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A geostatistical protocol to optimize spatial sampling of domestic 
drinking water supplies in remote environments

Eulogio Pardo-Igú zquiza1 
• Pedro Martı́nez-Santos2 

• Miguel Martı́n-Loeches3

Abstract
This paper deals with the design of optimal spatial sampling of water quality variables in remote regions, where logistics

are complicated and the optimization of monitoring networks may be critical to maximize the effectiveness of human and

material resources. A methodology that combines the probability of exceeding some particular thresholds with a mea-

surement of the information provided by each pair of experimental points has been introduced. This network optimization

concept, where the basic unit of information is not a single spatial location but a pair of spatial locations, is used to

emphasize the locations with the greatest information, which are those at the border of the phenomenon (for example

contamination or a quality variable exceeding a given threshold), that is, where the variable at one of the locations in the

pair is above the threshold value and the other is below the threshold. The methodology is illustrated with a case of

optimizing the monitoring network by optimal selection of the subset that best describes the information provided by an

exhaustive survey done at a given moment in time but which cannot be repeated systematically due to time or economic

constrains.

Keywords Stochastic � Entropy � Indicator variable � Thermotolerant coliforms � Groundwater sampling �
Water access � Human rights

1 Introduction

Human settlements in rural sub-Saharan Africa often rely

on groundwater. Groundwater is widely accessed for a

variety of reasons. For one, natural storage and

replenishment capacity are often high, while water quality

is generally appropriate for most uses and infrastructures

tend to be affordable for poor communities (Adelana and

MacDonald 2008). Moreover, groundwater is ubiquitous

across most of the continent (MacDonald et al. 2012;

Pavelic et al. 2012) and provides a reliable source of

freshwater during droughts (Llamas and Martı́nez-Santos

2005; Calow et al. 2010). Thus, it is estimated that Africa’s

shallow aquifers underpin the daily lives of around 200

million people (Foster and Garduño 2013). The Republic of

Mali is no exception. In rural areas, where groundwater is

by far the main source of drinking water supply, an esti-

mated 800,000 traditional wells and 9000 community

boreholes currently exist (Barry and Obuobie 2012).

While shallow groundwater provides an accessible,

affordable and reliable resource, it is also easily contami-

nated. Contamination in groundwater supplies usually

translates into widespread gastro-intestinal disease among

groundwater-dependent populations. Monitoring is

required to ensure adequate water quality on a consistent

basis, as well as to develop early-warning protocols and to
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is illustrated through its application to remote rural settle-

ments in southern Mali.

2 Methodology

In this paper we consider the stochastic framework of

geostatistics in order to optimize sampling protocols during

field surveys. A given number of experimental data can be

seen as a realization of a random function Z uð Þ, which is

only observed at a finite set of experimental locations

defining a set of n random variables Z uið Þ; i ¼ 1; . . .; nf g.
We will be dealing with two-dimensional problems, where

the data have spatial coordinates projected on the plane.

Thus ui ¼ xi; yif g represents the coordinates of the i-thm

datum in some adequate reference system. A common

problem is to obtain a continuum map through optimal

spatial interpolation by using, for example, some form of

kriging (Olea 1999). Another important concept for opti-

mizing a sampling network is entropy as defined by

(Shannon 1948):

H pð Þ ¼ �Eðln pÞ ¼ �rp nð Þ ln nð Þdn; ð1Þ

where H pð Þ: entropy of the distribution p. p ¼ Nn l;Cð Þ:
multivariate normal distribution with mean nx1 vector l
and nxn covariance matrix C. n: is the number of experi-

mental data.

Entropy provides a measure of uncertainty, while the

purpose of sampling is to gain information, that is, to

decrease uncertainty. Thus, an optimal sampling procedure

is that which, for a fixed number of data points, provides

the most information. In other words, an optimal sampling

procedure will provide the greatest decrease in uncertainty,

or, the least entropy. Assuming that the data follow a

multivariate Gaussian distribution, entropy is given by

(Bard 1974):

H pð Þ ¼ ln Cj j ð2Þ

where ln Cj j is the natural logarithm of the determinant of

the covariance matrix.

The covariance matrix of the n experimental data is the

nxn matrix whose generic ij element is given by

Cij ¼ C ui; uj
� �

, and the matrix itself is given by:

C ¼
C u1; u1ð Þ � � � C un; u1ð Þ

..

