

BIBLIOTECA

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

Document downloaded from the institutional repository of the University of
Alcala: http://ebuah.uah.es/dspace/

This is a postprint version of the following published document:

Losa, B. [et al.] 2023, "Memory management unit for hardware-assisted

dynamic relocation in on-board satellite systems", IEEE Transactions on

Aerospace and Electronic Systems, vol. 59, no. 5, pp. 6923-6939.

Available at http://dx.doi.org/10.1109/TAES.2023.3284419

 © 2023 IEEE

(Article begins on next page)

http://ebuah.uah.es/dspace/
http://dx.doi.org/10.1109/TAES.2023.3284419

Memory management unit for
hardware-assisted dynamic
relocation in on-board
satellite systems

Borja Losa
Pablo Parra
Antonio Da Silva
Óscar R. Polo
J. Ignacio G. Tejedor
Agustı́n Martı́nez
Jonatan Sánchez
Sebastián Sánchez
Space Research Group, Universidad de Alcalá, Alcalá de Henares,
Madrid, Spain

David Guzmán
NASA Goddard Space Flight Center, Greenbelt, MD, USA

Abstract—
Satellite on-board systems spend their lives in hostile envi-

ronments where radiation can cause critical hardware failures.
One of the most radiation-sensitive elements is memory. The so-
called Single Event Effects (SEEs) can corrupt or even irretrievably
damage the cells that store the data and program instructions. When
one of these cells is corrupted, the program must not use it again
during execution. In order to avoid rebuilding and uploading the
code, a memory management unit can be used to transparently
relocate the program to an error-free memory region.

This paper presents the design and implementation of a
memory management unit that allows the dynamic relocation of
on-board software. This unit provides a hardware mechanism that
allows the automatic relocation of sections of code or data at
run-time, only requiring software intervention for initialization
and configuration. The unit has been implemented on the LEON
architecture, a reference for European Space Agency missions. The
proposed solution has been validated using the boot and application
software of the instrument control unit of the Energetic Particle De-
tector of the Solar Orbiter mission as a base. Processor synthesis on
different FPGAs has shown resource usage and power consumption

This work has been supported by the Community of Madrid under the
grant CM/JIN/2019-032 (Corresponding author: Borja Losa).

Authors Borja Losa, Pablo Parra, Antonio Da Silva, Óscar
R. Polo, J. Ignacio G. Tejedor, Agustı́n Martı́nez, Jonatan
Sánchez and Sebastián Sánchez are with the Space Research
Group, Universidad of Alcalá, Edificio Politécnico, Crta. A-2,
km. 33,600, 28805, Alcalá de Henares, Madrid, Spain (e-mail:
borja.losa@edu.uah.es, pablo.parra@uah.es, antonio.dasilva@uah.es,
o.rodriguez@uah.es, ignacio.garcia@uah.es, agustin.martinez@uah.es,
jonatan.sanchezs@uah.es, sebastian.sanchez@uah.es). David Guzmán
is with the NASA Goddard Space Flight Center, 8800 Greenbelt Road,
Greenbelt, MD 20771 USA (e-mail: david.guzmangarcia@nasa.gov).

0018-9251 © 2023 IEEE

similar to that of a conventional memory management unit. The
results vary between ± 1-15% in resource usage and ± 1-7% in
power consumption, depending on the number of inputs assigned to
the unit and the FPGA used. When comparing performance, both
the proposed and conventional memory management units show the
same results.

I. Introduction

Reliability is an essential feature in developing critical
systems, such as satellite flight software. The correct
operation of a computer system presupposes that the
physical memory works correctly so that each read of
a memory location returns the same value that was last
written. Unfortunately, the space environment is prone
to memory errors, so this assumption may prove false
in certain situations. This is because electronic devices
operating in space can be damaged due to what is known
as Single Event Effects (SEE). These events are brought
about by the incidence of charged particles on sensitive
areas of integrated circuits, particularly memories. In a
broad sense, from a software point of view, the most
significant types of events are Single Event Upsets (SEUs)
and Single Event Latch-Ups (SELs). The effects of the
former, known as bit-flips, are transient, while the latter
brings about permanent faults, known as “stuck-at” bits.
So far, SEEs have caused several relevant spacecraft
failures as described in [1] [2].

The Soft Error Rate (SER) expresses the rate at which
a memory cell is disturbed or expected to encounter a
SEE. The effects of radiation are not the same in each
type of memory. In general, One Time Programmable
(OTP) memories have a higher SEL threshold, i.e., better
resilience to radiation. As an example, the EEPROM
and SDRAM memories on board Solar Orbiter EPD
Instrument Control Unit have a SEL threshold of 80 MeV
cm2/mg MeV while the PROM threshold rises to 128
MeV cm2/mg [3].

In the architectural design of space-borne systems, it is
widespread to divide the complete software functionality
into two independent programs that are executed from
different memory devices [4]. The first one, called Boot
Software (BSW), performs the initial system configu-
ration, initializes the essential communication support
and implements the Safe or Standby operation mode.
This software is stored and executed from a PROM to
sufficiently protect it against possible failures caused by
radiation, making it impossible to change it once it has
been programmed. This impossibility of updating implies
that the BSW is considered critical and has the highest
reliability requirements.

The rest of the system functionalities that allow ful-
filling the specific objectives of the mission are provided
by the second of the programs, the so-called Application
Software (ASW). The ASW manages the Nominal mode
of operation, which allows the fulfilling of the specific
objectives of the mission. In this mode, the software
integrates full communications support and control of all

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023 1

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

subsystems and devices that comprise the mission. An
ASW image is usually stored statically in a non-volatile
EEPROM and, in order to be executed, this ASW image
has to be deployed into RAM. The BSW performs this
after a comprehensive check of the destination memory
blocks. This dual configuration, which combines the static
storage of the binary image in EEPROM and its subse-
quent deployment in RAM, facilitates software mainte-
nance, allowing possible updates and changes during the
mission [4].

If the code and data of the ASW are statically linked
at fixed memory locations, a permanent error in any of
the target cells would affect the entire image, making it
invalid for use. In the event of such an error, it would
be necessary to generate a new binary image avoiding
the affected cells and transfer it back to the spacecraft
or the corresponding instrument control unit, with the
consequent consumption of both time and transmission
bandwidth resources. However, this operation is not risk-
free since a software upgrade is conducted in a complex
computing environment that usually involves long delay
spacecraft communications and coordination. These cir-
cumstances may eventually lead to the loss of the mission
[5].

A Memory Management Unit (MMU) can be used to
avoid re-linking and reloading the code. These hardware
units make it possible to translate the addresses generated
by the programs, called virtual addresses, into physical
addresses of RAM. Thus, thanks to this translation mecha-
nism, programs can be easily relocated in memory without
having to be statically relinked.

A. Conventional memory management units

Memory management units are ubiquitous in general-
purpose systems and are particularly well suited to pro-
vide virtual memory and protection mechanisms [6].
These features are generally unnecessary for embedded
systems where the operating system and the application
are intertwined in a single executable running in the same
address space without memory protection.

Nearly all units implement a paging-based approach,
in which the virtual address space is divided into power-
of-two sized blocks called pages. Through a translation
mechanism, the memory management unit can allocate
each page in the space considered valid to a physical
memory block or frame of the same size.

Depending on the level of involvement of both hard-
ware and software in the translation process, it is possible
to distinguish between hardware-managed and software-
managed MMUs.

Paging-based hardware-managed MMUs implement a
translation mechanism based on the use of data structures
called page tables that are stored in main memory. Each
entry in these tables is associated with one page and con-
tains information about its validity and access permissions
and the physical memory frame to which it is mapped. In
order to reduce the memory footprint, architectures often

define different page table levels. The implementation of
this mechanism may vary depending on the architecture,
generally allowing the coexistence of different levels and
page sizes.

One of the main problems derived from using a
hardware-managed table-based paging mechanism is the
reduction in performance derived from the need to carry
out additional memory reads for each access to obtain
the contents of the page tables. In order to increase
performance, architectures include one or more hardware-
managed Translation Lookaside Buffers (TLBs). These
units contain a fixed number of entries that store the
result of previous translations and are used as caches to
speed up address translation. Hardware architectures im-
plement cache replacement algorithms that manage their
occupancy which adds indeterminism to the execution,
a problem that real-time systems often cannot afford [7].
Nearly all current versions of major architectures, such as
x86-64 [8], [9], ARMv8 [10], SPARCv8 [11] and RISC-
V [12], include a hardware-managed table-based paging
mechanism.

These units allow the transparent remapping of af-
fected pages to other error-free physical addresses in the
case of permanent errors. However, as stated above, its use
implies a memory overhead derived from storing the page
tables in memory. Memory consumption in page tables
can be reduced by using larger pages. The problem with
this solution is that it introduces another type of memory
overhead because pages are the minimum relocation units.
Thus, even if only one bit is affected, the entire page is
tagged as erroneous. This means that a significant amount
of memory is rendered unusable for each such error when
a page is remapped. On the other hand, if the page size is
small (the minimum page size is, in most cases, 4 KiB),
the system will need to store a larger number of page
tables in memory. In addition, the need to store page
tables in main memory makes them vulnerable to possible
memory errors.

Software-managed MMUs, on the other hand, delegate
to the system software the maintenance of the structures
needed to define the virtual address spaces. These units
provide a set of one or more TLBs whose entries can
be directly modified by the software through specific
instructions. Each of these entries maps a single page.
The format and characteristics of the entries set the range
of allowed page sizes. When performing a translation,
the MMU tries to find a valid TLB entry that maps the
page to which the requested address belongs. If there
is no such entry, a fault or trap will be generated that
will cause the execution of a memory handling routine.
Executing these routines is costly; thus, a high number of
faults will result in additional performance costs, which
are particularly high when compared to their hardware-
managed counterparts. The MIPS architecture implements
an example of this kind of unit [13].

