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Abstract  

Land use and land cover changes (LULC) result in alterations to landscape structure, with 
particularly significant consequences in the landscapes of coastal basins due to their unique 
characteristics and special sensitivity. The aim of this work was to introduce a new methodology 
to assess the impacts of LULC transitions on landscape structure in a coastal basin of the Los 
Ríos Region in Chile. Changes in landscape patterns were assessed by analysing systematic 
transitions in conjunction with moving windows landscape metrics and spatial cluster analysis. An 
index measuring the impact of transitions on landscape structure change (ITSC) was calculated 
to assess the degree to which each systematic transition contributed to the spatial cluster of 
landscape change. The proposed method showed that transitions resulting from the replacement 
of native forest and especially those which involve its transformation into forestry plantations, 
have the greatest potential impact on landscape structure in the basin. Therefore, planning and 
management measures must be established to prevent such transitions, so avoiding a massive 
change in landscape structure. 

Keywords: Moving windows, spatial landscape metrics, LULC, systematic transitions, Land use 
planning, Forest plantation 
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Introduction.  1 

Land Use and Land Cover Change (LULCC) are some of the leading spatial measures of global 2 
change (Grimm et al., 2008). Generally, these changes impact on complex landscapes and socio-3 
ecological systems affecting the provision of ecosystem services and human wellbeing (García-4 
Llamas et al., 2019; Hermann et al., 2011). For this reason, LULCC has been widely studied over 5 
the past decades, and an extensive body of literature has been produced. This focuses 6 
particularly on how LULCC affects landscape structure, including i) landscape composition 7 
(number and quantity of land use/cover classes); and ii) landscape configuration (the spatial 8 
relations between the different elements that make up the landscape) (Aguilera-Benavente et al., 9 
2014; Botequilha-Leitão & Diáz-Varela, 2018).  10 

As regards landscape composition, many studies have focused on quantifying LULCC transitions. 11 
In most of them, the only transitions considered relevant for further analysis are those 12 
representing an area of high landscape change (Arowolo & Deng, 2018; Peña-Cortés et al., 13 
2021). However, relevant transitions can also be defined according to how much change has 14 
actually occurred in the transition area, as compared to the change expected according to its 15 
proportion of total LULCC in the study area as a whole (Pontius et al., 2004). To address this, the 16 
relative sizes of the LULC classes are incorporated into the analysis to define the expected 17 
change values for each transition (Bonilla-Bedoya et al., 2014; Galletti et al., 2016). The 18 
transitions showing higher or lower values of change than expected are called “systematic 19 
transitions”.  20 

Research into landscape structure has generally tried to characterize changes using landscape 21 
metrics based on the patch matrix model (PMM) (Aguilera et al., 2011; Hermosilla-Palma et al., 22 
2021; Wu et al., 2011). These metrics have been used to quantify features such as fragmentation, 23 
dispersion, shape, and heterogeneity. However, the discrete nature of the PMM and the global 24 
values of landscape metrics (class or landscape level) fail to capture the continuous spatial 25 
heterogeneity of spatial patterns at different scales (Cushman & Landguth, 2010).  26 

A possible alternative approach involves the gradient-based model (Cushman & Landguth, 2010; 27 
Lausch et al., 2015), which uses spatial landscape metrics implemented by a moving window 28 
technique (Hagen-Zanker, 2016). The moving window allows a continuous representation of the 29 
landscape to be obtained from categorical data. This method produces an image with a single 30 
metric value for each pixel, both at class (e.g. percentage of the landscape: PLAND) and 31 
landscape level (e.g. Shannon diversity index: SHDI; heterogeneity) (Díaz-Varela et al., 2009; 32 
Diaz-Varela et al, 2016). Consequently, the spatially explicit nature of these landscape metrics 33 
provides the spatial dimension needed to integrate the study of changes in landscape structure 34 
into land use planning (Lausch et al., 2015) and allows these to be combined with other methods 35 
of spatial analysis, such as map algebra, LULCC analysis, and spatial statistics.  36 

