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ABSTRACT
The global electric vehicle (EV) market has been experiencing an impressive growth in recent times. 
Understanding consumer preferences on this cleaner, more eco-friendly mobility option could help guide 
public policy toward accelerating EV adoption and sustainable transportation systems. Previous studies 
suggest the strong influence of individual and external factors on EV adoption decisions. In this study, we 
apply machine learning techniques on EV stated preference survey data to predict EV adoption using 
attitudinal factors, ridesourcing factors (e.g., frequency of Uber/Lyft rides), as well as underlying socio-
demographic and vehicle factors. To overcome machine learning models’ low interpretability, we adopt 
the innovative Local Interpretable Model-Agnostic Explanations (LIME) method to elaborate each factor’s 
contribution to the predicting outcomes. Besides what was found in previous EV preference literature, we 
find that the frequent usage of ridesourcing, knowledge about EVs, and awareness of environmental 
protection are important factors in explaining high willingness of adopting EVs.
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Introduction

The widespread adoption of electric vehicles (EVs) has been seen as 
an effective tool to address the global challenge of climate change, 
provided that electricity is harnessed from a clean energy source, 
such as water, wind, and solar (Maclnnis and Krosnick 2020). EV 
adoption has also become a viable pathway toward sustainability for 
a major carbon emitter like the United States, where 92% of its CO2 
emission comes from fossil fuel combustion that is largely related to 
the transportation sector (The United States Environmental 
Protection Agency (EPA) 2021). In European countries, EV adop-
tion is considered a national strategy for combating climate change 
as a substantial reduction in carbon emission could be achieved via 
EV’s mass uptake (Canals Casals et al. 2016). With such visions, the 
global electric vehicle market experienced a spectacular rise in sales 
and popularity during the past decade: In 2019, EVs accounted for 
2.6% of global car sales and 1% of global car stock – an impressive 
40% year-on-year increase (The International Energy Agency (IEA) 
2020). We can expect EVs to play a significant role in helping many 
countries meet their global net zero emission goals by the mid-21st 

century.
The accelerating global EV adoption is attributed to multiple 

factors. From the supply side, the cost of EV production steadily 
declines as battery cost has decreased more than 85% since 2010 
(The International Energy Agency (IEA) 2020). This helps lower 
EV prices in the competition against traditional gasoline cars. At 
the same time, EV manufacturers have improved battery capacity to 
accommodate long-range driving and developed the battery char-
ging technology that significantly shortens the recharge time (The 
International Energy Agency (IEA) 2020). From the policy side, 
governments provide financial incentives, such as tax rebates to EV 
manufacturers and consumers, and build the essential infrastruc-
ture, such as public charging stations, to boost EV adoption (Liao, 
Molin, and van Wee 2017). From an international perspective, 

many countries are embracing EV technologies as a part of the 
global initiative of reducing energy consumption and greenhouse 
gas emissions, combating climate change, and achieving a more 
sustainable and eco-friendly growth (UNEP, n.d.). Last but not 
least, consumers start to see EV as a robust alternative to gasoline 
cars now that the production technologies have matured. 
Consumer willingness to purchase an EV can be influenced by 
their familiarity with the technology (Jensen, Cherchi, and Mabit 
2013), their attitudes toward its multitudes of environmental and 
social benefits (Axsen, Bailey, and Castro 2015), their social net-
work’s influence (Kim, Rasouli, and Timmermans 2014), their 
sociodemographic characteristics, and their job/home locations 
(Sovacool et al. 2019).

Despite the auto industry’s enthusiasm and consumer’s opti-
mism toward EV adoption, we should not neglect certain barriers 
to EV adoption that are yet to be cleared, such as retail relationships 
of the EV market through dismissive auto dealership (Zarazua de 
Rubens, Noel, and Sovacool 2018), concerns about the technology 
and infrastructure readiness (Vassileva and Campillo 2017), as well 
as the mobility justice discourse regarding who should be held 
accountable for the emissions from EV production and disposal 
processes – usually the wealthy nations who lead in both energy 
consumption and EV adoption (Henderson 2020).

In this study, we also examine an emerging factor that may 
influence the EV adoption besides the aforementioned ones: the 
usage of ridesourcing services (Uber, Lyft, and their equivalents). 
Both shared mobility and electric vehicles are umbrellaed under the 
global concept of ‘new mobility’, updating the transportation sys-
tem with emerging technologies and business models. Ridesourcing 
services, supported by transportation network companies (TNCs) 
like Uber and Lyft, are well covered in urban areas. More than one- 
third of the U.S. adults said to have used ridesourcing services, 
according to a Pew Research Center survey conducted in fall 2018 
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(Jiang 2019). It is safe to claim that while not many people have 
experienced EVs, many have tried ridesourcing services in recent 
times. We are interested in empirically understanding whether 
a consumer’s experience with ridesourcing could influence her 
decision to purchase an EV. The affinities for shared mobility and 
EVs are closely related to one another (Burghard and Elisabeth 
2019). In particular, both shared mobility and EV mobility visions 
address the sustainability challenges of today’s transportation sys-
tem. In addition to ridesourcing factors, we examine a list of 
attitudinal factors that could explain one’s willingness to adopt 
the EV technology.

