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Abstract 10 

This paper presents a new method for detecting people using only depth images 

captured by a camera in a frontal position. The approach is based on first detecting all 

the objects present in the scene and determining their average depth (distance to the 

camera). Next, for each object, a 3D Region of Interest (ROI) is processed around it in 

order to determine if the characteristics of the object correspond to the biometric 15 

characteristics of a human head. The results obtained using three public datasets 

captured by three depth sensors with different spatial resolutions and different operation 

principle (structured light, active stereo vision and Time of Flight) are presented. These 

results demonstrate that our method can run in realtime using a low-cost CPU platform 

with a high accuracy, being the processing times smaller than 1ms per frame for a 20 

512x424 image resolution with a precision of 99.26 % and smaller than 4 ms per frame 

for a 1280x720 image resolution with a precision of 99.77 %.  

Keywords:3D People detection, Depth camera, Frontal Depth images, Feature 

extraction, Head biometric classification.  
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1. Introduction 

Robust human detection in images and videos has become a key task in computer 

vision due to its multiple applications in different areas such as human-robot interaction 

(Beyl et al., 2013; Muñoz-Salinas et al., 2005, 2007; Pereira et al., 2013), elderly people 

care (Ghiţă et al., 2018; Solbach & Tsotsos, 2017; Tomoya et al., 2017) or security and 30 

video-surveillance (Dumoulin et al., 2018; Sumalan et al., 2018; Yang et al., 2016; 

Yimyam et al., 2018). Because of that, it has received great attention in the last years, 

existing numerous works in the literature that tackle people detection and counting 

using different sensors and approaches.  

The first works in the literature were based on the use of RGB cameras for people 35 

detection (Jeong et al., 2013; Muñoz-Salinas et al., 2005, 2007; Ramanan et al., 2006; 

Wojek & Schiele, 2008). These works present good results in controlled conditions, but 

its performance drops significantly when there exist occlusions, poor lighting 

conditions or important lighting changes.  

To reduce the effect of occlusions, there are different approaches in the literature 40 

that locates the camera in a top-view configuration (Sidla et al., 2006). Furthermore, in 

recent years, there have appeared the RGB-D cameras, such as Kinect, (Sell & 

O’Connor, 2014; Smisek et al., 2011) or the Asus Xtion pro (Migniot & Ababsa, 2013), 

which, in addition to color images, provide depth information (distance from each point 

to the camera). In this context, numerous works use these RGB-D cameras for people 45 

detection, tracking and counting (Del Pizzo et al., 2016; Liciotti et al., 2017; Zhang et 

al., 2012).  

In some scenarios, systems that use color or RGB-D information cannot be used, due 

to legal issues related to privacy, since the information available in a color image allows 

recognizing the identity of people that appear in it. With the development of new depth 50 

sensors, based on Time of Flight (ToF) or structured light, which only provide depth 

data, different works have appeared where the detection of people is done using only 

these depth data (Bevilacqua et al., 2006; Fernandez-Rincon et al., 2017; Jia & Radke, 

2014; Luna et al., 2016; Stahlschmidt et al., 2013; Wang et al., 2018) and thereby 



preserving people’s privacy. Moreover, the use of depth cameras reduces the effect of 55 

lighting changes, since they do not require an external lighting source. 

Regardless of the technology used, among the main problems of optical depth 

sensors marketed, are the systematic and random errors that are made in depth 

measurements and the high number of invalid pixels present in maps or depth images. 

In many human detection works (Fernandez-Rincon et al., 2017; Luna et al., 2016; 60 

Stahlschmidt et al., 2013; Wang et al., 2018) a pre-processing step is used to smoothens 

the depth image and to estimate the value of the invalid pixels. This pre-processing 

carries out a high computational cost. One of the advantages of the method proposed in 

this work is that this pre-processing step is not required. 

It is worth highlighting that most of the previously cited proposals (both RGB-D and 65 

depth based) use the camera in a top-view configuration to reduce occlusions. However, 

this configuration also reduces the study area to a small area under the camera, which 

highly depends on the camera location height. In order to increase the area of study, 

some works use depth cameras in a high frontal location (Tian et al., 2018). This 

configuration allows incrementing the area in which people can be detected, however, 70 

it also increases the effect of occlusions.  

In recent years, the improvements in technology and the appearance of large-scale 

datasets have led to an increase in the number of works based on deep-learning for 

people detection (Fang et al., 2015; Fuentes-Jimenez et al., 2020), that obtain good 

accuracy. However, all these deep-learning-based approaches have a high 75 

computational cost that prevents their real time execution. Other authors (Da Silva 

Guizi & Kurashima, 2016; Khan et al., 2017; Sun et al., 2019), to avoid the stages of 

training and reduce processing times have used a template of parts of people (heads or 

heads and shoulders). 

Despite the large number of works dealing with the people detection task, it is still 80 

an open and challenging issue on which the scientific community continues to work. In 

this context, this paper presents a real time and robust method for people detection using 

only depth images, captured with a camera in a high frontal position, based on biometric 

constrains. The proposal uses only depth information, allowing people’s identity 



preservation, while reducing lighting dependence. Furthermore, the camera location 85 

increases the area under study, but it also leads to an increase in the occlusions. The use 

of a 3D ROI (Region of Interest) reduces the effect of occlusions. Besides, the proposal 

has a very low computational cost that allows its real time execution, even in low-power 

systems, without needing a Graphical Processing Unit (GPU).  

