regard to the windows length, even though 1Re-2Ev provides a
high accuracy with all the window sizes, using windows of 300 samples
only improves 1% the results obtained with the smallest size. However,
this method allows us to determine the type of exercise being performed
with good metrics by using the smallest window (100 samples). In this
way, the most appropriate window size of 1Re-2Ev will be given either
by the system requirements or by the second stage of the method.

In the exercises evaluation, carried out after their recognition, we
focus on the accuracy as main metric and on the F1-score since it
combines the precision and sensitivity. Table 4 shows these metrics for
each of the evaluated exercises with the considered ML algorithms.

Contrary to the results in the exercises recognition, in the evaluation
stage, the metrics noticeably improve with the window lengthening.
With the lowest windows, most algorithms achieve an accuracy be-
tween 90% and 95%, whereas with the largest ones, most algorithms
how an accuracy above 95%, reaching even some perfect classifica-
ions. Because of these results, the optimal window size for 1Re-2Ev
s 300 samples, despite of the stage can be performed with smallest
indows.

The worst algorithm with this approach differs from the other two
roposed approaches. In this case, the ELM results in the poorest
etrics, which are marked in red in Table 4. As in the case of DT, the
ain reason is its limited capacity of generalization.

The best results obtained with the 300-sample windows, marked in
reen in Table 4, are achieved with different variations of the SVM,
9

c

whose results are shown in Fig. 5 in order to ease their interpretation.
Specifically, the Gaussian kernel, the one presented in blue, is the most
suitable for the three window sizes, overcoming the other methods, in
most of cases. However, this two-stage approach allows us to use a
different algorithm depending on the recognized exercise. It is inter-
esting because SVMG is in most cases the best algorithm, as seen in
Fig. 5, but there are three exercises in which another kernel overcomes
its accuracy. It is the case of he GAT, HAR and SQT exercises, whose
evaluation is better with a linear kernel than with a Gaussian one.

Although the larger the window size, the better results, it is conve-
nient to analyze whether a longer length could result in a significant
improvement of the metrics. To do so, we study the metrics improve-
ment with each window size enlargement. Using ReEv with SVML, its
metrics improve around 4% with the first lengthening, changing the
window size from 100 samples to 200 samples, see Table 1. With the
second lengthening, from 200 samples to 300 samples, metrics improve
only around 1%. The same differences in the improvement of metrics
can be found in the results of the other three methods, included in
Tables 2–4. According to the methods’ metrics, enlarging the window
size from 100 samples to 200 samples, we obtain the highest improve-

ent. Then, we can conclude that windows above 300 samples will
ot significantly improve these results. In addition, we can consider
s (i.e. 300 samples) as the window size limit to avoid that several
ovements occur in the same window or are performed differently.
lthough increasing the window may be beneficial in terms of the
valuated metrics, temporal resolution of the execution of the exercises
an be lost.
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Table 4
Classification results obtained in the second stage of 1Re-2Ev expressed in terms of accuracy, F1-score, precision, sensitivity and specificity. The first row specifies the window size
for the signals cutting to obtain those metrics. The highest metrics of the two best methods are in bold green and the lowest metrics are in red.

Window size = 100 samples

EAH EFE SQZ GAT HAL HAR KFL KFR SQT

acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%)