We adopt innovative machine learning (ML) approaches in 
this study. Thanks to their capacity to process big data, ML 
techniques have been widely applied to the information and 
technological fields, such as fraud detection, robotics, spam 
filtering, translation services, preventive health care, and object 
detection. In recent years, ML has also been applied in trans-
portation research on topics like congestion reduction, safety 
improvement, environmental impact studies, and energy con-
sumption optimization. One of the distinct characteristics of 
ML is the non-parametric modeling structure, meaning that 
the predictor does not take a predetermined form (such as 
linear or quadratic form). The data-driven nature relaxes 
a traditional parametric model’s assumptions on its modeling 
structure and relationships between features. However, there are 
also concerns over such non-parametric approach, including the 
requirement of large-size data to train ML models, the issue of 
overfitting (where the model fits too well for the training data 
and loses predictability on new data), and low interpretability of 
the results. Regarding interpretability, the majority of ML algo-
rithms used today are black boxes. The final throughputs – the 
performance metrics of an ML algorithm – focus on predict-
ability. Although predictability prevails over interpretability in 
many ML applications, many researchers find it meaningful to 
elaborate the underlying relations between ML predictors and 
prediction. With recent attempts to develop interpretable ML 
models, researchers have made significant progress toward 
building ML models with both predictability and interpretabil-
ity, such as (Zhao et al. n.d.; Lakkaraju et al. 2017).

To address the limited interpretability of ML models, we 
adopt a novel ML technique called Local Interpretable Model- 
Agnostic Explanations (LIME). Specifically, we hope to under-
stand each predictor’s contribution to the prediction outcomes. 
The predictors of interest include the usage of ridesourcing 
services and an individual’s attitudes toward promoting the 
EV technology and protecting the environment. We believe 
that providing interpretation to these factors by applying this 
novel technique is a qualitative leap. For the first time, it is 
possible to offer valuable insights to researchers who can benefit 
from the high predictability of non-parametric ML models 
when solving similar empirical problems, while being able to 
interpret the modeling results.

The rest of the paper is organized as follows: Section 2 
reviews literature on EV adoption and ML methods; Section 3 
provides an overview of the technical aspects of supervised ML 
and the LIME method. Section 4 summarizes the data used in 
this study; Section 5 exhibits the results. Finally, Section 6 
provides concluding remarks.

Literature review

In this section, we focus on the existing literature on EV adop-
tion and the ML applications in new mobility research. EV 
research has grown substantially in volume as EV’s popularity 

has risen. We will summarize key findings from both quantita-
tive and qualitative research on the influential factors for EV 
adoption. Furthermore, we will discuss literature’s findings on 
the comparative advantage of ML approaches over traditional 
statistical models in new mobility studies. Finally, we will briefly 
cover the limited research evidence linking EV adoption to 
shared mobility.

Factors influencing EV adoption

The consumer preferences for EV are influenced by both individual 
factors and external factors (Liao, Molin, and van Wee 2017). On 
individual factors, we learn from literature that EV ownership is 
significantly positively associated with income level (Sovacool et al. 
2019), familiarity with EV technology (Jensen, Cherchi, and Mabit 
2013), the pro-environment attitude (Axsen, Bailey, and Castro 
2015), Hands-on EV experience (Rezvani, Jansson, and Bodin 
2015), and peer influence/social norms (Carley, Siddiki, and 
Nicholson-Crotty 2019). Other factors are either insignificant or 
bring mixed results toward EV adoption, such as education level 
(Sierzchula et al. 2014), the number of owned vehicles (Javid and 
Neja, 2017), and population density (Sierzchula et al. 2014). Due to 
the novelty of EV and the differences in EV market, the individual 
heterogeneities in EV preferences are inevitable.

Consumers are also responsive to external factors on EV adop-
tion. Some of them are related to the vehicle itself, including price, 
battery range, and charging time barriers (Carley, Siddiki, and 
Nicholson-Crotty 2019). Some of the external factors are related 
to financial and non-financial incentives offered by government on 
EV adoption. Financial incentives, including cash refund or tax 
rebate on EV purchases, have a positive impact on EV adoption 
(Rezvani, Jansson, and Bodin 2015). Similarly, non-financial incen-
tives, such as state funded EV infrastructure, discounted parking 
cost, toll fee/ road charge waiver, and licensing incentives, all 
encourage EV adoption to various degrees (Hardman 2019; He 
et al. 2021). Without diving deep into the wealth of literature on 
various factors that influence EV adoption, we aim to address 
a unique angle on the relationship between usage (and awareness) 
of shared mobility on the potential EV purchases in this study.

We find few empirical studies that attempt to build the connec-
tion between EV adoption and shared mobility. (Jenn, Laberteaux, 
and Clewlow 2018) quantitatively examine the factors that influence 
shared mobility (car-sharing and ridesourcing) usage. They identify 
a positive correlation between the frequency of ridesourcing rides 
and their willingness to buy an EV. Our study focuses on potential 
EV consumers using EV survey data, whereas theirs focuses on car- 
sharing and ridesourcing user characteristics and preferences. 
Therefore, we can describe more nuanced information on EV pre-
ference attributes. Internationally, (Burghard and Elisabeth 2019) 
find evidence that car-sharing users are likely to purchase EV in 
a survey study about electric car-sharing in Germany. The other 
connection between shared mobility and EV lies in the possible 
mobility vision of using shared electric vehicles (SEVs) as a smart 
mobility solution for congestion and emission reduction (Taiebat 
and Xu 2019). In summary, our study is unique in that it directly 
addresses the connection between ridesourcing usage and EV 
adoption.