The rest of the paper is organized as follows, section 2 describes our proposal, then 90 

section 3 presents the results and makes a discussion of them, and finally, in section 4 

the conclusions of the work are exposed. 

2. Proposed solution 

As it was commented in Section 1, the proposal for people detection only uses depth 

measurements captured by a camera located in frontal position. A general block 95 

scheme, including all the stages involved in the proposed method is shown in Figure 1. 

There are two different processes, an offline process and an online one. In the offline 

process, a set of background images is recorded, and the average value of that 

background is obtained. The online process includes four stages: in the first one a depth 

image is captured; then, the pixels corresponding to the background are removed. In the 100 

third stage, it is performed the detection of objects that could correspond to a person’s 

head; and finally, in the fourth stage, it is carried out the discrimination between people 

and other objects, using biometric parameters of the people’s head.  

 

Figure 1. General block scheme of the proposed method to detect people. 105 



2.1 Calibration and Background extraction. 

Depth images provided by Time of Flight (ToF) sensors have several error sources 

related to their operating principles, such as the motion blur (Lee et al., 2012) caused 

by object and camera movement, the multipath effect (Jimenez et al., 2012), the 

limitation of the power of the IR illumination as well as the color and the type of 110 

material of the objects. Whereas that, in the sensors based on active stereo vision or on 

structured light, the main error causes are depth shadowing, IR dot splitting, spreading, 

and occlusions.  

Since the noise level in depth measurements is high, and it increases proportionally 

with the distance between the objects and the sensor, it is necessary to extract the 115 

background from a set of N depth images. In the following, the depth images will be 

named as D. We assume that a pixel of the image Di (i = 1, 2, 3, …, N) is valid to 

contribute to the background depth image B if its value is between a minimum (dmin) 

and a maximum (dmax) depth. Empirically, we assume that if a pixel is valid in more 

than 20% of the N depth images, its value is taken as the average of all the values in 120 

which it has been valid. If the percentage is lower, it is assigned the value 0 that 

indicates that it is an invalid pixel. The values of dmin and dmax depend on the working 

depth of the used sensor.  

The sensor is located in a frontal position, at a height higher than the maximum 

height of a person (hp_max) and focused on the scene with a rotation angle α around the 125 

Y axis, as shown in Figure 2. As it can be seen the origin of the camera coordinate 

system (Os) is displaced to a height (hsensor) with respect to the origin (O) of the world 

coordinate system (X, Y, Z), which we will take as reference to determine the position 

of the objects or people in the scene. The values of tilt angle α and hsensor are calculated 

through a calibration process.  130 



 

Figure 2. Camera location at a height hsensor and considered coordinate systems. 

 

The previously modeled background B is removed from each new depth image D. 

This process is done considering the following criteria that must be met for each pixel 135 

with coordinates (u, v) on the image plane, where we refer to the pixels with coordinates 

(u,v) as Bu,v and Du,v : 

• Bu,v > 0, the pixel (u, v) of background image is valid and if its value is 

between dmin and dmax (dmax >Bu,v > dmin ). 

• dmax >Du,v > dmin  140 

• | Du,v - Bu,v |> dbetw_obj, where dbetw_obj is the minimum depth between two 

objects.  

If the above conditions are fulfilled Du,v keeps its value, otherwise Du,v = 0. 
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2.2 Object detection. 

In order to detect people or other objects in the depth image D, we have developed 145 

an algorithm that is represented by means of the block diagram shown in Figure 3. The 

different stages of this algorithm are described below. 

 

Figure 3. Block scheme of the object detection procedure. 

 150 

1. Divide D in subregions (SR). In order to reduce the noise in the depth image and 

improve computational efficiency the image 𝐷 ∊ ℝ𝑈 × 𝑉 is divided into CN x RN 

subregions of NPx × NPx pixels, see Figure 4: 

𝐶𝑁 =
𝑈

𝑁𝑃𝑥

;  𝑅𝑁 =
𝑉

𝑁𝑃𝑥

 (1) 

𝑁𝑃𝑥 = 𝑓𝑥

𝑙 

𝑑𝑚𝑎𝑥

 (2) 

 

where 𝑓𝑥 is the camera focal length divided by the pixel dimension (assuming 155 

square pixels), 𝑙 × 𝑙 is the minimum area at Z = dmax (in the optical center of the 

sensor). The value of 𝑙 must be selected so that at the greatest working distance, 

the area of a head is covered by at least 4 subregions. Considering the dimensions 

of a head (Yoganandan et al., 2009) we chose 𝑙 = 65 𝑚𝑚. For the used sensor 

(Intel RealSense D435) with 𝑓𝑥= 644.45 and 𝑑𝑚𝑎𝑥 = 3000 𝑚𝑚, then 𝑁𝑃𝑥»14 160 



For each subregion 𝑆𝑅𝑅,𝐶  (𝑅 = 1, … , 𝑅𝑁, 𝐶 = 1, … , 𝐶𝑁) both, the average 

value �̅�𝑅,𝐶  and the number of valid pixels 𝑉𝑅,𝐶  are calculated. If the 𝑉𝑅,𝐶  is less 

than 20% of the total number of pixels (𝑁𝑃𝑥 × 𝑁𝑃𝑥), the 𝑆𝑅𝑅,𝐶 is discarded, 

assuming that valid pixels belong to an edge or can be noises. 

