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• The impacts of exotic trees on regulating
ecosystem services are modulated by
climate.

• Wetter and warmer climates promote
positive impacts of exotic trees.

• Human population density is also an im-
portant impact modulator.

• Exotic tree impacts are greater in more
densely populated areas.

• Climate should be considered when
deciding on the introduction of new exotic
trees.
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Humans have introduced non-native trees (NNT) all over the world to take advantage of the plethora of benefits they
provide. However, depending on the context, NNT may present a diverse range of effects on ecosystem services (ES),
from benefits to drawbacks, which may hinder the development of policies for these species. Unfortunately, the
attempts so far to understand the impacts of NNT on ES only explained a low proportion of their variation. Here we
analyze the variation in impacts of NNT on regulating ecosystem services (RES) by using a global database, which
covers the effect size of multiple NNT species on six RES (climate regulation, soil erosion regulation, soil fertility,
soil formation, hydrological cycle regulation, and fire protection). We used a wide range of predictors to account for
the context-dependency of impacts distributed in five groups: the RES type, functional traits of both the NNT and
the dominant NTof the recipient ecosystem, phylogenetic and functional distances betweenNNT andNT, climatic con-
text, andhuman population characteristics. Using boosted regression trees and regression trees, we found that themost
influential predictors of NNT impacts on RES were annual mean temperatures and precipitation seasonality, followed
by the type of RES, human population density, and NNT height. In regions with warm temperatures and low season-
ality, NNT tended to increase RES. NNT impacts were greater in densely populated regions. Smaller NNT exerted
greater positive impacts on climate regulation and soil erosion regulation in tropical regions than in other climates.
We highlight that benign climates and high population density exacerbate the effects of NNT on RES, and that soil
fertility is the most consistently affected RES. Knowledge of the factors that modulate NNT impacts can help to predict
their potential effects on RES in different parts of the world and at various environmental settings.
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1. Introduction

Trees have always attracted great interest for the multitude of ecosys-
tem services (ES) they provide, which are defined as the benefits that
humans obtain from ecosystems (Chaudhary et al., 2015; MEA, 2005).
From trees we obtain raw materials for livelihood support (provisioning
ES), or educational, scientific, spiritual, and recreational benefits (cultural
ES) (Haines-Young & Potschin, 2018; MEA, 2005; Vaz et al., 2018). Trees
also contribute greatly to ecosystem functions, i.e., the ecological processes
that control the fluxes of energy and resources through an environment. As
such, trees play a pivotal role as regulators of soil erosion, climate, pollina-
tion, and water and air quality (i.e. regulating ES, RES; (Dickie et al., 2014;
Haines-Young& Potschin, 2018; Pejchar&Mooney, 2009)). Humans have
extensively planted trees beyond their native ranges to meet the growing
demand of benefits they provide (MacDicken et al., 2015), which may in
turn enhance ecosystem functioning. For example, a global-scale meta-
analysis conducted by Castro-Díez et al. (Castro-Díez et al., 2019) showed
that non-native trees (NNT) tended to enhancemany of the RES considered
in the study (climate regulation, soil erosion control, soil fertility, and soil
formation). However, Castro-Díez et al. (Castro-Díez et al., 2019) also re-
vealed a wide variety of impacts of NNT on the same ES type, highlighting
the context-dependency of the impacts.