However, dynamic or virtual memory mechanisms
introduce a high degree of indeterminism, so their use
in spaceborne systems is avoided. In this type of system,

2 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 1. Diagram showing the need to use several entries when
relocating a small block belonging to a larger one.

which is the subject of our study, the address map is
static, unique, and known at linking and deployment time.
This way, the virtual address map can be built using a
fixed number of TLB entries, avoiding the generation
of memory faults and thus eliminating indeterminism
and minimizing the performance impact. Therefore, these
units are particularly suitable for code relocation in space
systems since, by not using any external support structure
to perform the translation, they do not increase memory
space consumption and do not use RAM cells that could
be affected by permanent failures.

In this same context, paging-based memory manage-
ment units, both hardware and software-managed, make
it difficult to relocate small memory blocks by setting
limits on the size of the pages or using fixed page sizes.
For example, in the case of the MIPS architecture, pages
have a minimum size of 4 KiB or 1 KiB, depending
on the version. This limit implies that, in the case of
detecting a permanent error in a single memory cell, the
minimum amount of memory to be relocated would be
that corresponding to the lower limit of the page size.

Another problem with conventional MMUs is that the
initial address of the pages always has to be aligned with
their size. This results in the need to use multiple TLB
entries to relocate a single damaged block. This problem
is also encountered in systems implementing a hardware-
managed paging mechanism that supports different page
sizes. Figure 1 shows an example of this situation. In
this case, a 64 KiB block is mapped initially to physical
memory using a single entry.

If a fault is detected in a memory cell, for example,
in cell number 0x6C00, there are two alternatives. The
first would be to relocate the entire 64 KiB memory
block to another location. This situation would result in a
considerable loss of memory that could otherwise be used.
The second alternative would be relocating only a smaller
block containing the damaged cell. Suppose we assume a

minimum page size of 4 KiB. In this case, the minimum
relocatable amount of memory will correspond to the 4
KiB block starting from address 0x6000 to 0x7000. As
can be seen in the figure, to relocate this block, it would be
necessary to fragment the original page into five different-
sized pages, forcing us to use the same number of entries.

In the case of software-managed MMUs, the number
of TLB entries is fixed. Thus, high fragmentation would
lead to excessive use of entries which would reduce
relocation capabilities.

B. Proposed memory management unit

This paper presents a software-managed memory man-
agement unit that has been specifically designed to facili-
tate code relocation in on-board space systems. It features
two fundamental features: the flexibility in the size of the
pages and the possibility of defining overlapping pages.

The proposed unit allows defining pages of any size.
This feature minimizes the amount of memory to be pro-
visioned for possible relocations. This saving is essential
in systems with very restrictive design requirements, such
as space systems.

By allowing the definition of pages of any size, it
is necessary to deal with the possible overuse of TLB
entries. In order to minimize the need for entries in the
event of a memory relocation, the proposed management
unit implements an overlapping mechanism that allows
mapping a smaller page over one already mapped by
another entry. Thus, following the same example above,
to map the 4 KiB memory page over the 64kB projection,
it would only be necessary to add a new overlapping entry
corresponding to the smaller page. Furthermore, it would
not be necessary to relocate an entire 4 KiB block in this
case since the unit supports the definition of pages of any
size.

The proposed design has been implemented on the
LEON processor version 3, which is one of the recom-
mended processors by the European Space Agency (ESA)
for space applications. This work could be understood
as a sort of fault tolerance property of memory manage-
ment units. This way, the risks associated with long-term
uncertainties related to memory malfunction are strongly
reduced. Both the memory management unit itself and
the algorithm used to perform the relocation have been
validated using an actual use case that involves the boot
and application software of the instrument control unit
of the Energetic Particle Detector of the Solar Orbiter
mission [14], [15].

The rest of the paper is organized as follows. The fol-
lowing section contains the description of other existing
solutions related to our proposal. Section III presents the
design of the proposed memory management unit. Section
IV introduces the use case and a generic algorithm that
allows the relocation of damaged memory blocks. Section
V includes the details of the implementation performed,
its validation, and the subsequent analysis of the obtained

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 3

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

results. Finally, the VI section summarizes the conclusions
and future work.

II. Related works

Dealing with memory errors brought about by radia-
tion in the space application domain is a broad research
field that has generated many publications over the last
few years. Siegle and Vladimirova [16] provide a de-
tailed analysis of commonly used mitigation techniques
in SRAM-Based FPGAs for space applications. A distinc-
tion is made between fault prevention and fault tolerance.
The former comprises actions aimed at preventing the
introduction of faults during design or during the oper-
ational runtime of the system. The latter encompasses all
techniques that allow system operation to continue after
a fault has occurred, either by masking or mitigating the
impact of the fault.

Within fault tolerance techniques, it is common to dis-
tinguish between the fault detector and the fault corrector.
The function of the detector is to find faults in memory
words by indicating which bits have been affected. The
most common way to perform fault detection is through
Error Correcting Codes (ECC) and modular redundancy
schemes. These techniques are based on using redundant
information to know if a memory word has errors and the
bits involved in those errors [17].

Error correction is carried out during memory access.
Usually, the redundancy introduced allows the correction
of just one error. Thus, if more than one error exists, it
would be detected but not corrected. Therefore, to avoid
possible errors, a periodic refreshing process known as
memory scrubbing is carried out. This technique is very
effective against transient errors, such as SEUs, but cannot
solve permanent errors. In this situation, the best solution
is the dynamic relocation of the faulty section, as done in
Polo et al. [3]. This solution is not always possible, so an
updated binary version that avoids damaged areas must
be uploaded to the spacecraft in the worst case.

Our proposal would fall under fault tolerance tech-
niques, specifically for permanent error correction, by
relocating memory during system startup. It can be used
together with other correction schemes such as ECC and
memory scrubbing.

In the work of Świercz et al. [18], we can find one of
the few examples of the use of virtual memory to imple-
ment fault-mitigation techniques. It describes the use of
a conventional paging-based MMU in combination with
a selection algorithm. The system makes two additional
copies of each page during the initialization process. Each
time a page is accessed that is not previously loaded
in memory, the algorithm compares the three copies
and obtains the result through a majority vote. In order
to ensure the correct functioning of this mechanism, it
is recommended to disable the cache. The process of
comparing and selecting pages, together with the inability
to use the cache, implies a high impact on performance.

Regarding the use of virtual memory in embedded sys-
tems, most works aim to provide techniques that facilitate
the use of dynamic memory in a deterministic way, which
is essential in real-time systems. For example, Zhou and
Petrov [19] propose a new type of page table organiza-
tion that reduces memory requirements while providing
predictability for the table lookup process. Böhnert and
Scholl [20] describe a solution with data structures that
ensures that operations such as memory allocation or de-
allocation are performed in constant time. Meenderinck
et al. [21] propose the design of a predictable MMU for
an SoC by keeping page tables in on-chip memory and
not allowing page swapping with any secondary storage.

Predictability is also one of the objectives of the
MMU proposed in this work. It is achieved by delegating
MMU management to software and focusing on systems
that do not use dynamic memory since all necessary
memory allocations are known and performed during
system initialization and never change at runtime. Not
having to use dynamic memory makes it unnecessary to
implement any data structures such as page tables, which
allows us to eliminate any memory overhead and thus
improve radiation tolerance.

III. Design of the proposed memory management
unit

This section provides a formal, platform-independent
specification of the hardware behavior of the proposed
Memory Management Unit (MMU) that is intended to
facilitate its implementation and inclusion in different
architectures. The MMU employs a software-managed
approach based on a Translation Lookaside Buffer (TLB)
with multiple entries. In order to integrate the unit into a
processor architecture, the latter must provide a hardware-
software interface to access the contents of the individual
entries. This specification assumes that such a mechanism
is already in place. Subsequently, in Section V, a com-
plete implementation example for the LEON processor is
provided.

Let v ∈ N be the size in bits of the virtual address
space, determined by the processor architecture. The
virtual address space V is defined as V := {x ∈ N |
0 ≤ x < 2v}. Let f ∈ N be the size expressed in bits of
the physical address space. Depending on the architecture,
it may or may not coincide with the size of the virtual
address space. The physical address space F is defined as
F := {x ∈ N | 0 ≤ x < 2f}.

The virtual address space can be partitioned into n
pages of size s ∈ S, where n := 2(v−s) and S :=
{0, 1, . . . , f}. The i-th virtual page of size s, denoted as
VPs

i , is defined as VPs
i := {x ∈ V | i·2s ≤ x < (i+1)·2s}

with i ∈ Ns, where Ns = {0, 1, . . . , n − 1} is the set
consisting of all possible indexes or page numbers of size
s. It should be noted that the maximum page size is fixed
by the size of the physical address space so that pages
can never be larger than physical memory.

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

For example, assuming a virtual address space of size
v = 32 in a system implementing 1-byte memory cells,
the page VP30

0 would represent a contiguous block of 1
GiB comprising the addresses between the 0x00000000
and the 0x3FFFFFFF. As a second example, the page
VP12

1 , would correspond to a block of 4 KiB in size
that comprises the addresses between 0x00001000 and
0x00001FFF.

Likewise, the physical address space can be parti-
tioned into m frames of size s ∈ S, where m = 2f−s. The
j-th physical frame of size s, denoted as PFs

j , is defined
as PFs

j := {x ∈ F | j ·2s ≤ x < (j+1) ·2s} with j ∈ Ms,
where Ms = {0, 1, . . . ,m− 1} is the set consisting of all
possible indexes or frame numbers of size s.