Using the �̅�𝑅,𝐶   and the calibration parameters, the coordinates (X, Y, Z) of the 165 

center of 𝑆𝑅𝑅,𝐶 respect to the origin of the world coordinate system (O) are 

calculated. In the following, they will be named as  𝑌𝑅,𝐶 and 𝑍𝑅,𝐶 respectively. If 

the 𝑌𝑅,𝐶 > ℎ𝑚𝑎𝑥 or 𝑌𝑅,𝐶 < ℎ𝑚𝑖𝑛 , then the 𝑆𝑅𝑅,𝐶 is discarded, being hmax and hmin 

the maximum and minimum heights of people. 

 170 

Figure 4. Example of the division of an image D in subregions with a fixed 𝑵𝑷𝒙. 
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2. Find the objects in each column of subregions. The SR belonging to the same 

object are grouped within each column. Grouping the SR in columns instead of 175 

grouping them by adjacency, avoids that when there exists an occlusion, parts of 

the same object can be considered as different objects. This can be seen in object 

P2 in the example of Figure 4, in which there is no continuity between the head 

and the shoulders in the depth image. 

For each column C the number of objects 𝑁 is obtained. To determine the 180 

subregions 𝑆𝑅𝑅,𝐶 that belong to an object within the column, starting from 𝑆𝑅1,𝐶, 

R is incremented until the first valid 𝑆𝑅𝑅𝐼,𝐶  is found (hmax  𝑌𝑅,𝐶   and 𝑌𝑅,𝐶 hmin). 

In case of occlusion, this 𝑆𝑅𝑅𝐼,𝐶 corresponds to the object that is furthest away. 

Once the initial 𝑆𝑅𝑅𝐼,𝐶  is determined, R continues to be increased until it is 

satisfied that: 𝑍𝑅−1,𝐶 − 𝑍𝑅+1,𝐶 > 𝑑𝑏𝑒𝑡𝑤_𝑜𝑏𝑗 . This means that 𝑆𝑅𝑅−1,𝐶 and 𝑆𝑅𝑅+1,𝐶 185 

belong to two objects that are at different depths respect to O, as well as that 𝑆𝑅𝑅,𝐶 

is the boundary between them. Therefore all the SR that are from 𝑆𝑅𝑅𝐼,𝐶 to 𝑆𝑅𝑅−1,𝐶 

belong to the same object and 𝑆𝑅𝑅+1,𝐶 is the first SR of the next one. 

For each object, the following features are obtained:  

• 𝑅𝐼𝐶 . The first row R where a valid 𝑆𝑅𝑅,𝐶 of the object is located. 190 

• 𝑁𝑆𝑅𝐶. The number of SR that belong to that object.  

• �̅�𝐶. The average value of the set of all depths of the subregions (Z𝑅,𝐶) that 

belong to the object. 

By the way of example, if we look at the column marked in red in Figure 4, the 

subregions 𝑆𝑅3,𝐶, 𝑆𝑅4,𝐶, 𝑆𝑅5,𝐶 and 𝑆𝑅6,𝐶 belong to the object P1, the 𝑆𝑅8,𝐶 , 𝑆𝑅9,𝐶 195 

and 𝑆𝑅10,𝐶 correspond to the object P2, and the object P3 includes SRs from 

𝑆𝑅12,𝐶  to 𝑆𝑅𝑅𝑁,𝐶  or until it is met that YR,C <  ℎ𝑚𝑖𝑛. The subregions 𝑆𝑅7,𝐶, and 

𝑆𝑅11,𝐶 may belong to one of the edge objects. 

  



3. Find object maximum in D. To determine the SR that may correspond to the 200 

maximum (𝑃𝑖) of the object i, the following criteria are considered: 

a) For all 𝐶 with 𝑁 > 0, identifying as 𝑃𝑖 the minimum row 𝑅𝑚𝑖𝑛 (eq. (3)) 

associated with each 𝐶 (𝑃𝑖𝑅𝑚𝑖𝑛,𝐶
= 𝑆𝑅𝑅𝑚𝑖𝑛,𝐶). 

𝑅𝑚𝑖𝑛 = 𝑀𝑖𝑛(∀𝑅𝐼𝐶 ∈  𝐶) (3) 

 

b) In order to remove small objects, assuming that the area of a head is covered 205 

by at least 4 subregions, 𝑃𝑖 is discarded and eliminated if: 

• 𝑁𝑆𝑅𝑐 ≤ 2  

• At least one adjacent column (𝐶 − 1 or 𝐶 + 1) does not have an object 

in the same distance range (|�̅�𝐶 − �̅�𝐶+1| < 𝑑𝑏𝑒𝑡𝑤_𝑜𝑏𝑗) and with a 

𝑁𝑆𝑅𝑐±1  ≤ 2  210 

 

4. Find ROI around the maximum. In order to have more precise information about 

each object, a region of interest (ROI) is processed around each maximum found. 

