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Abstract: In this paper, we characterize and measure the effects of the errors introduced by the
multipath when obtaining the position of an agent by means of Indoor Positioning Systems (IPS)
based on optical signal. These effects are characterized in Local Positioning Systems (LPSs) based
on two different techniques: the first one by determining the Angle of Arrival (AoA) of the infrared
signal (IR) to the detector; and the second one by working with the measurement of the Phase
shift of signal Arrival from the transmitter to a receiver (PoA). We present the obtained results and
conclusions, which indicate that using Position Sensitive Devices (PSD) the multipath effects for AoA
have little impact on the measurement, while for PoA the positioning errors are very significant,
making the system useless in many cases.

Keywords: multipath; indoor positioning; optical signal; PSD sensor; light positioning; infrared;
visible light communication (VLC)

1. Introduction

The problem of indoor location has been a subject of intense study and research in recent years.
So far, proposals have been successfully developed to provide solutions to specific applications,
with different degrees of accuracy and complexity. However, the challenge to achieve the
implementation and applicability obtained by outdoor positioning and navigation systems remains.
The final goal would be to combine both indoor and outdoor positioning systems to provide a
continuous navigation solution transparent to the end user.

For some time now, it has been accepted that, in many indoor activities, both professional and
private, knowing the position of the user brings an added key value that provides a new set of
capabilities for a given specific application.

In indoor positioning, where the environment is complex (walls, objects, etc.), no technology
prevails as global positioning system (GPS) does in outdoor positioning systems. Sometimes the target
environment restricts the design to a particular Indoor Positioning System (IPS) technology, directly
related with accuracy, range, or scalability [1–5].

The presence of IPS anywhere is a fact [6–9]. A great research effort is currently being done to
develop an IPS based on several technologies, as their location data will enable numerous applications.
Among the most popular applications are: pedestrian tracking [10]; location-based services [11,12] in
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public and commercial centers [9]; assistance services in daily activities (Ambient Assistant Living
(AAL)) [13]; location and tracking of users in geriatric and hospital centers [14,15]; location and
tracking of emergency intervention agents (e.g., police/firefighters) [16–18]; location and guidance of
autonomous vehicles in industrial environments and automated car parks [19,20]; tracking of high
value goods during storage; extra information for users via augmented reality [21,22]; Internet of
Things (IoT) [23], etc.

Many different systems have been proposed during recent years [3,24]: based on computer
vision [24], radio waves such as ultrawideband (UWB) [25] or radio frequency identification
(RFID) [26], ultrasounds [27], optical signals [28], and, more recently, new approaches based on
inertial measurement units (IMUs) [10,29,30] and radio frequency (RF) communications networks
such as global system for mobile communications (GSM) or wireless local area network (WLAN) [31].
Some of them, such as IPS based on infrared and ultrasound, are low cost solutions, easy to deploy
with high accuracy location results in a wide range of applications. These solutions are low cost
because the components to develop them are low cost with minimal maintenance. Currently, there are
many requirements to consider when choosing the right technology for an IPS application. As has
been discussed in [1], some decision parameters are: accuracy, precision, coverage area, required
infrastructure, market maturity, privacy, update rate, user interface, system integrity, robustness,
availability, scalability, number of potential users, degree of intrusion, and legal coverage, etc.

Advances in technologies of materials, electronics, and communication facilitate the continuous
improvement in the performance of sensorial systems. The choice of sensors clearly depends on the
application and the user’s requirements. The continuous evolution of IPS can be shown through
several papers aimed at reviewing the state of the art [1–5].

Taking into account the comparative results obtained from these references, we can state
the following:

• For ultrasound based systems the positioning accuracy is around several centimeters, with a
coverage restricted to several meters but with the handicap that they are very affected by
multipath effects.

• Systems based on audible signals have low accuracy and low precision (meters) although they
have the advantage to be extremely low cost.

• If the technology used is WIFI, Bluetooth, or ZigBee the accuracy goes from 1.5 m to several
meters, is vulnerable to access point changes, and may require special user equipment, although
it is low cost with a very wide coverage.

• Ultra-wideband (UWB) presents an accuracy in the range of the tens of centimeters with high
precision but also with a high cost.

• The use of geomagnetic field or inertial systems provides accuracies up to 2 m, not requiring
infrastructure so they have a very low cost, but in the geomagnetic field case an initial mapping is
required and in the case of inertial systems the error is cumulative.

• Systems based on computer vision can have accuracies up to centimeters depending on the
coverage, but are very sensitive to light conditions.

In the case of IPS based on infrared signals, the traditional systems had an accuracy in the range
of tens of centimeters and even could reach meters as they were very vulnerable to the effects of
sunlight and multipath. Currently, infrared systems based on Position Sensitive Devices (PSD) have
been developed [28,32,33], which determine the position using Angle of Arrival (AoA) techniques
providing a positioning of high accuracy and high precision (in the range of millimeters). Additionally,
as it will be shown in this paper, they are practically immune to multipath effects (similar to computer
vision systems).

Regardless of the technology used, the most common problems faced by IPS are related to
signal quality, deployment strategy of positioning anchors (antennas, receivers, transmitters, etc.),
non-line-of-sight situations, dynamic location, interference from other devices, and, similar to outdoor
positioning, multipath effects [34]. Among them, multipath effects can make a significant contribution
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to error in many typical indoor environments, especially for technologies designed to obtain high
accurate measurements [35–37].

Range systems based on incoherent optical signals are normally carried out by means of flight
time measurements on pulsed signals [38] or phase shift measurements on continuous-wave (CW)
modulated signals [39]. Phase-based techniques do not intrinsically provide any multipath mitigation
technique and pulse systems, usually implemented with laser, require very high bandwidth to
discriminate between multipath components near the direct line-of-sight (LOS) path. Most of the
solutions proposed to reduce the multipath effects have been developed for outdoor positioning.
Classical methods are based on a special correlator design [40] while more recent approaches use
multipath estimation methods [41]. The latter techniques are based on the concept of multipath
estimation using a delay-locked loop [42,43]. These techniques provide greater multipath rejection
than classical ones. Nevertheless, they require longer integration times and higher sampling rates.

Unfortunately, none of these mitigation techniques are directly applicable to current optical
systems [44]. The main constraint is determined by the strong balance between the signal to noise ratio
(SNR), the field-of-view (FoV) of the optical devices, and the channel bandwidth to obtain the accuracy,
coverage, and dynamic response requirements of the IPS applications [39]. Due to this compromise,
the achievable channel bandwidth using low-cost upgraded devices is in the order of tens of MHz,
limiting the possible range of techniques to be applied. Time discrimination methods, such as those
used in the pulsed laser range, require much higher bandwidths to resolve the multipath indoors,
while correlator-based methods would provide very limited mitigation considering the available
bandwidth using affordable scanning systems.

In order to address the mitigation of the multipath effects, recent researches propose a new
technique for the development of IPS based on optical signals [28]. Instead of measuring Time of
Arrival (ToA), Phase of Arrival (PoA), or Phase Difference of Arrival (PDoA), these novel IPS systems
are based on AoA measurement using PSD sensors+optics devices, which allow to work with low
frequency modulations without the need for long integration times, high sampling rates or high
bandwidths. For such a system, the hypothesis is that multipath effects will have little influence.
Therefore, to characterize the multipath effects for these different techniques (the new one based on
AoA and the previous ones based on PoA), a realistic multipath scenario based on the research carried
out in [45,46] has been done.

In this paper we evaluate the multipath effect on two different IPS systems to determine the
position (distance) from optical emitter, based on the same sensor (PSD). The first one performs
the measurements by determining the angle of arrival and the second one the phase of arrival. To
determine the multipath effect in different situations, both models will be evaluated in same conditions.
The received signal is obtained from the composition of direct LOS signal and multipath components
reaching a receiver, where the power and delay of each component are calculated using radiometric
and geometric equations.

2. Background

We have been working on IPS systems development for over a decade. One of the research lines
is focused on the development of IPS based on optical signals. In this line, works have been carried out
based on the measurement of the signal Phase shift on its arrival at one or more detectors and on the
determination of the signal angle of arrival. In addition, work has been done to model the reflections
of the optical signal in indoor and to quantify and measure the signals reaching the detector due to
effect of multipath.

In [32], the sources of electrical errors in a PSD sensor system and its correction are described.
In [33], the geometric model of a PSD sensor-optics system and its calibration process are presented.
Based on these works, we have designed a system for determining the 3D position of mobile agents
using the angle of arrival (AoA). In [28] a preliminary test of the performance of an Indoor Positioning
System Based on a PSD Detector has been shown.



Sensors 2019, 19, 917 4 of 30

The main drawbacks of technologies used in indoor positioning are related to multipath (MP)
effects due to non-LOS signals reaching the detectors.