. . .
. ..

.

C u1; unð Þ � � � C un; unð Þ

2

64

3

75 ð3Þ

The covariance matrix can be completed by using a

covariance model that represents the phenomenon under

study. Usually that covariance model is unknown and must

be estimated using the experimental data. Thus, the

covariance given in Eq. (3) can be calculated and the

identify potential contamination sources. Unfortunately, 
monitoring is often overlooked in rural water supplies. In 
the case of communal boreholes this is largely due to the 
generalized absence of facilities and qualified technicians. 
Take for instance the now-obsolete Millennium Develop-
ment Goals, which used the presence of ‘‘improved water 
sources’’ as a proxy for ‘‘access to safe water’’ because 
widespread testing was considered to be ‘‘prohibitively 
expensive and logistically complicated’’ (UNICEF/WHO 
2012, p. 4). This has important implications for global 
figures, which most likely underestimate the number of 
people with access to safe drinking water supplies (Mar-

tı́nez-Santos 2017a). On the other hand, sheer unawareness 
and the absence of means on the part of the user explain 
why traditional wells are seldom monitored.

Developing effective sampling protocols is perceived as 
a much-needed step towards ensuring the safety of drinking 
water supplies. Ideally, these should allow for obtaining as 
much information as possible from a limited number of 
points. The optimal spatial design of a network of moni-

toring points (i.e. the establishment of a network or the 
optimal extension or reduction of an existing network) has 
given rise to numerous investigations into the problem in a 
stochastic framework by using geostatistics and spatial 
statistics. One of the most commonly used methods has 
been variance reduction (Rouhani 1985). This has been 
extended in a number of ways, for instance by using sim-

ulated annealing as the global stochastic optimization 
method (Pardo-Igúzquiza 1998a). These methods are based 
on minimizing total kriging variance, which is a measure of 
the uncertainty of a spatial field obtained by spatial inter-
polation. Additional approaches use the concept of spatial 
entropy (Bueso et al. 1999; Angulo et al. 2000), or a 
combination of variance reduction and spatial entropy 
(Pardo-Igúzquiza and Dowd 2005), in order to select the 
most informative locations and variables. These methods 
are preferred over other alternatives such as d-optimal 
design (Chen et al. 2003) for spatial problems such as the 
one presented in the following pages. The concept of 
entropy as a measure of information has been widely used 
in many different contexts for space–time mapping 
(Douaik et al. 2004; He and Kolovos 2017), combining 
different kinds of spatial information (Wibrin et al. 2006), 
adaptive sampling network (Wang and Harrison 2013), 
sensitivity analysis (Zeng et al. 2012) and correlated non-
linear shrinkage (Angulo et al. 2011), among other 
applications.

This paper develops a methodology that combines the 
probability of exceeding some particular thresholds with a 
measure of the information provided by each pair of 
experimental points to define the optimal locations to 
sample in regions where extensive field surveys may be 
difficult to carry out on a systematic basis. This procedure



criteria of minimizing the entropy in Eq. (2) can be

applied. The assumption of a multivariate normal distri-

bution is not a requirement for the problem that we are

dealing with. If the data are not multivariate normal but

multivariate lognormal, the logarithmic transformation

converts them to normal. Even if the data are neither

normal nor lognormal, the assumption of the multivariate

Gaussian distribution still provides appropriate results in

many problems that require the assumption of a multi-

variate Gaussian distribution (Kitanidis 1997). Further-

more, if the variable is transformed to an indicator variable

by using a specified threshold t:

I u; tð Þ ¼ 1 if Z uð Þ[ t

0 otherwise

�
ð4Þ

Then, although the indicator variable is clearly non-

Gaussian, the multivariate normal distribution can still be

assumed for indicator covariance estimation (Pardo-Igúz-

quiza 1998a, b) and for evaluating the uncertainty of esti-

mated indicators (Pardo-Igúzquiza et al. 2006).