The ROI dimensions depend on the depth of the object. Therefore, the average 

value of the depth (�̅�𝑅𝑚𝑖𝑛,𝐶) of all SR that are in the column of the maximum and 215 

in the adjacent columns is determined by eq. (4), whereas the mean value of Z 

respect to O is defined in eq.(5):  

�̅�𝑃𝑖 =
∑ ∑ �̅�𝑅,𝑗

𝑅𝐼𝑗+𝑁𝑆𝑅𝑗

𝑅=𝑅𝐼𝑗

𝑗=𝐶+1
𝑗=𝐶−1

∑ 𝑁𝑆𝑅𝑗
𝑗=𝐶+1
𝑗=𝐶−1

 (4) 

�̅�𝑃𝑖 =
∑ ∑ 𝑍𝑅,𝑗

𝑅𝐼𝑗+𝑁𝑆𝑅𝑗

𝑅=𝑅𝐼𝑗

𝑗=𝐶+1
𝑗=𝐶−1

∑ 𝑁𝑆𝑅𝑗
𝑗=𝐶+1
𝑗=𝐶−1

 (5) 

For an area (in 𝑚𝑚2) of 𝑙𝑅𝑂𝐼  × 𝑙𝑅𝑂𝐼 , the number of pixels within of the ROI 

can be computed as: 

𝑁𝑃𝑥_𝑅𝑂𝐼 = 𝑓𝑥

𝑙𝑅𝑂𝐼  

�̅�𝑃𝑖

 (6) 
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Since the top-left coordinates (u, v) of the maximum are (𝑅𝑚𝑖𝑛 × 𝑁𝑃𝑥 , 𝐶 ×

𝑁𝑃𝑥), a zone of interest must be defined around it. In our case, taking into account 

the biometric characteristics of people and that these coordinates can have a 

deviation of tens of mm, we assume margins of 100 mm up, 500 mm down and 

400 mm on both sides. The pixel coordinates of the top-left (𝑢𝑚𝑖𝑛 , 𝑣𝑚𝑖𝑛) and 225 

down-right (𝑢𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥) of the ROI are given by the following expressions:  

𝑣𝑚𝑖𝑛 = 𝑅𝑚𝑖𝑛 × 𝑁𝑃𝑥 −
100 𝑚𝑚

𝑙𝑅𝑂𝐼

× 𝑁𝑃𝑥_𝑅𝑂𝐼  

𝑣𝑚𝑎𝑥 = 𝑅𝑚𝑖𝑛 × 𝑁𝑃𝑥 +
500 𝑚𝑚

𝑙𝑅𝑂𝐼

× 𝑁𝑃𝑥_𝑅𝑂𝐼  

𝑢𝑚𝑖𝑛 = 𝐶 × 𝑁𝑃𝑥 −
400 𝑚𝑚

𝑙𝑅𝑂𝐼

× 𝑁𝑃𝑥_𝑅𝑂𝐼 

𝑢𝑚𝑎𝑥 = 𝐶 × 𝑁𝑃𝑥 +
400 𝑚𝑚

𝑙𝑅𝑂𝐼

× 𝑁𝑃𝑥_𝑅𝑂𝐼  

(7) 

 

5. Find the objects in the ROI. Once the ROI has been defined, to increase the 

robustness of the detection of the object present in the ROI, the following 

procedure is followed: 230 

a) Discard all pixels that do not belong to the object: 𝑅𝑂𝐼𝑢,𝑣 = 0 if 

|𝑅𝑂𝐼𝑢,𝑣 − �̅�𝑃𝑖| > 𝑑𝑏𝑒𝑡𝑤_𝑜𝑏𝑗 . Figure 5 shows the ROI for each of the objects 

presented in Figure 4. 

b) The ROI is divided with a similar procedure to that described in the first step 

of the algorithm, where the number of pixels 𝑁𝑃𝑥_𝑅𝑂𝐼  and the subregions are 235 

discarded also if:  

|𝑍𝑅_𝑅𝑂𝐼,𝐶_𝑅𝑂𝐼 − �̅�𝑃𝑖| > 𝑑𝑏𝑒𝑡𝑤_𝑜𝑏𝑗        

c) To find the SR that corresponds to the maximum of the object 

(𝑃𝑖𝑅_𝑅𝑂𝐼min,𝐶_𝑅𝑂𝐼), the procedures described in the steps 2 and 3 of this 

algorithm are applied to the ROI. 240 



   

(a) (b) (c) 

Figure 5. Division of ROI of the image D in subregions with a variable 𝑵𝑷𝒙. (a) P1, (b) P2 and 

(c) P3 of the figure 4.  

2.3 Biometric classification 

In this step, the classification of each of the objects (𝑃𝑖𝑅_𝑅𝑂𝐼min,𝐶_𝑅𝑂𝐼), obtained in 

step 5.c), described in the previous section, is performed, to determine if it corresponds 245 

to a person’s head. A general block diagram of the classification process is shown in 

Figure 6.  

 

Figure 6. General block diagram of the biometric classification process. 