However, little research has been done on the detection of changes in landscape structure using 37 
moving window landscape metrics. Some of the existing studies apply moving window metrics to 38 
assess patterns of urban growth using different window sizes (Wang et al., 2021); or changes in 39 
landscape structure in cities by comparing spatial metrics over time (Lv et al., 2018). Moving 40 
windows have also been applied to characterize spatial patterns for land use and transportation 41 



planning (Soria-Lara et al., 2016), and to assess the degree to which landscape structure can 42 
determine habitat suitability and resistance patterns for species in rural landscapes (Ducci et al., 43 
2015). Another area of application of spatial metrics is the identification of homogeneous areas 44 
by analyzing landscape structure at different scales (Botequilha-Leitão & Diaz-Varela, 2018) or 45 
by heterogeneity assessment (Diaz-Varela et al, 2016). However, none of these studies have 46 
integrated land use transitions analysis with moving windows techniques to spatially assess 47 
changes in landscape structure. A method with these characteristics could provide insights to help 48 
identify the transitions with the greatest impact in terms of the changes they make to landscape 49 
structure. The identification of those transitions would be a valuable information for spatial 50 
planning, especially in South America where massive changes in landscape structure have 51 
occurred throughout the continent (Song et al., 2018). 52 

In this regard, Chile is a good example of such changes, with huge transformations in the 53 
landscape due to the expansion of forest plantations, agriculture, and urban areas (Miranda et al., 54 
2017). Even though these land uses may have contributed to economic growth (Lebdioui, 2019), 55 
they have also had a number of negative environmental and social impacts, such as impairing 56 
the quality of water supply (Lara et al., 2009) and habitats (Hermosilla-Palma et al., 2021). In 57 
these cases, spatially explicit landscape metrics can be used together with systematic transitions 58 
to identify those LULC transitions with the greatest impact on landscape structure (diversity, 59 
heterogeneity, etc). This could be even more important in the coastal basins of the regions of La 60 
Araucanía and Los Ríos (Chile) where the expansion in forest plantation in recent decades has 61 
produced massive LULCC (Miranda et al., 2017; Peña-Cortés et al., 2006, 2021).  62 

Within this framework, this paper proposes a new methodology to assess which LULC transitions 63 
make the greatest contributions to landscape structure change. This research question was 64 
complemented with the following objectives: 65 

i) To analyse LULCC dynamics in the coastal basin of the Lingue River (Los Ríos 66 
Region, Chile), over the period 1987-2009, so as to detect systematic transitions.  67 

ii) To characterize changes in landscape structure using spatial landscape metrics 68 
(through moving windows) and map changes considering four dimensions of 69 
landscape structure (diversity, naturality, contrast and juxtaposition). 70 

iii) To quantify the contribution made by each systematic transition to changes in 71 
landscape structure, identifying whether that contribution was greater than expected 72 
according to its percentage share of all the LULCC in the study area. 73 

iv) To take the results of the analysis into account as regards their implications for future 74 
regional plans in Southern Chile. 75 

2. Materials and methods. 76 

2.1. Study area.  77 

The study area encompasses the Lingue River Basin, located in the coastal zone of the Los Ríos 78 
Region, between 39° 00' and 39° 30' South, and 72° 45' and 73° 30' West (Figure 1). The Lingue 79 
River Basin has an area of 69,144 ha and for administrative purposes is part of the county of 80 
Mariquina. The basin is characterized by landforms such as mountain ranges, marine erosion 81 
platforms and extensive fluvial-marine plains. According to Di Castri & Hajek (1976), the climate 82 



is predominantly oceanic with Mediterranean influence, and has an average annual precipitation 83 
of between 1200 mm and 1600 mm. During the colonial period, and especially since the late 19th 84 
century, the native forest has been extensively deforested, due to timber extraction, land 85 
clearance for agriculture, and livestock farming (Peña-Cortés et al., 2020). At the start of the 20th 86 
century, extraction of native timber and expansion of agriculture were the main change factors 87 
(Peña-Cortés et al., 2020). However, since the late 1970s, state-based subsidies for afforestation, 88 
largely with exotic species (Eucalyptus spp., and Pinus spp.), have led to substantial changes in 89 
the landscape in central and south-central regions of Chile (Miranda et al., 2017), an area that is 90 
particularly vulnerable to changes of this kind due to the lack of any specific land use management 91 
plan or any protected areas. 92 