However, the criteria of variance reduction (Rouhani

1985) and maximizing entropy (Bueso et al. 1999) are a

function of the spatial locations of the experimental data

only, and not of the actual values of the variable. In this

case, we are interested in obtaining a spatial sampling

scheme that provides as much information as possible with

regard to detecting changes: for example, the deterioration

of water quality. This can be achieved by applying one or

several thresholds to the original variable, like in Eq. (4),

and by looking for neighbor couples of samples which have

a different value. Thus, without loss of generality, one

looks for the pairs of samples ui; uj
� �

such that:

I ui; tkð Þ 6¼ I uj; tk
� �� �

ð5Þ

This implies that the value of the variable Z at one of the

locations is above the threshold and in the other location is

below the threshold; thus, the border of the process defined

by the threshold must be somewhere between the two

locations. If the threshold tk is chosen adequately, sampling

at these two locations is very informative because it will be

more likely to detect changes in contamination than if the

two locations were simultaneously above or below the

threshold. Thus the new information unit is the pair of

neighbor locations with different indicator values. We

apply the entropy method to these new information units.

In order to include the gradient of the variable between the

two locations there is the possibility of using multiple

Fig. 1 Geographical location of the study area



Fig. 2 Geological profile of a

typical well

Fig. 3 Bubble plot of the experimental values of the thermotolerant coliforms variable



thresholds. This will become clear in the case study that is

presented in the following sections.

Using indicators is a better alternative than working with

the raw variable that has a skewed and censored distribu-

tion. This approach provides several advantages in vari-

ogram analysis, in working with the thresholds of interest

and in avoiding transformation of the skewed and censored

raw variable.

3 Case study

3.1 Study site

Fieldwork was carried out in Beleko-Soba, the main village

in the rural commune of Djedougou, southern Mali

(Fig. 1). Beleko-Soba is located approximately 200 km to

the East of Bamako and is home to 6000 people. The

region features a hot tropical climate, with the average

yearly temperature standing at 26 �C. Rainfall patterns are
typical of the West African monsoon. Average precipita-

tion amounts to 800 mm/yr, taking place almost exclu-

sively between June and September. This configuration

presents two practical implications for the purpose of this

research. The first one has to do with physical accessibility.

Beleko-Soba can only be reached by a dirt track that is left

in poor condition during the wet season. This means that

monitoring drinking water supplies is complicated and that

there is a need to devise sampling protocols to ensure that,

if conditions allow, the process can be carried out as

quickly and effectively as possible. The second implication

is the absence of permanent surface water courses during

roughly two-thirds of the year, which results in the local

population relying exclusively on groundwater.

Groundwater is accessed either through community

boreholes equipped with hand pumps, public standpipes

served by gravity distribution networks, or domestic wells.

Domestic wells are particularly widespread, with over 80%

of households owning at least one (Martı́nez-Santos 2017b;

Martı́nez-Santos et al. 2017). These consist of shallow pits

excavated using picks and shovels. In the study area, wells

are typically less than 15 meters deep and their diameter

usually ranges from one to two meters. Despite the relative

abundance of community water sources, which are theo-

retically safer, wells are preferred by many people because

they are cheap to construct and allow users to avoid

potentially long trips to collect water (Martı́nez-Santos

et al. 2017).

Fig. 4 Indicator variables (1/0) for the threshold of thermotolerant coliforms equal to a 0, b 5, c 10 and d 20 CFU/100



Approximately 85% of households own pit latrines.

These are built much like domestic wells and are generally

unlined. This allows feces to come directly into contact

with groundwater, particularly during the rainy season,

when the water table rises close to the ground level. As

demonstrated by the results of the field survey, fecal con-

tamination in drinking water sources poses a major health

threat to the population (Martı́nez-Santos et al. 2017).

3.2 Indicators and sampling procedures

Indicator bacteria such as coliforms are frequently used to

estimate the microbial quality of drinking water supplies.