 250 



Based on the biometric characteristics of people's heads (Yoganandan et al., 2009), 

we have used two criteria to discriminate between people and other objects that may be 

present in the scene.  

The first criterion is based on the fact that the diameter of the head (h_dia) of an 

adult person, seen frontally or laterally, must be in a range between 120 mm and 340 255 

mm (Yoganandan et al., 2009). To measure h_dia we use the head projection in the 

plane (X, Y), taking 100 mm below the center of the subregion where the maximum is 

located (eq. (8)), see Figure 7. 

 

ℎ𝑑𝑖𝑎 = √(𝑋𝑅𝑠𝑖𝑑𝑒2,𝐶𝑠𝑖𝑑𝑒2
− 𝑋𝑅𝑠𝑖𝑑𝑒1,𝐶𝑠𝑖𝑑𝑒1

)
2

+ (𝑌𝑅𝑠𝑖𝑑𝑒2,𝐶𝑠𝑖𝑑𝑒2
− 𝑌𝑅𝑠𝑖𝑑𝑒1,𝐶𝑠𝑖𝑑𝑒1

)
22

 

 

(8) 

where: 

𝑅𝑠𝑖𝑑𝑒1 = 𝑅𝑠𝑖𝑑𝑒2 = 𝑅_𝑅𝑂𝐼min +
100 𝑚𝑚

𝑙𝑅𝑂𝐼

 

𝐶𝑠𝑖𝑑𝑒1 = min(𝐶𝑅𝑂𝐼) ∀ 𝑆𝑅𝑅𝑠𝑖𝑑𝑒1,𝐶_𝑅𝑂𝐼 ∈ 𝑃𝑖 

𝐶𝑠𝑖𝑑𝑒2 = min(𝐶𝑅𝑂𝐼) ∀ 𝑆𝑅𝑅𝑠𝑖𝑑𝑒2,𝐶_𝑅𝑂𝐼 ∈ 𝑃𝑖 

(9) 

 260 

If the first criterion is not met, the object is discarded as a person, it is eliminated 

from D and the second criterion will not be taken into account. 

The second criterion is based on the fact that the contour of the upper part of the 

head (h_contour) projected in the plane (X, Y) has a parabolic shape, see Figure 7. To 

verify that this criterion is fulfilled, with all mean values of the coordinates (X, Y) of 265 

the subregions that make up the perimeter of the head, the curve of the parabola closest 

to that perimeter is determined. We use the Levenberg-Marquardt algorithm to find the 

least-squares set of coefficients (𝑐𝑜𝑒𝑓1, 𝑐𝑜𝑒𝑓2) that best fit the set of input data points 

(X, Y) to a parabolic function f(X). Figure 8 shows the set of points of the contour head 

(red) and the values obtained with the fitted curve (blue). 270 



 

Figure 7. Graphic representation of the geometric parameters used 

 

Figure 8. Contour head (red) and fitted parabola (blue). 
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The coordinates (Xw, Yw) of the subregion w of the head are: 𝑋𝑤 = 𝑋𝑅𝑤,𝐶𝑤
 and 𝑌𝑤 =275 

𝑌𝑅𝑤,𝐶𝑤
, being 𝑤 =  1, 2, 3, ⋯ , (𝐶𝑠𝑖𝑑𝑒2 − 𝐶𝑠𝑖𝑑𝑒1); 𝐶𝑤 = 𝐶𝑠𝑖𝑑𝑒1 + 𝑤 − 1 and 𝑅𝑤 =

𝑅𝐼_𝑅𝑂𝐼𝐶𝑤
 

We used the function for each subregion w of the border (eq. (9)): 

𝑌𝑤 = 𝑐𝑜𝑒𝑓1 ∙ (𝑋𝑤 − 𝑐𝑜𝑒𝑓2)2 + 𝑌𝑚𝑎𝑥 (9) 

where, 𝑌𝑚𝑎𝑥 = max (𝑌𝑤). 

To classify objects as people or not people, we take into account the following three 280 

parameters 𝜃𝑖  (𝑖 = 1, . . , 3): 

• 𝜃1 is the mean squared error generated by the difference between the fitted 

curve and the input data points (X, Y). 

• 𝜃2 is Coordinate 𝑌 of the parabola focus: 𝜃2 = 𝑌𝑚𝑎𝑥 − 0.25/𝑐𝑜𝑒𝑓1 

• 𝜃3 is Coordinate 𝑋 of the parabola vertex: 𝜃3 =  𝑐𝑜𝑒𝑓2 285 

Each parameter 𝜃𝑖 can determine if an object is a person, taking into account a 

certain threshold 𝑇ℎ𝑖 . If the following condition is fulfilled for all three parameters, the 

object is classified as a person. 

‖𝜃𝑖 − 𝜃�̂�‖ < 𝑇ℎ𝑖  (10) 

The 𝜃�̂� and 𝑇ℎ𝑖  values were determined experimentally using set of people with 

different characteristics, and in different scene positions. The obtained values are 290 

shown in Table 1.  