2.2. Land use/cover data. 93 

The Land Use / Land Cover (LULC) maps of the Lingue river basin were generated by supervised 94 
classification of two LANDSAT 5 images using TerrSet software, path 233, row 087, for the years 95 
1987 and 2009, downloaded from the United States Geological Survey (USGS). Images free of 96 
clouds were selected for the summer. The initial image selected (LANDSAT 5 TM 233/087 97 
February 1987) was the oldest image available from a TM sensor for the study area. The final 98 
image was selected for 2009 (LANDSAT 5 TM 233/76 February 2009). The resulting 22-year 99 
period was that of greatest expansion of exotic forest plantation ever reported in the country 100 
(Miranda et al., 2017). Atmospheric effects were corrected on both images using the dark pixel 101 
method (Chavez, 1996). The training and validation sites were identified through high-resolution 102 
aerial images (SAF; 1m resolution, and SPOT 6; 6m resolution), data from the official Chilean 103 
Cadastral of Vegetation Resources (1997, 2007) and Google Earth. Classifications were 104 
generated using the maximum likelihood algorithm obtaining eleven classes: Old-growth Native 105 
Forest (Og-NF), Second-growth Native Forest (Sg-NF), Shrubland (Sland), Exotic Forest 106 
Plantation (EFP), Young/Harvested Exotic Forest Plantation (YH-EFP), Grassland (Gland), 107 
Agricultural land (Aland), Wetlands (Wet), Beaches and Dunes (B&D), Water (Wat), and Urban 108 
areas (Urb). Finally, LULC maps were validated using an error matrix (see supplementary 109 
material), so obtaining an overall accuracy of over 85% (Foody, 2008). Figure 1 shows the results 110 
of the classification process. 111 

[insert figure1] 112 

2.3. Methodology. 113 

The aim of this study was to determine the contribution made by LULC transitions to changes in 114 
the landscape structure (Figure 2) by proposing a new methodology that measures the 115 
contribution of each LULC transition to structural landscape change through a new index 116 
measuring the impact of transition on landscape structure change (ITSC index). To achieve this 117 
objective, our methodology applies the procedure for analysing systematic LULC transitions 118 
proposed by Pontius et al (2004);  spatially explicit measures of landscape structure through 119 
moving window spatial metrics (Frazier & Kedron, 2017) and spatial cluster analysis (Anselin 120 
et al., 2021). The methodology can be divided into four main steps: a) Analysis of LULCC in the 121 
study area, including the identification of systematic transitions (Pontius et al., 2004) b) Analysis 122 
of the landscape structure using spatial landscape metrics c) Assessment of changes in the 123 
landscape structure;  d) Evaluation of the relationship between systematic LULC transitions and 124 
changes in the landscape structure by measuring the impact of these transitions on landscape 125 
structure change (ITSC index) (see section 2.3.5). 126 



 127 

[insert figure 2] 128 

 129 

 2.3.1. Analysis of land use and land cover changes between 1987 and 2009.  130 

The quantity and location of LULCC was obtained by cross-tabulation of the classifications for 131 
1987 and 2009, using the crosstab function in the Terrset software (Figure 2A). From the change 132 
matrix, the systematic LULC transitions were identified according to the method suggested by 133 
Pontius et al. (2004). This method states that transitions can be branded as “systematic” when 134 
gains and losses of LULC categories are higher than would be expected in line with its percentage 135 
share of total LULCC in the study area. To identify systematic transitions in this way, the first 136 
stage is to determine the reference gains and losses for LULC. The difference between the real 137 
change and the expected change, divided by the expected change will then give us a ratio 138 
analogous to the ratios that form the basis of chi-square tests (equation 1): 139 
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				                                           (1) 140 

According to Pontius et al. (2004), the transitions in which the ratio > 0 can be defined as 141 
systematic, meaning that they occur due to the selective replacement of some pre-existing LULC. 142 
Finally, an image was generated showing all the systematic transitions (see Figure 2 A).  143 

2.3.2. Landscape pattern analysis through moving window landscape metrics.  144 

The analysis of landscape structure was based on the selection of some of the seven universal 145 
landscape structure components proposed by Cushman (Cushman et al., 2008).  Of these seven 146 
components, we chose three, i.e. contagion/diversity, edge contrast and interspersion (mixture), 147 
so as to represent spatial processes of importance for spatial planning, such as landscape 148 
homogenization (Aguilera et al., 2011; Botequilha Leitão & Ahern, 2002). One single metric was 149 
chosen to represent each of these components (Aguilera-Benavente et al., 2014; Cushman et al., 150 
2008) from a large set of highly correlated metrics to quantify each landscape component 151 
(Aguilera-Benavente et al., 2014; Cushman et al., 2008). As a result, three well-known, commonly 152 
used landscape metrics were selected on the basis of their simple, user-friendly interpretation: i) 153 
Shannon's Diversity Index (SHDI); ii) ECON_MN for edge contrast and iii) The IJI Index for 154 
intersection and juxtaposition (a detailed description of the metrics can be found in the 155 
supplementary material). All these metrics were calculated through moving windows and provided 156 
a spatially explicit representation of landscape structure according to the landscape gradient 157 
model (Lausch et al, 2015; Hagen-Zanker, 2016). 158 