Each of the TLB entries allows mapping a page of a
given size of the virtual address space of the applications
to a physical memory frame of the same size. Each time
memory is accessed, the processor delegates to the TLB
the translation of the corresponding address. The MMU
receives a virtual address and checks if it matches any
pages defined in the valid TLB entries. If a matching entry
is found, it obtains the corresponding physical address.
The resulting physical address will belong to the physical
frame into which the virtual page has been mapped.
The distance or offset between the physical address and
the starting address of the frame will be equal to the
offset between the original virtual address and the starting
address of the page.

If the requested address does not match any of the en-
tries, the MMU sends an exception signal to the processor,
which will trigger the execution of a software handler to
manage the failure.

One of the central and innovative features of the pro-
posed MMU is that it allows the definition of overlapping
pages. In this way, a TLB entry can map a page whose
address range coincides totally or partially with another
page mapped by another entry. To resolve the selection,
the MMU defines the overlapping flag of each page,
which allows establishing which of the entries is going
to be used to perform the mapping and obtain the final
physical address.

For a TLB of p entries, the i-th entry is defined as the
tuple Ei := (Eσ

i , E
ν
i , E

µ
i , E

δ
i , E

o
i), where:

• Eσ
i ∈ S: is the size of the page mapped by the entry.

• Eν
i ∈ NEσ

i
: is the number of the page of size Eσ

i of
the virtual address space from which the mapping is
to be performed.

• Eµ
i ∈ MEσ

i
: is the number of the frame of size Eσ

i of
the physical address space over which the mapping
is to be performed.

• E δ
i ∈ {0, 1}: denotes the validity of the entry. If δ =

0, the entry is considered invalid and is therefore not
evaluated when executing the translation procedure.
On the other hand, if δ = 1, the entry is valid and
participates with its content in the translation.

TABLE I
Example of a TLB configuration

Ei σ ν µ δ o

E0 31 0 0 1 0
E1 30 2 3 1 0
E2 28 2 1 1 1
E3 29 2 3 1 1
E4 27 10 6 1 1
E5 28 9 10 1 0
E6 0 0 0 0 0
E7 0 0 0 0 0

• E o
i ∈ {0, 1}: indicates the overlapping flag of the

entry. This field is used in the translation process as
explained below.

Formally, a given E configuration of a TLB of p
entries, is defined as the indexed family E := {Ei}i∈I ,
where I = {0, 1, . . . , p − 1}, and Ei is the configuration
of the i-th entry of the TLB.

Table I shows an example configuration of an 8-entry
TLB over a 32-bit virtual and physical address spaces,
i.e. v = f = 32. In this example, the first six entries are
valid, and the last two are marked as invalid. Entry E0 is
mapping an area of size Eσ

0 = 31. If we assume a cell
size of one byte, the full size of the corresponding virtual
memory page would be 231 bytes. The page number set by
the entry is E ν

0 = 0, so the virtual page defined by the it
would be VP31

0 , corresponding to virtual address range [0·
231, ((0+1) ·231)−1] = [0x00000000,0x7FFFFFFF].
The entry performs a mapping of the virtual page to the
physical frame Eµ

0 = 0. In this case, the frame number
and the page number match, so it is a 1-to-1 projection
in which both share the same address range. The entry is
marked as valid (E δ

0 = 1), and as non-overlapping (E o
0 =

0).
Following the same approach, the remaining valid

entries perform the following mappings:

• E1. Maps virtual page VP30
2 , with address range

[0x80000000,0xBFFFFFFF], to physical frame
PF30

3 with range [0xC0000000,0xFFFFFFFF].
The entry is marked as valid and non-overlapping.

• E2. Maps virtual page VP28
2 , with address range

[0x20000000,0x2FFFFFFF], to physical frame
PF28

1 with range [0x10000000,0x1FFFFFFF].
The entry is marked as valid and overlapping.

• E3. Performs the mapping of page VP29
2 , with virtual

address range [0x40000000,0x5FFFFFFF],
to frame PF29

3 , with physical address range
[0x60000000,0x7FFFFFFF]. The entry is
marked as valid and overlapping.

• E4. Maps virtual page VP27
10, corresponding to

the address range [0x50000000,0x57FFFFFF],
to frame PF27

6 , with physical address range
[0x30000000,0x37FFFFFF]. The entry is
marked as valid and overlapping.

• E5. Maps virtual page VP28
9 , with address range

[0x90000000,0x9FFFFFFF], to physical frame

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 5

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PF28
10, with range [0xA0000000,0xAFFFFFFF].

The entry is marked as valid and non-overlapping.

The complete translation procedure is formally de-
fined as the function translateE : V → F ∪ Error,
where Error := {undefined, trap} is the set of possible
errors that can occur during the translation process. The
translateE function is specific to the E configuration and
receives as its only input the virtual address to be trans-
lated. If the translation process completes successfully, the
function returns the physical address corresponding to the
input virtual address. If the translation fails, the function
will return an erroneous value depending on the cause of
the failure, as we will see below.

The translation function uses two additional functions.
The first of these, validE, selects from the set of valid
entries those whose pages include the virtual address that
is the subject of the translation. The function is defined
as:

validE : V → P(I)
υ 7→ J

where J ∈ P(I) is the set consisting of the indexes
corresponding to the valid entries whose mapped pages
contain the address υ, and P(I) is the power set of
indexes. formally:

J = {j ∈ P | E δ
j = 1 ∧ υ ∈ VP

Eσ
j

Eν
j
}

In this way, the validE function allows locating the
valid entries within the TLB configuration whose pages
contain the virtual address to be translated.

Starting from the example of Table I, we intend to
translate virtual address 0x1000. If we apply the function
validE to the address, validE(0x1000), it will return the
set {0} since E0 is the only entry that satisfies that it is
valid (E δ

0 = 1) and that the virtual page it defines, i.e.,
VP

Eσ
0

Eν
0

= VP31
0 = [0x00000000,0x7FFFFFFF], con-

tains address 0x1000. Continuing with the example, for
virtual address 0x20000000, validE(0x20000000)
will return the set {0, 2}, since both entries, E0 and E2,
satisfy that they are valid and their corresponding virtual
page contains address 0x20000000. On the other hand,
if we apply the function to address 0xC0000000, it will
return validE(0xC0000000) = ∅, since there is no valid
entry whose virtual page contains the requested address.

Suppose the application of the function validE does
not return any valid entry. In that case, the memory
management unit will cause a processor exception which,
in turn, will trigger the corresponding software routine
that should handle the fault. If the function returns a single
valid entry, that will be the selected entry. On the other
hand, if the function returns two or more valid entries,
it would be necessary to check their overlapping flag. In
that case, the selected entry would be the one with the
overlapping flag equal to 1. If there were no entries with
the overlapping flag equal to 1, or if there were more than
one entry set to that flag value, the memory management

Fig. 2. Diagram showing the memory mapping example given by
Table I

unit would not perform the selection effectively and would
produce an indeterminate result.

This selection would be performed by function atopE,
which is defined as follows:

atopE : P(I) → P(I)
J 7→ {t ∈ J | E o

t = 1}

Figure 2 shows a diagram with the mappings gen-
erated from the TLB configuration set in Table I. In
it, the different mappings of virtual pages made by the
entries marked as valid are represented. Continuing with
this example, if we apply the function validE to address
0x1000, validE(0x1000) = {0}, it returns a set with
a single element. Thus, the selected entry will be the
one corresponding to that element, that is, E0. If we
attempt to translate address 0xC0000000, the memory
management unit will raise an exception (trap), since the
application of the function validE(0xC0000000) fails to
locate any valid entry containing the requested address.

On the other hand, if we apply the function to ad-
dress 0x20000000, validE(0x20000000) = {0, 2}, it
will return two elements. Thus, it is necessary to check
their overlapping flag using the function atopE. If we
apply the function to the set of valid entries, we obtain
atopE({0, 2}) = {2}, since E2 is the only entry in that
set that is marked as overlapping (E o

2 = 1). Therefore, E2

would be the selected entry to perform the translation.
If we apply the function validE to the ad-

dress 0x50000000, validE(0x50000000), it will re-
turn the set {0, 3, 4}. Checking the overlapping with
atopE({0, 3, 4}) yields the set {3, 4}, since both en-
tries E3 and E4 are marked as overlapping. Since the

6 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

atopE function returns more than one element, an in-
determinate result is produced and the memory han-
dling unit triggers an undefined error. If, on the other
hand, we try to perform the translation of address
0x90000000, validE(0x90000000) returns the set
{1, 5}. Next, atopE({1, 5}) = ∅ returns the empty set
because neither of the two entries, E1 and E5, are marked
as overlapping and, as in the previous case, an undefined
error would be triggered.

Function translateE would then be defined as fol-
lows:

translateE : V → F ∪ Error
υ 7→ ρ

where:

ρ =

trap if validE(υ) = ∅
phys(υ,Ej0) if validE(υ) = {j0}
phys(υ,Et0) if atopE(validE(υ)) = {t0}
undefined otherwise

Function phys is used to obtain the target physical
address from the virtual address and the configuration of
the selected entry. The function calculates the target ad-
dress by adding to the initial address of the physical frame
the offset of the virtual address within the corresponding
page. In order to obtain the offset, it is only necessary
to apply the modulus function to the virtual address and
the size of the page expressed in cell count, i.e., 2E

σ
i .

Formally:

phys : V× E → F
υ,Ei 7→ Eµ

i · 2Eσ
i + (υmod 2E

σ
i)

Continuing with the example of Table I, for the
address 0x1000 we checked that the entry E0 was
obtained. Then, the resulting physical address will be
phys(υ,E0) = 0 · 231 + (0x1000mod 31) = 0 +
0x1000 = 0x1000. In this case, the physical and
virtual addresses coincide, since entry E0 performs a 1-
to-1 mapping. If we apply the function validE to virtual
address 0x20001234, validE(0x20001234) = {0, 2}
we obtain two valid entries. After filtering those entries by
applying function atopE, we obtain atopE({0, 2}) = {2}.
Therefore, in this case the selected entry for transla-
tion would be E2, and the resulting physical address
phys(υ,E2) = 1 · 228 + (0x20001234mod 28) =
0x10000000+ 0x1234 = 0x10001234.