Looking solely at IR systems, the model of optical signal reflection reported in [45] enables to
model and analyze how multipath affects AoA [47] and PoA measurement techniques. Therefore,
we take this model into account in our study. In [46] we have develop a method and tool to measure
the signal reaching detectors as effect of MP. In this work an initial test has been done to determine if
RSS received at each electrode of the PSD sensor could be a subtractive composition of currents, which
could partially compensate the MP.

In the literature there are several research works that compute the channel impulse response
with recursive methods [48], multiple input multiple output (MIMO) [49], Monte Carlo simulations
(MMC) [50–52], or combining recursive and MMC methods [53]. Many studies on calculating the
channel impulse response due to the multipath of the optical signal consider surface reflection in the
environment as Lambertian or Phong reflection models [54]. Channel impulse response is suitable to
analyze MP effects in communications [55–58] and LPS based on PoA or ToA [35,36,59,60], but in LPS
algorithms based on AoA additional information is required [46].

The algorithms described in [46] have been used to analyze the MP effects in both PoA and AoA
based positioning systems. The signal that the detectors receive is formed by the contributions of the
MP coming from all the reflections of the light in the environment (considering multiple rebounds).
Since MP is produced by reflections on continuous surfaces (with an infinite number of points),
it is required to discretize the space [46]. For this purpose, walls, floor and ceiling of the environment
are divided into a grid of cells. From the energy coming from the emitter, the signal strength that
reaches each of the cells is calculated. To model the reflection, each of these cells have been considered
as a point emitter located in its center, which will emit according to a specific reflection model to the
rest of the cells. These in turn will re-emit to the rest of cells and so on, until after the kth rebound they
reach the detector.

Figure 1 presents a diagram showing 3 example situations of MP, with one, two, and three
rebounds before reaching the detector. Each MP starts at the transmitter and goes to a cell in the
environment, then to another cell and so on until the k rebound reaches the receiver.
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In the case of PoA, each MP will have an associated power and phase shift that will be used to
calculate the impulse response.

In the case of AoA, we get the signal strength that reaches to PSD from all the cells into which the
space is divided within the detector’s FOV (PSD+optics). The signal strength that reaches each cell
is calculated after considering k rebounds of the signal, and finally the signal strength that each MP
contributes to the signal received in the detector is obtained.

Figure 1. Diagram of line-of-sight (LOS) path and different rebounds. Emitter: TX; Receiver: RX.

In the case of PoA, each MP will have an associated power and phase shift that will be used to
calculate the impulse response.

In the case of AoA, we get the signal strength that reaches to PSD from all the cells into which the
space is divided within the detector’s FOV (PSD+optics). The signal strength that reaches each cell
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is calculated after considering k rebounds of the signal, and finally the signal strength that each MP
contributes to the signal received in the detector is obtained.

The reflections of the signal in the different elements have been modeled according to the reflection
model proposed in [45]. There are several state-of-art methods to model light reflection. These methods
are based on physics optics [61–64], and geometrical [65,66] and empirical methods [54,67,68], but these
models do not meet our requirements because they impose different restrictions and required the use
of complex tools, as is described in detail in [45].

This model consists of two components. One component characterizes behaviors using a
broad emission diagram (diffuse component), oriented according to the normal of the reflection
surface. The other component characterizes behaviors using a narrower emission diagram (specular
component), oriented long the direction of the beam with maximum irradiance. Figure 2 shows an
example of reflection at a given point x. The diffuse component is shown as a sphere Figure 2a,
the specular component is shown in blue Figure 2b, and the total reflection is shown in shading from
blue to yellow Figure 2c.
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Figure 2. Reflection model. (a) Diffuse component; (b) specular component; (c) total reflection.

The model characterizes the reflection of each surface in the space by mean 7 parameters uas, vas,
und, vnd, uns, vns, β, which can be obtained experimentally from only 12 signal strength measurements,
as shown [45].

2.1. Set-Up Definition and Coverage Modeling

The synthetic environment that has been used to carry out the characterizations is an open-plan
room composed of walls, floor and ceiling. The room dimensions considered throughout the paper are
5 m × 5 m with a height of 4 m. Those values can be easily changed in the developed simulator.

The considered materials for the room surfaces are the following: the floor, terrazzo tiles,
for the ceiling plaster board and for the walls a high reflection material as it could be a foam board.
The parameters of the reflection model we have used for each surface of the environment are shown in
Table 1. These values have been obtained experimentally according to [45].

Table 1. Empirical surface reflection parameters for different materials.

Material uas vas und vnd uns vns K

Terrazzo (floor) 1.713× 10−2 −2.379 1.021 0.428 34.55 −0.377 0.414
Plaster board (ceiling) 0.128× 10−2 −4.911 1.083 0.463 33.41 1.382 0.521

Foam board (walls) 1.742× 10−2 −3.103 1.457 1.005 102.1 0.731 0.388

It is worth noting that the run time of the MP determination algorithm is proportional to nk, where
n is the number of cells and k is the number of rebounds considered. In order to reduce the run times
of the algorithm, we consider a cell size that depends on the rebound number. To consider 3 rebounds
and a small cell size (in all of them) would imply an excessive emulation time. For example, if we
consider 3 rebounds with a cell of 1× 1 cm2, we will have approximately
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The model characterizes the reflection of each surface in the space by mean 7 parameters uas, vas,
und, vnd, uns, vns, β, which can be obtained experimentally from only 12 signal strength measurements,
as shown [45].

2.1. Set-Up Definition and Coverage Modeling

The synthetic environment that has been used to carry out the characterizations is an open-plan
room composed of walls, floor and ceiling. The room dimensions considered throughout the paper are
5 m × 5 m with a height of 4 m. Those values can be easily changed in the developed simulator.

The considered materials for the room surfaces are the following: the floor, terrazzo tiles,
for the ceiling plaster board and for the walls a high reflection material as it could be a foam board.
The parameters of the reflection model we have used for each surface of the environment are shown in
Table 1. These values have been obtained experimentally according to [45].

Table 1. Empirical surface reflection parameters for different materials.

Material uas vas und vnd uns vns K

Terrazzo (floor) 1.713× 10−2 −2.379 1.021 0.428 34.55 −0.377 0.414
Plaster board (ceiling) 0.128× 10−2 −4.911 1.083 0.463 33.41 1.382 0.521

Foam board (walls) 1.742× 10−2 −3.103 1.457 1.005 102.1 0.731 0.388

It is worth noting that the run time of the MP determination algorithm is proportional to nk, where
n is the number of cells and k is the number of rebounds considered. In order to reduce the run times
of the algorithm, we consider a cell size that depends on the rebound number. To consider 3 rebounds
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and a small cell size (in all of them) would imply an excessive emulation time. For example, if we
consider 3 rebounds with a cell of 1× 1 cm2, we will have approximately

(
1.3× 106)3

= 2.2× 1018

indirect paths. Programming in C using a single thread on a PC with an Intel Core i5 7500 and 32 GB
DDR4-2400 RAM, the algorithm requires about 1.53× 10−6 s to run each multipath. So the run time of
this test would be of 3.366× 1012 s. The smaller the cell size the more similar the emulated behavior is
to the real behavior. In addition, the indirect paths that provide the most energy are generally those
with less rebounds. Table 2 shows the cell sizes to be used in the tests and the number of indirect paths
(MP) to be analyzed in the successive rebounds.

Table 2. Cell size and number of indirect paths depending on the number of rebounds.

Rebound Cell Size Number of Indirect Paths (MP)

1st 1× 1 cm2 1.3× 106

2nd 5× 5 cm2 2.7× 109

3rd 25× 25 cm2 9× 109

The size of the cell for rebounds 1 and 2 has been selected deliberately small in order to obtain an
emulation behavior very close to the real one [46]. Emulation results have shown that using larger cell
sizes could have been used without almost affecting the results obtained.

Figure 2 shows a schematic diagram with 3 different optical paths, with a different number of
rebounds, one (red, k = 1), two (green, k = 2), and three rebounds (magenta, k = 3) until reaching
the detector.

2.2. Emitter

In emulations, a near infrared emitter with a Lambertian emission pattern Ie (θ) = ξ cos θ has
been used. Several tests have been performed in which the emitter moves along 17 positions on the
room floor.

Figure 3 shows the emitter positions, marked with an index to identify them. The emitter shall be
placed on the ground plane in all tests (plane z = 0). In addition, it is always be oriented perpendicular
to the ground (components of the surface vector (x = 0, y = 0, z = 1)).
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2.3. Receiver

The synthetic detector emulates a 9× 9 mm surface PSD sensor (similar to the PSD detector used
later in real tests). Figure 4 shows the model of an pin-cushion two-dimensional PSD. It consists of
4 anodes and a common cathode.

Figure 3. Index position of the emitter.
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2.3. Receiver

The synthetic detector emulates a 9× 9 mm2 surface PSD sensor (similar to the PSD detector used
later in real tests). Figure 4 shows the model of an pin-cushion two-dimensional PSD. It consists of
4 anodes and a common cathode.