SVM G 𝟗𝟒.𝟖 𝟗𝟒.𝟕 𝟗𝟒.𝟐 𝟗𝟒.𝟑 𝟖𝟕.𝟑 𝟖𝟓.𝟖 𝟖𝟕.𝟕 𝟖𝟐.𝟗 𝟗𝟑.𝟒 𝟗𝟐.𝟖 𝟖𝟖.𝟐 𝟖𝟕.𝟗 𝟗𝟓.𝟗 𝟗𝟓.𝟖 93.7 93.5 81.2 78.9
SVM L 90.8 90.6 87.9 87.6 82.8 80.5 𝟖𝟕.𝟐 𝟖𝟑.𝟏 𝟗𝟓.𝟔 𝟗𝟓.𝟒 𝟖𝟖.𝟗 𝟖𝟖.𝟕 95.8 95.6 𝟗𝟕.𝟗 𝟗𝟕.𝟕 𝟖𝟒.𝟗 𝟖𝟑.𝟒
SVM P 91.9 91.7 93.6 93.5 83.8 83.3 86.3 80.6 92.5 91.8 86.5 85.5 𝟗𝟕.𝟐 𝟗𝟕.𝟏 𝟗𝟓.𝟐 𝟗𝟓.𝟎 80.1 78.7
RF 𝟗𝟒.𝟎 𝟗𝟑.𝟗 𝟗𝟒.𝟎 𝟗𝟑.𝟕 𝟖𝟒.𝟕 𝟖𝟐.𝟒 85.8 81.9 94.0 94.2 85.5 84.1 95.9 95.7 94.0 92.4 𝟖𝟏.𝟔 𝟕𝟗.𝟕
KNN 87.5 87.4 89.0 88.5 78.2 77.0 78.7 73.3 88.4 87.7 82.6 81.8 86.4 85.8 84.3 83.4 75.2 73.0
ELM 79.9 79.4 72.7 73.7 71.2 69.0 79.6 74.5 82.5 83.2 77.8 76.4 81.2 80.3 78.3 77.2 72.3 69.7
MLP 90.0 89.6 88.1 87.9 83.7 82.7 85.7 82.0 𝟗𝟑.𝟒 92.6 87.2 85.8 95.7 95.6 92.2 91.6 82.7 81.5
DT 84.9 84.6 87.4 88.4 74.3 72.1 79.5 74.5 87.2 86.3 75.7 74.6 85.2 84.6 82.5 80.6 70.5 68.3

Window size = 200 samples

EAH EFE SQZ GAT HAL HAR KFL KFR SQT

acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%)

SVM G 𝟗𝟖.𝟒 𝟗𝟖.𝟒 𝟗𝟕.𝟖 𝟗𝟕.𝟕 𝟗𝟎.𝟔 𝟖𝟗.𝟓 89.7 85.8 𝟗𝟕.𝟓 𝟗𝟕.𝟒 92.4 91.8 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟗𝟖.𝟏 𝟗𝟖.𝟏 𝟗𝟐.𝟐 𝟗𝟏.𝟖
SVM L 96.6 96.5 94.2 93.9 87.8 7.5 𝟗𝟏.𝟒 𝟖𝟗.𝟎 95.0 95.1 𝟗𝟒.𝟎 𝟗𝟒.𝟑 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟗𝟖.𝟕 𝟗𝟖.𝟕 88.2 87.0
SVM P 𝟗𝟖.𝟒 𝟗𝟖.𝟒 95.6 95.5 𝟗𝟎.𝟗 𝟗𝟎.𝟐 𝟗𝟎.𝟒 𝟖𝟕.𝟒 96.7 96.5 93.1 𝟗𝟑.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 95.6 95.5 𝟗𝟎.𝟗 𝟗𝟎.𝟐
RF 𝟗𝟖.𝟕 𝟗𝟖.𝟕 𝟗𝟔.𝟎 𝟗𝟓.𝟗 87.1 86.5 90.0 86.9 95.9 95.8 𝟗𝟑.𝟔 92.3 99.1 99.0 95.5 94.7 86.8 86.7
KNN 93.0 92.8 94.6 94.3 83.4 83.4 82.7 78.3 95.3 95.1 90.6 89.1 94.8 94.6 88.6 88.2 79.6 78.5
ELM 84.2 84.1 79.6 78.6 71.0 71.4 84.8 80.4 88.8 88.6 79.4 80.3 87.7 87.5 80.2 78.7 76.1 74.7
MLP 95.8 95.7 93.2 93.4 83.9 82.6 87.6 84.1 𝟗𝟖.𝟕 𝟗𝟖.𝟔 89.8 88.5 98.8 98.7 95.5 95.3 85.8 84.2
DT 90.0 89.8 93.2 93.5 80.6 79.1 76.6 73.0 83.7 84.2 83.9 83.7 93.4 93.1 82.7 82.2 72.1 69.6