Table 1. Value and threshold for parameters 𝜽𝒊 

Parameter 𝜃�̂� (𝑚𝑚) 𝑇ℎ𝑖  (𝑚𝑚) 

𝜃1 0 44 

𝜃2 76 52 

𝜃3 0 41 

 



The 𝜃�̂� is the average value of the 𝜃𝑖 set and 𝑇ℎ𝑖 = 2.58 ∙ 𝜎𝑖, were 𝜎𝑖 is the standard 

deviation of the 𝜃𝑖 set. These values are chosen to try to achieve a 99% confidence 295 

interval. 

In order to obtain the 𝑇ℎ𝑖  values, an analysis of the behavior of each of them was 

performed based on the distance between the head and the camera 𝑑𝑐𝑎𝑚_ℎ𝑒𝑎𝑑 , in our 

case the used camera is an Intel Realsense D435. From this analysis, it was found that 

from 3m away the standard deviation of the parameters increases abruptly. Therefore, 300 

from 3m away the errors in the detection of people will increase significantly. Figure 

9 shows as an example the standard deviation 𝜎1of parameter 𝜃1 for distances between 

1m and 4.2m. 

 

Figure 9.Standard deviation 𝝈𝟏 vs distance between the camera and the head 𝒅𝒄𝒂𝒎_𝒉𝒆𝒂𝒅. 305 

3. Results and discussion 

3.1 Experimental setup 

3.1.1. Datasets 

In order to validate the operation of the proposed method, several experiments have 

been carried out, using three public datasets, captured by three sensors with different 310 
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measurement principles and spatial resolutions. These datasets are briefly described 

below. It is worth highlighting that the differences between the three datasets (type of 

depth sensor, camera height and angle, image resolution, etc.) allow testing the 

robustness of the proposal against these parameters.  

• GFPD dataset. (Fuentes-Jimenez et al. 2020b) is a dataset recorded with a high 315 

resolution (1280 x 720) Intel® RealSense™ D435® sensor. The measurement 

principle of this sensor is active stereo. The recording covers a broad variety 

of conditions: the sensor was located at different heights (hsensor from 2200 mm 

to 2720 mm) with tilt angle α from 26 to 41 degrees, the sequences were 

captured in scenarios with different background and different natural (solar) 320 

and artificial lighting, as it can be seen in the examples showed in Figure 10. 

All depth images are represented using a colormap that represents the different 

depth values using different colors.  

   

(a) (b) (c) 

Figure 10. Examples of images of the GFPD datasets. a) Scenario 1 with sunlight entering 

through the windows. b) Scenario 2 at night. c) Scenario 2, where there are no windows in front 325 

of the camera. 

• EPFL datasets (Bagautdinov et al., 2015). It is a dataset recorded with a 

Kinect® v2 sensor (512 x 424 pixels). The measurement principle of this 

sensor is ToF. The sequences were captured in two different scenarios: a 

corridor in a university building with up to 8 people and a laboratory with up 330 

to 4 people. Examples of both scenarios are shown in Figure 11.  



  

(a) (b) 

Figure 11. Examples of images of the EPFL datasets. a) EPFL corridor. b) EPFL Lab. 

 

• KTP dataset (Munaro & Menegatti, 2014): It is a dataset recorded with a 

Kinect® v1 sensor (640 x 480). The measurement principle of this sensor is 335 

structured light. This dataset contains several sequences with up to 5 people 

walking in a laboratory. We only use sequences captured in a static position 

(KTP Still). An image showing the scenario used in this dataset is shown in 

Figure 12.  

 340 

Figure 12. Example of image of the KTP dataset. 

 

3.1.2 Hardware and software implementation. 

Since the fundamental motivation of this work is to look for a method that allows 

people to be detected in real time using low-cost hardware, we have carried out the 345 

tests on two different computers whose characteristics are detailed below. 

• Computer 1. Laptop; CPU: Intel® i7-6500u, 2.5 GHz, 8GB of RAM; OS: 

Windows 10.  

• Computer 2. Desktop; CPU: Intel® Core™2 Quad Q9550 2.83 GHz, 4GB of 

RAM; OS: Windows 8.  350 



The entire implementation has been developed in the standard C programming 

language, without using libraries such as OpenCV. The use of standard C allows to 

optimize the developed algorithm, reducing the computation time. In addition, it eases 

the portability between different platforms, without the need to install libraries. 

3.2 Performance evaluation 355 

This section shows the results of the detection of people without the use of any 

tracking algorithm, for distances less than three meters and only considering people 

who do not have partially or totally occluded their heads. The values of the biometric 

parameters used in the classification process for the three databases are those 

determined in section 2.3. 360 

Table 2 shows the results obtained for each of the databases, indicating the total 

number of people (#People), the number of false positives (FP) and false negatives 

(FN), precision, recall, and F1-score.  

Table 2. Experimental results obtained with the three different datasets using our proposal. 

Dataset #People FP FN Precision Recall F1-score 

GFPD 7970 18 91 99.77% 98.86% 99.31±0.07% 

KTP 1637 29 101 98. 15% 93.83% 95.94±0.26% 

EPFL Lab. 820 7 151 98.96% 81.59% 89.44±0.01% 

EPFL Corr. 3534 15 132 99.56% 96.26% 97.88±0.31% 

 365 

The precision is similar in all datasets, being greater to 98%. It is worth noting the 

high precision obtained in EPFL-corridor, where there is a high degree of occlusion due 

to the characteristics of the dataset. 