Machine learning research on new mobility

ML techniques have been applied to research on either new mobi-
lity options or alternative energy vehicles for ML’s high predict-
ability. Researchers use ML models to predict battery life, energy 
consumption, and mileage range for alternative fuel vehicles (Zahid 
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et al. 2018; Fukushima et al. 2018). Furthermore, ML techniques are 
used in research on the intelligent transportation system (ITS), 
which often involves big data analytics. Such research topics include 
stop delivery times prediction (Hughes et al. 2019), traffic flow and 
mobility profiles estimation (Liu et al. 2019; Parsa et al. 2020; Sun, 
Leurent, and Xie 2021), driving behavior recognition (Yi et al. 
2019), and parking occupancy prediction (Yang et al. 2019). 
However, ML approaches are oftentimes adopted in academic 
research solely for the purpose of comparing their predictability 
against traditional statistical models. For instance, (Martín-Baos, 
García-Ródenas, and Rodriguez-Benitez 2021) compare predict-
ability between a random utility model that uses the kernel logistic 
regression (KLR, an ML approach) for utility specification and 
other models like the multinomial logit (MNL) method, support 
vector machines (SVMs), and random forest (RF). Many studies 
compare prediction accuracy among multiple ML algorithms, such 
as using cellphone accelerometer and gyroscope data to predict 
transportation mode choice (Jahangiri and Rakha 2015), using 
speed and acceleration data to predict driving conditions (Huang, 
Tan, and He 2011), using EV data to predict EV distance range (Sun 
et al. 2019), and using survey data to classify potential EV buyers 
(Bas, Cirillo, and Cherchi 2021a). In many cases, the more structu-
rally complexed algorithms would outperform the more conven-
tional ones. Nevertheless, researchers point out that predictability 
significantly depends on data quality and processing. It is difficult to 
claim that certain ML algorithm is a clear winner for all types of 
prediction problems. In general, ML shows promising outcomes in 
predictability as compared to traditional statistical models.

ML techniques have also been adopted in new mobility research 
using survey data. (Lee et al. 2019) apply the gradient boosting 
machine (GBM) method to understand the user preferences related 
to autonomous vehicles (AVs). They include a number of attitudinal 
factors in the survey study, such as pro-AV sentiments, environmen-
tal concerns, interest in AV technology, and attitudes toward public 
transit. (Zarazua de Rubens 2019) applies a K-means clustering 
algorithm in a market segmentation analysis on potential EV adop-
ters using EV survey data. Based on socio-economic characteristics, 
vehicle preference, and stated interest in EV, the author derives six 
market segments. Finally, ML methods have also been adopted to 
understand ridesourcing behavior. For instance, (Chen, Zahiri, and 
Zhang 2017) use an ensemble tree learning method in a combined 
classification problem to determine a ridesourcing trip’s service type.

Apart from identifying the ML model that best predicts EV 
adoption using attitudinal and ridesourcing factors, another con-
tribution of this paper to current literature is adopting the novel 
LIME method to interpret highly abstract ML results. To the best of 
our knowledge, LIME has not been as widely adopted in transpor-
tation studies as in other disciplines, such as medical informatics 
(Pan et al. 2019) and neuroscience (Wang et al. 2019). We believe 
that using LIME to explain the predictions will help users under-
stand the underlying ML models being estimated in this study.

In summary, there still lacks a well-recognized ML approach 
that makes a reliable prediction on EV adoption and is able to 
explain the relative importance of the influencing factors. This 
paper aims to combine EV preference survey data, a unique data- 
driven ML modeling framework, and the application of LIME to 
interpret prediction outcomes to shed light on the role of individual 
ridesourcing usage and attitudes in EV adoption decisions.

Methodological framework

As Figure 1 illustrates, the methodological framework comprises 
two steps. In the first step, we conduct a feature engineering process 
that generates the final dataset and run a number of ML models that 
predict EV adoption. The leading model in terms of predictability is 
selected. The second step is to make use of the LIME method on the 
leading model to elaborate on the contribution of each feature to 
the prediction. This step helps us identify the most important 
features on a case-by-case basis. We further describe the methodo-
logical framework in the following subsections.

An overview of supervised learning

In this study, one of our objectives is to train a machine learning 
model that can accurately classify EV adopters and non-adopters 
based on attitudinal factors, ridesourcing usage factors, vehicle- 
related factors, and sociodemographic factors. This is a supervised 
learning process, where an ML algorithm uses a set of predictors to 
classify an observed response (called ‘label’). A subset of the entire 
dataset (called ‘training dataset’) serves the purpose to train a ML 
model and evaluate its performance such that the predicted results 
resemble labels as closely as possible. A second subset (called ‘test-
ing dataset’) is then utilized to test how well the model performs 
when classifying observations outside of the training process. Since 

Figure 1. Methodological framework of the study.
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both subsets are drawn from the same original data, we apply the 
K-Fold Cross Validation method to avoid any unintentional selec-
tion bias when splitting the full dataset.