Figure 4. Equivalent circuit of the Position Sensitive Device (PSD) pin-cushion (image courtesy of
Hamamatsu, obtained from the PSD technical information).

The point of impact of a light beam from the emitter, collected through a lens, is determined from
the output of each anode according to (1) and (2)

x =
LX
2

(IX2 + IY1)− (IX1 + IY2)

IX1 + IX2 + IY1 + IY2
, (1)

y =
LY
2

(IX2 + IY2)− (IX1 + IY1)

IX1 + IX2 + IY1 + IY2
, (2)

where IX1, IX2, IY1, and IY2 are the electrical currents from the PSD sensor anode pins and LX , y, LY are
the sensor dimensions.

To characterize the sensor+optical unit, the Pinhole model has been used, which allows us to
obtain the geometric parameters of the system and to know the amount of energy that is collected.

Figure 5 shows the diagram of pin-hole model for the PSD. (XW , YW , ZW) is the world’s reference
system and (XR, YR, ZR) the PSD sensor reference system. The point of impact in the PSD has been
represented as (x, y), the focal length of the optics as f and the optical center as

(
Cx, Cy

)
. The rotation

and translational matrices that relate the two reference systems, (XW , YW , ZW) and (XR, YR, ZR),
are R and T respectively.
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where R is a 3× 3 rotation matrix and T is a 3× 1 translation vector.
The relationship between the optical reference system and the image is generated in the sensor

image plane, according to (4) 
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where s represents the scaling factor that relates the 3D projection to the 2D projection.
The final mathematical model of the detector is shown in (5)
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where matrix A represents the intrinsic parameters which depend on the physical device and matrix
RT represents the extrinsic parameters which depend on the environment geometry.

In this work, we are going to consider that there are not lens and PSD distortions, and errors are
only generated by multipath effect. That is assumable because these errors can be corrected by electric
and geometric calibrations. Error caused by multipath is the only error that we want to consider in
this work.

The Field of View (FoV) of the sensor can be calculated by focal length and PSD size, according
to (6)

FoV = 2 arctan
d

2 f
, (6)

where d is the diagonal of the PSD sensor. Figure 6 shows an example of how the FoV varies depending
on the focal length for the chosen PSD size (9× 9 mm2).
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The detector is located in the ceiling plane (z = 4 m) in different positions as shown in Figure 7.
It is worth noting that with the chosen points and given that an ideal situation is emulated (with the
exception of MP phenomena), the behavior in the rest of the points of the environment can be obtained
by symmetry.
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The detector is located in the ceiling plane (z = 4 m) in different positions as shown in Figure 7.
It is worth noting that with the chosen points and given that an ideal situation is emulated (with the
exception of MP phenomena), the behavior in the rest of the points of the environment can be obtained
by symmetry.
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To check the effect of the MP, depending on the FoV of the detector, the system has been emulated
considering 3 different focal lengths. Depending on the focal length, a different orientation of the
detector has been considered to increase the coverage of the locations in which the emitter can be
placed. The used orientations of the detector according to the focal length are shown in Table 3,
expressed according to the components (x, y, z) of the detector surface vector.

Table 3. Receiver orientation depending on its position and focal length.

Detector f = 4.5 mm f = 7.5 mm f = 16 mm

Position x y z x y z x y z

R1 0 0 −1 0 0 −1 0 0 −1
R2 0 0 −1 0.184 0 −0.983 0 0 −1
R3 0 0 −1 0.170 0.170 −0.971 0 0 −1
R4 0 0 −1 0.391 0 −0.920 0.160 0 −0.987
R5 0 0 −1 0.385 0.170 −0.907 0.160 0 −0.987
R6 0 0 −1 0.348 0.348 −0.870 0.158 0.158 −0.974

Figure 8 schematically shows the coverage in the environment for each focal length value and
each detector location. The thick lines identify the coverage of the detector over the room space, and
dots represent the possible placement of the emitter.

For a short-focal length, the FoV of the detector covers a larger area than the area of movement
for the emitter, therefore the MP are only generated from this movement area. Therefore, the smaller
the FoV the less the MP affects.

To calculate the errors in AoA and PoA, the positions of the emitter and receiver are indicated in
each case. Note that a single emitter and a single detector are used to determine the position by AoA
and distance by PoA. The MP influence will be measured in each technique although accuracies are
not directly comparable as AoA measures position and PoA distance.

Figure 7. Index position of the receiver.

To check the effect of the MP, depending on the FoV of the detector, the system has been emulated
considering 3 different focal lengths. Depending on the focal length, a different orientation of the
detector has been considered to increase the coverage of the locations in which the emitter can be
placed. The used orientations of the detector according to the focal length are shown in Table 3,
expressed according to the components (x, y, z) of the detector surface vector.

Table 3. Receiver orientation depending on its position and focal length.

Detector f = 4.5 mm f = 7.5 mm f = 16 mm

Position x y z x y z x y z

R1 0 0 −1 0 0 −1 0 0 −1
R2 0 0 −1 0.184 0 −0.983 0 0 −1
R3 0 0 −1 0.170 0.170 −0.971 0 0 −1
R4 0 0 −1 0.391 0 −0.920 0.160 0 −0.987
R5 0 0 −1 0.385 0.170 −0.907 0.160 0 −0.987
R6 0 0 −1 0.348 0.348 −0.870 0.158 0.158 −0.974

Figure 8 schematically shows the coverage in the environment for each focal length value and each
detector location. The thick lines identify the coverage of the detector over the room space, and dots
represent the possible placement of the emitter.

For a short-focal length, the FoV of the detector covers a larger area than the area of movement
for the emitter, therefore the MP are only generated from this movement area. Therefore, the smaller
the FoV the less the MP affects.

To calculate the errors in AoA and PoA, the positions of the emitter and receiver are indicated in
each case. Note that a single emitter and a single detector are used to determine the position by AoA
and distance by PoA. The MP influence will be measured in each technique although accuracies are
not directly comparable as AoA measures position and PoA distance.
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focal length.

3. Proposed Model to Calculate the Received Signal Using Angle of Arrival

To relate coordinates of the environment (3D) to the image on the PSD surface (2D), a pinhole
model has been used. The algorithm presented in [46] is used to know how the indirect paths (MP)
affect by calculating the signal strength with which each of the contributions reaches the detector, and
obtaining, through the model, the point of the sensor where these signals reach. Thus, the center of
mass of MP contributions have been obtained together with the line-of-sight (LOS) path, and currents
have been weighted by the received signal strength. The mass center represents the point that would
return the PSD detector.

In this particular case, the emitted signal has been a 50 kHz sinusoidal tone. We have chosen
this frequency because real PSD sensor has a 150 kHz bandwidth. It has been considered that the
lens and PSD do not introduce any distortions. The algorithm returns the signal strength received
after k rebounds from the cells into which the environment is divided. Therefore, we get an array
PT

K with as many elements as the number of cells present in the environment, where the element i is
obtained from:
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K
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3. Proposed Model to Calculate the Received Signal Using Angle of Arrival

To relate coordinates of the environment (3D) to the image on the PSD surface (2D), a pinhole
model has been used. The algorithm presented in [46] is used to know how the indirect paths (MP)
affect by calculating the signal strength with which each of the contributions reaches the detector,
and obtaining, through the model, the point of the sensor where these signals reach. Thus, the center of
mass of MP contributions have been obtained together with the line-of-sight (LOS) path, and currents
have been weighted by the received signal strength. The mass center represents the point that would
return the PSD detector.

In this particular case, the emitted signal has been a 50 kHz sinusoidal tone. We have chosen
this frequency because real PSD sensor has a 150 kHz bandwidth. It has been considered that the
lens and PSD do not introduce any distortions. The algorithm returns the signal strength received
after k rebounds from the cells into which the environment is divided. Therefore, we get an array
PT

K with as many elements as the number of cells present in the environment, where the element i is
obtained from:

PT
K
i =

K

∑
k=1

pk
i i = {1, . . . , N} , (7)

where K is the number of total rebounds considered, and pk is the array for the k rebound, with the
successive values of the signal strength:

pk =
[

Pk
1 , Pk

2 · · · Pk
N

]
, (8)
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where N is the total number of cells in the environment.
Therefore, the value of the i element of the pk array corresponds to the signal strength received by

the detector from cell i of the environment, after k rebounds. In each rebound it is necessary to obtain
the signal strength that reaches every cell, which in turn depends on the cell it rebounds and on the
cell from the signal comes.