Window size = 300 samples

EAH EFE SQZ GAT HAL HAR KFL KFR SQT

acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%) acc (%) F1 (%)

𝐒𝐕𝐌𝐆 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟗𝟔.𝟑 𝟗𝟔.𝟎 91.3 88.0 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 92.4 91.9 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 99.3 99.3 𝟗𝟓.𝟏 𝟗𝟒.𝟖
SVM L 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 99.1 99.0 90.1 88.8 𝟗𝟐.𝟓 𝟗𝟎.𝟓 96.8 96.6 𝟗𝟓.𝟔 𝟗𝟓.𝟓 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟗𝟕.𝟎 𝟗𝟕.𝟑
SVM P 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 92.4 92.0 𝟗𝟑.𝟔 𝟗𝟐.𝟐 99.0 99.0 92.9 91.8 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟗𝟗.𝟖 𝟗𝟗.𝟖 94.0 93.5
RF 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 𝟗𝟒.𝟒 𝟗𝟒.𝟎 89.0 86.3 98.8 98.8 𝟗𝟑.𝟓 𝟗𝟐.𝟖 99.3 99.3 98.2 98.4 92.1 91.5
KNN 96.9 96.8 97.6 97.4 82.9 82.9 84.4 80.4 95.1 95.2 82.4 83.4 98.4 98.3 96.7 96.6 87.9 87.2
ELM 86.1 86.0 81.0 80.5 73.9 74.6 85.2 81.5 85.0 84.3 78.5 78.4 86.9 86.2 78.2 77.1 76.6 74.9
MLP 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 98.1 98.0 86.9 87.2 90.3 86.7 𝟏𝟎𝟎.𝟎 𝟏𝟎𝟎.𝟎 90.9 89.9 98.3 98.2 99.4 99.3 93.0 92.6
DT 93.9 93.7 88.1 87.6 84.9 83.1 77.1 73.5 87.5 87.0 84.8 83.1 95.0 94.8 86.5 86.6 75.9 73.7
Fig. 5. Accuracy of the different variations of SVM with the 300-sample windows, separated by the exercises. The interval zooms in the interesting area in order to ease the
omparison of the different algorithms performances. We depict SVMG in blue, SVML in red and SVMP in yellow.
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In Preatoni et al. (2020), they propose the use of 6 s windows,
btaining a similar accuracy as this work. Notice that the size of the
indow is the half. In this way, our signal processing includes less
ata so it is simpler. Conversely, we use an overlap of 50% instead of
0%, so we analyze each 1.5 s, whereas they provide information each
econd.

.2. ReEv: Recognition and evaluation in a single step

The best configuration of ReEv, using SVML and windows of 300
amples, gives an accuracy, F1-score, precision and sensitivity between
8.3 % and 89.8 %, see Table 1. These metrics imply that we obtain
dequate results considering that we simplify the exercise characteri-
ation procedure to a single classification of nineteen classes with high
ariability.

In order to analyze in-depth the origin of errors and which are
liminated with the window lengthening, we study the average con-
usion matrix of the method that reports the best metrics, SVML. Fig. 6
hows these average confusion matrices using a window size of 100 and
10

t

00 samples, respectively. The first quadrant of both matrices includes
he lowest amount of errors, so among the correct exercises properly
valuated, the SVML rarely misrecognizes the exercises. The main error
n this recognition is between the two kinds of gait, GAT, the normal
nd GHT, the heel-toe gaits, as marked with the green square in Fig. 6.
hese errors are a consequence of that GAT and GHT can seem similar
xercises during some intervals of the motion.