We further trim the dataset through feature engineering. As the 
size and dimensionality of the dataset grow, the training process 
may be computationally intensive and may incur data sparsity that 
could cause a decline in predictability. We first eliminate six highly 
collinear features out of 42 features. We then opted for a recursive 
feature elimination (RFE) process to identify the most irrelevant 
features to the prediction. RFE follows a recursive procedure where 
it starts with fitting a given ML algorithm using all features in the 
training dataset (a subset of the entire dataset), followed by ranking 
features by importance, removing the least important features, and 
re-fitting the model using a subset of the features. The process is 
repeated until the optimal list of predictors is reached. In our case, 
32 features remain after RFE.

Another difficulty in building a proper ML application is to find 
the best algorithm from a large number of candidate algorithms. 
Although researchers may know, based on their experience or 
domain knowledge, the ML algorithms that would work best, 
their performances vary significantly by case. Moreover, each algo-
rithm has its own hyperparameters – a characteristic external to the 
model itself whose value cannot be estimated from data (e.g., k in 
k-Nearest Neighbors) – that are pre-set before the learning process. 
Until recently, the complexity of hyperparameters implies that 
researchers needed to fine-tune ML models through an iterative 
process that took a different combination of hyperparameters in 
each iteration (i.e., grid search). Given the large number of possible 
combinations, this process may not be easily done thoroughly and 
is subject to human errors. To automatize this process, we utilize an 
open-source artificial intelligence platform, H2O, in this study 
(H2O.ai 2020a). H2O allows users to build a large number of ML 
models and evaluate their performances through an application 
called AutoML1 (H2O.ai 2020b). AutoML automatically runs 
through a set of ML algorithms with hyperparameters and produce 
a leaderboard of models based on predictability. The current ver-
sion of AutoML trains and validates a set of pre-defined algorithms, 
as well as performs grid searches.2

Local Interpretable Model-Agnostic Explanations (LIME)

After training ML models and evaluating their performance, we try 
to understand how each predictor contributes to the prediction for 
the ML model with the best performance (‘the leading model’). In 
particular, we hope to gain insights on the relationship between 
attitudinal/ridesourcing factors and EV adoption. We apply the 
LIME method for this task. (Ribeiro, Singh, and Guestrin 2016) 
describe the LIME technique that, ‘(it) presents textual or visual 
artifacts that provide qualitative understanding of the relationship 
between the instance’s components [. . .] and the model’s prediction.’ 
LIME has three distinct characteristics: (1) interpretable, meaning 
that it provides qualitative measurement between the input feature 
and the response; (2) local fidelity, meaning that it must correspond 
to how the model behaves in the vicinity of the observation being 
predicted; and (3) model-agnostic, meaning that it should be able to 
explain any model. In short, the LIME method samples observa-
tions from the dataset locally, makes predictions based on an 
underlying ML model, and evaluates a prediction by its proximity 
to the observation being explained. The word proximity, in this 
context, is equivalent to similarity: the extent to which a case being 
predicted matches its original representation in the feature space. 
Therefore, LIME can explain the predictions of any classifier in 
a faithful way, by approximating a highly abstract model locally 
with an interpretable model instead. In practice, the output of LIME 

is a visual representation that shows the weight of each feature 
supporting or contradicting the prediction on a label. For us 
researchers, we can visually observe the importance of predictors 
and make inferences about their role in determining the predic-
tion – the EV adoption decision in our case.

Data

The data used in this paper are a part of survey data collected to 
study EV preferences and the role of an individual’s social network 
structure played in such preferences (Bas et al., 2021b). The survey 
includes a stated choice experiment (SCE), in which respondents 
are asked to evaluate the importance of different electric and gaso-
line vehicle attributes – such as price, range, and charging times – in 
their preferences toward one or the other. In addition to the SCE, 
we also ask respondents to provide information on their social 
network, car ownership, socioeconomic statuses, usage of ridesour-
cing apps, and their attitudes toward environmental protection, 
transportation technology, and EV itself. Table 1 describes the list 
of 32 features used to build the ML models. The descriptive statis-
tics are shown in Table A1 in the Appendix.

We surveyed current residents of the State of Maryland, U.S., 
who are 18-year-old or older with a valid driver’s license. The 
survey was conducted online in 2019 and was taken by 380 
respondents. Six responses were removed due to inconsistency 
in their answers. Each respondent faced six or nine choice tasks, 
providing us a total of 3,183 pseudo-observations regarding EV 
adoption preferences. It is worth mentioning that although this 
sample size may seem small for a standard ML application, the 
problem at hand is not structurally complicated that would 
require to train big data. Nor are the data imbalanced toward 
a majority class (i.e., particularly large proportion of adoption 
of EV or no adoption) that would require a large dataset with 
enough observations of both classes for training and validation. 
In addition, we use ensemble methods to improve the training 
process with a relatively small dataset. The ensemble methods 
combine several basic ML models to produce one optimal pre-
dictive model. These methods have been proven to work well 
with small datasets in previous ML applications (e.g., Greene 
and Cunningham 2006).

