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Abstract—CFAR (Constant False Alarm Rate) detectors were
designed and evaluated in non-homogeneous DVB-T (Digital Video
Broadcasting-Terrestrial) passive radar scenarios. The CA-CFAR
(Cell-Averaged CFAR) is the most widespread incoherent CFAR
technique. CA-CFAR detector is optimal under the assumption of
homogeneous interference, but CA-CFAR performance is degraded
when this assumption is not fulfilled. As an attempt to design CFAR
algorithms in non-homogeneous environment, VI-CFAR (Variability
Index-CFAR) was proposed. CA-CFAR and VI-CFAR detectors
were designed and evaluated in a simulated and real passive radar
scenarios. The real data were acquired by IDEPAR demonstrator, a
DVB-T passive radar system. Results confirm the suitability of VI-
CFAR based solutions in passive radar scenarios providing detection
probabilities much higher than the detection capabilities associated
with CA-CFAR.

Keywords—Constant False Alarm Rate Techniques, Passive Radar
System, Radar signal processing

I. INTRODUCTION

In recent years, the availability of new technological solu-

tions has increased the interest of Passive Radar (PR) systems

as an alternative solution to anticipate and prevent the multiple

threats that European society faces, such as crime, terrorism or

management of natural disasters. A PR is a radar system whose

main objective is to detect targets and to estimate parameters

(such as position or velocity) using commercial broadcast,

communications systems (digital television, FM radio, digi-

tal audio, mobile phone, etc), and radar or radio-navigation

signals as illumination sources, rather than using a dedicated

radar transmitter [1]. These radars are multi-static systems

composed of a receiver element and one or more Illuminators

of Opportunity (IoOs) available in the environment.

In PR systems, multi-channel reception schemes are im-

posed due to the bistatic geometry of the radar and the lack

of control over the transmitter. Usually, two channel are used:

reference channel (to acquire the transmitted signal by the IoO)

and surveillance one (to capture the target echoes). This kind

of radars is based on the correlation of the delay and Doppler-

shifted copies of the received signals from the IoOs and the

target echoes, generating the Cross Ambiguity Function (CAF)

at the output of the processing stage. The CAF will be a key

tool to estimate the bistatic range and Doppler shift of the

target in the detection stage.

Although PR systems present many advantages over active

ones (low development and maintenance cost, low probability

of intercept, small size, low weight, and easily deployed),

high complexity processing signal systems are required to

detect targets and extract their information due to the use

of uncontrolled transmitters, multi-static geometry and signals

that are not designed for radar applications.

In PR scenarios, the radar detection problem to be solved

can be formulated as a binary hypothesis test, where the

detector has to decide between target absence (null hypothesis,

H0) and target presence (alternative hypothesis, H1). The

Neyman-Pearson (NP) detector is extensively applied in radar

problems, which maximizes the Probability of Detection (PD)

maintaining the Probability of False Alarm (PFA) lower than

or equal to a given value [2].

A possible implementation of the NP detector consist in

comparing the Likelihood Ratio (LR), Λ(z̃) , to a detection

threshold estimated according to PFA requirements (ηlr) [3],

as is expressed in (1). Where z̃ is the complex observation

vector provided by the radar receiver, and f(z̃|H0) and

f(z̃|H1) are the detection problem likelihood functions under

both hypotheses.

Λ(z̃) =
f(z̃|H1)

f(z̃|H0)

H1

≷
H0

ηlr(PFA) (1)

This approach requires a complete knowledge of the likeli-

hood functions, and significant detection losses appear when

the actual target and/or interference models differ from those

assumed in the LR detector design [4] [5].

In passive radars, the processing stage provides the CAF

that allows the estimation of the range and Doppler of a

target in the following detector stage. The input to the target

detector is a set of M range-Doppler surfaces, one per each

Pulse Repetition Interval (PRI). For detecting a low fluctuating

target in AWGN (Additive White Gaussian Noise), the squared

magnitude of the output of the CAF, sampled at the instant

where the ratio between the instantaneous power of the output

signal to the average power of the output noise is maximum, is

a sufficient statistic (the Doppler shift of the input signal with

respect to the matched filter impulse response was assumed

equal to zero).

Actually, moving targets with unknown Doppler are as-

sumed. The result of the cross-correlation between the refer-

ence channel and the surveillance channel signals, is the ambi-

guity function of the transmitted signal, scaled and shifted to

be centered on the time delay and Doppler shift corresponding
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to the bistatic range and radial velocity of the target. So, for

each range-Doppler cell, a threshold can be calculated as a

function of the thermal noise of the system. However, in the

target echo, clutter and interference residuals are inevitably

present along all the system. If the detection threshold is

calculated assuming only the thermal noise contribution, the

clutter and other interference residuals would give rise to an

increase on the PFA value.