The second and third quadrants with a window size of 100 samples
ontain the highest number of errors. Their distribution is specially
emarkable since they form an almost diagonal line with the cells of
isclassifications that correspond to each kind of exercise labeled as
rong whereas it is correct and the opposite. Again, the only exceptions
re the highly related kinds of gait, GAT and GHT, which are marked
ith two green rectangles in Fig. 6. In this way, errors by ReEv do not

ombine misrecognitions of exercises with their incorrect evaluations,
ut they can be divided into these two sources of error. Most of the
rrors of these quadrants are mainly caused by the incorrect evaluations
f the exercises as correct or wrong. These errors are still present when
he window lengthens to 300 samples, however, they are diminished
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Fig. 6. Average confusion matrix for the 30 volunteers using ReEv with SVML and a window size of 100 and 300 samples (left and right respectively). Columns include the predicted
classes, which are pointed out with a ̂ over their labels; and rows contain the actual classes. Double lines divide the correctly and wrongly performed exercises. The blue highlighted
cells correspond to the average number of correct classifications and the cream colored ones indicate the misclassifications.
and some of them are even eliminated. Thus, the evaluation of exercises
requires a higher window size than the recognition of the correctly
performed exercises.

It is remarkable that the errors from the evaluation as wrong
of correctly performed exercises (32misclassifications) double the er-
rors from the evaluation as correct of wrongly performed exercises
(17misclassifications). It means that classifiers detect as wrong perfor-
mance those exercises that due to the variability of volunteers some
correctly exercises are labeled as wrong. The main reason of this error
is the high amount of classes considered in this classification with
respect to the amount of data, so each class includes so little variability
that slight variations of the prescribed motions are classified as wrong
performances.

The fourth quadrant using window sizes of 100 samples also has a
great amount of errors. As hypothesized, wrongly performed exercises
with the upper-or lower-limbs can be similar and, as consequence,
they are misidentified. The errors distribution shows that the mis-
recognitions are more common in the upper-limb exercises than in the
lower-limb ones. This difference occurs because during the execution
of upper-limb exercises, both arms can freely move in the 3D-space
whereas in the lower-limb exercises the volunteers posture does not
allow as much freedom of movement. For example, if they are seated
for the KFL exercise, the posture is different if they are walking,
so the accelerometer measurements are clearly different and even if
both exercises are wrongly performed, their measurements differ. This
change in the posture is also the reason why the methods do not mix
up the wrong upper-and lower-limb exercises. In this way, the errors
in the recognition of wrong exercises can be divided according to if
they are lower-or upper-limb exercises, which are the orange squared
cells in Fig. 6, fourth quadrant. These errors decreases using windows
with 300 samples instead of 100 samples, but they maintain a similar
distribution. Increasing the window size, wrongly performed exercises
seem to be better identified. However, this reduction is mainly caused
by the decrease of samples when increasing the window size, so a
solution to this source of error is still needed. Thus, these results justify
the next method, ReC-W, that groups the upper-and lower-limb wrongly
performed exercises.

6.3. ReC-W: Recognition of correct exercises and detection of the wrong
ones

ReC-W overcomes the limitation of ReEv in the recognition of
wrong exercises by reducing the number of classes that include wrong
performance of motions to only two: WU and WL. In this way, using
SVML and a window size of 300 samples, ReC-W reaches accuracy, F1-
score, precision and sensitivity metrics between 90.7 % and 92.9 %, see
Table 2. According to these metrics, ReC-W proves to be a competitive
11
Fig. 7. Average confusion matrix for the 30 volunteers using ReC-W with SVML and a
window size of 300 samples. Columns divide the predicted classes, which are pointed
out with a ̂ over their labels; and rows divide the actual classes. Double lines divide
the correctly and wrongly performed exercises.

method for the combination of the exercises recognition and evaluation
tasks although it loses the information related to which exercise has
been wrongly performed.