IV. Use case: spaceborne systems

The memory management unit described in this work
is specifically designed to facilitate code relocation in em-
bedded systems and, more specifically, in on-board space
systems. As already mentioned, in this kind of system, it
is common to divide the software into two independent
programs: the boot software (BSW) and the application
software (ASW). The first one is executed from a highly

reliable PROM and provides a minimum functionality
linked to the so-called Safe or Standby mode. The ASW,
much more prominent in terms of complexity and space,
provides the system’s full functionality and is associated
with the Nominal mode of the mission. In order to
allow for future modifications and upgrades, the ASW is
statically stored in the system in a non-volatile EEPROM.

The BSW performs the system’s initial configuration
and, if all the requirements are met, deploys the ASW
from the EEPROM to RAM and transfers the control to
it. Before deployment, the BSW thoroughly checks the
RAM, verifying the proper functioning of all the memory
cells in which the software application will be placed. If
any damaged cell is detected, the boot software cancels
the deployment and remains in safe mode awaiting in-
structions from the spacecraft or ground in each case.

For reasons of simplicity, space and performance, in
these systems, the application or user code and the system
code are linked together and share the physical address
space. This linking is done statically, so that the addresses
of the various code and global data sections are set at
build time. Thus, if a permanent error occurs in a memory
cell occupied by code or global data, this causes the
entire application software image to become invalid. In
this case, it would be necessary to re-generate the image
making the linker avoid the affected memory addresses,
and then transmit the new static image to the spacecraft
for updating. The BSW of the affected system performs
this update.

The proposed memory management unit (MMU) can
be used to avoid having to perform a software update
every time a permanent RAM error is detected. The
proposed approach, based on the use of a software-
managed Translation Lookaside Buffer (TLB), allows the
code relocation to be performed autonomously and trans-
parently to the ASW itself. It is worth noting that since
the MMU does not use any external support structure to
perform the translation, the proposed solution does not
consume any memory space, nor does it use any RAM
cells that could potentially also be affected by a permanent
failure. In addition, the possibility of overlapping TLB
entries reduces the number of entries needed to remap
damaged blocks and significantly simplifies the remap-
ping algorithm. The following paragraphs describe the
design of a possible algorithm that, using the proposed
MMU, makes code relocation possible, avoiding the need
for an application software update.

A. Design of the relocation algorithm

A spaceborne system like the one described before,
which also implements the proposed MMU, allows for the
easy integration of an algorithm for the relocation of dam-
aged memory blocks. This algorithm is implemented as
part of the BSW, and is executed before the ASW deploy-
ment in order to be able to relocate the memory blocks
that may be damaged. In order to correctly implement the
algorithm, it is necessary to have a specifically reserved

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 7

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 3. Diagram of the proposed relocation algorithm.

RAM area where the relocations can be performed. Thus,
the complete set of available RAM addresses can be
divided into two partitions or regions: a first partition
where the initial ASW deployment would be conducted
and a second partition composed of the memory cells
available to perform the possible relocations.

Figure 3 shows an activity diagram describing the
operations performed by the relocation algorithm. First,
the BSW checks the state of all RAM cells. The entire
RAM is divided into fixed-size blocks as part of this
check. The size of the blocks is a design consideration,
which will depend primarily on the size of memory
available for deployment. The checking process analyzes
each block separately, applying specific tests to all cells
in the block to rule out possible permanent faults. The
BSW implements a map in which it maintains the status
of every memory block, indicating whether the block has
successfully passed all tests and is considered suitable for
deployment or whether, on the contrary, an error has been
detected in any of its cells it is marked as invalid.

After performing the memory check, the boot software
configures the required TLB entries to perform a 1-to-1
mapping from virtual memory to physical memory. The
number of required entries will depend on the memory
management unit’s implementation and available capa-
bilities. It then executes a loop that iterates over the
deployment memory blocks occupied by the application
software. The algorithm checks whether each block has
been marked as corrupted during the checking process. If
so, performs the following operations:

1) Checks if there is an entry available in the TLB
to perform the relocation. If not, it generates an
error.

2) Checks if there is a free and undamaged block in
the relocation area. If not, it generates an error.

3) Uses the selected TLB entry to map the damaged
memory block onto the block in the relocation
area.

If an error occurs during the process, the boot software
must remain in Safe mode, waiting for instructions from
a hierarchically superior system. The MMU is disabled
during the whole process and is activated only in the case
that, after having finished checking all the ASW blocks,
at least one relocation has to be performed. After the
execution of the algorithm, the boot software starts the
ASW deployment phase in RAM on the original addresses
without any further modification of the configuration.
Any relocation that has been made will be resolved in
a transparent manner by the MMU, which will make the
corresponding translations in each case.

To illustrate this mechanism, we assume an on-board
system with 4 MiB of RAM to deploy the ASW. The
code, data, and stack sections of the ASW occupy 2 MiB.
Therefore, the system has an additional 2 MiB of RAM
available to perform possible relocations. We divide the
memory into 16 blocks of 256 KiB to implement the re-
location algorithm. Of these, eight would be occupied by
the ASW itself ({ASW0, . . . , ASW7}), and the remaining
eight would be available to be able to relocate the different
sections if necessary ({REL0, . . . , REL7}). Assuming a
TLB of 8 entries and that, after running the block check,
the second relocation block (REL1) and the first and
third ASW blocks (ASW0 and ASW2) have been marked
as damaged, the relocation algorithm would perform the
following actions:

• Uses the first TLB entry (E0) to map the entire
system memory 1 to 1.

• Checks the first ASW block (ASW0). Since the
block is marked as damaged, perform the following
operations:

– Checks that it has free entries in the TLB. In
this case, it still has seven entries available.

– Check that the first block in the relocation area
(REL0) is free and not damaged.

– Uses the second TLB entry (E1) to map the vir-
tual page whose addresses match those of block
ASW0 to the physical frame corresponding to
block REL0 and mark this entry as overlapping.

• Checks the second ASW block (ASW1). Since it
is not marked as damaged, continue with the next
block.

• Checks the third block of the ASW (ASW2). Since
the block is marked as damaged, perform the fol-
lowing actions:

– Checks that it has free entries in the TLB. In
this case, it still has six entries available.

– Checks the status of the second block of the
relocation area (REL1). Since, despite being

8 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 4. Diagram showing the resulting projection of the BSW
example using the proposed relocation algorithm.

free, it is marked as damaged, it does not select
it and checks the next block.

– Checks that the third block of the relocation area
(REL2) is free and not damaged.

– Uses the third available TLB entry (E2) to
map the virtual page whose addresses match
those of block ASW2 to the physical frame
corresponding to block REL2 and marks this
entry as overlapping.

• Checks the status of the rest of the ASW blocks
(ASW3, ASW7) and verifies that none are marked
as damaged.

• Since relocations have been necessary, enables the
MMU and proceed to the ASW deployment phase.

The result after deployment will match what is shown
in Figure 4. As can be seen, entry E0 is used to perform a
projection of the entire memory. In addition, the diagram
also shows how blocks 0 and 2 of the application software
({ASW0, ASW2}) have been mapped through entries E1

and E2 respectively to the first relocation blocks that were
not corrupted, i.e., REL0 and REL2.

V. Implementation and validation

As previously mentioned in the introduction, to val-
idate the design of the proposed Memory Management
Unit (MMU), we have performed a hardware implemen-
tation on the LEON3 processor [22]. These processors,

Fig. 5. Fields of the TLB entries for the implementation of the
proposed MMU.

based on the SPARC version 8 [11] architecture, define a
32-bit virtual and physical address space, with a memory
cell size and access granularity of 1 byte. To develop the
MMU, we have started from a generic design based on
the one described in section III. Although not required,
we opted to include access permission bits to facilitate the
adaptation of the proposed MMU to the original LEON3
design. The following paragraphs detail the format of the
TLB entries and control registers, the translation process,
and the hardware/software interface.

A. Format of the TLB entries

The TLB entries contain all the necessary attributes to
perform the translation process. Their design follows the
same approach proposed in the section III, incorporating
new elements that add additional functionalities.

Figure 5 shows the format and the fields that form
each of the entries. The semantics of each of these fields
are described below:

• mask: this attribute is used to encode the size of the
page defined by the entry. The binary value of this
field will consist of one or more set bits followed
by zero or more cleared bits. As detailed below,
this value is used during the translation process as a
mask that is applied to the virtual address. The total
number of cleared bits corresponds to the page size
defined by the entry (Eσ

i). For example, if the mask
field of a given entry has a value of 0xFFFFF000,
the corresponding page size will be 12 bits, i.e.,
Eσ

i = 12.
• VPBA: this field is used to define the virtual page

base address associated with the entry. The page
number Eν

i will be the result of applying a logical
AND to the fields VPBA and mask and logically
shifting the resulting value to the right by the number
of bits given by the page size. Continuing with the
previous example, if the field VPBA has a value of
0x40100000, the page number Enu

i will be equal
to 0x40100.

• PFBA: this field is used to define the physical
frame base address to which the mapping of the
virtual page is to be made. As with the previous
field, the frame number Eµ

i will be the result of
applying a bitwise AND to the attributes PFBA

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 9

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 6. Diagram showing the translation process of the implementation for the proposed MMU.

and mask and logically shifting the resulting value
to the right by the number of bits given by the
page size. As an example, for a value of the
PFBA field of 0x08010000 and the mask field
of 0xFFFFF000, the frame number Eµ

i would be
equal to 0x08010.