Once the coordinates of each cell and the model of the lens system are known, the pinhole
model can be used to obtain the point on PSD reached for reflected light from each cell, as well as its
center of mass, which is the equivalent point of impact. The coordinates of the center of masses,~rCM,
are calculated according to the expression:

~rCM =
PLOS~rLOS + ∑N

i=0 PT
k
i~r

k
i

PLOS + ∑N
i=0 PT

k
i

, (9)

where ~rk
i are the impact coordinates of the i element of the k rebound on the surface of the PSD,

and PLOS and~rLOS are the signal strength and coordinates of the LOS component.
To calculate the position of the emitter within the environment, the positioning system proposed

in [28] has been used. The following is an outline of the positioning system used: knowing the impact
point on the PSD, the calibrated optical system can be used to obtain the equation of the LOS to the
emitter. Knowing this line and knowing that our emitter is always move in the same plane, the position
of the emitter is given by the intersection of this line with the plane.

A diagram of the positioning system can be seen in the Figure 9 and a flowchart summarizing the
steps to be taken to calculate the position of the emitter is shown in the Figure 10.
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4. Proposed Model to Calculate the Received Signal Using Phase of Arrival

Let us consider a certain simulation environment, with known dimensions, orientation, and
reflection parameters of all the surfaces in it. The impulse response h(t) from the non-LOS signals
paths obtained using the algorithms given in [46] has the following equation:

h (t) =
K

∑
k=0

h(k) (t), (10)

where K is the maximum number of rebounds to be considered and h(k) (t) is the impulse response of
the rebound k (please refer to [46] to see those equations in detail). The value k = 0 corresponds to
the impulse response of the LOS path, and values of k = 1, k = 2, and k = 3 each correspond to the
impulse response of the signals that reach the detector after 1, 2, or 3 rebounds, respectively.

Once the channel impulse response due to the MPs is obtained, the offset that the positioning
system detector would measure can be calculated. The type of signal emitted and the method for the
phase shift calculation will determine the delay (distance) measured between the received signal and
the emitted signal.

In this particular case, the emitted signal will be a 50 kHz sinusoidal signal (to use the same
frequency as in AoA). The emitter, the channel and the receiver will be considered ideal; that is,
the signal received by the detectors will only be disturbed by the multipath produced by the different
reflections in the environment surfaces, in the absence of any other noise. The emitter and receiver are
considered perfectly synchronized and therefore the offset measured at the receiver will be directly
accounted for the signal offset.

To simulate the algorithm it is necessary to discretize the time; in this case a sampling period of
Ts = 0.2 ns has been chosen. The signal that the detector would receive is a sinusoidal signal of the
same frequency, but with an amplitude and phase different from the emitted signal. The received
signal represented with its phasor according to [70], will have the form:

s = < (s) + j= (s) , (11)

where < (s) and = (s) are the real and imaginary part of s respectively, and they can be obtained from
the impulse response h:

< (s) =
N

∑
i=0

h [i] cos (δ [i]), (12)

= (s) =
N

∑
i=0

h [i] sin (δ [i]), (13)

where

δ [i] =
2πt [i]

T
, (14)

t [i] = iTs, (15)

where T is the period of the signal and Ts is the sampling period.
Finally, the signal modulus and phase are given by:

s = Ps δs, (16)

where Ps is the amplitude obtained from modulus of the complex number s:

Ps =

√
< (s)2 += (s)2, (17)
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and the phase δs:

δs = arctan
= (s)
< (s)

. (18)

The received signal captured by the detector is:

s (t) = kPs sin (2π f t + δs). (19)

Knowing the value of δs, the frequency of the transmitted signal, and the speed of light,
the distance between emitter and receiver can be obtained using the following equation:

d =
δs

2π
Tc, (20)

where d is the distance and c the speed of light.
Figure 11 shows a flowchart with the steps required to measure the transmitter-receiver distance.

Sensors 2019, 19, 917 13 of 30

and the phase δs:

δs = arctan
= (s)
< (s)

. (18)

The received signal captured by the detector is:

s (t) = kPs sin (2π f t + δs). (19)

Knowing the value of δs, the frequency of the transmitted signal, and the speed of light, the
distance between emitter and receiver can be obtained using the following equation:

d =
δs

2π
Tc, (20)

where d is the distance and c the speed of light.
Figure 11 shows a flowchart with the steps required to measure the transmitter-receiver distance.

Impulse Response

Obtain the real
and imaginary

components of the
complex signal

Calculate delay Distance between
Tx and Rx

Figure 11. Flowchart that summarizes the steps to calculate the distance between emitter and receiver.

The distance measurement error will be obtained by the difference between the actual distance
and the calculated distance between transmitter and detector.

5. Determination of the Multipath Effect

This section shows the process carried out to calculate the effects of MP when using AoA and
PoA. Some example results will be shown for a tuple of emitter and detector locations, which will be
conveniently enlarged in the results section.

5.1. Procedure for Determining the Multipath Effects in Angle of Arrival-Based Positioning

To understand the process of calculating the MP affectation error, all the steps that have been
necessary to reach the final result are shown next. First, we will obtain the signal strength of the different
MP effects that arrive at the PSD with 1, 2, and 3 rebounds (the reflected signal strength after 3 rebounds
is considered to be very weak). The algorithm described in [46] has a setup of a particular synthetic
environment, providing the feature parameters, set-up and measurement conditions. Considering a
PSD lens of 4.5 mm focal length, R1 location of the sensor (a corner in the room), and the E1 location of
the emitter (Table 4), the following results are obtained.

Table 4. Focal length of the lens, receiver and emitter location used in the test.

Focal Length of the Lens Receiver Location Emitter Location

4.5 mm R1 E1

Figure 12 shows the signal strength received on the PSD from each cell in which the environment
is divided, considering 1 rebound (Figure 12a), 2 rebounds (Figure 12b), and 3 rebounds (Figure 12c).
Each point in the figure has a different color depending on the signal strength captured by the PSD
from the cell at the same point. It should be noted that the signal power shown in the figure correspond
to the last rebound considered after calculating the previous ones. Let us analyze the simulation
considering 2 rebounds. First of all, we calculate the emitter signal strength that is received by all cells
in the environment. Next, we obtain, from each of these cells, the signal strength that reaches all the

Figure 11. Flowchart that summarizes the steps to calculate the distance between emitter and receiver.

The distance measurement error will be obtained by the difference between the actual distance
and the calculated distance between transmitter and detector.

5. Determination of the Multipath Effect

This section shows the process carried out to calculate the effects of MP when using AoA and
PoA. Some example results will be shown for a tuple of emitter and detector locations, which will be
conveniently enlarged in the results section.

5.1. Procedure for Determining the Multipath Effects in Angle of Arrival-Based Positioning

To understand the process of calculating the MP affectation error, all the steps that have been
necessary to reach the final result are shown next. First, we will obtain the signal strength of the different
MP effects that arrive at the PSD with 1, 2, and 3 rebounds (the reflected signal strength after 3 rebounds
is considered to be very weak). The algorithm described in [46] has a setup of a particular synthetic
environment, providing the feature parameters, set-up and measurement conditions. Considering a
PSD lens of 4.5 mm focal length, R1 location of the sensor (a corner in the room), and the E1 location of
the emitter (Table 4), the following results are obtained.

Table 4. Focal length of the lens, receiver and emitter location used in the test.

Focal Length of the Lens Receiver Location Emitter Location

4.5 mm R1 E1

Figure 12 shows the signal strength received on the PSD from each cell in which the environment
is divided, considering 1 rebound (Figure 12a), 2 rebounds (Figure 12b), and 3 rebounds (Figure 12c).
Each point in the figure has a different color depending on the signal strength captured by the PSD
from the cell at the same point. It should be noted that the signal power shown in the figure correspond
to the last rebound considered after calculating the previous ones. Let us analyze the simulation
considering 2 rebounds. First of all, we calculate the emitter signal strength that is received by all cells
in the environment. Next, we obtain, from each of these cells, the signal strength that reaches all the
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others. Finally, the algorithm obtains the signal strength that reaches the PSD from these cells, as it is
shown in Figure 12b.
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Figure 13 shows the signal strength and detection points of MP on PSD surface of 9× 9 mm,
considering only the 1st rebound (Figure 13a), 2nd rebound (Figure 13b), and 3rd rebound (Figure 13c).
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Figure 13. Strength and detection points of MP on PSD surface considering only the (a) 1st, (b) 2nd,
and (c) 3rd rebound.

White area in Figures 12a and 13a is due to the fact that there is no signal coming from the floor
surface for k=1 rebounds. The point (marked with an ‘x’) shows the impact of the LOS component, the
location of the emitter. The received signal strength values shown in the legend of previous figures are
normalized values (W/W) with respect to the emitted signal strength, having a linear behavior with
the signal strength.

Figure 14a shows the sum of the signal strength when considering the MP effects from the first
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Figure 13 shows the signal strength and detection points of MP on PSD surface of 9× 9 mm2,
considering only the 1st rebound (Figure 13a), 2nd rebound (Figure 13b), and 3rd rebound (Figure 13c).

Sensors 2019, 19, 917 14 of 30

others. Finally, the algorithm obtains the signal strength that reaches the PSD from these cells, as it is
shown in Figure 12b.
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Figure 12. Strength and MP positions for index E1 considering only the (a) 1st, (b) 2nd, and (c)
3rd rebound.