Previous research suggests an array of factors that may explain the var-
iation in impacts of NNT on ES (Castro-Díez et al., 2021; Pyšek et al., 2012;
Vilà et al., 2011). Firstly, the intrinsic properties of non-native species are a
relevant source of impact variability (e.g., (Castro-Díez et al., 2019; Castro-
Díez et al., 2021; Vilà et al., 2011; Xu et al., 2022; Zhou & Staver, 2019)).
For example, nitrogen (N)-fixing NNT tend to produce greater impacts on
the N cycle than non-N-fixing NNT (Castro-Díez et al., 2014; Liao et al.,
2008; Vilà et al., 2011). The functional structure of the recipient commu-
nity may also explain differences of NNT effects on ES, as NNT with novel
traits in the recipient communities may produce greater impacts than
NNT with redundant traits. For instance, N-fixing NNT have greater im-
pacts on N cycles in ecosystem lacking native N-fixers (Castro-Díez et al.,
2014; Liao et al., 2008; Vilà et al., 2011), or impacts of NNT are greater
in treeless communities (Mack, 2003). Indeed, Castro-Díez et al.
(Castro-Díez et al., 2014) found that the functional distance between
non-native naturalized plants and dominant native plants partially ex-
plained the variation in impacts of non-native plants on the N cycle.
The phylogenetic relatedness may be another explanatory factor if traits
(or trait values) that determine the impacts show some degree of phylo-
genetic signal (Castro-Díez et al., 2011; Castro-Díez et al., 2014;
Rejmanek& Richardson, 1996). The climatic conditions and the vertical
structure of recipient communities may additionally explain the varia-
tion in impacts of NNT (Xu et al., 2022). For instance, Castro-Díez
et al. (Castro-Díez et al., 2014) found greater impacts of non-native
plants on the N cycle in areas with warmer and wetter climates.
Castro-Díez et al. (Castro-Díez et al., 2021) showed that non-native eu-
calypts had more negative impacts on soil fertility in temperate than
in tropical forests, and that non-native pines decreased soil formation
in forests but not in grasslands. Likewise, the impacts of non-native
woody species with high water requirements can be critical on water cy-
cles, especially in regions with water-limited climates (Caldeira et al.,
2015). Finally, the richness and abundance of non-native species can in-
crease with human population densities, thus amplifying their impacts
on ES (McKinney, 2001; McKinney, 2002; Pyšek et al., 2002; Spear
et al., 2013). Additionally, the degree of environmental degradation
caused by human activities was shown to increase the probability that
ES are altered by NNT (Castro-Díez et al., 2011; Catford et al., 2011;
Edward et al., 2009). Moreover, all the potential predictors described
above may interact in complex ways to explain NNT impacts on ES,
and few studies have attempted to analyze such a variety of predictors
and their interactions at a global scale (Castro-Díez et al., 2019;
Castro-Díez et al., 2021; Pyšek et al., 2012). This lack of appropriate de-
sign could be a reason why previous studies addressing the impacts of
NNT on ES only explained a low proportion of observed variance.
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The novelty of our study lies in 1) the identification of new or underex-
plored sources of variation in impacts and 2) the simultaneous analysis of
different groups of potential predictors of variation in a global database.
We aimed to understand how different predictors may interact to explain
the variety of NNT impacts on six RES in forest communities worldwide, in-
cluding climate regulation, soil erosion regulation, soil fertility, soil forma-
tion, fire protection, and hydrological cycle regulation. We focused on
forests because of the wide range of ES they provide, as explained above.
We simultaneously assessed the role of five groups of predictors: (1) RES
type, (2) functional traits of NNT and NT, (3) the phylogenetic and func-
tional relatedness between NNT and the dominant NT in the recipient com-
munities, (4) climate, and (5) human population density. We hypothesized
that (1) functional traits play an important role in explaining the variation
in impacts of NNT on RES, 2) NNT that aremore phylogenetically and func-
tionally distant from the dominant NTs of the recipient community have
greater impacts than those that are more closely related, (3) the impacts
caused by NNT vary depending on climatic conditions of the recipient
region, (4) human influence, here expressed as the human population
density, will exacerbate the impacts of NNT.