• C: indicates whether the contents of the page should
be cached. If C = 1, the data or instruction to be
read or written after the translation will be stored in
the corresponding cache.

• W: this field is used to set the write permissions of
the page. If W = 1, the contents of the cells in the
page can be modified. Otherwise, the page is marked
as read-only, and a write access to any of the cells
in the page will cause an exception.

• X: indicates whether the memory cells of the page
can contain executable instructions. If X = 1, the
page is defined as executable and can be used to
store instructions that can be fetched for execution.
Otherwise, any access for instruction fetching trig-
gers an exception.

• O: this field corresponds to the overlapping flag of
the entry (E o

i).
• V: this field corresponds to the validity attribute

of the entry (E δ
i). Thus, if V = 1, the entry is

considered as valid. Conversely, if V = 0, the entry
would be marked as invalid and, therefore, must be
ignored during the translation process.

The hardware/software interface, described later in
this section, allows configuring and modifying all the
fields of the TLB entries.

B. Description of the translation process

Figure 6 shows a diagram of the translation procedure.
In this case, the procedure includes, in addition to the
virtual address, an additional argument which would be
the access mode. Thus, three access modes are defined:
read, write and execute. Read mode accesses are those
in which the processor attempts to retrieve data from
memory. On the other hand, read mode accesses occur
when the processor wants to modify a piece of data stored
in memory. Finally, execution mode accesses are those
in which the processor tries to fetch an instruction from
memory.

The first stage of the translation process corresponds
to the function validE and consists of searching for valid
TLB entries whose associated pages contain the virtual
address to be translated. This search is performed in
parallel on all the entries present in the TLB. In this case,
for a given address υ, an entry will be selected if and only
if it is marked as valid, i.e., its V bit is set, and if the page
associated with the entry contains υ. In order to make
this decision, the unit uses the mask and VPBA fields.
As mentioned above, the binary value of the mask field
consists of one or more set bits followed by zero or more
cleared bits, where the number of cleared bits corresponds
to the size of the page. The field VPBA, on the other hand,
contains the virtual page number shifted logically to the
left as many bits as the page size. The most significant bits
of this field will therefore correspond to the page number,
and the number of these bits will be the same as the set
bits of the mask field. Furthermore, by the very definition
of a page, all addresses belonging to the page will have
the same values in these most significant bits. Therefore,
to decide whether or not a given virtual address belongs to

10 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

the page defined by an entry, it is only necessary to check
whether the bits corresponding to the page number of the
address match those stored in the VPBA field. In order to
do so, it is sufficient to apply a bitwise AND between the
mask field of the entry and the virtual address and check
whether the resulting value is equal to the one stored in
the VPBA field, i.e., whether AND(υ,mask) = VPBA.

If no entries are found after the selection procedure,
the unit generates an exception trap. If only one entry
has been found, this is the one that is finally selected
for translation. Suppose more than one entry meets the
criteria. In that case, the unit checks their overlapping
flag following a procedure equivalent to that of the atopE
function, described in Section III. In this way, from the
set of selected entries, only those marked as overlapping,
i.e., those with the O bit set, are filtered out. If only
one overlapping entry is found, this will be selected to
continue the translation procedure. If no entry is marked
as overlapping, or if two or more entries are detected with
the O bit set, and according to the formal description
provided in Section III, the unit should exhibit undefined
behavior. This condition is considered a configuration
error, and it is the responsibility of the software to ensure
that it cannot arise. If this situation occurs, the unit
does not trigger any traps in our implementation but
silently selects one of the entries and proceeds with the
translation.

Once the entry has been selected, the memory man-
agement unit performs a permission check according to
the access mode. In this way, the unit prevents programs
from performing unallowed memory accesses and facil-
itates the implementation of mechanisms for detecting
faults and, if necessary, isolating and recovering from
errors resulting from them. The behavior of the unit in
this step of the process is as follows:

• If the access mode is write and the W bit of
the selected entry is cleared, the unit generates an
exception trap.

• If the access mode is execution and the X bit of
the selected entry is cleared, the unit generates an
exception trap.

In any other case, the unit proceeds with the transla-
tion of the virtual address. First, and following a proce-
dure similar to the one defined in Section III, the offset
of the virtual address within the selected page is obtained
using the mask field. As discussed above, the number
of bits cleared from the mask field sets the size of the
virtual page (and, by extension, the physical frame), while
the set bits indicate how many bits of the virtual address
correspond to the page number. All addresses in the same
page have the same values for the most significant bits,
i.e., those corresponding to the page number. For the same
reason, the least significant bits of the address, as many
as cleared bits in the mask field, will indicate the offset
within the page. The unit applies a bitwise AND between
the virtual address and the negated mask to obtain this
offset. Thus, for a virtual address υ, the offset within the

TABLE II
Example of a TLB configuration of the proposed MMU

E Mask VPBA PFBA Atr
C W X V O

0 0x80000000 0x0 0x0 1 0 1 1 0
1 0xC0000000 0x80000000 0xC0000000 1 1 0 1 0
2 0xF0000000 0x20000000 0x10000000 1 0 1 1 1
3 0xE0000000 0x40000000 0x60000000 1 0 1 1 1
4 0xF8000000 0x50000000 0x30000000 1 0 1 1 1
5 0xF0000000 0x90000000 0xA0000000 1 0 0 1 0
6 0x0 0x0 0x0 0 0 0 0 0
7 0x0 0x0 0x0 0 0 0 0 0

frame computes as offset(υ) = AND(υ,NOT(mask)).
This operation is equivalent to the modulo operation
described in Section III.

The PFBA field contains the physical frame number
shifted logically to the left as many bits as the page size.
In this way, the value of this field corresponds to the
initial address of the physical frame where the mapping
is to be performed. Therefore, to obtain the physical
address, it is only necessary to perform a bitwise OR
operation between the offset obtained in the previous
step and the value stored in the PFBA field, that is,
OR(PFBA, offset(υ). Since the bits in the PFBA field
corresponding to the page size are set to zero, this
operation is equivalent to the summation performed by
the phys function, described in Section III.

Table II shows the value of each of the fields and
attributes of the TLB entries corresponding to the example
introduced in Section III. Thus, entry E1 maps a virtual
page of size 230 bytes, which in our implementation is
achieved by defining a mask with the last 30 bits cleared.
The VPBA field will contain the first address of the virtual
page (2 · 230), while the PFBA will contain the first
address of the target frame (3 · 230). The configuration
of the rest of the entries follows a similar scheme. In this
case, the page mapped by entry E0, as well as the pages
overlapping with it and mapped by entries E2, E3 and E4,
are code pages that contain instructions and therefore have
only the execution permission set. On the other hand, the
page mapped by entry E1 contains data and allows both
read and write access. This page is overlapped by the
one mapped by entry E5. In this case, the memory cells
included in the latter page contain only constants, and
therefore the page has been marked as read-only.

The translation mechanism will produce the outputs
as described in Section III and will also perform the
permission checking procedure depending on the type of
access.

C. Hardware/software interface

The memory management unit provides the software
with the following configuration and status registers:

• Control register. This register allows enabling and
disabling the MMU. It also has a field indicating the
number of installed and available TLB entires.

• Fault Status Register (FSR). This is a read-only
register that identifies the type of the last fault

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 11

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

that has occurred. The unit supports three types of
failure: translation, write, and execution. The first
occurs when the virtual address to be translated
is not contained by any of the pages defined by
the valid TLB entries. The other two errors are
related to the access permissions of the pages. The
write failure occurs when writing to a virtual page
marked as read-only. The execution failure occurs
when attempting to fetch an instruction in a page
not marked as executable.

• Fault Address Register (FAR). It is a read-only reg-
ister that provides the virtual address whose access
caused the last error.

• TLB entry input/output registers. It is a group of 4
registers that follow the same format as the TLB
entries shown in Figure 5. They are used to read
and write to and from the TLB entries. The use of
these registers is described below.

The memory management unit maps these registers
to an alternate address space. This mechanism, defined
by the SPARC architecture, allows the implementation of
address spaces different from the main space in which the
memory and the registers of the input and output devices
are mapped. The processor uses these spaces to provide
different functionalities associated with its components.
Some of these alternative address spaces are used, for
example, to perform fine-grained management of the state
of the different cache memories.

To access these spaces, the processor provides two
specific instructions called LDA and STA. These instruc-
tions are used, respectively, to read or write a word to an
address belonging to a specific alternate address space.
The number of spaces is implementation-dependent, and
each one is assigned a unique identifier called address
space identifier (ASI). The LDA and STA instructions
both have an 8-bit attribute corresponding to the ASI of
the space they are to be applied. In our case, the MMU
uses ASI 0x1A since this identifier does not interfere
with any other identifier implemented by the LEON3
processor.

Each space has its address map, in which the cor-
responding component or subunit can associate to each
address different registers or actions triggered by the read
or write instructions. In the case of our implementation,
we chose to define the actions and map the registers
shown in Table III. The registers are selected using only
bits 11 to 8 of the alternate space address and ignoring
the value of the seven least significant bits. In this case,
this limitation is analogous to that defined by the SPARC
Reference MMU for accessing its registers [11]. This
MMU is defined as part of the SPARC architecture itself
and is supported by the base implementation of the LEON
processor. In our case, we have chosen to keep this same
limitation to facilitate interconnection and guarantee the
compatibility of our solution with LEON processors.

The input/output registers are used to modify and read
the contents of the different TLB entries. There is one

TABLE III
Memory map of ASI 0x1A

Address Access type Description

0x000000xx Write-only
Updates a TLB entry with the contents
of the input/output registers.

0x000001xx Write-only
Loads the contents of a TLB entry
into the input/output registers.