Figure 13 shows the signal strength and detection points of MP on PSD surface of 9× 9 mm,
considering only the 1st rebound (Figure 13a), 2nd rebound (Figure 13b), and 3rd rebound (Figure 13c).
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White area in Figures 12a and 13a is due to the fact that there is no signal coming from the floor
surface for k=1 rebounds. The point (marked with an ‘x’) shows the impact of the LOS component, the
location of the emitter. The received signal strength values shown in the legend of previous figures are
normalized values (W/W) with respect to the emitted signal strength, having a linear behavior with
the signal strength.

Figure 14a shows the sum of the signal strength when considering the MP effects from the first
3 rebounds on the PSD surface.

Figure 13. Strength and detection points of MP on PSD surface considering only the (a) 1st, (b) 2nd,
and (c) 3rd rebound.

White area in Figures 12a and 13a is due to the fact that there is no signal coming from the floor
surface for k = 1 rebounds. The point (marked with an ‘x’) shows the impact of the LOS component,
the location of the emitter. The received signal strength values shown in the legend of previous figures
are normalized values (W/W) with respect to the emitted signal strength, having a linear behavior
with the signal strength.

Figure 14a shows the sum of the signal strength when considering the MP effects from the first
3 rebounds on the PSD surface.

Figure 14b shows the reprojection of signal strength coming from the different cells of the environment.
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Figure 14b shows the reprojection of signal strength coming from the different cells of the
environment.
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Figure 14. Position and strength of MP considering the first 3 rebound on (a) PSD surface and (b)
in environment.

To obtain the position of the emitter considering MPs, the center of mass of the received signal
strength from all the MP and LOS signals is calculated and next this point is reprojected on the floor
plane where the emitter moves.

Figure 15 shows, for a simulation of 4 × 4 grid emitter positions equally distributed on the
environment floor (Figure 15a), the calculated location using the first 3 rebounds. Figure 15b shows a
zoomed area to better see the MP effects on the calculation.

It is observed that MP effect causes the calculated position of the emitter to deviate about 2 cm
from the real position, despite the fact that the emitter is close to 2 walls with an important MP
component and working with a 4.5 mm focal lens.
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To obtain the position of the emitter considering MPs, the center of mass of the received signal
strength from all the MP and LOS signals is calculated and next this point is reprojected on the floor
plane where the emitter moves.

Figure 15 shows, for a simulation of 4 × 4 grid emitter positions equally distributed on the
environment floor (Figure 15a), the calculated location using the first 3 rebounds. Figure 15b shows a
zoomed area to better see the MP effects on the calculation.

It is observed that MP effect causes the calculated position of the emitter to deviate about 2 cm
from the real position, despite the fact that the emitter is close to 2 walls with an important MP
component and working with a 4.5 mm focal lens.
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To obtain the position of the emitter considering MPs, the center of mass of the received signal
strength from all the MP and LOS signals is calculated and next this point is reprojected on the floor
plane where the emitter moves.

Figure 15 shows, for a simulation of 4 × 4 grid emitter positions equally distributed on the
environment floor (Figure 15a), the calculated location using the first 3 rebounds. Figure 15b shows a
zoomed area to better see the MP effects on the calculation.

It is observed that MP effect causes the calculated position of the emitter to deviate about 2 cm
from the real position, despite the fact that the emitter is close to 2 walls with an important MP
component and working with a 4.5 mm focal lens.
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Once the procedure for calculating the position of the emitter considering MP effects is explained,
now Figure 16 shows the emitter positioning errors considering the detector fixed at point R6 while
placing the emitter in the same 4 × 4 grid and including MP effects up to the first 3 rebounds.
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Figure 16 shows the error depends on the position of the emitter and is greater near the corners
where there are considerable rebound effects on two walls. However, at position E17 (center), the error
is zero because the effects are fully compensated, due to the symmetry.

Finally, in Figure 17, the positioning errors as a function of the emitter position are shown as an
error surface. For this purpose, the error values for the 17 emulated points were computed and the
error surface was obtained by a thin-plate spline interpolation.
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5.2. Procedure for Determining the Multipath Effects in Phase of Arrival-Based Positioning

Similar to the previous section, the procedure to obtain the MP effects in PoA-based positioning is
shown. The same synthetic data (detector and emitter positions) will be used.

The algorithm described in [46] allows to obtain the impulse response knowing the environment
features and position of emitter and detector.

It is important to note that in the PoA case we must consider both the power and phase of the
different signal components reaching the detector. As the PoA technique uses the value of the signal
phase, it requires knowing the impulse response of the channel.
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where there are considerable rebound effects on two walls. However, at position E17 (center), the error
is zero because the effects are fully compensated, due to the symmetry.

Finally, in Figure 17, the positioning errors as a function of the emitter position are shown as an
error surface. For this purpose, the error values for the 17 emulated points were computed and the
error surface was obtained by a thin-plate spline interpolation.
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The algorithm described in [46] allows to obtain the impulse response knowing the environment
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phase, it requires knowing the impulse response of the channel.
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5.2. Procedure for Determining the Multipath Effects in Phase of Arrival-Based Positioning

Similar to the previous section, the procedure to obtain the MP effects in PoA-based positioning is
shown. The same synthetic data (detector and emitter positions) will be used.

The algorithm described in [46] allows to obtain the impulse response knowing the environment
features and position of emitter and detector.
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It is important to note that in the PoA case we must consider both the power and phase of the
different signal components reaching the detector. As the PoA technique uses the value of the signal
phase, it requires knowing the impulse response of the channel.

In order to calculate the MP effects, first of all, the impulse response will be obtained for the LOS
path. Additionally, impulse responses will also be obtained for signals that reach the detector after 1, 2,
and 3 rebounds. Finally, the total response will be calculated.

We will use the following naming convention: h0 is the impulse response for LOS signal; h1, h2 y
h3 the corresponding impulse responses for the 1st rebound, 2nd rebound, 3rd rebound, and hT the
summation impulse response.

For example, considering the detector placed at R1 position with a focal length of 4.5 mm and the
emitter positioned in the E1 and E17 positions, the impulse responses obtained are shown in Figure 18.

Each subfigure shows separately the impulse responses described before (LOS and rebound
components), together with the total impulse response. It should be noted that h0 is truncated so its
peak value has been written in the legend. At the right side of each subfigure a zoomed area is shown
to better quantify the MP effects from 2 and 3 signal rebounds.

Sensors 2019, 19, 917 17 of 30

In order to calculate the MP effects, first of all, the impulse response will be obtained for the LOS
path. Additionally, impulse responses will also be obtained for signals that reach the detector after 1, 2,
and 3 rebounds. Finally, the total response will be calculated.

We will use the following naming convention: h0 is the impulse response for LOS signal; h1, h2 y
h3 the corresponding impulse responses for the 1st rebound, 2nd rebound, 3rd rebound, and hT the
summation impulse response.

For example, considering the detector placed at R1 position with a focal length of 4.5 mm and the
emitter positioned in the E1 and E17 positions, the impulse responses obtained are shown in Figure 18.

Each subfigure shows separately the impulse responses described before (LOS and rebound
components), together with the total impulse response. It should be noted that h0 is truncated so its
peak value has been written in the legend. At the right side of each subfigure a zoomed area is shown
to better quantify the MP effects from 2 and 3 signal rebounds.

Time (s) 10
-8

0 1 2 3 4 5 6 7 8

Si
gn

al
st

re
ng

th

10
-7

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Impulse Response for index E1

h0 = 6.14e-06
h1
h2
h3
ht

Time (s) 10
-80 1 2 3 4 5 6 7 8

Si
gn

al
st

re
ng

th
10 -8

0

0.2

0.4

0.6

0.8

1

1.2

(a)

Time (s) 10
-8

0 1 2 3 4 5 6 7 8

Si
gn

al
st

re
ng

th

10
-7

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Impulse Response for index E17

h0 = 1.01e-05
h1
h2
h3
ht

Time (s) 10 -8
0 1 2 3 4 5 6 7 8

10 -8

0

0.2

0.4

0.6

0.8

1

1.2

Si
gn

al
st

re
ng

th

(b)
Figure 18. Impulse response for (a) index E1 and (b) index E17.

It is clearly observed that h0 of E17 arrives earlier and with more power (RSS: 1.01 × 10−5;
t: 1.32× 10−8 s) than h0 of E1 (RSS: 6.14× 10−6; t: 1.48× 10−8 s), because the distance between the
emitter and the detector is smaller in position E17 than in position E1. It can be also noted that h1 of E1
has 2 significant peaks. The highest one corresponds to the MP signals reflected on the 2 closest walls
and the second peak is the result of the MP signals coming from the 2 farthest walls. The impulse
response h1 of E17 only has one significant maximum, because the emitter and detector are right in the
middle of the room. The maximum corresponds to the MP signals reflected from the 4 walls (identical
travel distances). Also it can be seen in both cases that h2 and h3 have their maximum after h1 because
MPs have to travel a longer path to reach the detector.