Results

In this section, we first present ML models’ performance in 
a scoreboard with a focus on the top-performance model. We 
then compare the leading model with a benchmark model – the 
binomial family of generalized linear model (GLM). We choose 
GLM as a benchmark since the logistic regression model is 
a traditional parametric model of reference that estimates the 
choices made by an individual among a set of alternatives. Finally, 
we visualize the cases of LIME outcomes, which demonstrate 
LIME’s capabilities to provide interpretability to ML learning mod-
els whose outputs lack it. ML models and showcase the influence of 
attitudinal and ridesourcing usage factors on the decision of EV 
adoption.

Model performance

The first part of our results is a performance comparison among 
different ML models. ML algorithms predict the probability of an 
observation pertaining to each class and assign the observation to 
one of classes based on a probability threshold. The classification 
can be wrong, producing false positives and false negatives, which 
leads to two important metrics: Sensitivity and Specificity. 
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Sensitivity is the proportion of actual positives identified as such. 
Specificity is the proportion of actual negatives correctly identified 
as such. Varying the probability threshold used for the classification 
will produce different values of sensitivity and specificity. The 
different values of these two metrics for each threshold can be 
plotted in a chart, called Receiver Operator Characteristic (ROC). 
Finally, the value of the area under the ROC curve (known as AUC) 
provides a measure of an ML algorithm’s predictability: If the ROC 
curve reaches the top-left corner (i.e., varying the probability 
threshold would not affect all classifications), then all positive and 
negative classes would be classified correctly. AUC equals to 1 in 
such case.

As aforementioned, we train more than 60 ML models using 
different algorithms in H2O AutoML and rank them according to 
their AUC value. It is worth mentioning that, in addition to each 
individual model, AutoML also estimates stacks of models. A stack 
is a combination of ML models that have almost no interpretability, 
but usually provide more accurate prediction (for instance, the 
combination of all Gradient Boost Machine models). Since our 
goal is to achieve both predictability and interpretability, we will 
not show the performance metric of stacks of ML models, which is 
only marginally better than that of our leading model. In Table 2, 
only the top – and bottom-performance models are listed.

Table 1. Features resulting from the RFE process.

Feature Description Value

CHOICE Choice made in each 
scenario

Binary feature, 1 means 
‘Adoption’

Ridesourcing
APP_USEFREQ Frequency of rides 1 to 5 scale, 1 means higher 

frequencyAPP_STRFREQ* Frequency of shared rides 
with strangers

APP_PURP_WRK Main usage of the app is for 
Work

Binary feature, 1 means ‘Yes’

APP_PURP_LEI Main usage of the app is for 
Leisure

APP_PURP_SOC Main usage of the app is for 
Social

APP_PURP_AIRP Main usage of the app is for 
Airport

APP_PURP_NEVER* I never used a ridesourcing 
app

Attitudes
ATT_EC1 I do what I can to contribute 

to reduce global climate 
changes, even if it costs 
more and takes time.

0 to 4 Likert scale, 0 means 
strong disagreement and 
4 means strong 
agreement

ATT_EC2† The authorities should NOT 
introduce legislation that 
forces citizens and 
companies to protect the 
environment.

ATT_TI1† It is NOT important for me to 
follow technological 
development.

ATT_TI2 I often purchase new 
technology products, even 
though they are expensive.

ATT_TI3 I am optimistic about the 
future of shared mobility 
(such as carshare and 
rideshare).

ATT_TI4† New technologies create 
more problems than they 
solve.

ATT_PROEV1 Electric vehicles should play 
an important role in our 
mobility systems.

ATT_PROEV2† If I use an electric vehicle 
instead of a conventional 
vehicle, I will have to 
cancel some activities.

ATT_PROEV3 Electric vehicles are more 
reliable than conventional 
vehicles.

ATT_PROEV4† I am concerned that EVs are 
not powerful enough to 
make a safe takeover.

ATT_PROEV5 When forced to change daily 
activity arrangement, 
I don’t feel anxious.

Sociodemographic
AGE* Age of the individual Numeric
MALE Individual is male Binary feature, 1 being ‘Yes’
EGFT† Individual works for 

government full time
EGPT Individual works for 

government part time
EPCFT Individual works for private 

company full time
EPCPT Individual works for private 

company part time
ERET Individual is retired
ESELF Individual is self employed
STU† Individual is a student
UEMPL Individual is unemployed
EOTHER Individual is in another 

employment category
EDUDGR Individual´s educational 

degree
1 to 5 scale, the higher, the 

more educated

(Continued)

Table 1. (Continued).