In radar literature, conventional radar detection schemes

based on Constant False Alarm Rate (CFAR) techniques are

applied to maintain the desired PFA at a constant level in

spite of clutter parameters variations. This parametric solution

works on a cell by cell basis, estimating statistics of the inter-

ference by processing a group of reference cells close to the

CUT (Cell-Under-Test) and adjusting the detection threshold

according to the background interference [6]. However, the

CFAR detection capabilities decrease significantly when the

clutter and/or target statistical parameters are different from

that assumed.

In some scenarios, a non-homogeneous environment due to

the presence of multiple interfering targets and/or clutter edges

is presented. In this case, a CA-CFAR detector suffers high

performance degradation and do not guarantee the required

PFA. If one or more targets seep in the reference cells, the PD

decreased due to an increment in the adaptive threshold. The

clutter edge effects are quite similar than target interference,

mainly when low power is placed in CUT. In addition, range-

doppler maps associated with PR systems are characterized

by the high power samples along range dimension for zero

Doppler shift (due to the Direct Path Interference (DPI)

generated by the IoO, the ground clutter and the strong

radar echoes provided by the big buildings) that can mask

targets with low Doppler values. Some solutions have been

proposed in the literature as an attempt to design CFAR

algorithms in non-homogeneous environment. Great-Of CFAR

(GO-CFAR) offers better performance in the clutter edge

case, but it degrades the PD in interference target scene. The

Small-Of CFAR (SO-CFAR) [6] reduces the target masking

problem selecting the smallest reference window, furthermore

when targets are placed in both reference windows, it gets

a reduction in terms of PD. Thus, with small number of

reference cells and homogeneous environment, its behavior

is worse than CA-CFAR and GO-CFAR techniques.

Other approach known as Variability Index CFAR (VI-

CFAR) is proposed in [7]. It is based on the CA-CFAR,

GO-CFAR and SO-CFAR techniques, and it provides a better

performance in both homogeneous and non-homogeneous

situations of clutter. VI-CFAR selects the group of reference

cells as leading half or lagging half of reference cells, or all the

available reference cells. Using this previous classification, this

CFAR technique provides lower CFAR losses in homogeneous

environment and robustness in non-homogeneous scene.

In this paper, CA-CFAR and VI-CFAR based detectors were

evaluated in a DVB-T PR urban scenario. Different windowing

techniques are used for estimating the background statistics:

• One-dimensional (1D) window: the reference window

extends along range or Doppler dimension.

• Two-dimensional (2D) window: independent detectors

using 1D reference windows along range and Doppler

dimensions were combined using the AND operator in

order to declare a target if and only if both detectors

have decided in favour of H1.

The real radar data analyzed in this paper were acquired by

a technological demonstrator developed under project IDE-

PAR (Improved Detection techniques for Passive Radars),

funded by the Spanish Ministry of Economy and Competitive-

ness (TEC2012-38701) [8]. This system is a passive bistatic

radar that uses Digital Video Broadcasting-Terrestrial (DVB-

T) transmitters as IoOs. The radar scenario was located at the

roof of the Polytechnic School (University of Alcalá), with

the objective of detecting terrestrial vehicles. Results confirm

that the VI-CFAR based detectors provides in passive radar

scenarios a higher probability of detection, controlling CFAR

losses and fulflling the PFA requirement, than the conventional

CA-CFAR solution.

II. IDEPAR DEMONSTRATOR: DVB-T PASSIVE RADAR

SYSTEM

A. IDEPAR Demonstrator Description

The IDEPAR (Improved Detection techniques for Passive

Radars) project is a technological demonstrator developed in

the Superior Polytechnic School of the University of Alcal,

funded by the Spanish Ministry of Economy and Competitive-

ness under project TEC2012-38701 [8]. The main objective

of this project is to carry out an intensive research in order

to improve the detection capabilities of passive radars, taking

into consideration the detection of aerial and terrestrial targets.

This system is a PR that uses a DVB-T transmitter as IoO,

in order to acquire real bistatic signals in the UHF (Ultra High

Frequency) band in a terrestrial radar scenario. The demonstra-

tor has been implemented using the basic architecture of a PR,

where the following components have been considered:

• Commercial antennas: one for the reference channel and

one for the surveillance one. These antennas have been

selected to have good gains, high return losses and high

front-to-back ratios for the frequency band under study.

• The receiving chain is composed of commercial daughter

boards, Analog-to-Digital Conversion (ADC) systems,a

synchronization unit, and the required drivers for storing

the acquired digitized samples in RAM (Random-access

memory) in real time.

• Signal processing stage: Different signal processing algo-

rithms have been implemented, in order to perform the

test and assessment of the hardware components. In this

work, the output of the CAF stage is analyzed to define

suitable statistical models for detector design.

The IDEPAR demonstrator has been designed to acquire

three consecutive channels to improve the system resolution.