0x000002xx Read-only Performs a TLB probe
0x000003xx Read/Write Mask input/output register
0x000004xx Read/Write VPBA input/output register
0x000005xx Read/Write PFBA input/output register
0x000006xx Read/Write Attribute word input/output register
0x000007xx Read/Write Control register
0x000008xx Read-only Fault Status Register
0x000009xx Read-only Fault Address Register

register for each field. To modify the content of an entry,
it is necessary to previously load the new value that
we want each of the fields to have in the input/output
registers. Once the new values have been loaded, to
proceed with the update, it is necessary to perform a
write on the memory address 0x000000xx using the
instruction STA. The value written to the memory address
will correspond to the index of the TLB entry to be
modified. When the instruction is executed, the values
stored in the input/output registers will be stored into the
corresponding fields of the selected entry.

The memory management unit also allows reading the
values of the fields of a given TLB entry. In order to obtain
these values, it is necessary to execute an instruction STA
that writes to the address 0x000001xx. Analogous to
the previous case, the value written to the above address
will correspond to the index of the TLB entry to be read.
After the execution of the instruction, the input/output
registers will contain the values of the corresponding
fields of the selected entry.

Finally, the MMU provides a mechanism to check
if a given address is part of a page defined by one
of the TLB entries marked as valid. In this case, the
input/output register corresponding to the VPBA field is
used to store the virtual address to be checked. Once
the address is loaded, it is necessary to execute an LDA
instruction on the address 0x000002xx. The value read
in this case will correspond to the index of the TLB
entry that would be selected should a translation of that
address be performed. Also, as a side effect, the unit
updates the input/output registers with the contents of the
matching entry. If the translation process failed to locate
any valid entry containing the address, the resulting read
value would be 0xFFFFFFFF. The input/output registers
would not be updated in this second case. The checking
mechanism does not take access permissions into account
and would not generate an exception trap in any case.

D. Validation of the proposed approach

To validate the proposed solution, we have adapted
the relocation algorithm described in Section A for the
software of the instrument control unit (ICU) of the
Energetic Particle Detector (EPD) of the Solar Orbiter

12 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 7. Diagram of the deployment process and the proposed relocation algorithm.

mission. This software follows a scheme analogous to that
described in Subsection IV. It consists of two programs:
the start-up software (BSW), which takes control after
each system reset and implements the Safe mode of the
instrument, and the application software (ASW), which
provides the Nominal mode in which the sensor units
are activated, and supports the science generated by these
units.

To increase the reliability of the system, the EEPROM
stores two images of the ASW: one Baseline and one
Nominal. The two images, in addition to providing a
tolerance mechanism in the event that one of them is
corrupted in its EEPROM storage, allow handling two
versions of the ASW. The Nominal one is intended to
contain the latest ASW update, while the Baseline would
store an earlier, more stable version which, although it has
proven to work properly in orbit, could not incorporate
the latest modifications. The control of the ASW image
deployed by the BSW depends on a set of status variables
located in the EEPROM. These variables determine the
enabling state of each image, determined both by the
configuration commanded from the ground and by errors
in previous executions. Depending on the value of these
variables, the target ASW image to execute is determined,
prioritizing the Nominal one in case both are enabled for
deployment.

First, the BSW starts by performing the initial system
configuration and hardware health check, including RAM.
Next, it determines which of the two ASW images is
enabled for deployment. If the Nominal image is enabled,

it checks its integrity before deploying. If the integrity
test fails, the BSW will disable it and try to deploy the
Baseline image. If the Baseline image is disabled or its
integrity test fails, the BSW would maintain control of
the system, entering Safe mode.

In the original implementation [3], the BSW then
checks the health of the RAM blocks on which the
selected image is to be deployed. If any of the blocks
has a permanent failure in one or more cells, it would not
be possible to deploy the image, and, subsequently, it will
be disabled. This original behavior has been modified to
adapt it to use the new memory management unit.

Figure 7 shows an activity diagram modeling the
new relocation algorithm. As already discussed, its final
implementation follows a similar approach to that outlined
in Section A. Thus, if the boot software detects a failure
in one of the target memory blocks, it will use the
memory management unit to relocate it by introducing an
overlapping page mapped to a specific, error-free physical
memory block. In the case of exhausting all available TLB
entries or free blocks intended for relocation, the boot
software will be forced to disable the image.

Two techniques were used to validate the implemen-
tation of the algorithm. The first one involved the use
of a virtual platform called LeonViP [23], [24]. This
platform simulates a System-on-Chip (SoC) based on a
LEON processor, and it was initially implemented to
support the development and validation of the software
of the EPD’s ICU. LeonViP allows simulated memory
errors to be injected to facilitate the validation of error

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 13

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TABLE IV
Resources and Power consumption in the Microchip RTAX FPGAs.

No
MMU

SRMMU Proposed MMU

Resource\TLB# - 4 8 16 4 8 16
Sequential
(R-cells)

4,317 5,261 5,644 6,047 5,168 5,570 6,427

Combinational
(C-cells)

14,832 16,046 16,588 17,260 16,521 17,385 18,580

RAM/FIFO 39 39 39 40 39 39 39
Power (mW) 341.71 351.06 355.80 362.47 355.99 361.79 374.60

TABLE V
Resource and Power consumption in the Microchip RT ProASIC

FPGAs.

No
MMU

SRMMU Proposed MMU

Resource\TLB# - 4 8 16 4 8 16
Core Tiles 28,653 31,488 32,369 34,159 32,627 34,569 39,178
RAM/FIFO 61 63 63 63 61 61 61

Power (mW) 566.09 591.57 599.69 618.30 601.43 620.52 662.79

detection and correction algorithms. The original platform
has been modified in the context of this work to include
the simulation of the proposed memory management unit.

In order to conduct the first validation technique, we
used a regular PC with the operating system Ubuntu
and the Eclipse development environment. After com-
piling the modified version of LeonViP that implements
the proposed MMU, we run the BSW image that has
been modified to implement the relocation algorithm
and manually inject errors in memory areas reserved
for the deployment of the ASW. During execution, we
verified that the damaged areas were relocated to new,
non-damaged memory areas previously reserved for that
purpose. The correct deployment and execution transfer
to the ASW was also verified.

The second validation technique follows a similar idea
but is performed directly on the final hardware. In this
instance, the validation scenario consists of an FPGA that
has been programmed using the modified version of the
LEON3 core that implements the proposed MMU. We
also include other cores needed for the correct operation
and to help the debugging process, namely: AHB debug
UART, JTAG debug link, Memory Controller, AHB/APB
bridge, Debug Support Unit, one generic UART, Interrupt
unit, one Modular Timer unit and one General Purpose
I/O port. Using the hardware monitor GRMON and the
Debug Support Unit, we flash the PROM with the same
image of the BSW as in the first validation, which in-
cludes the relocation algorithm and injects errors in areas
reserved for the ASW deployment. The error injection is
achieved by directly modifying the data structure used by
the error detection algorithm to indicate which RAM areas
are valid. We use the UART to obtain specific outputs and
the debug unit to check the hardware status, verifying the
same behavior as with the first validation technique. i.e.,
all damaged areas were relocated to new, non-damaged
memory areas, and the execution was transferred to the
ASW after its successful deployment.

TABLE VI
Resource and Power consumption in the Microchip RTG4 FPGAs.

No
MMU

SRMMU Proposed MMU

Resource\TLB# - 4 8 16 4 8 16
4-LUTs 14,214 15,691 16,098 16,897 15,346 15,961 17,188
DFFs 5,707 6,253 6,526 7,080 6,256 6,666 7,473

RAM1K18 6 8 8 8 8 8 8
RAM64x18 49 43 43 43 41 41 41
Power (mW) 265.64 269.41 270.81 273.44 268.79 270.85 274.79

TABLE VII
Resource and Power consumption in the Xilinx Virtex VQV

space-grade FPGAs.

No
MMU

SRMMU Proposed MMU

Resource\TLB# - 4 8 16 4 8 16
Slices 3,539 4,205 4,478 5,034 4,271 4,679 5,496

Flip-flops 10,123 11,443 11,866 12,791 11,422 12,337 14,025
LUTs 9,031 10,042 10,233 10,661 9,953 10,464 11,349

BRAMs 9 9 9 9 9 9 9
Power (W) 2.119 2.121 2.122 2.123 2.121 2.122 2.124

E. Synthesis results

We have synthesized the LEON processor with the
implemented Memory Management Unit (MMU) on the
leading space-qualified Xilinx and Microsemi FPGAs.
The SoC includes the same cores described in the second
validation scenario in Section D. The processor also
deploys a data cache with one set, 4-Kbyte per set and
32 bytes per line, and an instruction cache with two
sets, 4-Kbyte per set and 32 bytes per line. Both caches
implement a Least Recently Used (LRU) replacement
algorithm.

Tables IV, V, VI and VII show the results ob-
tained with the original version of the processor without
MMU, with the SPARC Reference MMU (SRMMU),
and those obtained after deploying our unit in terms of
consumed resources and estimated power consumption
for the evaluated FPGAs using a clock frequency of
24 MHz. For the systems deploying MMUs, the most
significant resource consumptions for different numbers
of TLB entries are shown for each family. Thus, for the
Xilinx Virtex VQV space-grade qualified FPGAs, Table
VII shows the consumed slices, flip-flops, LookUp Tables
(LUTs) and Block RAMs (BRAMs). For the Microsemi
RTG4 FPGAs, Table VI lists the required 4-input LookUp
Tables (4-LUTs), the D-type flip-flops (DFFs), and the
RAM1K18 and RAM64x18 memory blocks. Table IV
shows the consumption for the Microsemi RTAX FPGAs
in terms of Sequential (R-cells) and Combinational (C-
cells) logic cells and RAM/FIFO memory blocks. Finally,
for the Microsemi RT ProASIC FPGAs, Table V shows
the required core tiles and RAM/FIFO memory blocks.