Figure 18. Impulse response for (a) index E1 and (b) index E17.

It is clearly observed that h0 of E17 arrives earlier and with more power (RSS: 1.01 × 10−5;
t: 1.32× 10−8 s) than h0 of E1 (RSS: 6.14× 10−6; t: 1.48× 10−8 s), because the distance between the
emitter and the detector is smaller in position E17 than in position E1. It can be also noted that h1 of E1
has 2 significant peaks. The highest one corresponds to the MP signals reflected on the 2 closest walls
and the second peak is the result of the MP signals coming from the 2 farthest walls. The impulse
response h1 of E17 only has one significant maximum, because the emitter and detector are right in the
middle of the room. The maximum corresponds to the MP signals reflected from the 4 walls (identical
travel distances). Also it can be seen in both cases that h2 and h3 have their maximum after h1 because
MPs have to travel a longer path to reach the detector.
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Once the response to the impulse of the channel is known, the distance between the emitter and
the detector can be calculated using the Equation (20).

As it was mentioned above, the frequency of the simulated sinusoidal signal is 50 kHz. It should
be noted that it is a very low frequency to obtain accurate phase measurements in real PoA
systems, because clock errors, synchronization, and other disturbances would introduce high phase
measurement errors. However, since this paper is only intended to analyze the effects of MPs, we will
use the same detector features in the simulation. However, the values shown below are valid for any
photodetector that may work more frequently. Figure 19a analyzes how frequency influences distance
measurement errors, due only to MP errors. The distance measurement error for different frequencies
depends on the environment, emitted signal, and phase calculation technique used.

Figure 19b shows the phase measurements for each frequency value obtained from the
impulse response.
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Figure 19. (a) Distance error vs Frequency; (b) Phase vs Frequency.

In Figure 19 we can see how distance errors, which are measured from the phase shift, have 3
differentiated zones. In the first zone, located from 1 to approximately 5× 106 Hz, the error remains
constant. From this last frequency up to approximately 8× 107 Hz, the error decreases. This is because
the distance between the emitter and detector is still below the wavelength of those frequencies.
However, the indirect paths arrive at the detector with delays greater than 2π. So the detector,
receiving sinusoidal signals, is not able to detect that the phase shift is greater than 2π. The third
zone is located from 8× 107 Hz where the distance between emitter and receiver is greater than the
wavelength and, therefore, the detector can not know what is exactly the emitter position. We can
also see that our receiver would have to be able to measure a phase shift of 5 mrad, for the chosen
frequency of 50 kHz. However, if another photodetector was chosen that could work with 5 MHz
sinusoidal signal, the measured phase shift would be 0.5 rad.

Figure 20 shows the errors in the distance measurement calculated from the phase of the LOS and
non-LOS signals considering the 17 emitter positions. Position index of the abscissa axis corresponds
to the positions Ei indicated in Figure 3.

In this case, the distance errors shown have been obtained considering only 1 rebound, the first
2 rebounds, and 3 rebounds, to show the importance of the phase of the signals coming from third
rebound signals. Although the signal strength of the MP decreases significantly with the number
of rebounds, the phase offset with respect to the LOS signal introduces significant errors in the
phase calculation.

Similar to AoA case, considering more rebounds does not mean significant differences in the
simulated results since, although the phase offset is greater, the signal power is so small that it does
not significantly affect the phase calculation.

Figure 19. (a) Distance error vs Frequency; (b) Phase vs Frequency.

In Figure 19 we can see how distance errors, which are measured from the phase shift, have 3
differentiated zones. In the first zone, located from 1 to approximately 5× 106 Hz, the error remains
constant. From this last frequency up to approximately 8× 107 Hz, the error decreases. This is because
the distance between the emitter and detector is still below the wavelength of those frequencies.
However, the indirect paths arrive at the detector with delays greater than 2π. So the detector,
receiving sinusoidal signals, is not able to detect that the phase shift is greater than 2π. The third
zone is located from 8× 107 Hz where the distance between emitter and receiver is greater than the
wavelength and, therefore, the detector can not know what is exactly the emitter position. We can
also see that our receiver would have to be able to measure a phase shift of 5 mrad, for the chosen
frequency of 50 kHz. However, if another photodetector was chosen that could work with 5 MHz
sinusoidal signal, the measured phase shift would be 0.5 rad.

Figure 20 shows the errors in the distance measurement calculated from the phase of the LOS and
non-LOS signals considering the 17 emitter positions. Position index of the abscissa axis corresponds
to the positions Ei indicated in Figure 3.

In this case, the distance errors shown have been obtained considering only 1 rebound, the first
2 rebounds, and 3 rebounds, to show the importance of the phase of the signals coming from third
rebound signals. Although the signal strength of the MP decreases significantly with the number
of rebounds, the phase offset with respect to the LOS signal introduces significant errors in the
phase calculation.

Similar to AoA case, considering more rebounds does not mean significant differences in the
simulated results since, although the phase offset is greater, the signal power is so small that it does
not significantly affect the phase calculation.
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The error is significant not only in areas close to walls (a fact that already confirmed empirically),
but that it remains fairly constant throughout the space, generating errors up to 65 cm in measurements
of distance between 4 and 6 m.
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Similar to the AoA case, Figure 21 shows the distance measurement errors as an interpolated
surface considering the detector placed in the R1 position and the emitter in the 17 simulated positions.
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In the next section, Results, PoA errors obtained for different detector positions are obtained and
compared with the values obtained by AoA technique considering identical test conditions.

6. Results

This section presents the errors obtained with the detector located using AoA, and distance
between emitter and receiver using PoA, in different positions and moving the emitter throughout the
space, also we present results from some empirical tests. The errors shown are those that would occur
due to MP effects only.

Conditions to carry on the emulated tests are the same as those depicted in Section 2.1. Therefore,
the different Ri positions for the detector and Ei locations for the emitter are shown in Figures 3 and 7.
The focal lengths used in tests are 4.5, 7.5, and 16 mm.

The first test case has a large FoV (coverage area) and the MP effects coming from the walls will
be more significant than the information coming from the emitter moving on the floor.
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Similar to the AoA case, Figure 21 shows the distance measurement errors as an interpolated
surface considering the detector placed in the R1 position and the emitter in the 17 simulated positions.
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In the next section, Results, PoA errors obtained for different detector positions are obtained and
compared with the values obtained by AoA technique considering identical test conditions.

6. Results

This section presents the errors obtained with the detector located using AoA, and distance
between emitter and receiver using PoA, in different positions and moving the emitter throughout the
space, also we present results from some empirical tests. The errors shown are those that would occur
due to MP effects only.

Conditions to carry on the emulated tests are the same as those depicted in Section 2.1. Therefore,
the different Ri positions for the detector and Ei locations for the emitter are shown in Figures 3 and 7.
The focal lengths used in tests are 4.5, 7.5, and 16 mm.

The first test case has a large FoV (coverage area) and the MP effects coming from the walls will
be more significant than the information coming from the emitter moving on the floor.

Figure 21. Surface of distance error.

In the next section, Results, PoA errors obtained for different detector positions are obtained and
compared with the values obtained by AoA technique considering identical test conditions.

6. Results

This section presents the errors obtained with the detector located using AoA, and distance
between emitter and receiver using PoA, in different positions and moving the emitter throughout the



Sensors 2019, 19, 917 20 of 30

space, also we present results from some empirical tests. The errors shown are those that would occur
due to MP effects only.

Conditions to carry on the emulated tests are the same as those depicted in Section 2.1. Therefore,
the different Ri positions for the detector and Ei locations for the emitter are shown in Figures 3 and 7.
The focal lengths used in tests are 4.5 mm, 7.5 mm, and 16 mm.

The first test case has a large FoV (coverage area) and the MP effects coming from the walls will
be more significant than the information coming from the emitter moving on the floor.

The 7.5 mm focal length covers a large area of displacement and partially the walls (the coverage
of part of the walls only provides MP noise). The 16 mm focal length partially covers the agent’s area
of motion; this is particularly important because, considering a single lens optical system, given the
dimensions of the PSD sensor, the minimum focal length commercially available is 16 mm. To use a
smaller focal length we would have had to resort to lens groups, but these would largely degrade the
SNR. The empirical tests have been carried out with a focal length of 16 mm, indicating the conditions
of realization, and when necessary emulating the tests in the same conditions.

The tests carried out show that the initial hypothesis that MP effects for AoA measurements
is much less significant than for PoA technique is correct and that the errors obtained from AoA
technique have little influence in the measurement.

In addition, to verify the validity of the hypothesis and the work, empirical tests will be carried
out to demonstrate that the proposed models and results obtained are valid.