The filtering, processing and detection stages have been imple-

mented off-line. In [8], more information about the IDEPAR

demonstrator such as reception and processing stages, or

system coverage and resolutions is detailed.
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Fig. 1. Radar scenario. Green area: area of interest with a beamwidth equal to 30◦ . Orange area: area of interest with a beamwidth equal to 60◦

B. Passive Radar scenario

The radar scenario was located at the roof of the Polytechnic

school of the University of Alcalá, with the objective of

detecting terrestrial vehicles. The Torrespaña transmitter was

selected as IoO after a complete study of the available IoOs

using WinProp software. In Figure 1 the Area of Interest (AoI)

defined by the 3dB beamwidth of the receiver antenna (30◦)

is depicted together with the AoI associated with a beamwidth

equal to 60◦. The Meco road and the R2 highway are marked

in brown and blue respectively. This scenario is characterized

by the presence of big buildings with metal structure and a

high traffic around them. In this paper, the data acquired on

February 13, 2014 were used in the analysis.

In the experiment, a set of 30 seconds acquisitions were

recorded. For each data acquisition, 120 range-Doppler matri-

ces were generated using the following processing parameters:

− PRI: 250 ms.

− Integration time: 250 ms.

− CAF size: 401 Doppler shifts, fd ∈ [−799.744; 799.744]

Hz and number of range bins equal to 1000 correspond-

ing to a coverage distance of 9.45 km in the pointing

direction.

In Figure 2, the normalized intensity (dB) of the output

of the CAF stage for the PRI 1 is shown. As we can see,

samples along range dimension for zero Doppler shift present

high power values due to the Direct Path Interference (DPI)

generated by the IoO, the ground clutter and the strong

radar echoes provided by the big buildings. In this Doppler

shift and the Doppler cells close to it, a non-homogeneous

environment is considered. The range-Doppler matrix was split

into different regions following a subjective criterion based

on mean level estimation and the target position (Figure 2):

Regions 1-A and 1-B correspond to high Doppler shift values

 
Range bin

D
o

p
p

le
r 

[H
z
]

 

 

200 400 600 800 1000

-800

-600

-400

-200

0

200

400

600

800 120

130

140

150

160

170

180

190

200

Region 1-A 

Region 2-A 

Region 2-B 

Region 1-B 

Region 3 

Fig. 2. Range-Doppler matrix of the recorded data

(fd ∈ [−799;−200] Hz and [200; 799] Hz respectively),

Regions 2-A and 2-B are the target areas (fd ∈ [−200;−40]
Hz and [40; 200] Hz respectively) and Region 3 contains the

zero Doppler shift (fd ∈ [−40; 40] Hz).

C. Case Study: Interference Statistical Analysis

For characterizing statistically the input of the radar detec-

tors and the radar scenario detailed in the previous section,

the Empirical Cumulative Distribution Function (ECDF) of

the samples at the output of the PR processing stage (CAF

matrix) was estimated and compared to those different theo-

retical distributions used in the radar literature to model the

overall amplitude and/or intensity of the radar data [9]. Non-

parametric tests such as the two-sample Kolmogorov-Smirnov

(KS-test2) and the two-sample Cramér-von-Mises (CM-test2)

criteria were applied to analyze the CDF applicability. Both

methods are based on the estimation of the distance between
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Fig. 3. ECDF and Exponential CDF for the intensity of the recorded data

the empirical and theoretical CDFs, which will be compared

to a threshold selected according to the significance level (the

probability to reject H0 when is true), α, and the samples sizes

[9].

For saving space, only the results obtained for one PRI

of only one acquisition was studied. The results can be

extended to the rest of acquisitions. The range-Doppler matrix

depicted in Figure 2 was analyzed, carrying out an independent

statistical analysis for each region.

In Table I, the theoretical distributions that fulfill the consid-

ered goodness-of-fit test with a 5% of the significance level

for the intensity of the recorded data are presented. Results

show that Regions 1 and 2 follow a Exponential distribution,

so a Gaussian clutter model is suitable. Because of that, a

Gaussian model with zero mean and an associated clutter

power pc = σ2 ≃ 1.063 ·10−6 for the in-phase and quadrature

components was considered to design the detection stage.

Due to PR systems provide a zero Doppler, a non-

homogeneous environment is considered in Region 3. This

zero Doppler line has a mean power pZD
c = 0.0046 for the

in-phase and quadrature components, almost 36 dB higher than

the clutter power associated with Regios 1 and 2. These results

can be checked in Figure 3, where the ECDF of the intensity

and the Exponential CDF for Regions 1-A, 2-A and 3 are

depicted.

In the considered radar scenario, terrestrial vehicles ap-

pear in the Regions 2-A and 2-B. The relationships between

target and clutter power can be described as the Signal-to-

Interference Ratio (SIR = 10 log
10
(ps/(pc + pn), where pn

is the noise power obtained using the Clutter-to-Noise Ratio,

CNR = 10 log
10
(pc/(pn)).