2. Material and methods

2.1. The data set

Our data were obtained from the global database compiled by Castro-
Díez et al. (Castro-Díez et al., 2019) (available at Repositorio Madroño, doi:
10.21950/EGM8SE), that includes information extracted from 1683 case
studies conducted all over the world. The names of some RES categories
employed by Castro-Díez et al. (Castro-Díez et al., 2019) were slightly mod-
ified to adjust them to the RES categories proposed by the Common Interna-
tional Classification of Ecosystem Services (CICES) V5.1 (Haines-Young &
Potschin, 2018) (see Table S1 in the Supplementary Material for terminol-
ogy correspondences of RES categories). Each case study (i.e. rows of the
data set) consisted of a comparison between a site dominated by a NNT
with a nearby site with similar environmental conditions dominated by a
NT that served as a control (see Supplementary Material S1 for details on
building the database and its structure). The magnitude of the difference
was assessed by calculating the effect size as Hedges' d (Supplementary
Material S2). The effect size is a unitless metric used in meta-analyses
that captures the magnitude of change of a variable in a comparison. The
Hedges' d values may range from –∞ to+∞, estimating the size and direc-
tion of effects. Positive values indicate that theNNT species increases the ES
and vice versa (Rosenberg et al., 2000). The summary effect resulting from
aggregating all case studies was presented in Castro-Díez et al. (Castro-Díez
et al., 2019). Here, we aim at explaining the variation in impacts across case
studies using the effect size as dependent variable. We removed original
case studieswith insufficient or ambiguous information onNNT orNT iden-
tities (i.e. the name of the species was not specified), those of non-forest
ecosystems (deserts, grasslands and shrublands) or non-tree or shrub NT
species (e.g. herbaceous, ferns), and those performed under experimental
conditions. Finally, we retained 773 case studies derived from 64 publica-
tions, encompassing 76 NNT species and six RES: climate regulation, soil
erosion regulation, soil fertility, soil formation, fire protection, and hydro-
logical cycle regulation. The data set is publicly available in the FigShare re-
pository ((Romero-Blanco et al., 2022); https://doi.org/10.6084/m9.
figshare.20141483.v3).

2.2. Predictors of variation in impacts of NNT

We initially selected a set of 28 predictors with potential to explain the
variation in NNT impacts on RES, classified in the following categories: RES
type; functional traits; relationship between NNT and NT; climatic predic-
tors; and anthropogenic factors. However, we excluded seven predictors
that did not meet the quality standards that we set for our research (see
Supplementary Material Table S2 for an extended description), thus
retaining 21 out of the 28 originally considered (see Table 1).

http://10.21950/EGM8SE
https://doi.org/10.6084/m9.figshare.20141483.v3
https://doi.org/10.6084/m9.figshare.20141483.v3


Table 1
Final set of predictors selected to explain the variation in impacts of NNT on RES.

Predictor group Variable name and typea Categories of QL variables

RES type RES type (QL) Climate regulation; soil
erosion regulation; soil
fertility; soil formation; fire
protection; hydrological
cycle regulation

Functional traits Leaf nitrogen content (QT) –
Plant height (QT) –
Specific leaf area (QT) –
Wood density (QT) –
Leaf compoundness (QL) Simple; compound
Leaf habit (QL) Deciduous; evergreen;

deciduous/evergreen
Nitrogen fixing capacity (QL) Yes, no
Resprouting capacity (QL) Yes, no

Relationship between
NNT and NT

Functional distance (QT) –
Phylogenetic distance (QT) –

Climatic Annual mean temperature (QT) –
Temperature seasonality (QT) –
Precipitation of the driest month (QT) –
Precipitation seasonality (QT) –

Anthropogenic factors Human population density (QT) –

a QT: quantitative, QL: qualitative.
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2.2.1. Functional traits
We compiled a set of functional traits for all the species (NNT andNT) in

our database. The selected traits pertain to the economy of water, light, nu-
trients, and life history of species. Data were initially collected from the
TRYdatabase (Kattge et al., 2011) and then completedwith other online re-
sources (Table S3; Supplementary Material). Missing values were imputed
using trait correlation structure. We only considered imputed information
in subsequent analyses if the estimated prediction error was <0.5 in the
cross-validation trials (see Supplementary Material S3 for a detailed de-
scription). Traits with ≥60 % of missing values were directly discarded
(see Table 2 for a description of the traits used in the study).