Feature Description Value

HHMEM* Number of household 
members

Numeric

HHMEM_EMP* Number of household 
members employed

Numeric

HHINC_BRA Household income bracket 1 to 7 scale, the higher, the 
wealthier

INIDINC_BRA* Individual´s income bracket 1 to 7 scale, the higher, the 
wealthier

Vehicle-related
EV_PRICE Electric vehicle price shown in 

SCE
Numeric

EV_PROPCOST† Electric vehicle propulsion 
cost shown in SCE

EV_FASTCHARGE Electric vehicle fast charge 
time shown in SCE

EV_TAXDEDAM Electric vehicle purchase tax 
deduction shown in SCE

GAS_PRICE Gasoline vehicle price shown 
in SCE

GAS_PROPCOST† Gasoline vehicle propulsion 
cost shown in SCE

GAS_RANGE Gas vehicle range shown in 
SCE

*Columns removed to reduce pair-wise linear correlation (correlation threshold 
0.5). 

†Features expressed in negative terms.

Table 2. Model performance scoreboard using the cross-validation dataset.

Top-performance models AUC

Gradient Boost Machine (GBM), grid 1, model #19 0.9285
Gradient Boost Machine (GBM) model #3 0.9277
Gradient Boost Machine (GBM) model #4 0.9270
Gradient Boos Machine (GBM), grid 1, model #5 0.9269
Gradient Boos Machine (GBM), grid1, model #28 0.9266

. . ..
Bottom-performance models AUC
Deep Learning (DNN), grid 2, model #4 0.8301
Generalized Linear Model (GLM) model #1 (benchmark) 0.8214
Deep Learning (DNN), grid 2, model #5 0.8029
Deep Learning (DNN), grid 3, model #4 0.7340
Gradient Boost Machine (GBM), grid 1, model_#30 0.7088
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Clearly, the GBM models have the best overall performance. GBM 
is an ensemble-type algorithm that combines several decision tree 
algorithms into a hybrid algorithm to achieve high prediction accu-
racy. In fact, the Top 13 models are GBM with different hyperpara-
meters, followed by a distributed random forest (DRF) model (which 
also uses an ensembled algorithm). At the bottom of the list, the deep 
neural network (DNN) family do not perform as well as the GBM 
family for this dataset. DNN algorithms are more suitable for highly 
complex, non-linear classification problems, such as image recogni-
tion. Additionally, the benchmark model (binomial GLM) ranks 
fourth from the bottom. In the next subsection, we will compare 
the leading model and the benchmark model in details.

The leading model

In this subsection, we first summarize the global feature importance 
on the prediction. For the leading ML model, the feature impor-
tance is measured by relative importance. The average impact of 
each feature across all decision trees within GBM on the mean 
squared error (MSE) loss function is calculated. The feature of the 
largest impact is of the most importance, while the impact of all 
other features is provided relative to the most important feature. 
Hence, in Figure 2(a), we observe one feature (ATT_PROEV1) with 
an importance scale of ‘1’ and other features with a fraction of the 
importance scale. For the benchmark model, the coefficient values 
are equivalent to relative importance.3 The results are displayed in 
Figure 2(b). The significantly positive coefficients are in blue color 
and the significantly negative ones are in orange color.

When taking a closer look at feature importance, we find that the 
most important feature in the leading model is an attitudinal factor 
(ATT_PROEV1), which reveals a favorable view on EV in the 
mobility system (‘electric vehicles should play an important role in 
our mobility systems’). The second most important factor is house-
hold income level (HHINC_BRA), suggesting that income plays 
a critical role in EV adoption decision. In addition, we find other 
highly considered attitudinal factors, such as the Pro-EV factors 
(ATT_PROEV2, ATT_PROEV3, ATT_PROEV5), environmental 
concerns (ATT_EC1, ATT_EC2), and an indicator of EV technol-
ogy inclinations (ATT_TI2).

In addition, we find evidence that ridesourcing usage 
(APP_USEFREQ) and an optimistic attitude toward the shared 
mobility (ATT_TI3) are relatively important in explaining EV 

adoption decisions. On the other hand, ridesourcing trip purposes 
are not crucial to EV preferences. These results are consistent with 
our hypothesis that familiarity and enthusiasm toward the shared 
mobility technology is likely to positively influence the individual 
willingness to adopt EV.

It is noteworthy that the policy factor of tax deduction on EV 
purchase (EV_TAXDEDAM), EV price and battery range 
(EV_PRICE, EV_RANGE), EV fast-charging time 
(EV_FASTCHART), the comparable gasoline vehicle’s price and 
mileage (GAS_PRICE, GAS_RANGE), as well as an individual’s 
educational level (EDUDGR) are relevant in determining the EV 
adoption decision, which is consistent with what we find in pre-
vious literature.

If we compare these findings with those from the benchmark 
model, we can come up with somewhat similar results. The GLM 
model suggests that the most important features in explaining EV 
adoption are vehicle price (EV and the comparable gasoline vehicle) 
and the pro-EV, pro-environment, pro-technology attitudinal fac-
tors. High education level and private-sector employment status are 
the significant socioeconomic factors in supporting EV adoption 
decision. Again, the frequent uses of ridesourcing apps also help 
explain an inclination in EV adoption.