III. 1D CFAR TECHNIQUES IN HOMOGENEOUS AND

NON-HOMOGENEOUS INTERFERENCE BACKGROUNDS

A. Cell Averaged CFAR (CA-CFAR)

The objective of CFAR detector is to maintain constant

the false alarm probability even though noise and/or clutter

variations exist in the receptor. This technique produces a

threshold for each cell, adapting it against the noise and/or

clutter around itself [10]. The threshold is set on a cell-by-cell

basis, estimating interference statistics by processing a group

of reference cells close to the CUT. Guard cells at both sides

of the CUT are defined to avoid target echoes in the estimation

TABLE I
THEORETICAL MODELS THAT FULFILL THE GOODNESS-OF-FIT TESTS FOR

THE INTENSITY OF THE RECORDED DATA

Region
Intensity

Distribution Parameters

Region 1-A Exponential λ = 4.677 · 105

Region 2-A Exponential λ = 4.683 · 105

Region 3 * *

Region 2-B Exponential λ = 4.702 · 105

Region 1-B Exponential λ = 4.602 · 105

 

Fig. 4. CFAR detector general scheme

of the clutter parameters. In Figure 4, the general operating

scheme of CFAR detectors is presented, where:

• q0 is the Cell Under Test (CUT).

• [q1, q2, ..., qN ] are the reference cells.

• T is the multiplier factor fixed according to PFA require-

ments.

• Cell selection logic is the rule defined by the type of

CFAR detector.

• Tq is the adaptive threshold obtained by the product of

T and the output of the cell selection logic.

Depends on how the adaptive threshold is computed, there

are different CFAR detectors: Cell Averaging CFAR (CA-

CFAR), Greatest Of CFAR (GO-CFAR), Smallest Of CFAR

(SO-CFAR), Ordered Statistic CFAR (OS-CFAR) or Trimmed

Mean (TM-CFAR) [6]. More recently, the Mean-to-Mean

Ratio (MMR) test [11] and an Automatic Censored Cell
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Averaging (ACCA) CFAR detector have been proposed. Some

works dealing with fuzzy CFAR detector has been reported in

the literature [12].

The CA-CFAR (Cell-Averaged CFAR) is the most

widespread incoherent CFAR technique, whose thresholding

constant can be calculated using 2. This detector is optimal

under the assumption of independent and identically dis-

tributed samples with exponential probability density function

[13]. These conditions are fulfilled when the interference is

homogeneous white Gaussian noise (whose squared magnitude

is exponentially distributed). In this case, the size of the

reference window determines the noise power estimation error,

and as this size increases, the detection probability approaches

that of the optimum detector with a fixed detection threshold.

T = (PFA)
−1

N − 1 (2)

As the size of the reference cells increases, the PD ap-

proaches that of the optimum detector which is based on a

fixed threshold. In homogeneous clutter, the CFAR detector

requires a higher Signal to Interference Ratio (SIR) than the

fixed threshold detector, due to the estimation of the clutter

parameters using a set of N samples. This SIR increase is

known as CFAR losses [13]. This parameter is very important

for small values of N . On the other hand, big reference

windows can increase the probability of enclosing target

echoes, terrain returns (in coastal areas) or clutter returns from

areas too far from the CUT. So a compromise solution must

be determined, taking into consideration the characteristics of

the radar scenario and the system resolution.

CA-CFAR performance degrades when the assumption of

homogeneous reference window is violated. Different mod-

ifications have been proposed to overcome the problems

associated with non-homogeneous noise backgrounds. They

are intended for maintaining the desired PFA when in the ref-

erence window the variance of the exponential noise samples

changes (clutter edge) or there is any target. In all cases, the

only interference present at the input of the envelope detector

is assumed to be white Gaussian noise.

B. Variability Index CFAR (VI-CFAR)

Variability Index CFAR (VI-CFAR), proposed in [7], pro-

vides an adaptive threshold depending on the outcomes of the

Variability Index (VI) and the Mean Ratio (MR) hypothesis

tests achieving a good performance in both homogeneous and

non-homogeneous situations of clutter.

In Figure 5, the VI-CFAR block diagram is depicted. The

in-phase and quadrature (I and Q) signals are the entries of a

square-law envelope detector. Like in the CA-CFAR technique,

VI-CFAR method estimates the interference power in groups

of cells surrounding the CUT and divides the group of refer-

ence cells as leading half (window A) or lagging half (window

B) of reference cells. In this Figure, N + 1 samples which

correspond to N reference cells and a CUT (q0) and the guard

cells that are needed in order to prevent the reference cells

corruption due to target power in the CUT are also presented.

The adaptive threshold is computed as a constant multiply

by the background noise/clutter power estimation. VI-CFAR

 

Fig. 5. VI-CFAR block diagram

detector estimates this power using a group of reference cells,

in the same manner as CA-CFAR. The difference between

them is that VI-CFAR split all available reference cells in two

parts as commented, and decides between window A, B and

all cells combination (window A-B). Shifting the content of

the sample cells, VI-CFAR produces a decision for each CUT.

The statistic VI and the ratio MR are utilized by the VI-

CFAR to determine the clutter homogeneity in the reference

cells and select the best window or combination used for

noise/clutter power estimation, respectively.

The VI threshold, considered as a second-order statistic, is

computed for each window, leading (window A) and lagging

(window B) using equation (3), where X̄ is the arithmetic

mean of the n = N/2 cells in each half-window.