2.2.2. Phylogenetic distances
We obtained a set of time-calibrated phylogenies for the species

analysed in the study using the R package V.PhyloMaker (Jin & Qian,
2019). V.PhyloMaker uses the largest species-level mega-phylogeny of vas-
cular plants published to date (GBOTB.extended; see (Jin & Qian, 2019))
to generate a subtree from a given species list (that was standardized to
the nomenclatural and spelling criteria of The Plant List (The Plant List,
2013)), following a three-steps procedure that can be consulted in Supple-
mentary Material S4. To account for phylogenetic uncertainty (i.e., random
binding of PUTs), we repeated this procedure iteratively until we obtained
1000 different trees. Pairwise phylogenetic distance matrices were derived
from the trees using the R function cophenetic (R Core Team, 2021), and all
subsequent analyses were replicated and results averaged over the 1000
matrices (Rangel et al., 2015).

2.2.3. Functional distances
We used those functional traits selected in the previous step (see

Table 2) to calculate the functional distances between NNT and the
Table 2
Final set of traits used to explain the variation in impacts of NNT on RES, and their func

Trait Type Measurement units

Leaf nitrogen content Quantitative mg/g
Plant height Quantitative m
Specific leaf area Quantitative mm2/mg
Wood density Quantitative g/cm3

Leaf compoundness Qualitative Simple, compound
Leaf habit Qualitative Deciduous, evergreen or deciduou
Nitrogen fixation capacity Qualitative Yes, no
Resprouting capacity Qualitative Yes, no

3

dominant NT in the recipient communities. First, we explored the
correlation structure among the selected traits using different methods
(see Supplementary Material S5). Subsequently, we computed a multi-
trait dissimilarity matrix with the gawdis R package, which ensures an equi-
table contribution of the different traits in the computation of multi-trait
dissimilarity (De Bello et al., 2020). Some traits showed a moderate corre-
lation (0.5–0.7) (Table S4), which suggests that they may have a strong in-
fluence in the computation of multi-trait dissimilarities. Thus, we adopted
two approaches: (1) we grouped correlated traits to ensure a similar contri-
bution of groups to the dissimilarity matrix (De Bello et al., 2020) and
(2) we removed correlated traits (leaf compoundness and leaf nitrogen con-
tent) and computed the dissimilarity matrix with the remaining traits (not
grouped). The resultant values from each approach were scaled between
0 (species functionally identical) and 1 (species completely different) (De
Bello et al., 2020). Given that distance values from both approaches were
strongly correlated (Pearson's r=0.94), we used the mean distance values
from the two approaches as the final predictor for the analyses.

2.2.4. Climatic predictors
For each case study, the geographical coordinates of the sites were ex-

tracted from the source papers or inferred from a georeferenced map if
not provided in the paper. If multiple sites were included in the same case
study, we selected the coordinates of the centroid of the minimum convex
polygon connecting them. Climatic variables were obtained from
WorldClim version 2 (Fick & Hijmans, 2017), and included 19 descriptors
with a resolution of 10 arc-minutes (~ 340 km2) for the period
1970–2000. We selected a subset of variables accounting for seasonality
(variation in temperature and precipitation along the year), annual means
of temperature and precipitation, and climate extremes (precipitation of
the driest month and temperature of the coldest month) (Table 1 and Sup-
plementary Material Table S2). Subsequently, we assessed the collinearity
between selected variables and those with strong correlations were
discarded (Pearson's r ≥ 0.7; Supplementary Material Table S2)
(Dormann et al., 2013). The final set of climate predictors used for the anal-
yses is shown in Table 1.

2.2.5. Anthropogenic predictor
The anthropogenic context was characterized as the human population

density, a widely used proxy for assessing human footprint in
macroecological studies (Pyšek et al., 2010; Sanderson et al., 2002).
Using the coordinates of each case study, we obtained the human popula-
tion density for the year 2020 with a resolution of 15 arc-minutes
(~30 km) from the Center for International Earth Science Information
Network - CIESIN - Columbia University (Center for International Earth
Science Information Network - CIESIN - Columbia University, 2018).