6.1. Comparison of Emulation Results

As a result of the procedures described before, the measuring system has been emulated with the
detector in every locations Ri, and emitter in Ei positions. Figure 22 show the results obtained using
AoA and PoA respectively with focal lengths of 4.5 mm, 7.5 mm, and 16 mm, for each combination of
Ei and Ri positions.

The errors obtained by PoA are much more significant than those obtained by AoA. Additionally,
the PoA errors have similar behavior no matter the different positions of the detector; this indicates
that the MP by PoA cannot be mitigated with strategic placement of detectors in the environment.
The MP errors in AoA are a magnitude lower.

It is worth noting that AoA calculates the emitter position while PoA obtains only the distance
between emitter and detector (considering one single PSD). The two measurements are therefore
not directly comparable, but considering that position from PoA is possible if multiple detectors are
used, the errors shown here will be maintained or increased [71], therefore we can draw sufficient
conclusions in order to state which technique is most influenced by MP effects.

They depend strongly on the position of the detector, so by choosing a convenient location
the effects of the MP can be greatly mitigated. As our hypothesis indicated, when the MP signal
reaches the whole surface of the PSD detector, it causes “MP noise” current to be generated in each
electrode and its effects to be counteracted. So, the more symmetrical the space around the detector is,
the less important the multipath effects are.

Another very remarkable aspect is that in both techniques the value of the focal length is very
relevant. The results are greatly improved if the procedure used is AoA. When a small focal length is
available, the detector has a FoV greater than the emitter’s movement plane, and the MP signals comes
from these reflection areas. Therefore, the smaller the part of the FoV outside the displacement zone,
the less the MP will affect. This is more significant when, measuring by AoA, we only capture the
emitters movement zone and not walls (focal lengths of 16 mm and 7.5 mm in R1, R2, and R3 detector
positions) giving MP errors fairly constant depending solely on the position of the emitter and with a
very low error (less than 2 cm with f = 16 mm).
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Figure 22. Position error of all combination of Ei and Ri using focal length of (a) 4.5 mm, (c) 7.5 mm, and
(e) 16 mm. Distance error of all combination of Ei and Ri using focal length of (b) 4.5 mm, (d) 7.5 mm,
and (f) 16 mm. (g) Shows bar color identifier for each receiver position.

6.2. Error Curves as a Function of the Focal Length and Position of the Detector

From the results shown in Figure 22, a thin-plate spline interpolation has been performed to
obtain the error curves for each focal length and each detector location in the entire movement space
of the emitter. Figures 23 and 24 show, as an example, results on two detector positions.

Figure 22. Position error of all combination of Ei and Ri using focal length of (a) 4.5 mm, (c) 7.5 mm, and
(e) 16 mm. Distance error of all combination of Ei and Ri using focal length of (b) 4.5 mm, (d) 7.5 mm,
and (f) 16 mm. (g) Shows bar color identifier for each receiver position.

6.2. Error Curves as a Function of the Focal Length and Position of the Detector

From the results shown in Figure 22, a thin-plate spline interpolation has been performed to
obtain the error curves for each focal length and each detector location in the entire movement space
of the emitter. Figures 23 and 24 show, as an example, results on two detector positions.
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Figure 23. Surface of Angle of Arrival (AoA) position error in R1 using focal length of (a) 4.5 mm, (b)
7.5 mm, and (c) 16 mm; and surface of PoA distance error in R1 using focal length of (d) 4.5 mm, (e) 7.5
mm, and (f) 16 mm.
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Figure 24. Surface of AoA position error in R4 using focal length of (a) 4.5 mm, (b) 7.5 mm, and
(c) 16 mm; and surface of PoA distance error in R1 using focal length of (d) 4.5 mm, (e) 7.5 mm, and
(f) 16 mm.

After the previous tests, we have proceeded to emulate which would be the errors due to the MP
effects in the demonstrators of our research group. In this case it is a corridor 3.5 m high, 3.5 m wide,
and 20 m long. We have used a PSD S5991-01 from Hamamatsu Photonics (Hamamatsu, Japan) with
9× 9 mm2 area, assembly with a 16 mm focal length lens.

An important aspect to deal with is that, given the length of the corridor, several sensors must be
deployable in order to achieve complete coverage. Here it is important to select a suitable optic, which,

Figure 23. Surface of Angle of Arrival (AoA) position error in R1 using focal length of (a) 4.5 mm,
(b) 7.5 mm, and (c) 16 mm; and surface of PoA distance error in R1 using focal length of (d) 4.5 mm,
(e) 7.5 mm, and (f) 16 mm.
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Figure 23. Surface of Angle of Arrival (AoA) position error in R1 using focal length of (a) 4.5 mm, (b)
7.5 mm, and (c) 16 mm; and surface of PoA distance error in R1 using focal length of (d) 4.5 mm, (e) 7.5
mm, and (f) 16 mm.
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Figure 24. Surface of AoA position error in R4 using focal length of (a) 4.5 mm, (b) 7.5 mm, and
(c) 16 mm; and surface of PoA distance error in R1 using focal length of (d) 4.5 mm, (e) 7.5 mm, and
(f) 16 mm.

After the previous tests, we have proceeded to emulate which would be the errors due to the MP
effects in the demonstrators of our research group. In this case it is a corridor 3.5 m high, 3.5 m wide,
and 20 m long. We have used a PSD S5991-01 from Hamamatsu Photonics (Hamamatsu, Japan) with
9× 9 mm2 area, assembly with a 16 mm focal length lens.

An important aspect to deal with is that, given the length of the corridor, several sensors must be
deployable in order to achieve complete coverage. Here it is important to select a suitable optic, which,

Figure 24. Surface of AoA position error in R4 using focal length of (a) 4.5 mm, (b) 7.5 mm, and
(c) 16 mm; and surface of PoA distance error in R1 using focal length of (d) 4.5 mm, (e) 7.5 mm, and
(f) 16 mm.

After the previous tests, we have proceeded to emulate which would be the errors due to the MP
effects in the demonstrators of our research group. In this case it is a corridor 3.5 m high, 3.5 m wide,
and 20 m long. We have used a PSD S5991-01 from Hamamatsu Photonics (Hamamatsu, Japan) with
9× 9 mm2 area, assembly with a 16 mm focal length lens.

An important aspect to deal with is that, given the length of the corridor, several sensors must be
deployable in order to achieve complete coverage. Here it is important to select a suitable optic, which,
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given the results obtained in the previous section, should be greater than 7.5 mm in order not to pick
up MP noise from the walls. However, the lens used for the empirical tests will be 16 mm focal length;
this is imposed because our sensor is the Hamamatsu PSD S5991-01 9× 9 mm2, so the diameter of the
lens has to be 25.4 mm (1 inch) and the minimum focal length marketed is 16 mm for single lenses.
For shorter distances a group of lenses should be fitted, which would introduce a loss of SNR

Figure 25a,b show the calculated position of an agent in the corridor (with 7.5 mm and 16 mm
focal length, respectively). In both cases the detector is placed centered on the ceiling. The points
showed in figures are only those that have coverage of the detector.
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Figure 25. Calculated position in an emulated corridor (a) using focal length of 7.5 mm; (b) using focal
length of 16 mm.

Figures 26 and 27 show the MP errors, to position an agent in the corridor (with 7.5 mm and
16 mm focal length respectively). MP errors have been obtained from calculated position shown in
Figure 25. The points color indicates the error that would be made in obtaining the location of an
emitter on that point. It should be noted that the scale of Figures 26 and 27 are different in order to
observe in more detail the error as a function of the emitter position.
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The focal length case of 7.5 mm has a larger coverage, but is also more sensitive to multipath effects.
In the case of the 16 mm lens, it does not cover the entire width of the corridor and has areas

free of coverage. As can be seen the maximum errors with 7.5 mm lenses and in the areas farthest
from the detection would be 6 cm. In the case of the 16 mm focal, the coverage does not reach the
width of the corridor, since it only covers 1.5 m (it would be greater if it could be placed higher),
but, nevertheless, when the agent passes through the coverage area, the errors due to multipath would
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length of 16 mm.