V I∗ = 1 +
σ̂2

µ2
= 1+

1

n
·

n∑

i=0

(Xi − X̄)2

X̄2
= n ·

i=1∑

n

X2

i

(
i=1∑

n

Xi

)2

(3)

VI value is compared to KV I threshold using the rule (4),

deciding if CUT is placed in a homogeneous (non-variable)

or non-homogeneous (variable) environment.

V I ≤ MR ≤ KV I ⇒ Nonvariable
V I > MR ≤ KV I ⇒ V ariable

(4)

The MR is defined as the mean values ratio in both windows

as shown in (5). Where
∑

i∈A Xi and
∑

i∈B Xi are the mean

values for A and B window, respectively. These values increase

when the presence of interfering target or clutter edge is placed

in the A or B window, respectively.

MR =
X̄A

X̄B
=

∑

i∈A

Xi

∑

i∈B

Xi

(5)

Decision rule expressed in (6) is used to decide if the means

in both windows halves are the same or different.
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TABLE II
SELECTION THE ADAPTIVE THRESHOLD FOR THE VI-CFAR DETECTOR

Decision
Window

Variable

Different

Means

VI-CFAR

Adaptive Threshold

1 None No CN ·

∑
AB

2 None Yes CN/2 ·max(
∑

A,
∑

B)

3 Leading - CN/2 ·
∑

B

4 Lagging - CN/2 ·
∑

A

5 Both - CN/2 ·min(
∑

A,
∑

B)

K−1

MR ≤ MR ≤ KMR ⇒ Same Means

MR < K−1

MR or MR > KMR ⇒ Different Means
(6)

VI-CFAR detector uses the outcomes of both VI and MR

hypothesis tests, for adapting the threshold as is shown in

Table II. The multiplier constant is either TN or TN/2 where

N corresponds to the number of reference cells in the complete

window. If either leading or lagging half window is selected,

the multiplier TN/2 is used. These values are computed using

equation (2) which is based on the number of reference cells

and the desired PFA.

The values KV I and KMR are chosen such that there is

a high probability that the hypothesis test outcomes in a ho-

mogeneous environment will decide that each half window is

non-variable and has the same mean as the other half reference

window, respectively. These probabilities could be written by

(7) and (8), where α0 is defined as the error probability of

classifying wrongly a homogeneous environment ranking as

variable, and β0 corresponds to the MR hypothesis test such

that the means in both half windows are classified as different

in a homogeneous environment. For reasonable performance

in a non-homogeneous clutter, α0 should be no larger than 5

to 10 times the desired PFA. In practice, typical values of β0

will not exceed 0.1 [7].

α0 = P [ V I > KV I |Homogenous Env.] (7)

β0 = 1− P [
1

KMR
≤ MR ≤ KMR|Homogenous Env.]

(8)

If the thresholds KV I and KMR increase, VI-CFAR gives

a higher probability of making a correct decision when the

environment is homogeneous but it decreases in terms of

sensitivity for detecting non-homogeneous environments. The

VI-CFAR detector presents also CFAR losses due to the use of

a set of N samples to estimate the clutter background. The VI-

CFAR technique provides slightly higher CFAR losses in ho-

mogeneous environments and robustness in non-homogeneous

backgrounds.

TABLE III
ESTIMATED KV I AND KMR VALUES FOR A DESIRED PFA = 10−5 IN

THE CASE STUDY (pc = 1.0630 · 10−6 , α0 = 3.3 · 10−5 AND β0 = 0.08).

N = 8 N = 16 N = 32 N = 64

KV I 3.874 5.754 6.174 5.236

KMR 3.746 2.472 1.876 1.556

C. Minimum required SIR in homogeneous and non-

homgeneous scenarios

For evaluating the detection capabilities of the both detec-

tors under study, detection curves (PD vs SIR for a desired

PFA) were estimated assuming the following considerations:

• N = {8, 16, 32, 64} reference cells were analyzed.

• PFA = 10−5 was selected.

• Montecarlo simulations were performed, guaranteeing

an estimation error lower than 10% (105 samples were

generated).

• According to the statistical analysis carried out in sec-

tion II-C, Gaussian clutter samples with pc ≃ 1.063·10−6

for the in-phase and quadrature components was consid-

ered. A Clutter to Noise Ration (CNR) equal to 20 dB is

assumed to generate the interference signal without loss

of generality.

• The extended Swerling II model was used to model the

CUT as point target echoes acquired by passive radars

[14]. SIRs ranging from 0 dB to 30 dB are studied.

• For the VI-CFAR detector, KV I and KMR parameters are

estimated using Montecarlo simulations and the expres-

sions (7) and (8), respectively. In Table III, the estimated

values for the different number of reference cells are

summarized, assuming α0 = 3.3 · 10−5 and β0 = 0.08
(values recommended in [7]).