2.3. Data analysis

To assess the explanatory power of our predictors on the impacts of NNT
on RES, we combined Boosted Regression Trees (BRT) and regression trees.
Regression trees can handle qualitative and quantitative predictors, non-
linear variables, and do not need prior transformation or outlier elimination
(Elith et al., 2008; Feld et al., 2015), which represent clear advantages over
more classic regression models. Briefly, regression trees split the response
tional roles.

Functional role

Light acquisition, photosynthetic capacity
Light acquisition, dispersal distance, above-ground competition
Light acquisition, photosynthetic capacity, growth rate
Water storage and dynamics, hydraulic capacity, tree longevity
Control of water loss, light acquisition, water regulation

s/evergreen Light acquisition, photosynthetic capacity, nutrient use efficiency
Growth rate, nutrient acquisition
Recovery after disturbances



Fig. 1. Relative contribution of predictors to the explained variance (%), based on Boosted Regression Tree analysis. Numbers in brackets indicate the precise contribution of
each predictor.
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variable into homogenous groups recursively (De'ath & Fabricius, 2000),
and the predictor that explains the greatest deviance in the response vari-
able is selected at each splitting node to fit a prediction model (Loh, 2011).

We performed the analyses following a three-step procedure. First, we
checked the collinearity between predictors following the methods
described in Supplementary Material S5 and removed those with strong
correlations (≥0.7; Supplementary Material Table S2) (Dormann et al.,
2013). Second, we performed a BRT analysis to assess relative importance
of predictors (i.e., the proportion of the variance explained by each
predictor) (see SupplementaryMaterial S6 for further details). Third, to dis-
entangle the combined effects of predictors, we performed a Generalized
LinearMixedModel tree (GLMM tree) using those predictors that explained
≥5%of the variance in the previous BRT. The GLMMwas performed using
the “glmertree” function of the glmertree package (Fokkema et al., 2018).
Missing values were excluded from the analysis. We used a GLMM tree to
account for possible non-independence among case studies, which is a com-
mon problem in meta-analyses on environmental information (Castro-Díez
et al., 2019; Nakagawa & Santos, 2012). Non-independence derives from
the fact that the same study may provide several case studies, which are
more closely relatedwith each other thanwith other cases coming from dif-
ferent studies. We identified three sources of pseudo-replication in our data
set: 1) multiple controls: when the same NNT was compared with several
NTs in the same study; 2) multiple sites: the same variable was assessed
in the same study at several sites, and each site was considered as a case
study; 3) multiple outputs: the same study provided measures of different
variables in the same sampling. The three issues were addressed by includ-
ing the source paper (identified by “reference”) as a random factor and case
study was nested within reference.

3. Results

3.1. Data set exploration

Most publications came from North America and Europe (Fig. S2; Sup-
plementary Material). Case studies were unevenly distributed across spe-
cies, with Acacia mangium and Tectona grandis accounting for the largest
number of cases (84 each) (Table S5; Supplementary Material). NNT
4

populations were mainly on plantations (74 % of case studies). The RES
with the largest number of case studies was soil formation (313), followed
by climate regulation (210), soil fertility (130), soil erosion regulation (52),
hydrological cycle regulation (36), and fire protection (32). All continents
except Antarctica were represented in our data set, although case studies
were unevenly distributed across world regions with Central and South
America showing the highest number of case studies (Fig. S3; Supplemen-
tary Material). Some RES (climate regulation, soil formation and fertility)
were also over-represented within regions (Fig. S3; Supplementary
Material).

3.2. Assessing the relative importance of predictors

Our predictors explained 16 % of the variance in effect sizes of NNT on
RES according to the BRT (see Fig. 1 for the relative contribution of each
predictor to the explained variance). Predictors that contributed to explain
≥5 % of the observed variance included climate variables (mean annual
temperature and precipitation and temperature seasonality), human popu-
lation density, type of RES, and NNT height (Fig. 1). Retained predictors for
the regression tree accounted for 71.9 % of the explained variance.