Fig. 7 depicts the confusion matrix obtained with the best method
and configuration: SVML and a window size of 300 samples. This con-
fusion matrix shows that the recognition of correctly performed ex-
ercises is almost perfect, remaining the previous errors in gait types
recognition, whose classification is marked in green. The division be-
tween upper-and lower-limb wrongly performed exercises, shown in
the fourth quadrant of Fig. 7, has only one misrecognition out of
220 samples.

In this way, by gathering the wrong performed exercises in WU and
WL, the only source of error still present in ReC-W is the one from
the performance evaluation. That is the main reason why the metrics
are improved with respect to the previous proposal, ReEv, as we will
discuss in-depth in Section 6.5.

ReC-W is a promising approach with good metrics in the detection
and evaluation of exercises, but it comes at a cost. We cannot obtain
information about how the different wrong exercises are performed
using ReC-W because all of them are gathered. As a consequence,
the potential feedback of a combination of recognition and evalua-
tion would be simpler than if we also knew which exercise is being
performed wrongly. However, for applications aimed to count and
characterize only the correct performances, this method has proven to
be suitable.

6.4. 1Re-2Ev: Recognition of exercises, followed by their evaluation

We individually evaluate the results of each stage of this method:
first, the ones corresponding to the exercises recognition and then,
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Fig. 8. Average confusion matrix in the exercise recognition stage of 1Re-2Ev with
SVMG and a window size of 300 samples. Columns divide the predicted classes, which
are pointed out with a ̂ over their labels; and rows divide the actual classes.

those results obtained during the exercises evaluation. With regard to
its metrics, with the exception of DT, most algorithms achieve accuracy,
F1-score, precision, sensitivity and specificity above 90% even with
the smallest window, see Table 3. It implies that the recognition of
the exercises, even combining their correct and wrong performance is
highly accurate. The main reason is that 1Re-2Ev considers a lower
number of classes with a high number of samples per class than the
previous methods, so these data have a high variability in the training
data. In this way, the distribution of the test data set, that belongs to a
completely new volunteer, is more likely to be similar to the training
data than when using less data per class.

We use a window size of 300 samples with the SVMG to obtain the
confusion matrix shown in Fig. 8. As in the results of the previous
proposals, most errors of 1Re-2Ev are located in the upper-limb exer-
cises and in gait variations. It is consistent with the previous statements
about the influence of the posture in the recognition results.

The results of this recognition stage, shown in Table 3, are com-
parable to the state-of-the-art methods for exercises recognition. For
example, Zhao and Chen obtained an average accuracy of 96% in the
recognition of four basketball motions using four IMUs on the upper-
limbs (Zhao & Chen, 2020). As in that reference, the best accuracy
is obtained by using SVMs. Even if these motions are more complex
than the one studied in this work, they use a four-fold cross-validation
method, which is expected to give higher metrics than using a LOSO
cross-validation, as the one used in this study. Similar accuracy is
reported in Preatoni et al. (2020), where four fitness exercises are
recognized within a continuous workout using five IMUs placed on the
lower back, the upper-and lower-limbs of one side of the body. They
report an accuracy between 94% and 99%, a precision between 89%
and 94%, and a sensitivity between 79% and 97%, which are specially
interesting because they recognize the transition intervals when no
exercise is being performed. However, the fourteen participants in that
study correctly performed all the evaluated motions. In our work we
consider a higher motion variety. Finally, in Bavan et al. (2019), they
use only one IMU placed on the arm for the motion monitoring. They
obtain an accuracy about the 90% using a ten-fold cross-validation that
decreases to a maximum of 80% when they use a LOSO cross-validation
and RF. In this way, our exercise recognition obtains better metrics,
mainly because we use four IMUs instead of one. We obtain competitive
metrics in relation to the results in the literature, with an average about
96% in the exercises recognition. In addition, we study and recognize
a higher number of exercises, which include their correct and wrong
performances.