Two different data sets were generated in order to ana-

lyze the detection performance under homogeneous and non-

homogeneous environments:

• Data set 1 - Homogeneous clutter: the pattern is a

matrix (65x105) containing 64 reference cells generated

assuming Gaussian clutter samples with pc uniformly

distributed and CNR = 20 dB, and a CUT generated

under H1 hypothesis with SIR belonging to [0, 30] dB.

In figure 6(a), the intensity of the data set 1 is presented.

• Data set 2 - Non-homogeneous clutter: as in the previous

data set,the pattern is a matrix (65x105) containing 64

reference cells and the CUT generated assuming H0 and

H1 hypothesis. In this case, the 43th cell were replaced

by a Gaussian clutter with pc = 0.0046 and CNR = 20
dB in order to generate a non-homogeneous environment

similar to typical radar-doppler maps of PR systems. In

figure 6(b), the intensity of the data set 2 is depicted.

In Figure 6, the red, purple, orange and blue rectangles

corresponds to N = 8, 16, 32, 64 reference cells, respectively.

In the non-homogeneous simulation (Figure 6(b)), reference

cells equal to 32 and 64 includes the clutter samples with

higher clutter power that can lead to an over-estimation of the

adaptive threshold in the considered CFAR detectors.
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Fig. 6. Data sets generated to analyze the CFAR detection performance. Red: N = 8. Purple: N = 16. Orange: N = 32. Blue: N = 64
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Fig. 7. Detection curves for PFA = 10−5 in homogeneous clutter. Solid
line: CA-CFAR detector. Dash line: VI-CFAR detector

In Figures 7 and 8, the estimated detection curves for

Data set-1 and Data set-2 are depicted, respectively. In a

homogeneous environment, CA-CFAR and VI-CFAR detec-

tors present similar detection performances. In both cases,

as the number of reference cells increases, the CFAR losses

decreases. VI-CFAR presents worse detection capabilities due

to probability of making a decision distinct from 1 (Table II),

where the number of reference cells used to estimate the

adaptive threshold is reduced to N/2, so the CFAR losses

are higher than the CA-CFAR basic detector. In the non-

homogeneous environment, Figure 8(a) shows the N = 8
and N = 16 reference cells performance, where the reference

window is composed of homogeneous interference samples

(red and purple rectangles in Figure 6(b)). As we expect,

CA-CFAR and VI-CFAR detectors provide same detection

capabilities as in the homogeneous environment. However, in

Figure 8(b), detection curves for N = 32 and N = 64 (orange

and blue rectangles in Figure 6(b)) show the robustness of the

VI-CFAR against non-homogeneous conditions, maintaining

the detection capabilities.

TABLE IV
SIR REQUIRED FOR PD = 80% AND PFA = 10−5 IN HOMOGENEOUS

ENVIRONMENT

N = 8 N = 16 N = 32 N = 64

CA-CFAR Detector 20.6 dB 18.7 dB 17.9 dB 17.4 dB

VI-CFAR Detector 21.3 dB 19.1 dB 18.1 dB 17.6 dB

TABLE V
SIR REQUIRED FOR A PD = 80% AND PFA = 10−5 IN

NON-HOMOGENEOUS ENVIRONMENT

N = 8 N = 16 N = 32 N = 64

CA-CFAR Detector 20.6 dB 18.7 dB > 30 dB > 30 dB

VI-CFAR Detector 21.3 dB 19.1 dB 18.8 dB 17.9 dB

In Tables IV and V, the minimum SIRs required for PD =
80% and PFA = 10−5 in homogeneous and non-homogeneous

conditions are summarized. As we can see, CA-CFAR and VI-

CFAR detectors provide similar detection capabilities when

homogeneous interference is considered. However, for N =
32 and N = 64 in non-homogeneous environment, the CA-

CFAR detector performance decreases significantly (for N =
32 and SIR = 30 dB, the PD is equal to 33.55%. Under same

conditions, for N = 64 and SIR = 30 dB, the PD is equal

to 53.60%).

As a compromise solution between CFAR loss and CUT-

reference cells distance and taking into consideration the

characteristics of the radar scenario and the system resolution,

N = 32 is selected to estimate the clutter background and the

adaptive threshold in the considered radar detectors.

IV. EXPERIMENTAL RESULTS

A. CFAR Techniques in a simulated scenario

In this paper, different windowing techniques were con-

sidered for estimating the background statistics in the CFAR

techniques:

• 1D Range CFAR detectors: the reference window extends

along range dimension. The clutter power estimation can
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Fig. 8. Detection curves for PFA = 10−5 in non-homogeneous clutter. Solid line: CA-CFAR detector. Dash line: VI-CFAR detector

lead to false alarms due to strong returns, spread over

Doppler dimension, associated with IoOs multipath.

• 1D Doppler CFAR detectors: the reference window ex-

tends along Doppler dimension. This solution can present

false alarms associated with clutter echoes presented

along range dimension for zero Doppler shift due to DPI

and big metal buildings. In addition, these high returns

can increase the estimated CFAR threshold and can mask

targets with low Doppler values.