After analyzing the errors, it can be observed that the number of false positives is 

mainly due to body parts (usually the shoulders) of people who have their head occluded 370 

or out of the scene.  



The number of false negatives depends on several causes. A common cause in the 

different datasets is due to the method itself and is caused by not processing a person 

when he is in front of another at a distance less than 𝑑𝑚𝑖𝑛_𝑏𝑒𝑡𝑤_𝑜𝑏𝑗. This error can be 

eliminated using a more efficient edge detection algorithm, but with a significant 375 

increase in the computational cost. 

Another cause of the occurrence of false negatives is due to errors in the depth 

measurements provided by the cameras, caused by their operating principle. In the case 

of camera Intel Realsense D435, deformations of the head occur, mainly at the lateral 

edges of the scene. This may be due to the perspective distortion, the reflectivity of the 380 

head, the power of the projector, etc. In general, false negatives do not occur in 

consecutive images, so the number of these can be reduced using tracking techniques. 

In the case of measurements obtained with camera Kinect v1 and Kinect v2, the main 

errors are because the reflectivity of the object has a significant influence. In some 

people because of their hair characteristics, the light is not reflected and therefore there 385 

are no 3D measurements of the area covered with hair. In Figure 11 b) it can be seen 

how the person who is on the left side of the image has a cropped head, however other 

people who are further away from the camera have very few distortions. In EPFL lab 

most of the false negatives correspond to this person in several consecutive frames, 

regardless of the distance from the camera. Figure 12 shows that the person closest to 390 

the camera is missing part of the head in the depth image. The missing measurements 

are represented in black color in the images, because the camera returns a value 0 in 

these pixels.  

The results obtained with our method regarding evaluation metrics (precision, recall, 

and F1-score) have been compared against the method proposed by (Redmon & 395 

Farhadi, 2018) (YOLO v3) for being this one of the most used in the state-of-the-art 

methods based on Convolutional Neural Networks (CNN) (Zhao et al., 2019). Table 3 

shows the metrics of using RGB images (YOLO v3 RGB), YOLO v3 modified to use 

depth images, and trained using the GFPD dataset (YOLO v3 Depth) and our method.  

In the first case, YOLO v3 RGB was trained using COCO dataset (Lin et al. 2014) with 400 

the object detection modality, which contains more than 200.000 RGB images and 80 



objects categories, which allow the network to differentiate correctly between the 

detected persons and a big variety of different objects, making the network more robust 

to human-similar objects. In the second case, YOLO v3 Depth feature extractor was 

first pretrained using an autoencoder configuration with GOTPD dataset (Fuentes-405 

Jiménez et al. 2020), which is an overhead depth images dataset with 51418 frames, 

The first pretrain helps the feature extractor to learn the typical structure of depth 

images with people, After this first pretrain we train the entire detector with GESDPD 

database (Martín-López et al. 2020), which is a synthetic depth images dataset for the 

person detection task. Once we finalize the two previous process, we finally fine-tune 410 

the detector with a smaller dataset like GFPD (Fuentes-Jiménez et al. 2020b). These 

processes are necessary to ensure the best training of YOLO v3 Depth. To further 

specify the use of these non-yolo-specific databases, GESDPD was labelled 

automatically, while GFPD was manually labelled in YOLO bounding box format. For 

this, the three databases have been used, considering people located at less than 3 415 

meters. In the case of the GFPD dataset, the comparison has been carried out using only 

those sequences where RGB and depth images were available, that in the future we will 

denominate as GFPD reduced.  

As it can be observed in Table 3, the best results are obtained for the GFPD (reduced) 

and EPFL corridor datasets, for which our proposal outperforms the other approaches. 420 

There are especially noteworthy the results obtained for EPFL-corridor, where there is 

a high degree of occlusions that cause errors in the other methods, as it can be seen in 

(Bagautdinov et al., 2015). In the case of EPFL-Lab, our method obtains the highest 

precision, but the values of recall and F1-score are slightly worse than for YOLO v3 

RGB approaches. This is due to the number of false negatives caused by measurement 425 

errors that lead to distortions in the shape of the person's head (as can be seen in the 

example in Figure 11(b), where the head of the person on the left is incomplete), that 

does not affect to the RGB images used by YOLO v3 RGB. Regarding the results with 

KTP dataset, there are slightly better for YOLO v3 RGB, it is again due to the erroneous 

depth measures in the dataset, which affect the shape of people's heads (as it can be 430 

seen in the examples shown in Figure 11 and Figure 12). 



In the case of YOLO v3 depth, the results are significantly worse for all datasets. 

This may be due to errors in depth measurements (as shown in figures 11 and 12), along 

with the lack of large depth datasets for training the network. 

Additionally, we have provided F1-score confidence bands for each of the methods 435 

and datasets used, to ensure the statistical significance. As it can see the confidence 

bands of Our proposal and YOLO v3 RGB are quite small, which indicates a big 

certainly on the values provided while the values of YOLO v3 Depth are bigger 

compared with the previous two methods, introducing greater uncertainty into its 

results. As we can see none of the results reported with their confidence bands overlap 440 

between them, which leads us to establish a statistical significance on the reported 

results. 