The main differences between the leading model and the 
benchmark model are their modeling performances. The AUC 
of the leading model (0.9285) is significantly higher than that of 
the benchmark model (0.8214), suggesting better predictability 
of the GBM algorithm. We provide in Table 3 and Table 4 the 
detailed classification performance of the leading and bench-
mark model, respectively, using a confusion matrix, 
a convenient way of displaying both the correct predictions 
and the errors. In this case, the leading model misclassifies 37 
individuals as EV adopters when they actually are not in the 
dataset (Type I errors), and 128 as EV non-adopters when they 
are (Type II errors). These figures lead to sensitivity and speci-
ficity values of 0.73 and 0.9, respectively. On the other hand, the 
benchmark model yields the same sensitivity and a lower spe-
cificity value. It means that although the GLM misclassifies 
a similar number of false-negative cases as the GBM (127 vs. 
128), the GLM misclassifies a significantly higher number of 
false-positive cases than the GBM (64 vs. 37). That is, the issue 
of overestimation of EV adopters is more significant in the 
benchmark model than the leading model.

Figure 2. Feature importance for the leading model (a) and the benchmark model (b).
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Finally, the ROC curves (the blue curve in both plots) for both 
models are presented in Figure 3, with AUC of 0.9285 and 0.8214, 
suggesting that our leading model outperforms the benchmark 
model in the prediction of EV adoption.

Interpreting ML results using LIME

As aforementioned, the modeling complexity of some ML models is 
both the reason for their high predictability and their low interpret-
ability. To overcome the issue of abstract ML model results, we 
apply the Local Interpretable Model-Agnostic Explanation (LIME) 
method as described in the methodology section. LIME produces 
visual representations in which one can observe a feature’s influ-
ence, either supporting or contradicting, on the prediction.

Figure 4 shows two observations that have been classified 
by our leading model as adopter (left), and non-adopter 
(right). For the adopter, we can observe that the pro- 
environmental attitudes (ATT_EC1 = 4, ATT_EC2 = 3) sup-
port the EV adoption classification. Similarly, the pro-EV 
attitude (ATT_PROEV3 = 3) and the frequent usage of ride-
sourcing apps (APP_USEFREQ = 3) also support the adoption 
classification. As expected, a high EV driving range and high 
household income level (EV_RANGE, HHINC_BRA = 5) would 
also contribute to EV adoption decisions. On the flip side, 
a low pro-EV sentiment (ATT_PROEV1 = 2, ‘Electric vehicles 
should play an important role in our mobility systems’) and 
high EV prices (EV_PRICE) could contradict the adoption 
classification.

Table 4. Confusion matrix for the benchmark model, testing data.

Predicted class

Adoption No adoption Specificity

Actual 
class

Adoption 250 127
0.8No adoption 64 349

Total 413 377
Sensitivity 0.73

Figure 3. The ROC curve and the AUC value for the leading model (a) and the benchmark model (b), testing data.

Figure 4. Contribution of top ten predictors to the prediction for two cases using LIME.

Table 3. Confusion matrix for the leading model, testing data.

Predicted class

Adoption No Adoption Specificity

Actual 
class

Adoption 280 128
0.9No Adoption 37 352

Total 389 408
Sensitivity 0.73
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We can make similar inferences by interpreting feature impor-
tance for the case of a non-adopter. A strongly positive view on EV’s 
contribution to the transportations system (ATT_PROEV1 = 4) 
would contradict the non-adopter classification. The analogous 
interpretation applies to the other attitudinal features as well as 
vehicle features (range and price). On the other hand, being unem-
ployed (UEMPL), a low frequency of ridesourcing usage 
(APP_USEFREQ = 4) and EV prices all support the no-adoption 
classification for this case.

LIME allows us to understand the predictor–prediction relation-
ship on a case-by-case basis. Through the interpretation, we can 
make inferences that the favorable attitudes toward EV, environ-
mental protection, and transportation technology, as well as the 
frequent usage of ridesourcing apps may lead to a higher chance of 
EV adoption or a lower chance of non-adoption (and the vice- 
versa). It is possible that the inferences made from these two cases 
are subjective to a case selection bias, therefore we further include 
the visual representation of another six randomly selected observa-
tions (three adopters and three non-adopters) in Figure A1 in the 
appendix. Two takeaways can be made: (1) the important features 
that can explain an individual’s adoption/no adoption decision vary 
by case; and (2) despite individual heterogeneity, we can identify 
the common impact of a feature on the adopter/non-adopter clas-
sification across multiple cases. Together, these two takeaways 
demonstrate the unique advantage of LIME in interpreting ML 
modeling results.

Figure 5 provides another type of visual representation of the 
LIME method – a heatmap that depicts the contribution of the 
attitudinal and ridesourcing features of interest for four cases 
that are classified as EV adoption. Each column represents one 
case and each row represents one feature. The darker blue color 
indicates a stronger support to such classification, whereas the 
darker red color indicates a stronger contradiction against such 
classification. Lighter/white colors indicate a feature’s lower 
level of contribution.