The existence of these bacteria in water is not necessarily

dangerous to human health, but it hints at the presence of

viruses, protozoa and other parasites, which are more

cumbersome to test and require more complex laboratory

Table 1 Variogram parameters

of an exponential model fitted to

the experimental variograms of

different indicator variables

according to different thresholds

CFU/100 ml

Nugget variance Partial variance Total variance Range (m)

I u; t1 ¼ 0ð Þ 0.109 0.058 0.167 92.60

I u; t2 ¼ 5ð Þ 0.128 0.128 0.256 277.81

I u; t3 ¼ 10ð Þ 0.118 0.078 0.196 277.81

I u; t4 ¼ 20ð Þ 0.082 0.055 0.137 370.41

The parameters were estimated by maximum likelihood

Fig. 5 Experimental indicator variograms and theoretical model fitted to them for the thresholds of thermotolerant coliforms equal to a 0, b 5,

c 10 and d 20 CFU/100

From a hydrogeological standpoint, the study area is 
located within the metasedimentary Precambrian region of 
southern Mali. The available borehole information suggests 
a four-layer geological profile (Fig. 2). The uppermost 
layer is made up of a hard laterite crust whose thickness 
can exceed five meters in some areas. Immediately 
beneath, there is an unconsolidated layer made up of clays 
with intercalations of fine sand. This formation, which 
typically ranges between 10 and 15 m, lies on top of the 
regional sandstone aquifer, whose depth exceeds one 
hundred meters and which is underlain by a gneiss base-
ment. At the village scale, groundwater flows from the 
south to the north, following the regional flow pattern. The 
water table depth ranges from five to 15 meters at the end 
of the dry season, and remains closer to the surface, i.e. one 
to three meters, during the rainy months.



equipment. Hence, indicator bacteria such as thermotoler-

ant coliforms are considered a suitable proxy for the likely

presence of pathogens. Thermotolerant coliforms may

occur naturally in the environment, but originate mostly in

the digestive tract of warm-blooded animals. Among

thermotolerant coliforms, Escherichia coli is a common

indicator of fecal contamination, as it is universally present

in large numbers in feces and does not grow in natural

waters (Paruch and Mæhlum 2012). In most circumstances,

populations of thermotolerant coliforms are composed

predominantly of E. coli (WHO 2011; Sphere 2011;

Hachich et al. 2012). Hence, thermotolerant coliforms as a

whole are regarded as an acceptable indicator of fecal

pollution (WHO 2011).

The presence of thermotolerant coliforms is measured in

terms of the quantity of colony forming units (CFU) per

100 ml of water. International standards suggest that

0 CFU/100 ml is the only acceptable coliform count for

drinking purposes (WHO 2011), though a concentration of

1–10 CFU of E. coli is sometimes considered tolerable

(WHO 2002; UNICEF/WHO 2013).

Water was sampled at the 121 wells and public water

sources in late May and early June 2016, during a 10-day

survey (Fig. 3). As per standard procedure, all collected

samples were refrigerated, kept in the dark and filtered

prior to microbiological analyses. An Oxfam-Delagua

portable kit was used to analyze the samples (Oxfam 2009).

Cultures were prepared in petri dishes within 8 h of col-

lection and then incubated at a constant temperature of

44 �C for 18 h. Colony forming units were counted within

10 min of retrieval from the incubator. Coliform contents

in excess of 50 CFU were considered too numerous to

count.

Table 2 Group of data pairs

(P1, P2) that are closest

neighbors, fulfill condition (5)

for the threshold 0 CFU/100 ml,

and have the greatest difference

between their values

P1 P2 Dif

2 115 50 **

8 63 50 **

13 25 4

14 53 15 *

15 50 4

16 91 7

17 18 15 *

24 112 43 **

27 23 14 *

46 99 4

49 48 8

51 50 4

54 56 2

57 74 50 **

67 66 9

77 74 50 **

79 75 50 **

80 115 50 **

81 115 50 **

98 41 4

100 45 10

103 11 9

106 53 15 *

107 74 50 **

119 117 50 **

121 3 8

The values with differences

greater than 30 (**) are the ones

selected as candidates

Table 3 Group of data pairs

(P1, P2) that are closest neigh-

bors, fulfill condition (5) for the

threshold 5 CFU/100 ml, and

have the greatest difference

between their values

P1 P2 Dif

1 10 56 **

4 112 42 **

5 65 8

7 92 17 *

20 19 7

21 114 5

22 113 48 **

25 87 13 *

28 86 14 *

30 91 5

32 31 36 **

37 45 8

44 45 9

47 48 7

52 12 18 *

56 63 48 **

68 31 40 **

69 31 40 **

70 71 1

76 113 45 **

78 75 49 **

83 18 13 *

88 82 4

97 10 55 **

101 48 4

102 48 6

104 53 14 *

108 65 7

120 118 12

The values with differences

greater than 30 (**) are the ones

selected as candidates



spatial variability of the variable and neighbor values with

different indicator values are the locations close to the

border that provide more information. The experimental

variograms and the theoretical models fitted are shown in

Fig. 5 and Table 1 shows where the models were estimated

by maximum likelihood (Pardo-Igúzquiza 1997) and which

model parameters were used.