Table 3. Results of the comparison of the results obtained with the proposed method and YOLO 

v3, CNN-based methods. 

Dataset 
Our proposal YOLO v3 RGB YOLO v3 Depth 

Prec. Recall F1-sc. Prec. Recall F1-sc. Prec. Recall F1-sc. 

GFPD 

reduced 
99.78 97.48 

98.62

±0.07 
86,72 89,46 

88,07

±1.13 
84,92 66,21 

74,41

±2.78 

KTP 
98.15 93.83 

95.94

±0.26 
99.32 98.71 

99.01

±0.34 
92,46 75,23 

82,96

±1.45 

EPFL 

Lab. 
98.96 81.59 

89.44

±0.01 
95.65 99.29 

97.44

±0.21 
91,32 92,25 

91,78

±0.87 

EPFL 

Corr. 
99.56 96.26 

97.88

±0.31 
74.36 69.42 

71.81

±1.72 
82,27 53,42 

64,78

±2.43 

3.3 Computational demands. 445 

To analyze the computational efficiency of the proposed algorithm, we have 

determined the average times of each step. We have chosen sequences with more than 

three people for a fair comparison, because in our proposal there is a direct relationship 

between the number of people and the computation time. Table 4 shows the results for 

the two computers and for the three sensors with different resolutions used. In steps 1 450 

to 3, the number of people present in the scene has very little influence on the processing 

time. This time depends directly on the resolution of the sensor and is approximately 



90% of the total time. Steps 4 to 7 are repeated for each object detected. Therefore, its 

processing time will depend on the number of people present in the scene. 

From the above, it can be deduced that the ratio of the total processing time to the 455 

resolution of the sensor is practically constant for a given computer, for Computer 1, it 

is approximately 4 ms/megapixel and for Computer 2 it is approximately 17 

ms/megapixel. 

Table 4. Average computational cost for each algorithm step in both used computers. 

CPU Computer 1 Computer 2 

Sensor 
D435 

Kinect 

v1 

Kinect 

v2 
D435 

Kinect 

v1 

Kinect 

v2 

Spatial resolution. pixels 921600 307200 217088 921600 307200 217088 

Average time of the algorithm steps (ms) 

1. Remove background 2.41 0.79 0.58 9.01 2.90 2.52 

2. Divide D in subregions (SR) 0.91 0.31 0.21 5.39 1.62 1.19 

3. Find the objects in each 

column 
0.01 0.003 0.002 0.05 0.03 0.01 

4. Find object maximum  

5. Find ROI around the maximum 

6. Process the object in the ROI  

7. Biometric classification  

  (> 3 people) 

0.42 0.21 0.18 0.98 0.65 0.32 

Total (ms) 3.75 1.323 0.972 15.43 5.20 3.94 

 460 

If the processing times of recent works are observed, regardless of the sensor used 

and its position with respect to the scene, results are worse than ours. In (Sun et al., 

2019) for 320 x 240 zenithal RGB-D images there are processing times of 16.5 ms (1.1 

ms of background removal and 15.4 ms of head identification) in a CPU. Regarding 

YOLO v3 RGB and YOLO v3 depth, both approaches require a GPU (it has been used 465 

a GTX 1080), obtaining a processing time of 47.62ms (21 fps) for RGB and 36.3 ms 

(27.3 fps) for depth, being these times practically independent of the image resolutions.  



4. Conclusions 

This paper shows a robust and fast method of detecting people using depth images 

acquired with a camera located in a frontal position. In the design of each of the steps 470 

of the method, it has been considered to reduce the computational cost and due to the 

simplicity of the method, in its implementation, only the standard C libraries have been 

used. 

In this work we have compared the results obtained with our proposal with YOLO 

v3 because this is a comparative reference in the most recent detection and classification 475 

works. This comparison has been made for YOLO v3 using RGB and depth images and 

our proposal that only uses deep images. In the case of RGB images YOLO v3 has 

better results in the KTP and EPFL Lab datasets, because in some of the depth images, 

the heads of some people appear deformed or incomplete, due to the reflectivity of 

people hair. However, in the GFPD and EPFL Corridor datasets, we surpass the results 480 

of YOLO v3, although there are complex datasets, with multiple people and a high 

degree of occlusions.  

In the case of using only depth image, our proposal exceeds YOLO v3 in the three 

used datasets. These better results are because in the images of depth, captured with the 

camera based on stereo vision, the distortions of the heads are much smaller than with 485 

the cameras Kinect v1 and Kinect V2. In the case of EPFL Corridor, in this scenario 

the distortions of the heads are less than EPFL Lab. 

The main contribution of our method is relative to the computational cost, where our 

proposal far exceeds the works found in the current state of the art. We have carried out 

a study of the calculation times of our algorithm. For this, we have evaluated the 490 

average processing times of each step in two different CPUs, using the images of the 

three databases (three different resolutions). The results shown in table 4 (15.43 of total 

processing time of the high-resolution images, using an old dual core CPU) validate 

that the system can operate in real time on very low-cost processors. 



In future work, we will intend to improve the edge detection algorithm used in point 495 

2 of Section 2.2, with the aim of improving the detection results when two people are 

very close to each other. 
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