An additional metric measuring the naturality of the landscape was also applied. This involved a 159 
naturality index (see supplementary material) which calculates the naturality of each point of the 160 
landscape according to the surrounding LULC. To spatially represent this concept, an image was 161 
generated based on the moving windows calculation of PLAND, which represents the percentage 162 
of each LULC relative to the total landscape area. Using this method, 11 images were obtained, 163 
one for each LULC. The images were then combined through a weighted sum using the naturality 164 
value assigned to each LULC. These naturality values were defined on the basis of an 165 
assessment of the naturality of the LULC classes as described by the Chilean Forestry Agency 166 
(CONAF). This assessment was carried out by 9 academic experts using the Delphi method. The 167 



naturality values assigned to each LULC range from 0 to 1, where 0 indicates the lowest naturality 168 
value (e.g., urban areas) and 1 the highest naturality value (e.g., Old-growth Forest) (see 169 
supplementary material).  170 

In a similar way, to estimate the ECON_MN, we assigned values of between 0 and 1 to each pair 171 
of LULC categories, according to the degree of thematic similarity between the categories (see 172 
supplementary material for the contrast matrix). In this way, a high contrast value was given to 173 
pairs of LULC categories with very different ecological characteristics (e.g., Og-NF and Urb; Wet 174 
and EFP), while low contrast values were given to pairs with similar characteristics (e.g., EFP and 175 
YH-EFP). Hence, this metric highlights areas of high naturality which are subject to high levels of 176 
anthropogenic pressure.  177 

2.3.3. Moving window size estimation. 178 

When using a moving window to obtain spatial landscape metrics, one important challenge is to 179 
determine the most suitable window size for the calculation, given the scale dependence of the 180 
results. According to Diaz-Varela et al. (2009), the most suitable window size can be determined 181 
by comparing the dissimilarity (S) between images of the SHDI metric for different window sizes. 182 
Dissimilarity (S) can be obtained for each window size according to equation 2.  183 

𝑆𝑖 = 53#,*50
670

                (2) 184 

where: Mmax is the mean of the metric for the biggest window size considered; Mi is the mean of 185 
the metric for the window size in question, and SDi is the standard deviation of the metric for 186 
window i. 187 

A gradual decrease in the value of S is to be expected as window size increases. Increasing the 188 
window size when calculating the metric will therefore result in a reduction in the amount of 189 
information provided, until it reaches the point that the metric becomes independent of scale 190 
(Díaz-Varela et al., 2009). To find this threshold, the gradient of S (pi) needs to be calculated 191 
between each pair of window sizes using equation 3: 192 

𝑝𝑖 = ∆60
∆90

− 1                 (3) 193 

Where ∆𝑆𝑖 is the percentage increase in S with respect to the maximum value of S, and ∆𝑊𝑖 is 194 
the percentage increase in window size with respect to the maximum size value. 195 

Therefore, when pi > 0 the moving window only detects local effects, which are highly scale-196 
dependent and can therefore be identified as the local scale; however, when pi < 0, the 197 
heterogeneity of the landscape becomes independent of window size. Some authors refer to this 198 
as a “second domain” or mesoscale (Díaz-Varela et al., 2009) and propose it as the most 199 
appropriate scale for analysing landscape structure.   200 

2.3.4. Landscape pattern change.  201 

The changes in landscape structure for each dimension (SHDI, ECON_MN, IJI and Naturality) 202 
were obtained for the Lingue basin by calculating the difference between spatial landscape 203 
metrics using map algebra. As a result, four raster images were obtained to represent the 204 
differences between the pairs of images for each spatial landscape metric (see Figure 2B). A  205 
LISA test (Local Indicator of Spatial Association) was then performed using the GEODA software 206 
(Anselin et al., 2021) on each of the four images indicating the changes in landscape structure. 207 



The LISA test was carried out using the queen contiguity weights calculation (pvalue=0.05 and 208 
999 permutations). The test allowed us to identify cluster zones from values showing high spatial 209 
autocorrelation. In this way, we were able to identify highly autocorrelated zones with high or low 210 
values (++ / --) for each metric, and zones of no significance. As a result, we obtained four maps 211 
showing the areas (spatial clusters) with highly correlated values of landscape structure change 212 
(positive or negative) for each landscape metric (Figure 2C). 213 