• 2D Range & Doppler CFAR: the combination of the

outputs generated by both detectors has been considered

to improve the detection performance. The AND logical

operation has been applied in order to declare a target

if and only if the target has been declared previously by

both detectors.

Simulated scenario was considered to evaluate the 2D Range

& Doppler CA-FAR and VI-CFAR using the characteristics

of the radar scenario described in Section II-B and the clutter

statistical parameters estimated in Section II-C maintaining a

ratio of almost 36 dB between mean clutter power of Zero

Doppler line and the Regions 1 and 2. Two Swerling II model

targets with a SIR of 19 dB, associated to a PD higher than

80% for PFA = 10−5 with 32 reference cells (Tables IV and

V), were also simulated and represented in Figure 9. Target 1 is

centered in 100th range cell with -40 Hz Doppler and Target 2

is centered in 200th range cell with -180 Hz Doppler. N = 32
reference cells were considered in both dimensions.

Figure 10 presents the detection results provided by 2D

Range & Doppler CA-CFAR detector where the bottom figures

correspond to zoomed areas of the Range-Doppler detection

maps centered on the targets location. Although 1D Range

CFAR scheme is able to detect both targets (Figure 10(d)), the

target 1 is miss-detected by the 1D Doppler CFAR solution

(Figure 10(e)) and consequently by the 2D Range & Doppler

CFAR one (Figure 10(f)). This behavior is explained taking

into consideration that target 1 is located in the blind area of

the 1D Doppler CFAR associated to the considered reference

cells (N = 32) and the estimated threshold when range cells
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Fig. 9. Simulated Range-Doppler map with two Swerling II targets

of zero Doppler shift are included in the reference ones.

In Figure 11 the detection improvement associated with VI-

CFAR based detectors is presented. As the VI-CFAR can adapt

the threshold estimation in function of the homogeneity of the

clutter in the reference cells, target 1 is also detected with the

1D Doppler CFAR scheme (Figures 11(b) and 11(e)). Then

2D Range & Doppler VI-CFAR detector (Figure 11(f)) clearly

outperfoms 2D Range & Doppler VI-CFAR one (Figure 10(f)).

B. CFAR Techniques in DVB-T passive radar real data

In this Section CA-CFAR and VI-CFAR based detectors are

evaluated using real data acquired by IDEPAR demonstrator

described in Section II. Results are presented as the superim-

position of the detector outputs in the 120 PRIs (acquisition

time equal to 30 sec.). This superimposition allows the visual

estimation of the targets trajectory, and displays all the false

alarms detected through all PRIs.

To estimate PFA and PD , ground-truths at the output of

the detector are required, but due to the complex nature of the

electromagnetic back propagation process, targets dynamics

and radar system, the real ground-truth is not available. Using

the methodology described in [8], a ground-truth was gener-

ated for each CFAR detector using GPS data of cooperative

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 347



Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

200 400 600 800 1000

−800

−600

−400

−200

0

200

400

600

800

(a) 1D Range CFAR

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

200 400 600 800 1000

−800

−600

−400

−200

0

200

400

600

800

(b) 1D Doppler CFAR

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

200 400 600 800 1000

−800

−600

−400

−200

0

200

400

600

800

(c) 2D Range & Doppler CFAR

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

100 120 140 160 180 200

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Target 2

Target 1

(d) 1D Range CFAR (Zoomed area)

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

100 120 140 160 180 200

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Target 1

Target 2

(e) 1D Doppler CFAR (Zoomed area)

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

100 120 140 160 180 200

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Target 2

Target 1

(f) 2D Range & Doppler CFAR (Zoomed
area)

Fig. 10. Considered CA-CFAR techniques applied to the simulated scenario

vehicles and visual information about non-cooperative targets

present in Meco road during the acquisitions. For estimating

the PFA, target and big buildings contributions in the range-

Doppler map were removed. Montecarlo techniques were

applied, guaranteeing an estimation error lower than 10%.

In [8] detection and tracking capabilities of the IDEPAR

demonstrator were verified. The considered detection schemes

were based on 1D Range, 1D Doppler and 2D Range &

Doppler CA-CFAR techniques. In order to avoid the blind

area associated with CA-CFAR based solutions the number

of reference cells in the Doppler dimension were very small

(N = 8) at expense of higher CFAR losses and decreasing

the detection probability. Figure 12 confirms the CA-CFAR

problem of detecting targets with low Doppler values.

2D Range & Doppler VI-CFAR is able to improve the

detection capabilities in the whole Range-Doppler map using

reference windows with size enough to control the CFAR

losses. The main advantage is that this scheme allows the

determination of non-homogeneous areas in both dimensions.

In Figure 13 the homogeneity decisions for PRI 1 are depicted

where the meaning of the decision values are described in

Table II. Clutter in range dimension is homogeneous with vari-

ation of clutter power means at both sides of CUT. Decisions

in Doppler dimension are clearly characterized by the Zero

Doppler line, making the decision 4 when leading (down) ref-

erence window included the Zero Doppler line and estimating

clutter power of lagging (up) reference window and making the

decision 3 when lagging (up) homogeneous reference window

included the Zero Doppler line and estimating clutter power

of leading (down) homogeneous reference window.