For the exercises evaluation after their recognition, we initially
analyze only the results of SVMG. This algorithm provides an aver-
age accuracy and F1-score of 97.17 % and 96.67 %, respectively, see
Table 4. Furthermore, adapting the most suitable ML algorithm for
each exercise, the average accuracy and F1-score increase around 1%,
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being 98.06 % and 97.89 %, respectively. It implies that the exercise
evaluation obtains excellent metrics, close to perfect classifications,
even including the initial error in the exercise recognition.

The results of the second stage, shown in Table 4, are comparable to
the ones reported in the literature about exercises evaluation. The 90%
accuracy, using RF for the lunge evaluation in Whelan et al. (2016)
and the 89% accuracy using SVM for the single-leg squats exercises
evaluation in Kianifar et al. (2017) are consistent with the results
obtained in this work in the squat exercise, which is the most similar
motion evaluated. For this exercise, we obtain slightly better accuracy,
around 95% with all SVMs configurations and 92% with RF.

In the studies focused on the individual evaluation of multiple exer-
cises, results are similar. The logistic regression in Giggins et al. (2014)
achieved a maximum accuracy of 83% on binary exercise evaluation
of seven lower-limb exercises. In the exercises evaluation of Huang
et al. (2016), the reported maximum accuracy was 97%. These results
are clearly comparable to the obtained in the lower-limb exercises
evaluation in this work, which provide an accuracy above 95%.

The results of the upper-limbs exercises are also comparable to those
obtained in the literature. In Pereira et al. (2019), the fusion of two
IMUs and sEMG sensors obtain an accuracy about 92%. In this way,
we obtain similar metrics in the exercises evaluation, although our
classification is binary between correct and wrong, but we use less
types of sensors. Similarly, in García de Villa et al. (2021), the authors
found an accuracy between 98–99 % including both upper-and lower-
limb exercises. These results are slightly better than the ones reported
in the present work. However, the random cross-validation used in
the previous work, is less demanding and the exercise evaluation is
simpler when we have a previous knowledge about the exercise that
is executed.

In order to compare the results of gait evaluation in Alcaraz et al.
(2017) and our results, we consider that the wrongly performed gait is
similar to an unhealthy gait. Therefore, our results, with an accuracy
of 94%, are in the same range of the results shown in Alcaraz et al.
(2017). However, they obtain an accuracy of 100% with LDA and NB
by using more than four features to characterize the motions. Then,
these results imply that the gait evaluation requires more features than
the evaluation of other exercises to improve the obtained metrics.

In previous works (García de Villa et al., 2021), we also evaluated
two kinds of gait, classifying as correct and wrong, with results around
98%. However, in this work we obtain an accuracy of 93.6 % and
an accuracy of 92.2 %. The increment of errors in the evaluation of
gait can be derived from the including of GHT gait variation, which
entails a higher variability of motions similar to gait. Also, in García de
Villa et al. (2021) we used a random cross-validation with 10 iterations,
whereas in this work we use LOSO cross-validation, so metrics are
expected to decrease.

Finally, the differences of methods’ performance between exercises
are noteworthy. The evaluation of the simplest exercises achieves the
best metrics. That is the case of EFE, EAH, HAL, KFL and KFR. The
evaluation of these exercises produces an accuracy and a F1-score
above 99%. HAR is not included between them probably because of a
bias generated by the order of the exercises in the experiments. During
the firsts wrong repetitions of HAR, volunteers performed motions close
to GAT or SQT, which were corrected by the time they did HAL. On the
contrary, the evaluation of the most complex exercises, SQZ, GAT and
SQT, has an accuracy and a F1-score between the 93% and the 97%.
That is related to the easiness of separating between the correct and
wrong performances of the simplest exercises, whose features clearly
differ between a correct and a wrong performance. In the complex
motions, features are more diverse and, as a consequence, they are
closer in both performances than in simple motions.
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6.5. Comparison between the proposed methods

One of the most remarkable similarities between the proposals is
that SVM is the ML algorithm that provides the highest metrics in all
of them, closely followed by RF. This algorithm is the most suitable one
for the recognition and evaluation of the exercises studied in this work.
The difference between the proposals is the kernel used. The linear one
is the most appropriate for ReEv, ReC-W and the first stage of 1Re-2Ev,
see Tables 1–3 whereas in the second stage of 1Re-2Ev the Gaussian and
polynomial kernels provide better results, see Table 4.