 214 
2.3.5. LULC transitions with the greatest impact on landscape structure change: ITSC index.  215 
 216 
This paper aims to test whether some LULC transitions have a greater impact on landscape 217 
structure than might be expected according to their proportion of LULC change (e.g., a LULC 218 
transition which accounts for 10% of the systematic change across the landscape may account 219 
for 40% of the areas with high diversity loss, which means that the transition has a higher impact 220 
than expected on structural landscape change). To explore this question, the total number of 221 
pixels corresponding to each systematic transition inside each spatial cluster (frequency) was 222 
compared with the expected number of pixels estimated according to the percentage of the total 223 
area of systematic transitions occupied by that specific transition (reference values). To do so, we 224 
began by obtaining the number of pixels in each transition in each spatial cluster using map 225 
algebra. This was then compared with the expected number of pixels (reference values) included 226 
in each cluster according to the proportion of LULC change represented by each transition. 227 

The reference values can be computed using expression 4, in the same way as the reference 228 
values for systematic transitions were computed in section 2.3.1:  229 

𝑅𝑒𝑓0: =	
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      (4) 230 
 231 

Finally, the real number of pixels for each systematic transition inside the spatial clusters was 232 
compared to the reference values. In this way, we obtained a measure of the impact of that 233 
transition on landscape structure change (ITSC index). This index was calculated using 234 
expression (5), in which the difference between the real number of pixels in transition i in cluster 235 
j and the reference values, is divided by the reference values. The outcome is a ratio analogous 236 
to the ratios used in chi-square tests.  237 

𝐼𝑇𝑆𝐶0: =
B0,"$4	>21	.1#(40.02(	0	2(	&$<4."1	:	*!">!"

!">!"
                                              (5) 238 

 239 
The index was estimated for each systematic transition within the spatial cluster of positive (C+, 240 
gain) or negative (C-, loss) change for each landscape component (diversity, edge contrast, 241 
juxtaposition and naturality).  242 

If 𝐼𝑇𝑆𝐶0: >	0, this means that transition i made a significant contribution to changes in j landscape 243 
cluster component (higher than expected according to its proportion of LULC change). Hence, 244 
the transitions showing ITSC > 0 can be grouped into the set of transitions with the greatest 245 
potential for altering the original structure of the landscape and therefore of most interest for 246 
decision-making in landscape management and planning. The higher the ITSC value, the greater 247 
the impact on landscape change.   248 

3. Results. 249 



3.1. Land Use/Land Cover Changes (LULCC). 250 

The most important transitions in terms of the area of change in the Lingue basin between 1987 251 
and 2009 are the replacement of native vegetation (SR-NF and Og-NF) and grasslands (Gland) 252 
by exotic forest plantations (EFP). This is followed by the replacement of old-growth native forest 253 
(Og-NF) and grassland (Gland) by secondary native forest (SR-NF), and the replacement of 254 
secondary forest (SR-NF) by grassland (Gland) (Table 1). 255 

Table 1 shows the systematic transitions identified in the Lingue basin between 1987-2009. The 256 
table divides these transitions into either productive or natural transitions, of which there are ten 257 
each. The higher values resulting from the expression Real-Ref/Ref indicate a stronger effect. For 258 
example, the replacement of Secondary Native Forest by Exotic Forest Plantation (SR-NF to EFP) 259 
is 3 times higher than would have been expected according to its proportion of LULC change. 260 
Major systematic transitions include LULC changes affecting a high percentage of the total basin 261 
area (Table 1), e.g., loss of native vegetation to forest plantation (SR-NF to EFP, Og-NF to EFP). 262 
However, some LULC transitions that affect a relatively small percentage of the total basin area 263 
were also identified as systematic transitions. For instance, shrubland to forest plantations (Sland 264 
to EFP), young forest plantations to forest plantations (YH-EFP to EFP) and exotic forest 265 
plantations to young forest plantations (EFP to YH-EFP). 266 