2D Range & Doppler VI-CFAR detection performance is

presented in Figure 14. Results show that the target trajectories

are better defined even for low values of Doppler shift and the

TABLE VI
PFA AND PD OBTAINED BY LR AND MLP DETECTORS WITH REAL

BISTATIC RADAR DATA.

PFA PD

CA-CFAR AND Detector 8.652 · 10−6 49.52%

VI-CFAR AND Detector 8.573 · 10−6 67.65%

big metal buildings are also detected. Table VI confirms the

suitability of the proposed VI-CFAR based detector in DVB-T

passive radar scenarios providing a PD much higher than that

associated with CA-CFAR based solutions, fulfilling the PFA

requirements.

V. CONCLUSION

CFAR detectors were designed and evaluated in non-

homogeneous DVB-T passive radar scenarios. In PR, the

processing stage provides the CAF that generates the range-

Doppler maps or inputs to the detector. These maps are char-

acterized by strong values in the range cells with zero Doppler

shift. In addition, in a radar scenario can be present multiple

interfering targets resulting non-homogeneous backgrounds.

Conventional radar detection schemes are based on CFAR

techniques to maintain the desired PFA at a constant level in

spite of clutter parameters variations. The CA-CFAR is the

most widespread incoherent CFAR technique. The detection

performance depends on the number of reference and the

estimation error of the clutter statistics. As the reference

window size decrease, CFAR losses are increased or the

required SIR to maintain a given PD is increased. CA-CFAR

detector is optimal under the assumption of homogeneous

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 10, 2016

ISSN: 2074-1308 348



Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

200 400 600 800 1000

−800

−600

−400

−200

0

200

400

600

800

(a) 1D Range CFAR

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

200 400 600 800 1000

−800

−600

−400

−200

0

200

400

600

800

(b) 1D Doppler CFAR

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

200 400 600 800 1000

−800

−600

−400

−200

0

200

400

600

800

(c) 2D Range & Doppler CFAR

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

100 120 140 160 180 200

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Target 1

Target 2

(d) 1D Range CFAR (Zoomed area)

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

100 120 140 160 180 200

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Target 2

Target 1

(e) 1D Doppler CFAR (Zoomed area)

Range bin

D
op

pl
er

 s
hi

ft 
(H

z)

100 120 140 160 180 200

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Target 2

Target 1

(f) 2D Range & Doppler CFAR (Zoomed
area)

Fig. 11. Considered VI-CFAR techniques applied to the simulated scenario
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Fig. 12. 2D Range & Doppler CA-CFAR detector applied to the real data acquired by IDEPAR demonstrator
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Fig. 13. VI-CFAR homogeneity determination
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Fig. 14. 2D Range & Doppler VI-CFAR detector applied to the real data acquired by IDEPAR demonstrator

interference, but CA-CFAR performance is degraded when this

assumption is not fulfilled.

VI-CFAR was proposed to present robustness in homo-

geneous and non-homogeneous situations of clutter using

the outcomes of the VI and the MR hypothesis tests. This

combination provides slightly higher CFAR losses than CA-

CFAR one for the same number of reference cells in homo-

geneous clutter however the detection performance is clearly

outperformed in non-homogeneous scenarios.

Different CA-CFAR and VI-CFAR techniques were de-

signed:

• 1D Range CFAR detectors: the reference window extends

along range dimension.

• 1D Doppler CFAR detectors: the reference window ex-

tends along Doppler dimension.

• 2D Range & Doppler CFAR: independent detectors using

1D reference windows along range and Doppler dimen-

sions were combined using the AND operator in order to

declare a target if and only if both detectors have decided

in favour of H1.

The considered CFAR detectors were evaluated in a simu-

lated and real passive radar scenarios. The case study corre-

sponds to a measurement campaign carried out with the IDE-

PAR demonstrator, a DVB-T PR system. The radar scenario

was located at the roof of the Polytechnic School (University

of Alcalá), with the objective of detecting terrestrial vehicles.

The simulated scenario was generated using the same clutter

parameters as the real one with two Swerling targets with a

SIR that guarantee a PD higher than 80% for PFA = 10−5.

Results for CA-CFAR based solutions reveal a blind area

where targets with low values of Doppler shift are miss-

detected associated with the presence of the high power values

of range cells with zero Doppler shift in the reference windows

extended along the Doppler dimension.

Results provided by 2D Range & Doppler VI-CFAR con-

firm the suitability of this detector in non-homgeneous back-

grounds. The detection capability is very much better than

the CA-CFAR detection performances. The main contribution

of the considered 2D Range & Doppler VI-CFAR is the

decision maps in function of VI and MR values that allows

the capability of determining non-homogeneous areas in both

dimensions and estimating the adaptive threshold to provide

good detection probabilities controlling the CFAR losses.
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