3.3. Disentangling the combined effects of predictors

Two climatic variables (mean annual temperature and precipitation sea-
sonality) appeared in the first splits of the tree (Fig. 2). Negative effect sizes
of NNT on RES were found only in the coldest regions (mean annual tem-
peratures≤12.8 °C; terminal nodes 2 and 3 of Fig. 2). The greatest negative
effect sizes corresponded to regions with≤8.4 °C of mean annual temper-
ature and high precipitation seasonality (>61.9, terminal node 2 of
Fig. 2). In contrast, the mean effect size was positive in cold regions with
more regular precipitation (≤61.9) (Fig. 2; terminal node 1). On the
other hand, in warmer regions (>12.8 °C) with regular rainfalls (precipita-
tion seasonality≤30.4), the mean effect size was great and positive (Fig. 2;
terminal node 4).

In the next splitting node, soil fertility was separated from the rest of
RES. In temperate to warm regions (over 12.8 °C of annual mean tempera-
ture) with irregular precipitation (seasonality >30.4), NNT had positive

Image of Fig. 1


Fig. 2.Regression tree showing the predictorswith the greatest influence on the impacts ofNNT onRES. Values in blue are the splitting criteria for each splitting predictor and
p-values (in red) report the best suitable predictor at a given splitting point (α=0.05). Numbers outside parentheses at terminal nodes indicate themean of the effect size and
those inside the parenthesis are the numbers of case studies. The average effect size (number outside the parenthesis) for all case studies (number inside the parenthesis) is
shown at the top of the tree.
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effects on soil fertility (terminal node 5), and the remaining RES were in
turn split. The effects of NNT on fire protection, hydrological cycle regula-
tion and soil formation were determined by the temperature seasonality.
NNT showed greater positive effects in regions with lower annual oscilla-
tions in temperature than in those where temperatures are less regular
(Fig. 2; terminal nodes 11 and 12).

Human population density determined the effects of NNT on climate
regulation and soil erosion regulation, which were greater and positive in
densely populated regions (Fig. 2; terminal node 10). In less densely popu-
lated areas, the mean annual temperature played an important role again.
In moderately warm areas (temperatures between 12.8 and 26 °C), NNT
contributed positively to climate regulation and soil erosion regulation.
However, those contributions were slightly higher in environments with
high precipitation seasonality (>52.7) (Fig. 2; terminal nodes 6 and 7).
The height of NNT influenced their effects only in regions where annual
mean temperatures exceed 26 °C (tropical climates), so that taller trees
showed fewer positive effects on climate regulation and soil erosion regula-
tion (Fig. 2; terminal nodes 8 and 9).

4. Discussion

4.1. The data set

We obtained a heterogeneous distribution of case studies across RES
and world regions. Although the highest number of publications came
from North America and Europe, Central and South America accounted
for the largest number of case studies due to a higher number of cases
per publication. Only 12 species covered half of the case studies in our
database, which suggests that researchers often tend to focus on the
same NNT species, usually those that are more invasive and with greater
5

socio-ecological impacts (Hulme et al., 2013; Pyšek et al., 2009). Also,
most case studies corresponded to planted NNT, perhaps because planta-
tions are of a greater economic interest than naturalized populations and,
subsequently, are the subject of more studies. This may have determined
the predominance of certain species or genera in our database, such as
Acacia sp., Tectona grandis, Eucalyptus sp., or Pinus sp., as they are prepon-
derantly selected for plantations (Richardson, 1998; Zobel et al., 1987).

4.2. Relative importance of predictors

High variation is inherent to ecological studies, mostly if they integrate
data from multiple studies, as effect sizes come from different species and
contexts worldwide (Senior et al., 2016). In this study, all the selected pre-
dictors explained 16 % of the variation in effects of NNT on RES. We were
able to explain a high proportion of this variation compared to what is usu-
ally reported in ecological meta-analyses (Senior et al., 2016). Indeed, pre-
vious studies assessing the variation in impacts of NNT used a limited set of
predictors (e.g., N-fixing ability, life form, biome, type of ecosystem)
(Castro-Díez et al., 2019; Castro-Díez et al., 2021; Pyšek et al., 2012; Vilà
et al., 2011).