Another interesting similarity is that the optimal window size is also
common for all the proposals. The highest metrics are reported with the
3-second windows (300 samples).

Comparing the results of ReEv and ReC-W, shown in Tables 1 and
2 respectively, we can see that, as expected, ReC-W overcomes the
initial proposal. Focusing on the best algorithm, SMVL, with the largest
window size, its accuracy, F1-score, precision and sensitivity increase
a 3% with this change of approach in the classification, exceeding all
of them the 90%. Conversely, the specificity remains almost similar
but decreases with ReC-W for two reasons that can be seen in the
confusion matrix of this method (see Fig. 7). Firstly, the number of
𝑇𝑁 decreases for WU and WL, since they are the largest classes. WU
and WL correspond to the last rows and columns in Fig. 7, so their
true negatives are the first quadrant and the other corresponding class,
i.e. WU for WL and the opposite. Secondly, their 𝐹𝑃 increase because
these errors correspond to the exercise evaluation, which correspond
to the second and third quadrants in Fig. 7 and, as seen also in the
results of ReEv, are the most frequent errors. In this way, errors in
the recognition of wrongly performed exercises are eliminated using
ReC-W. Not only the recognition of wrong exercises improves, but
also the number of properly evaluated motions increases by decreasing
the number of correct exercises labeled as wrong. We measure this
improvement in terms of the F1-score of the WU and WL classes in
ReC-W, compared to those classes of wrongly performed motions when
using ReEv. Both the F1-scores of WU and WL are of 91% versus
the average F1-score of the upper-and lower-limb related motions,
which are 84% and 89%, respectively. So the increment of variability
of motions in the WU and WL classes by using ReC-W decrease the
evaluation errors, compared to the results obtained when identifying
separately the wrongly performed exercises, as made with ReEv.

With regard to the comparison of ReEv and the first stage of 1Re-
2Ev, we focus on the misrecognition errors shown in Fig. 6-right,
resultant of ReEv using a window size of 300 samples, and the one
in Fig. 8, that includes the results of the recognition stage of 1Re-
2Ev. In Fig. 6-right, the misidentifications of ReEv are in the first and
fourth quadrants and also in the second and third quadrants but only
in these cells which do not belong to the main diagonal, e.g. when
in the third quadrant ̂GHT is recognized instead of GAT. They sum a
total of 20misrecognitions by ReEv. Conversely, the first stage of 1Re-
2Ev confuse 19 samples. That means a slight reduction of errors by the
division of classifications caused by the aforementioned reduction of
classes and increment of data variability in each of them.

These results in exercises recognition are not comparable to those
of ReC-W because the recognition of ReC-W only includes the correctly
performed motions so it is not the same input data and neither the same
output information. ReC-W overcomes the errors of ReEv in the recog-
nition of wrongly performed errors and improve its performance in the
exercises evaluation. However, ReC-W only allows us to know if an
exercise is wrongly performed, whereas ReEv and 1Re-2Ev give enough
information to relate the wrong exercises with their characterization.

With respect to the exercise evaluation, in the second stage of
1Re-2Ev, most metrics are above 95% (see Table 4), which implies
that 1Re-2Ev presents the lowest errors in the evaluation of exercises.
This means that by separating both classifications, 1Re-2Ev overcomes
the limitations related to the exercise evaluation of ReEv and ReC-W.
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This improvement in comparison with ReEv is caused by lowering the
number of classes, whereas in comparison with ReC-W is a consequence
of the reduction of variability in the wrong classes of each exercise.