The practical procedure is:

1. For each spatial location ui; i ¼ 1; . . .; nf g, the four

nearest neighbors (one for each quadrant) are

calculated.

2. For each data pair (datum i and each nearest neighbor)

Eq. (5) is verified for threshold tk ¼ 0.

3. From the pairs that fulfill Eq. (5), the one with highest

difference between the variable (thermotolerant col-

iforms) is selected. If there are several data pairs with the

same difference in the variable, the pair with the smallest

distance (i.e. high gradient of the variable) is selected.

4. Repeat the previous steps for the other thresholds

tk ¼ 5; 10; 20.

5. From all the data pairs selected, keep the ones of most

interest, which are those that have a difference between

the variables larger than a given amount (in our case

30, as explained below). This value can be set to zero if

the gradient is not considered to be important.

6. The entropy of the number of final pairs selected is

calculated and if the desired number of samples is

smaller, that optimal network is obtained by sequentially

eliminating the least informative sample so the remain-

ing samples provide the greatest amount of information.

The results from applying the previous algorithm may

be seen in Tables 2, 3, 4 and 5 and Fig. 6. A further

restriction is that, of all the data pairs selected previously,

only those where the difference between the data pair is

larger than 30 are selected. With this restriction, obtained

using Tables 2, 3, 4 and 5, by determining the difference

that would leave enough data pairs, there are 29 data pairs

of locations that will provide the most information and

from which one can select the best network. This is done

by sequentially eliminating the worst data pair, which is the

one that results in the remaining data having the maximum

entropy. The optimal entropy for data pairs 2–29 is shown

in Fig. 7. This figure demonstrates how the uncertainty is

reduced (or information is gained) as the number of data

pairs increases. It is a relative measure that could be used to

see how much data is required for the information to

double. Thus, for example, the information provided by 10

data pairs is doubled by considering 14 data pairs. Finally,

Fig. 8 gives the optimal sampling networks for 4, 10 and

16 locations (2, 5 and 8 data pairs), respectively. Their

entropy can be seen in Fig. 7. The optimal sampling net-

work could be obtained for any other number of locations.

Table 4 Group of data pairs

(P1, P2) that are closest

neighbors, fulfill condition (5)

for the threshold 10 CFU/

100 ml, and have the greatest

difference between their values

P1 P2 Dif

9 62 42 **

11 10 48 **

19 115 42 **

33 94 6

34 94 2

55 95 4

58 59 44 **

60 61 41 **

82 18 8

91 85 10

105 53 7

114 113 41 **

The values with differences

greater than 30 (**) are the ones

selected as candidates

Table 5 Group of data pairs

(P1, P2) that are closest

neighbors, fulfill condition (5)

for the threshold 20 CFU/

100 ml, and have the greatest

difference between their values

P1 P2 Dif

23 113 36 **

86 112 28 *

92 10 39 **

93 31 23 *

94 12 9

110 111 31 **

The values with differences

greater than 30 (**) are the ones

selected as candidates

4 Results

Intensive monitoring surveys such as this one are expen-
sive, cumbersome to carry out and logistically complex, 
particularly during the wet season. Thus, the purpose of 
this study is to define the optimal locations to sample if 
field work is limited to fewer days. The distribution of 
coliforms is heavily skewed, with a minimum value of 0 
and a maximum of 57. The percentiles 10, 25, 50, 75 and 
90% are 0, 1, 3, 10 and 50, respectively. Taking into 
account that ideally drinking water should have 0 CFU and 
no more than 10 (WHO 2002, 2011; UNICEF/WHO 2013), 
the thresholds that have been considered were 0, 5, 10 and 
20. The 0 and 10 marks are established according to these 
guidelines, while 5 has an intermediate value between 0 
and 10, and 20 doubles the maximum tolerable limit. This 
value is used to characterize very high coliform counts. 
The indicator variables (0/1) using the thresholds 0, 5, 10 
and 20 may be observed in Fig. 4. The distribution of black 
dots (values larger than the threshold) and white dots 
(values smaller than or equal to the threshold) shows the