The best predictors of NNT impacts pertained to climate, anthropogenic
factors, type of RES, andNNT height. Climaticfilters can limit the success of
NNT establishment and performance, and thus their capacity to alter eco-
system processes and services (Castro-Díez et al., 2014; Castro-Díez et al.,
2019; Castro-Díez et al., 2021). A novel result is the importance of human
population density in determining the impacts of NNT on RES. Vaz et al.
(Vaz et al., 2018) already used a similar predictor, the global human influ-
ence index, to explain the effects of NNT on cultural ES. Human population
density is related to the level of ecosystem disturbance and the introduction
of NNT to meet the demands of human populations for resources; these

Image of Fig. 2
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factors modulate the establishment and spread of NNT and, consequently,
their effects on RES (Catford et al., 2011; Edward et al., 2009; Spear
et al., 2013). The type of RES appeared as one of the important predictors
of NNT impact, suggesting that the sign andmagnitude of NNT impacts dif-
fer among individual RES. In fact, Castro-Díez et al. (Castro-Díez et al.,
2019), that addressed NNT impacts on each RES separately, found that
the impacts on most RES were positively correlated with each other, except
for fire-risk prevention, whichwas negatively correlatedwithwater regula-
tion and soil erosion control. This means that NNT can enhance some RES
while impairing others. For example, NNT with high biomass productivity
can increase soil formation and erosion regulation (Castro-Díez et al.,
2019). However, biomass accumulation implies more fuel in the system
and a reduction in the capacity of ecosystems to protect against fires
(Castro-Díez et al., 2019). The significant effect of the NNT height is consis-
tent with our expectation that some functional traits would appear among
the predictors with the greatest explanatory power since they ultimately
determine the ability of species to use resources and modify their
environments (Ehrenfeld, 2010). Plant height was also identified as a trait
supporting the impacts of non-native plants on species richness of invaded
communities (Pyšek et al., 2012).

Surprisingly, some predictors that have been previously reported as
major determinants of the impacts of NNT on RES, contributed little to
the explained variance in our study. The relative importance of these pre-
dictors, such as the ability of NNT to fix N, may have been obscured by
the great weight of climate and other predictors when analyzing all RES
as a whole. For instance, Castro-Díez et al. (Castro-Díez et al., 2019) consid-
eredRES separately and didfind a remarkable effect of N-fixingNNT on soil
fertility and formation, soil erosion control, and water regulation. Likewise,
we found a small influence of leaf habit on the variation in impacts of NNT
on RES, even though previous research highlights the importance of this
predictor, as deciduous and evergreen NNT produce litter with different de-
composition rates (Aerts, 1995; Aerts&Chapin, 1999; Berendse& Scheffer,
2009). Nevertheless, the results obtained for other predictors, such as the
small contribution of phylogenetic distances, are similar to those reported
in previous studies (Castro-Díez et al., 2014), supporting the idea that
closely and distantly related species can exert similar impacts on RES. In
this global-scale analysis, climate played a major role and overshadowed
the influence of other predictors. However, the explanatory power of
these factors may emerge at more local scales.

4.3. Combined effects of predictors

The regression tree allowed us to detect the main patterns and their un-
derlying variables. Predictors in the upper part of the tree determinedmore
pronounced differences in the variation in impacts of NNT on RES between
nodes than predictors lower down the tree. Climatic variables dominated
the top of the tree, which highlights the pivotal role of climate on determin-
ing NNT impacts on RES. The type of RES and human population density
also had an influential position in the tree, while NNT height appeared at
the bottom, indicating the relatively minor role of this trait.