Figures 26 and 27 show the MP errors, to position an agent in the corridor (with 7.5 mm and
16 mm focal length respectively). MP errors have been obtained from calculated position shown in
Figure 25. The points color indicates the error that would be made in obtaining the location of an
emitter on that point. It should be noted that the scale of Figures 26 and 27 are different in order to
observe in more detail the error as a function of the emitter position.
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given the results obtained in the previous section, should be greater than 7.5 mm in order not to pick
up MP noise from the walls. However, the lens used for the empirical tests will be 16 mm focal length;
this is imposed because our sensor is the Hamamatsu PSD S5991-01 9× 9 mm2, so the diameter of the
lens has to be 25.4 mm (1 inch) and the minimum focal length marketed is 16 mm for single lenses.
For shorter distances a group of lenses should be fitted, which would introduce a loss of SNR

Figure 25a,b show the calculated position of an agent in the corridor (with 7.5 mm and 16 mm
focal length, respectively). In both cases the detector is placed centered on the ceiling. The points
showed in figures are only those that have coverage of the detector.
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Figures 26 and 27 show the MP errors, to position an agent in the corridor (with 7.5 mm and
16 mm focal length respectively). MP errors have been obtained from calculated position shown in
Figure 25. The points color indicates the error that would be made in obtaining the location of an
emitter on that point. It should be noted that the scale of Figures 26 and 27 are different in order to
observe in more detail the error as a function of the emitter position.
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In the case of the 16 mm lens, it does not cover the entire width of the corridor and has areas

free of coverage. As can be seen the maximum errors with 7.5 mm lenses and in the areas farthest
from the detection would be 6 cm. In the case of the 16 mm focal, the coverage does not reach the
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Figure 26. Position error in an emulated corridor using focal length of 7.5 mm. (a) 3D representation;
(b) 2D colormap representation.

The focal length case of 7.5 mm has a larger coverage, but is also more sensitive to multipath effects.
In the case of the 16 mm lens, it does not cover the entire width of the corridor and has areas

free of coverage. As can be seen the maximum errors with 7.5 mm lenses and in the areas farthest
from the detection would be 6 cm. In the case of the 16 mm focal, the coverage does not reach the
width of the corridor, since it only covers 1.5 m (it would be greater if it could be placed higher),
but, nevertheless, when the agent passes through the coverage area, the errors due to multipath would
be a few millimeters in the whole area. This has a positive reading, as it means that the system could
be placed in a corridor up to 1.5 m wide without being affected by the multipath.



Sensors 2019, 19, 917 24 of 30

Sensors 2019, 19, 917 24 of 30

be a few millimeters in the whole area. This has a positive reading, as it means that the system could
be placed in a corridor up to 1.5 m wide without being affected by the multipath.

Er
ro

r
(m

m
)

AoA position error
Corridor

focal = 16 mm

0

2

4

8

6

8

6

y (m)

4 2

x (m)

2
00

(a)

x
(m

)

0

0.5

1

1.5

2

2.5

3

3.5

y (m)
0 1 2 3 4 5 6 7 8

PDoA position error
Corridor

focal = 16 mm

1 2 3 4 5 6 7 8 9

Error
(mm)

(b)
Figure 27. Position error in an emulated corridor using focal length of 16 mm. (a) 3D representation;
(b) 2D colormap representation.

6.3. Comparative Results of Emulation and Empirical Tests

In order to be able to compare the results, several tests have been carried out on a scenario such
as the one simulated in the previous section with a 16 mm lens. Two tests have been carried out;
in the first one, several circles path are described with radius 650 ± 2 mm, 400 ± 2 mm, 160 ± 2 mm.
The results shown in Table 5 and in Figure 28 have been obtained.

Table 5. Empirical results of the first test.

Ground Truth Measured Circle Adjustment (mm)

Radius (mm) Radius (mm) STD RMSE Error Max

650 ± 2 648.23 0.10 0.05 1.88
400 ± 2 398.91 0.11 0.03 2.29
160 ± 2 159.87 0.08 0.02 1.21
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Figure 28. (a) Measured (color dots) and best fit circle (black dot line) of empirical tests with radius
160 (blue), 400 (red), and 650 mm (green). (b) Zoom version of (a).

Figure 27. Position error in an emulated corridor using focal length of 16 mm. (a) 3D representation;
(b) 2D colormap representation.

6.3. Comparative Results of Emulation and Empirical Tests

In order to be able to compare the results, several tests have been carried out on a scenario such
as the one simulated in the previous section with a 16 mm lens. Two tests have been carried out;
in the first one, several circles path are described with radius 650 ± 2 mm, 400 ± 2 mm, 160 ± 2 mm.
The results shown in Table 5 and in Figure 28 have been obtained.

Table 5. Empirical results of the first test.

Ground Truth Measured Circle Adjustment (mm)

Radius (mm) Radius (mm) STD RMSE Error Max

650 ± 2 648.23 0.10 0.05 1.88
400 ± 2 398.91 0.11 0.03 2.29
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be a few millimeters in the whole area. This has a positive reading, as it means that the system could
be placed in a corridor up to 1.5 m wide without being affected by the multipath.
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6.3. Comparative Results of Emulation and Empirical Tests

In order to be able to compare the results, several tests have been carried out on a scenario such
as the one simulated in the previous section with a 16 mm lens. Two tests have been carried out;
in the first one, several circles path are described with radius 650 ± 2 mm, 400 ± 2 mm, 160 ± 2 mm.
The results shown in Table 5 and in Figure 28 have been obtained.

Table 5. Empirical results of the first test.
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Figure 28. (a) Measured (color dots) and best fit circle (black dot line) of empirical tests with radius
160 (blue), 400 (red), and 650 mm (green). (b) Zoom version of (a).
Figure 28. (a) Measured (color dots) and best fit circle (black dot line) of empirical tests with radius
160 (blue), 400 (red), and 650 mm (green). (b) Zoom version of (a).

In the second test, in the same area as the previous test, circles with a radius of 725 ± 2 mm are
described, in this case a fixed wall of highly reflective foam is placed on at a distance of 10 cm of the
sides of the circles drawn by the emitter, in order to create MP effects.

In Figure 29 is shown position of PSD sensor and emitter in the environment.
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In addition to carrying out this second test, to be able to compare the concrete situation the
behavior was emulated with the same model used previously. Figure 31 shows the results obtained.
Figure 31a shows in red results of the empirical tests without placing the sidewall and in blue the
results obtained when placing it. Figure 31b shows in red the results of the emulation without the
wall and in blue the results of the emulation by placing the wall. It can be seen that both real and
emulated tests have the same shape, although there is a small difference in values due to the effects of
the actual tests and behaviors. In any case, it can be observed and concluded that MP errors do not
affect the accuracy.
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In addition to carrying out this second test, to be able to compare the concrete situation the
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In addition to carrying out this second test, to be able to compare the concrete situation the
behavior was emulated with the same model used previously. Figure 31 shows the results obtained.
Figure 31a shows in red results of the empirical tests without placing the sidewall and in blue the
results obtained when placing it. Figure 31b shows in red the results of the emulation without the
wall and in blue the results of the emulation by placing the wall. It can be seen that both real and
emulated tests have the same shape, although there is a small difference in values due to the effects of
the actual tests and behaviors. In any case, it can be observed and concluded that MP errors do not
affect the accuracy.
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Figure 31. Second test (a) empirical results and (b) emulated results.

7. Conclusions

In this work we have characterized the positioning measurement errors that would be caused by
the effects of multipath working with IR signals. The positioning has been determined and calculated
using AoA and PoA techniques. It has been found, as our hypothesis indicated, that AoA is affected
by an order of magnitude lower than PoA, working in both cases with a PSD photodiode. This is
because in the determination of the impact point using AoA the different MPs compensate its effects.
In addition, errors vary greatly with the position of the detector, indicating that sensor deployment
strategies can be chosen to mitigate the MP effects. However, in PoA technique, phase shift errors are
not compensated and not balanced by the same factor.

In addition, it should be noted that the MP effects on PoA are quite homogeneous, regardless of
the position and orientation of the receiver.

Another important aspect is focal length of the optical lens in the detector. In narrow areas or
close to walls it is advisable to work with lenses with a larger focal length, in order to avoid that the
coverage of the detector covers a large area of walls, since only “MP noise” has been collected from
them. In short, MP can be avoided if the coverage area does not cover wall.

The empirical tests carried out have validated the expected results from the emulations, and
as shown in the last test, with a 16 mm lenses, the positioning errors in a corridor are in the range
of millimeters.
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7. Conclusions

In this work we have characterized the positioning measurement errors that would be caused by
the effects of multipath working with IR signals. The positioning has been determined and calculated
using AoA and PoA techniques. It has been found, as our hypothesis indicated, that AoA is affected
by an order of magnitude lower than PoA, working in both cases with a PSD photodiode. This is
because in the determination of the impact point using AoA the different MPs compensate its effects.
In addition, errors vary greatly with the position of the detector, indicating that sensor deployment
strategies can be chosen to mitigate the MP effects. However, in PoA technique, phase shift errors are
not compensated and not balanced by the same factor.

In addition, it should be noted that the MP effects on PoA are quite homogeneous, regardless of
the position and orientation of the receiver.

Another important aspect is focal length of the optical lens in the detector. In narrow areas or
close to walls it is advisable to work with lenses with a larger focal length, in order to avoid that the
coverage of the detector covers a large area of walls, since only “MP noise” has been collected from
them. In short, MP can be avoided if the coverage area does not cover wall.
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The empirical tests carried out have validated the expected results from the emulations, and
as shown in the last test, with a 16 mm lenses, the positioning errors in a corridor are in the range
of millimeters.
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