[insert table 1] 267 

 268 

3.2. Selection of moving window size.  269 

Figure 3 shows the results of our attempts to find the optimal window size for calculating the 270 
spatial metrics for the Lingue LULC data. The analysis indicates that the change to mesoscale 271 
takes place when window size changes from 900 to 1200 metres, and the pi value becomes 272 
negative, which means that higher window size will not produce any further changes in the spatial 273 
pattern. Thus, any window size of 1200 metres or more would be suitable for calculating the 274 
metrics in this domain of scale. In order to maintain a suitable window size for obtaining metrics 275 
while keeping the calculation time within reasonable limits, we selected a window size of 1500 276 
metres.  277 

 278 

[insert figure3] 279 

 280 

3.3. Maps showing the results of moving window metrics, and maps of significant landscape 281 
structure changes.  282 

Figures 4A to 4D show the percentage of change in SHDI, Naturality, ECON_MN, and IJI from 283 
1987-2009 for the study area as a whole. The images highlight greater alterations in the landscape 284 
structure in the north-eastern part of the basin, with substantial losses in diversity and naturality. 285 
The central area shows a loss of naturality, although this is combined with increases in diversity 286 
and contrast. IJI follows the same pattern as SHDI, although it shows a scattered pattern of 287 
smaller, well-defined regions of increase and decrease distributed around the basin. In addition, 288 
Figures 4E to 4H show the results of the LISA test for defining spatial clusters of highly 289 



autocorrelated values. These represent hotspots of landscape structure change, where losses 290 
and gains can be easily identified for each spatial metric between 1987-2009. 291 

 292 
[insert figure4] 293 

 294 
3.4. LULCC transitions vs landscape structure changes. ITSC index. 295 

The relationship between systematic transitions and the spatial cluster of landscape change 296 
is represented through the ITSC index. Table 2 shows the calculation of ITSC values for diversity 297 
(SHDI) change as an example of one of the four landscape change dimensions. The values in 298 
bold type show transitions with a greater impact on landscape structure change than expected 299 
according to their proportion of total LULCC in the study area. The results indicate that systematic 300 
transitions involving changes to exotic forest plantation (SR-NF to EFP, Og-NF to EFP, Sland to 301 
EFP, Gland to EFP) produce a high impact on diversity loss. In 2009, exotic forest plantation 302 
became one of the main landscape matrices, producing in some areas a clear homogenization of 303 
the landscape. By contrast, the transitions to young exotic forest plantation (EFP to YH-EFP, SR-304 
NF to YH-EFP and to Shrubland (SR-NF to Sland, Og-NF to Sland) increase the value of SHDI, 305 
as in some areas they involve the substitution of the natural native forest landscape matrix by 306 
new land uses such as forest plantations or shrublands. Another interesting case is the Og-NF to 307 
EFP transition, which seems to act in two opposing directions in that it has a high impact on 308 
diversity decrease (0.99) and increase (0.48). This effect is due to the partial substitution of natural 309 
native forest matrix in some areas which causes an increase in SHDI (new land uses appear in 310 
the area), and the removal of remnant patches of natural forest in other areas, which results in 311 
the complete removal of the Og-NF, so reducing the SHDI. 312 

 313 

[insert table 2] 314 

 315 

Table 3 sets out the aggregated results, including ITSC values for all the systematic transitions 316 
and landscape dimensions. The values in bold type represent the transitions with a greater impact 317 
on landscape structure than expected, while the shaded rows show the transitions that contribute 318 
most to landscape structure change (bold values in more than one of the landscape dimensions). 319 

[insert table 3].  320 

 321 

4. Discussion.  322 

4.1. LULC changes with the greatest impact on landscape structure change.   323 

The methodology proposed in this study allowed us to identify the contribution made by the 324 
different LULC transitions to change in the landscape structure in the Lingue basin between 1987 325 
and 2009. The method delimits spatial clusters of change by applying a LISA test (Anselin et al., 326 
2021) to an image representing the variations in values of spatial landscape metrics. We then 327 
developed the ITSC index, assessing significant changes in LULCC using a similar approach to 328 
that proposed by Pontius (2004). This new index is useful for determining whether the contribution 329 



made by each systematic transition to each spatial cluster of landscape change was higher than 330 
expected according to its proportion of total LULCC in the study area.  331 

The results enabled us to identify a specific set of LULC transitions which had the greatest 332 
capacity to change the landscape structure in the Lingue basin. For example, the transition from 333 
exotic forest plantation (EFP) to young exotic forest plantation (YH-EFP) showed values of 2.47 334 
and 1.52 for ITSC on ECON_MN and IJI gain. This means that this transition has a strong impact 335 
on increasing the contrast between the land patches across the landscape, as it involves the 336 
replacement of exotic forest plantation (EFP) (a secondary matrix across the landscape) by 337 
young/harvested exotic forest plantation (YH-EFP), with almost no tree covering. An important 338 
impact can also be seen in the transition from secondary native forest (SR-NF) to young exotic 339 
forest plantation (YH-EFP) increasing the contrast of the landscape and the diversity of patches 340 
(ITSC ECON_MN gain =1.42 and ITSC SHDI gain=1.89).  341 