Previously, Castro-Díez et al. (Castro-Díez et al., 2019; Castro-Díez et al.,
2021) observed that climate (captured by biome type) explained an impor-
tant part of the variation in impacts of NNT onRES. Other studies also noted
the context-dependency of the impacts of NNT (Castro-Díez & Alonso,
2017; Castro-Díez et al., 2014; Xu et al., 2022). Here, we aimed to get a
more detailed understanding of the influence of climate on the impacts of
NNT by using more specific climatic variables. Low temperatures and
high seasonality (both in temperature and precipitation) limited the capac-
ity of NNT to increase RES, or even promoted negative impacts. Stressful
climatic conditions in terms of temperature and water availability act as
abiotic filters that restrict the chances of establishment and propagation
of non-native species in the recipient environments (Alpert et al., 2000), a
circumstance that can lead to low impacts of NNT on ecosystem functions
and services. These conditions can also limit the NNT productivity, which
may ultimately lead to small or negative impacts on RES that are strongly
dependent on the rate of biomass production (Castro-Díez et al., 2019;
6

Castro-Díez et al., 2021). In contrast, under benign climatic conditions,
NNT may achieve a high productivity and thus contribute positively to cli-
mate regulation (through carbon sequestration) and soil fertility, formation
and erosion regulation and hydrological cycle regulation (through an in-
creased supply of organic matter to the soil and root formation) (Castro-
Díez et al., 2019; Evans, 2009; Lal, 2020; Libohova et al., 2018; Silva &
Tomé, 2016). However, these trends may be altered by climate change. In
fact, non-native species can exacerbate the negative impacts of climate
change on ES by acting synergistically with it (Caldeira et al., 2015;
López et al., 2022; Vilà et al., 2021). For example, non-nativewoody species
with high water use rates can aggravate the impacts of extreme drought
events on the regulation of hydrological cycles and other water-related ES
(Caldeira et al., 2015; Diez et al., 2012; Rascher et al., 2011).

NNT showed greater positive effects on climate regulation and soil ero-
sion regulation in more densely populated regions (China and Turkey).
Denser human populations exert stronger demands for natural resources
(food, raw materials), which can result in stronger disturbances of natural
forests and greater demand for the introduction and spread of NNT (Allen
& Barnes, 1985; Mather, 1993; Myers & Bazely, 2003; Pyšek et al., 2010;
Williams, 1994). Humans select NNT for introduction based on their higher
productivity relative to native species (Richardson, 1998; Woziwoda et al.,
2014), which would explain the positive impacts on climate regulation and
soil erosion regulation that we found.

Smaller NNT showed a larger positive effect size on climate regulation
and soil erosion regulation than taller trees in tropical regionswhere annual
mean temperatures exceed 26 °C. Thiswas unexpected, as previous findings
suggest a greater impact towards taller non-native species (Martin et al.,
2017; Ni et al., 2021). Further researchwill be required to elucidate the un-
derlying mechanisms that may explain this pattern.

Our study is based on data collected from numerous publications avail-
able in the literature, which may contain different biases. As our explora-
tion showed, most of the studies come from Europe and North America,
only a few NNT species are repeatedly studied, and some RES are analysed
more frequently than others. These issues should be consideredwhen inter-
preting our results. Also, our data set may become outdated as new results
and studies are published. Thus, future updates would be necessary, an ef-
fort that could also reduce the aforementioned biases.

Our results suggest that policymakers should take the role of the context
as a modulator of the impacts of NNT on RES into consideration when de-
ciding about the introduction of new NNT. However, we also call for cau-
tion, as NNT may have simultaneous impacts in many ecosystem levels
and, sometimes, NNT can promote some RES while impairing other ser-
vices, ecosystem functions, or even native communities (Castro-Díez
et al., 2019; Potgieter et al., 2017).

5. Conclusions

Our global-scale analysis suggests that climate is the main predictor of
the impacts of NNT on RES. Highly productive regions, i.e., with constant
warm temperatures and sustained rainfalls, promote positive impacts, pos-
sibly because NNT can reach their maximum productivity potential there.
This close dependence on the climatic characteristics of the recipient com-
munities may lead to the modification of the magnitude and sign of the ef-
fects of NNT on RES under future climate change scenarios. The impacts of
NNT on soil fertility were more consistent than on other RES. A novel result
is the remarkable influence of human population density, a predictor that
has been little explored so far. Our findings can be useful to inform decision
making for introducing NNT species that may enhance ecosystem functions
and fulfil an increasing demand of ES, although policymakers should also
focus on the potential trade-offs between ES that may arise.
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