5 Discussion

The purpose of this method is to select the optimal subset

from a number of experimental locations where the vari-

able of interest was measured in an extensive survey that

cannot be repeated on a consistent basis. It should be clear

that the purpose of optimization is to obtain as much

information as possible from a limited number of samples

m, smaller than the complete network with n samples. The

basic unit of information is a data pair (nearest neighbor at

the quadrant level) and these data pairs are chosen from the

border of the phenomenon defined by four thresholds: 0, 5,

Fig. 6 a Most informative monitoring network (16 locations) accord-

ing to the first threshold. b Most informative monitoring network (16

locations) according to the second threshold. c Most informative

monitoring network (12 locations) according to the third threshold.

d Most informative monitoring network (6 locations) according to the

fourth threshold. e Most informative monitoring network (42

locations) taking into account the four thresholds



sensitive issue because of its potential influence on human

health. This means that the optimization of field surveys by

statistical means may not be acceptable under certain cir-

cumstances. Consider, for instance, the case of multiple

isolated populations within a large rural area. In such a

situation, restricting the number of samples may not be a

sensible course of action because contamination could be

constrained by local factors. In other words, the risk of

overlooking potential threats to human health would be too

significant. On the other hand, optimizing the number of

samples in large neighborhoods where sampling every well

on a systematic basis is physically unfeasible may provide

an appropriate alternative to delineate the sectors where

fecal contamination is more persistent. This information

could be used, for instance, to prioritize where to carry out

activities to raise awareness among the local population or

where to build improved water supplies.

6 Conclusions

Access to safe water supplies remains an important chal-

lenge for local communities in developing countries, where

the absence of facilities and qualified technicians hampers

adequate water quality monitoring. Within this context,

geostatistical approaches may provide cost-effective ways

to optimize sampling protocols, thus delivering a practical

solution to practitioners and contributing to improving

people’s living conditions.

A new method for the design of optimal sampling net-

works has been introduced in this paper. The method uses

the new concept of the data pair as a basic information unit,

where each datum in the data pair has a different indicator

Fig. 7 Entropy as a function of

the number of data pairs

10 and 20 CFU. The concept of entropy is then used to 
develop a network with the desired number of sampling 
locations. The nugget effect that can be seen in the vari-
ograms of the indicators in Fig. 5 implies that the border of 
the phenomenon is abrupt and that it cannot be perfectly 
delimited with a small number of samples. However, the 
proposed methodology guarantees that the number of 
samples selected will be taken at the optimal locations for 
providing the maximum information.

This approach has been demonstrated through a case 
study that deals with the quality of drinking water supplies 
in remote regions. Within this context, it is recognized that 
thermotolerant coliforms are just one of many relevant 
water quality indicators. Coliforms have been considered 
sufficiently representative to illustrate the method because 
their presence in drinking water supplies suggests an 
immediate threat to public health. Nonetheless, further 
work would be needed to develop alternatives for opti-
mizing the number of sampling points based on several 
relevant quality variables.

While a thorough initial survey will always be required, 
this method allows for the optimization of ongoing moni-

toring efforts, thus leading to an effective use of human and 
material resources. Moreover, it can be extrapolated to a 
variety of engineering and environmental applications. In 
cases such as the one at hand, where a field laboratory can 
carry out up to sixteen tests per day, the outcomes can be 
easily translated into time and cost estimates. This makes 
the method immediately useful for planning purposes.

In practice, the choice of variables will be case-specific 
and will need to be informed both by technical judgement 
and common sense. To continue with the example at hand, 
fecal contamination of drinking water supplies is a highly



value according to a series of selected thresholds. A second

restriction is that the difference between the variable of

interest (thermotolerant coliforms in this case) has a value

larger than a given threshold. This is done in order to

restrict the data pairs to the most informative ones. The

border is between the data pair and the large gradient

implies a more probable expected change in the future.

Finally, the concept of entropy was used to ensure that the

data pairs from the most informative locations could be

selected for any given number of desired data.
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Pardo-Igúzquiza E, Dowd PA (2005) Multiple indicator cokriging

with application to optimal sampling for environmental moni-

toring. Comput Geosci 31(1):1–13
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