The results show an increase in resource and power
consumption for the proposed MMU comparable to that
of the SRMMU. In both cases, it can be observed that
the increase is practically linear with the number of
TLB entries for both MMUs. It has been found that the
increase in consumption of the proposed MMU compared
to the SRMMU is mainly due to the increased amount of
data that each TLB entry stores in addition to the extra

14 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

ports needed for the communication to allow reading and
writing each entry. This can be optimized by serializing
the writing and reading process and limiting page sizes if
they are found unnecessary. Furthermore, for the case of
the proposed MMU, the number of available TLB entries
has a direct impact on the damaged block relocation ca-
pabilities and thus shall be chosen, in all cases, depending
on the particular parameters of the mission.

The main objective of our proposal is to provide an
MMU to avoid permanent errors in systems that do not
require the use of dynamic memory and, therefore, do not
need any form of virtual memory management. In such
systems, the entire memory can be mapped using only
two pages: a cacheable page that maps the entire address
space, including the application’s data and code, and an
overlapping non-cacheable page to map the I/O device
registers.

Given the low rate of permanent memory failures
and the possibility of combining our solution with other
fault tolerance techniques, we have concluded that it is
unnecessary to implement a configuration that deploys
more than eight TLB entries. In that case, and needing
two of them to map the entire memory address space,
six entries would remain to avoid at least six permanent
memory failures.

The SoC implemented for the instrument control unit
of EPD was deployed into a Microchip RTAX FPGA.
The design did not implement an MMU. This SoC had
a resource consumption of 8,158 R-cells, 20,990 C-cells,
and 31 RAM/FIFO. Based on the results obtained for the
8 TLB entry configuration of our MMU implemented in
an FPGA of the same family, shown in the Table IV, we
found a nominal increase of 1,253 R-cells, 2,553 C-cells,
and 0 RAM/FIFO when compared to not implementing
MMU. Compared to the overall resource consumption
of the SoC of the EPD’s instrument control unit, this
represents a resource increase of 15.3% R-cells, 12.2%
C-cells, and 0% RAM/FIFO.

F. Performance analysis

In order to analyze the impact on the overall software
performance, we have used the Dhrystone [25] bench-
mark. This benchmark is implemented as a single-task
program whose original code has been modified to add the
necessary methods to configure and activate the MMU.
The program has been compiled using the BCC [26] suite
and configured with a value of 100,000 iterations.

To measure the degree of overhead introduced by the
memory management unit, we have run the test on two
different configurations of the LEON architecture. In the
first one, the system does not implement any memory
management unit or translation mechanism and, therefore,
programs are executed directly on physical memory. In
the second configuration, the system deploys the memory
management unit presented in this article. In this second
case, the system is configured using a single TLB entry

that maps 1 to 1 the entire virtual address space onto
physical memory.

The results obtained are shown in Tables VIII and
IX. The former corresponds to the benchmark execution
with the caches disabled, while the latter shows the results
using the caches. In the latter case, the system has been
configured with an 8 KiB, 8-ways instruction cache, and
an 8 KiB, four-ways data cache.

In both cases, the execution results on the original
LEON processor-based system (No MMU) and the one
including the proposed memory management unit are
shown. Both tables show the results as a function of
the optimization level set in the test program compilation
process. These results include the number of instructions
executed and the number of cycles consumed, which have
been obtained from an L3STAT statistics unit deployed
together with the processor. From this data, the average
number of cycles per instruction is derived. In addition,
the tables show the time in seconds taken to execute all
iterations of the loop, the average iterations per second
(Dhry/s), and the so-called Dhrystone MIPS (DMIPS).
These data are obtained programmatically by the test
itself. In the case of execution with MMU, the increase
of cycles consumed with respect to the execution without
MMU is also included.

As can be seen, the translation process causes an in-
crease in the number of cycles per instruction. The reason
for this increase is that the memory management unit, in
its current implementation, consumes an additional cycle
to perform the address translation. The results also show
that if the system has the caches enabled, the increase in
cycles is smaller. This is because the translation process
and the cache lookup process are performed in parallel.
This search process also takes one cycle to execute.
Thus, if a read access provokes a cache miss, the final
physical memory address is available at the beginning of
the necessary memory access operation.

In order to contextualize the performance impact
produced by the proposed MMU, we have also measured
the overhead introduced by the SPARC Reference MMU
(SRMMU). In order to do so, we used the same Dhrystone
benchmark, adding the initialization of the page tables
needed for the SRMMU. Since the performance impact
derived from the use of the SRMMU varies widely
depending on how often the page tables are consulted, we
focused on the best and worst cases. The best case cor-
responds to the one where all required pages are present
at all times in the TLB. In this scenario, the performance
is identical to that observed with the proposed MMU.
The worst case would be one in which none of the target
pages were previously present in the TLB, so it would
be necessary to traverse the page tables to locate the
physical address for every single memory access. In order
to emulate this case, we ran the benchmark with the TLB
disabled, finding a 140% increase in the number of cycles
compared to not using the MMU.

Although the average increase in execution times may
result in a performance loss of about 11%, we believe

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 15

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TABLE VIII
Results of the Dhrystone benchmark using 100,000 iterations with caches disabled

Mode Optimization Instructions Cycles Time (s) Dhry/s DMIPS CPI % increase in cycles

No MMU

O0 101,900,553 839,703,891 21.0 4,763.6 2.7 8.240 -
O1 53,700,524 392,209,110 9.8 10,198.6 5.8 7.304 -
O2 37,400,533 305,375,326 7.6 13,098.6 7.5 8.165 -
O3 37,100,533 303,228,718 7.6 13,191.4 7.5 8.173 -

Proposed MMU

O0 101,900,553 948,554,265 23.7 4,216.9 2.4 9.309 12.96%
O1 53,700,524 446,292,996 11.2 8,962.7 5.1 8.311 13.79%
O2 37,400,533 342,680,621 8.6 11,672.7 6.6 9.162 12.22%
O3 37,100,533 342,104,216 8.6 11,692.3 6.7 9.221 12.82%

TABLE IX
Results of the Dhrystone benchmark using 100,000 iterations with caches enabled

Mode Optimization Instructions Cycles Time (s) Dhry/s DMIPS CPI % increase in cycles

No MMU

O0 101,900,553 148,326,753 3.7 26,967.5 15.3 1.456 -
O1 53,700,524 77,990,033 1.9 51,288.6 29.2 1.452 -
O2 37,400,533 59,647,878 1.5 67,060.2 38.2 1.595 -
O3 37,100,533 56,550,265 1.4 70,733.5 40.3 1.524 -

Proposed MMU

O0 101,900,553 164,514,098 4.1 24,314.0 13.8 1.614 10.91%
O1 53,700,524 85,763,764 2.1 46,639.7 26.5 1.597 9.97%
O2 37,400,533 66,394,151 1.7 60,246.3 34.3 1.775 11.31%
O3 37,100,533 62,800,889 1.6 63,693.3 36.3 1.693 11.05%

that the benefits provided by the translation mechanism in
facilitating the relocation of damaged blocks of memory
are sufficient to justify its use in on-board space environ-
ments.

VI. Conclusions and future work

This paper presents the design and implementation
of a memory management unit that allows the dynamic
relocation of on-board space software. This capability
allows avoiding possible damaged memory blocks due
to radiation without needing to apply modifications to
the software that would require intervention from ground
mission control.

The memory management scheme presented in this
paper combines the benefits of using large memory
blocks while allowing fine tuning in the re-mapping of
memory locations with permanent errors. It implies a
small memory loss in terms of internal fragmentation
compared to paging schemes where the entire page should
be discarded. In addition, the use of software-managed
TLBs eliminates the use of memory-resident translation
tables, thus avoiding the problems associated with errors
in the translation tables themselves.

The unit has been implemented on the LEON ar-
chitecture. The validation of the proposed solution has
been carried out using as a base the boot and application
software of the instrument control unit of the Energetic
Particle Detector of the Solar Orbiter mission. The results
of the implementation show an assumable increase in
FPGA resource requirements, as well as a minor loss
of performance due to the need to perform address
translation. These two factors are clearly offset by the
advantages of being able to relocate code and data in
case of permanent memory errors.

Future work includes the study of possible modifi-
cations to the implementation of the unit to improve
its temporal and spatial performance. For this purpose,
we will study the possible improvements derived from
integrating the proposed mechanism with other elements
such as the instruction pipeline or the cache memory.

ACKNOWLEDGMENT

The authors would like to thank Professor Rafael
Sendra for his invaluable help in formalizing the specifica-
tion of the behavior of the proposed memory management
unit.

REFERENCES

[1] G. Hubert, S. Aubry, and J. A. Clemente, “Impact of ground-level
enhancement (gle) solar events on soft error rate for avion-
ics,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 56, no. 5, pp. 3674–3684, 2020.

[2] E. Petersen, Single event effects in aerospace. John Wiley & Sons,
2011.

[3] Ó. R. Polo et al., “Reliability-oriented design of on-board satellite
boot software against single event effects,” Int. J. High Perform.
Syst. Archit., vol. 114, p. 101920, Mar. 2021.

[4] Space Avionics Open Interface Architecture (SAVOIR), SAVOIR-
GS-002 - SAVOIR Flight Computer Initialisation Sequence
Generic Specification, SAVOIR, ESA.