Similarly, the transition from Old-growth native forest (Og-NF) to shrubland (Sland) showed high 342 
levels of ITSC on SHDI gain (6.46) and ECON_MN loss (2.74). This means that the contribution 343 
to the gain in SHDI made by the degradation of old-growth native forest into shrubland was six 344 
times higher than expected according to its proportion of total LULCC in the study area, and the 345 
contribution to the loss in edge contrast made by the same transition was twice as high. This 346 
increase in SHDI is due to the shrinkage of the native forest matrix and the growth in Shrubland 347 
patches. Increases in ECON_MN could also be observed in these areas. 348 

Finally, the transition from grassland to wetland (Gland to Wet) showed high levels of ECON gain 349 
(ITSC=1.46) and NATUR gain (ITSC=3.36). This is due to the fact that wetlands have high values 350 
of naturality and high contrast with other LULC. This transition therefore involves important growth 351 
in naturality and contrast when wetlands grow over the surrounding grassland areas.  352 

Therefore, the proposed methodology allowed us to detect both large (high percentage of LULC 353 
change) and small transitions (low percentage of LULC) as transitions with a high impact on 354 
landscape structure change in terms of diversity, contrast, mixture and naturality. We believe that 355 
this is an important finding, as this methodology can provide new tools for studying LULCC. These 356 
new tools improve on existing ones, which normally only highlight the transitions with the highest 357 
percentages of LULCC within the landscape (Miranda et al., 2017; Zamorano-Elgueta et al., 358 
2015). However, as identified here, transitions with a small percentage of change can have a 359 
strong potential impact on landscape structure and produce large transformations in it. These 360 
transitions are therefore critical for LULC dynamics analysis in the study area, and must therefore 361 
be taken into account in land use planning processes (Duarte et al., 2018).  362 

4.2. Planning implications.   363 

Identifying land use transitions with a high potential for transforming the landscape can provide 364 
meaningful insights to help planners identify planning measures that could mitigate landscape 365 
structure change. This will be even more relevant in the coming years as Chile is developing 366 
planning regulations which give regional governments the competences to create spatial planning 367 
policies and plans with mandatory regulations in rural areas (Peña-Cortés et al., 2019). These 368 
results could therefore provide a basis for the design of these Plans and for guaranteeing the 369 
sustainability of the associated ecosystems (figure 5).  370 

[insert Figure 5].  371 



 372 

Some measures may include: 373 

i) Preventing the transformation of extensive areas of native forests (Og-NF) (Figure 5, 374 
IA and IB) into Shrublands (Sland), a transition that results in an increase in diversity 375 
(SHDI ITSC=6.46) and a decline in edge contrast (ECON ITSC=2.47). The increase 376 
in diversity is due to new patches of Sland replacing the natural landscape matrix, 377 
while edge contrast loss is due to Sland having less contrast with other LULCs such 378 
as Gland or EFP. This also has a high impact in terms of a loss of naturality when  Og-379 
NF is replaced by forest plantations of exotic species, (a pattern documented 380 
throughout the country, Miranda et al., 2017). 381 

ii) Avoiding massive expansion of young or harvested exotic forest plantations (YH-EFP) 382 
(e.g., Figure 5, III), as these transitions involve a strong increase in landscape contrast 383 
when substituting EFP (harvest, ITSC = 2.47) or SR-NF (new forest plantations ITSC= 384 
1.42). In addition removing tree and vegetation cover increases erosion and 385 
sedimentation (Aburto et al., 2021). 386 

iii) Avoiding transitions from isolated patches of shrubland (Sland) (e.g., Figure 5, IV) to 387 
exotic forest plantations (EFP), which reduce diversity (ITSC = 2.82). In areas with 388 
high levels of EFP, removing remnant patches of Sland can result in an increase in 389 
landscape homogeneity, as EFP becomes the landscape matrix. These patches can 390 
also act as habitats for local wildlife, and may evolve into secondary growth native 391 
forest (SR-NG) with greater natural value (Echeverria et al., 2006). 392 