In this way, 1Re-2Ev overcomes ReEv and ReC-W because of two
main reasons: (1) the recognition metrics are better than ReEv and
similar to ReC-W but gives more information since it also recognizes the
wrong exercises and (2) it provides the highest metrics in the exercise
evaluation. Also, this proposal includes the flexibility of tuning the
algorithm for the exercise evaluation in its second stage, in order to
optimize its results according to the recognized exercise.

One can argue that 4 features per signal and window (96per window
ombining all sensors) are not enough to obtain the best performance
f the ML algorithms. In fact, one of the alternatives to improve the
btained results is to increase the number of features. However, the
eatures used in this work allow us to compare the proposals for the
xercises recognition and evaluation, and to establish the most suitable
pproach for this complex task. In addition, we obtain high metrics
ith an accuracy about 91.4 % with two of the proposed methods.
hese metrics prove that both proposals are comparable with the state-
f-the-art methods even when they combine both tasks, recognition
nd evaluation of exercises, whereas in the literature these tasks are
eparately addressed.

Furthermore, the high metrics given by the three methods with
uch a variability of volunteers entail that the they adapt to different
opulation. The main reason is that the design of motions is similar
or all ages, so their correct performance is similar independently of
he subject and they only show variations that are already in the
nalyzed database. In this way, the proposals are robust to changes in
he motions caused by age.

. Conclusions

This work proposes several approaches to automatically recognize
nd evaluate exercises included in a physical routine aimed for main-
aining older people health status, what can prevent the onset of
railty. Our work contributes to the development of virtual coaches
hat help achieve healthy aging by supporting regular daily exercise,
mproving adherence to the physical routine and monitoring it. With
he proposals, we demonstrate the feasibility of the characterization
f this routine performance, which may become a reality in the near
uture.

For this complex task, we have proposed three alternatives: (1)
dentifying and evaluating in a single stage (ReEv); (2) identifying only
he correct exercises (ReC-W) in a single stage, and (3) identifying in a
irst stage and then evaluating in a second stage whether the exercise
s well or poorly performed (1Re-2Ev). These proposals have been
valuated in a set of 30 volunteers between 20 and 70 years old, with
ifferent ML algorithms. The metrics used to evaluate the proposals
rove that the one-stage classification approaches are less suitable than
he two-stage one. Combining the recognition and evaluation in a
ingle classification problem, ReEv and ReC-W obtain an accuracy of
8% and 91%, depending on whether the classification of the wrong
xecutions is performed. Conversely, the initial recognition followed by
he exercises evaluation of 1Re-2Ev, gives an accuracy around the 95%,
ven with the error propagation from the first stage. 1Re-2Ev is also
nteresting since we prove that different exercises are evaluated better
ith different ML algorithm, and this approach allow us to assign the
ost suitable classifier to each performed exercise, after it has been

ecognized.
Another main difference between the one-and two-stage methods

s that, even SVM is the most suitable algorithm in all the studied
ases, the most suitable kernel differs between proposals. In the ReEv
nd ReC-W, SVML overcomes the other methods, whereas in 1Re-2Ev,

SVMG and SVMP provide the best results.
We also find that the recognition of correct motions is less de-

manding than their evaluation, i.e. in the evaluation, parameters as

the window size are more relevant to obtain better results than in
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the exercises recognition. This is due to the differences in posture
of the volunteers and, as a consequence, of the sensors, It helps to
recognize the exercises but not to evaluate them. The most complex
exercises, as GAT and SQZ, reported the worst metrics in their recogni-
tion and evaluation, so richer features should be used to improve their
characterization.

As future work, we plan on reducing the number of sensors in order
to evaluate a more user friendly sensory system, based on the best
proposed method, 1Re-2Ev, and testing it with people older than the
volunteers of this study. Finally, we will increase the features, specially
in complex exercises, so that their metrics reach the values obtained
with the simplest exercises evaluated.
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