[5] A. Witze, “Software error doomed japanese hitomi spacecraft,”
Nature, vol. 533, no. 7601, pp. 18–19, May 2016. [Online].
Available: https://doi.org/10.1038/nature.2016.19835

[6] P. J. Denning, “Virtual memory,” ACM Comput. Surv., vol. 2,
no. 3, p. 153–189, sep 1970. [Online]. Available: https:
//doi.org/10.1145/356571.356573

[7] S. Feizabadi, B. Ravindran, E. E. Fox, E. D. Jensen, J. D. Arthur,
and R. E. Nance, “Dynamic memory management in a resource-
constrained real-time utility accrual environment,” 2004.

16 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.1038/nature.2016.19835
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/356571.356573

[8] Intel® 64 and IA-32 Architectures Software Developer’s Manual -
Volume 3 (3A, 3B, 3C & 3D): System Programming Guide, Intel
Corporation, Jun. 2021.

[9] AMD64 Architecture Programmer’s Manual - Volume 2: System
Programming, Advanced Micro Devices, Mar. 2021.

[10] Arm Architecture Reference Manual - Armv8, for A-profile archi-
tecture, Arm Ltd., Jul. 2021.

[11] The SPARC Architecture Manual - Version 8, SPARC International
Inc., 1992.

[12] The RISC-V Instruction Set Manual - Volume II: Privileged Archi-
tecture, University of California, Berkeley, Jun. 2019.

[13] MIPS Architecture For Programmers - Vol. III: MIPS32 / mi-
croMIPS32 Privileged Resource Architecture, MIPS Technolo-
gies, Jul. 2015.

[14] S. Sánchez et al., “HW/SW co-design of the instrument control
unit for the energetic particle detector on-board solar orbiter,”
Adv. Space Res., vol. 52, no. 6, pp. 989–1007, Sep. 2013.

[15] J. Rodrı́guez-Pacheco et al., “The energetic particle detector -
energetic particle instrument suite for the solar orbiter mission,”
Astron. Astrophys. Suppl. Ser., vol. 642, p. A7, Oct. 2020.

[16] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
radiation effects in sram-based fpgas for space applications,”
ACM Computing Surveys (CSUR), vol. 47, no. 2, pp. 1–34, 2015.

[17] A. J. Olazábal and J. P. Guerra, “Multiple cell upsets inside
aircrafts. new fault-tolerant architecture,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 55, no. 1, pp. 332–342,
2018.

[18] B. Swiercz, D. Makowski, and A. Napieralski, “A novel approach
for operating systems protection against single event upset,” in
Proceedings of the International Conference Mixed Design of
Integrated Circuits and System, 2006. MIXDES 2006. IEEE,
2006, pp. 61–64.

[19] X. Zhou and P. Petrov, “The interval page table: virtual mem-
ory support in real-time and memory-constrained embedded
systems,” in Proceedings of the 20th annual conference on
Integrated circuits and systems design, 2007, pp. 294–299.

[20] M. Böhnert and C. Scholl, “A dynamic virtual memory management
under real-time constraints,” in 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems
and Applications. IEEE, 2014, pp. 1–10.

[21] C. Meenderinck, A. Molnos, and K. Goossens, “Composable vir-
tual memory for an embedded soc,” in 2012 15th Euromicro
Conference on Digital System Design. IEEE, 2012, pp. 766–
773.

[22] GRLIB VHDL IP Core Library - GRLIB IP Core User’s Manual,
Jul. 2021.

[23] A. da Silva, S. Sánchez, O. R. Polo, and P. Parra, “Injecting
faults to succeed. verification of the boot software on-board
solar orbiter’s energetic particle detector,” Acta Astronautica,
vol. 95, pp. 198 – 209, 2014. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0094576513003962

[24] P. Parra, A. da Silva, O. R. Polo, and S. Sánchez, “Agile deployment
and code coverage testing metrics of the boot software on-board
solar orbiter’s energetic particle detector,” Acta Astronautica,
vol. 143, pp. 203 – 211, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0094576516311614

[25] R. P. Weicker, “Dhrystone: a synthetic systems programming
benchmark,” Commun. ACM, vol. 27, no. 10, pp. 1013–1030,
Oct. 1984.

[26] BCC User’s Manual, Cobham Gaisler AB, Sep. 2020.

Borja Losa received his B.S. degree in Computer Engineering from the University of Alcalá in 2021, and his M.S.
degree in Space Science and Technology in 2022. Since 2019, he has been participating with the Computer Engineering
department and the Space Research Group of Universidad de Alcalá working on different projects focused on the SPARC
architecture and LEON3 processor, researching new ways to improve the reliability for space systems. He is currently
pursuing a Ph.D. in Space Research and Astrobiology aimed at facilitating the virtualization of the LEON3 processor by
providing hardware assisted virtualization.

Pablo Parra received his Ph.D. in Information and Communication Technologies from the University of Alcalá in 2012.
Since 2006, he has been working with the Computer Engineering Department and the Space Research Group (SRG) of the
University of Alcalá. His research interests include component-based software engineering and model-driven engineering
applied to the field of real-time embedded systems. He has taken part in numerous research projects in the field of on-board
satellite software development, such as the NANOSAT programme, Solar Orbiter and Euclid.

Antonio Da Silva Born in Germany, Antonio da Silva has received the MSc and Ph.D. degrees in computer engineering
from Universidad de Alcalá (UAH), in 2001 and 2015, respectively. He has worked as embedded software developer
for primary radar systems and since 1991 he lectures in the field of Computing Science. He has worked with the Space
Research Group of Universidad de Alcalá on projects related to the development of the energetic particle detector (EPD)
on-board Solar Orbiter. His research interests include Serious Games for Education, Fault Tolerant systems design and
critical software early development and verification.

LOSA ET AL.: Mem. man. unit for hw-assisted dynamic relocation of on-board satellite systems 17

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://www.sciencedirect.com/science/article/pii/S0094576513003962
http://www.sciencedirect.com/science/article/pii/S0094576513003962
http://www.sciencedirect.com/science/article/pii/S0094576516311614
http://www.sciencedirect.com/science/article/pii/S0094576516311614

Óscar R. Polo received his M.S. degree in physics from the Universidad del Pais Vasco in 1994 and his Ph.D. in physics
from the Universidad Complutense de Madrid, Spain, in 2003. Since 2004, he has been with the Computing Engineering
Department at the University de Alcalá. He is currently an assistant professor of embedded and real-time systems. His
research interests include computer architecture, satellite on-board software, model driven engineering and embedded real-
time systems. He has actively participated in several research projects in the area of computer engineering of satellite
platforms in NANOSAT-01, NANOSAT-1B, Solar Orbiter and Euclid missions.

J. Ignacio G. Tejedor is a M.Eng. in Telecommunications and Ph.D. from the University of Alcalá (UAH). He’s assistant
professor at the Computer Engineering Department of UAH since 1999 in the areas of operating systems and computer
architecture, and a researcher in these fields plus in embedded systems, reconfigurable logic, data acquisition systems and
nuclear instrumentation. He has actively participated in relevant research projects both in the field of onboard hardware and
software for space applications in relation to missions such as Nanosat, Microsat or Exomars, and in the field of radiation
detectors for the study of cosmic rays and solar activity, such as CaLMa (the Castilla-LaMancha Neutron Monitor) and
ORCA (the Antarctic Cosmic Ray Observatory of UAH). In this context, he has participated in the XXXII, XXXIII and
XXXV Spanish Antarctic Campaigns from 2018 to 2022, on the BAE Juan Carlos I on Livingstone Island (Antarctica).

Agustı́n Martı́nez received the M.S. degree from the Universidad Politécnica de Madrid (UPM) in 1986 and the Ph.D.
degree from the Universidad de Alcalá in 2001. Professor of Computer Engineering Department at the University of
Alcalá in Spain, Head of Department from 2010 to 2016. His research and teaching activities are in the areas of DSP,
Computer Architecture, Embedded Systems and Space Systems. He has been in charge of technical and management
issues at Telettra, Alcatel and Alcatel-Lucent over more than 20 years, accounting a deep experience over technical and
management leadership activities in international projects.

Jonatan Sánchez received his Ph.D in Space Research and Astrobiology from the University of Alcalá in 2022. He
worked for the Space Research Group since 2019, where he researched about Space Software testing, Fault Tolerance
techniques and Hardware Simulation. Since 2021 he works on Cadence Design Systems Inc. developing Electronic Design
Automation Verification tools.

Sebastián Sánchez received his M.S. degree from the Universidad Politécnica de Madrid in 1994 and his PhD. at the
Universidad de Alcalá, in 1998. Since 1990, he has been with the Computing Engineering Department at the University
de Alcalá. He is full professor of operating systems and computer architecture. His research interests include space
instrumentation, embedded real-time systems, and mobile robots. He has actively participated in several national and
international research projects in the area of hardware and software on board satellites such as SOHO, PHOTON, FUEGO
2, NANOSAT, Exomars, MICROSAT, Solar Orbiter and Euclid.

David Guzmán received his M.S. in Information and Communications Technology from the University of Alcalá in
2008 and his Ph.D in 2012. His research interests include computer architecture, embedded real-time systems, system on
chip development, on-board technologies, and fault tolerant systems. He has actively participated in several international
research projects in the area of hardware and software for on-board satellites, such as INTA Microsat, NASA FireStation,
Firefly, Restore-L and JPSS.

18 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3284419

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Conventional memory management units
	Proposed memory management unit

	Related works
	Design of the proposed memory management unit
	Use case: spaceborne systems
	Design of the relocation algorithm

	Implementation and validation
	Format of the TLB entries
	Description of the translation process
	Hardware/software interface
	Validation of the proposed approach
	Synthesis results
	Performance analysis

	Conclusions and future work
	REFERENCES
	Biographies
	Borja Losa
	Pablo Parra
	Antonio Da Silva
	Óscar R. Polo
	J. Ignacio G. Tejedor
	Agustín Martínez
	Jonatan Sánchez
	Sebastián Sánchez
	David Guzmán