iv) Carefully considering the transition from grassland (Gland) (e.g., Figure 5, II) to arable 393 
land (Aland) as it involves a high impact in terms of increases in contrasts within the 394 
landscape (ITSC=1.61) and IJI (ITSC=2.50), so increasing heterogeneity and mix 395 
through new productive patches in natural and seminatural areas. This is because an 396 
increase in agriculture based on the extensive use of agrochemicals and monoculture 397 
could decrease landscape value (Tudi et al., 2021). However, increasing the mixture 398 
of uses with sustainable production of crops and cattle could create multifunctional 399 
landscapes, so improving the diversity of wildlife and providing higher quality 400 
agricultural products (Rey Benayas et al., 2020). 401 

4.3. Moving window landscape metrics. Advantages and limitations of the proposed methodology. 402 

In this research we have shown how moving window landscape metrics can be used together 403 
with LISA analysis to identify the land use transitions with the greatest potential for changing 404 
landscape structure within the Lingue basin. Moving windows allowed us to obtain a gradient-405 
based, spatially explicit representation of the metrics, so improving the assessment of landscape 406 
structure (Frazier & Kedron, 2017; Lausch et al., 2015). Incorporating a gradient-based 407 
representation of landscape metrics can also have beneficial applications in the planning of land 408 
use (Lausch et al., 2015), transport (Soria-Lara et al., 2016), and sustainable tourism (Botequilha-409 
Leitão & Diáz-Varela, 2018). In the same way, the pixel-level representation of the values of 410 
spatial landscape metrics enables these variables to be integrated into new methods using maps 411 
algebra, spatial clusters, and regression models (Rodríguez-Espinosa et al., 2019). 412 

Additionally, identification of the mesoscale through changes in heterogeneity, analyzed by 413 
calculating SHDI using moving windows, allowed us to incorporate the scale effect into the 414 
analysis (Díaz-Varela et al., 2009). The window size represents the scale at which a given metric 415 



is obtained. In this study, the mesoscale threshold of 1200 m was empirically identified, leading 416 
us to select 1500 m as the optimum window size for the analysis. In future research, it could be 417 
interesting to analyze how sensitive the method proposed here is to different window sizes. Other 418 
limitations inherent in using metrics, including those calculated with a moving window, are related 419 
to the selection of the metrics used to measure landscape structure (Cushman et al., 2008). There 420 
is no consensus as to the most suitable set of metrics, and each study team must choose the 421 
ones that best suit their research objectives and their existing knowledge of the landscape.  422 

5. Conclusions.  423 

This study proposes a novel methodological approach for measuring the impact of LULC 424 
transitions on structural landscape changes using moving window spatial metrics, LULC 425 
systematic transition analysis and spatial clustering. The results for the study area enabled us to 426 
conclude that land use changes have a differential impact on landscape structure change and to 427 
identify the specific transitions with the greatest impact on landscape structure. Thus, for the same 428 
amount of area affected, certain land use changes can result in a greater alteration of the 429 
landscape structure, as noted in our study area in southern Chile. The transitions that result in 430 
the expansion of Forest Plantations (EFP or YH-FP) have the greatest potential to modify 431 
landscape structure (see table 3). Other transitions with a high impact on landscape structure are 432 
the substitution of OG-NF for Sland and change from Gland to Aland. 433 

Thus, the proposed methodology shows how moving window spatial metrics, together with an 434 
analysis of land use changes, make it possible to identify the systematic processes by which one 435 
use is replaced by another, focusing not only on those with the greatest statistical importance 436 
(Pontius et al., 2004), but also on those with the greatest potential for altering landscape patterns, 437 
so allowing the relevant planning measures to be implemented.  438 

These results can only be obtained using spatially explicit metrics, which express a spatial 439 
dimension of the landscape at pixel level, as compared to the studies which use spatial metrics 440 
calculated at class or landscape levels (Aguilera et al., 2011). By using the gradient-based model 441 
approach (Lausch et al., 2015), we were able to generate maps for the four selected components 442 
of landscape structure. These maps were incorporated into the spatial analysis processes using 443 
GIS in conjunction with map algebra and spatial cluster analysis. As a result, we obtained 444 
measures of the impact of LULC transitions on landscape structure, which form the basis for the 445 
development of spatially explicit indicators that enable monitoring over time. This explains why 446 
studies that use these spatially explicit tools are becoming increasingly common (Soria-Lara et al., 447 
2016) and need to be developed further.  448 
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