Noticeably, pro-EV attitudes, pro-environment attitudes, and fre-
quent uses of ridesourcing apps greatly contribute to the adoption 
classification. In addition, we find that if a ridesourcing user takes 
a trip unrelated to work (APP_PURP_WRK = 0) or social occasions 
(APP_PURP_SOC = 0), then her ridesourcing trip purpose would 
contradict EV adoption. On the other hand, if a ridesourcing user 
takes a trip unrelated to the airport commutes 
(APP_PURP_AIRP = 0) or leisure (APP_PURP_LEI = 0), then she is 

more likely to be classified as an adopter. To put it more concisely, 
frequent ridesourcing users for work and social trips could become 
EV adopters in the future. This is a reasonable inference as frequent 
ridesourcing users tend to be high-income yet car-less (Zou and 
Cirillo 2021) who could potentially later become EV owners. 
Consistent with our previous findings, infrequent uses of ridesourcing 
apps and indifferent/negative attitudes toward EV and environmental 
concerns significantly contradict to the ‘adoption’ classification.

Discussion and conclusion

In this paper, we uncovered a novel perspective on EV adoption 
decisions that shows how people’s attitudes toward the environment 
and technology advancement, as well as their usage of the currently 
available new mobility, ridesourcing, could impact their preference to 
adopt the EV technology. Instead of relying on the conventional 
approach, such as a discrete choice analysis, we try out a number of 
machine learning techniques to achieve the best prediction outcomes 
based on the EV survey data. As our results reveal, machine learning 
models are able to produce highly accurate predictions on EV adop-
tion/no adoption decisions. In addition to providing the global 
importance of the features in prediction, we adopt the LIME method 
to explain the contribution of each feature to the prediction outcome 
on a case-by-case basis. The major advantage of LIME is its graphical 
interpretation of the factors that drive the prediction outcome: In 
a binary prediction – ‘whether or not a person is willing to adopt EV’, 
the visual representations of LIME results show the extent to which 
a factor contribute to the ‘adoption’ and ‘no adoption’ classification 
in a case-by-case manner. It is an elegant way to unfold the myster-
ious behind-the-scenes prediction process of the highly complex ML 
models. In this case, the pro-EV, environmentally conscious atti-
tudes, and frequent uses of ridesourcing apps are largely associated 
with a high likelihood of willingness to adopt an EV. Our finding is 
consistent with what (Jenn, Laberteaux, and Clewlow 2018) find in 
their research that the current use of shared mobility positively 
impacts the possibility to own an electric vehicle. We also find the 
results on attitudinal factors consistent with previous literature (e.g., 
Axsen, Bailey, and Castro 2015).

In terms of what the results indicate to advocates of EVs and 
policymakers who see EVs as a useful tool to build green transportation, 
the biggest takeaway from our study is that the more people are in favor 
of EV technology, are aware of environmental protection, and utilize 
new mobility, the more likely they are willing to adopt electric vehicles 

Figure 5. A heatmap showing features’ contribution to the adoption classification.
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in the future. In addition, the new mobility options, including shared 
mobility, EVs, autonomous vehicles, are oftentimes branded as ‘sus-
tainable’ solutions to reduce carbon emissions. Although it is debatable 
how credible such claim is empirically, our findings show the potential 
for consumers to try these mobility options as a result of the sustain-
ability argument. Thus, in the global effort of combating climate change 
and achieving sustainable transportation, policymakers can come up 
with strategies to entice the large base of ridesourcing users to gradually 
adopt the EV technology, possibly through a partnership with TNCs.

We also acknowledge the limitations of this study. Firstly, we 
could not exhaust all the factors that may influence EV adoption. 
Richer information on the ridesourcing factors (beyond frequency 
and trip purposes) could help in achieving higher levels of predict-
ability. Secondly, the small sample size means that our results are 
subject to idiosyncratic errors, which may not be easily identified. In 
addition, our sample is based on residents in the State of Maryland, so 
the predictors may not work universally for a more global sample, 
say, the entire United States, or for a sample in another U.S. state/ 
metropolitan area or some other country. Nonetheless, we argue that 
the methodological framework is transferrable to another context. In 
particular, we hope the use of open-source ML platforms and tools, 
such as H2O, and LIME could inspire research on other sustainable 
transportation technologies and mobility options.

Notes

1. We run AutoML in the R environment using the application program-
ming interface (API) developed by H2O. We run the ML models in an 
Amazon Web Service instance with 16 vCPU and 64 GiB of memory.

2. Specifically, the following algorithms are included in AutoML: Five pre- 
specified Gradient Boosting Machine (GBM), three pre-specified 
Extreme Gradient Boosting Machine (XGBoost GBM), a default 
Random Forest (DRF), a near-default Deep Neural Network (DNN), 
an Extremely Randomized Forest (XRT), a fixed grid of Generalized 
Linear Model (GLM), a random grid of XGBoost GBMs, a random 
grid of GBMs, and a random grid of DNNs.

3. The value of the coefficients is equivalent to their relative importance since 
the coefficient with the highest value can be interpreted as the most impor-
tant (and therefore being normalized to 1), and then the rest can be scaled 
accordingly (which would not alter the shape of the graph shown in Figure 2 
(b).). In this case, for the sake of a more traditional interpretation of the 
GLM model, we keep the value and sign (blue/orange color) of the coeffi-
cients without transforming them into their importance counterpart.
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APPENDIX

FIGURE A1. Contribution of top ten predictors to the prediction for six random cases using LIME.
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TABLE A1. Descriptive statistics of the features.

Feature Mean Std. dev. Min. 25% Median 75% Max.

APP_USEFREQ 3.68 1.10 1 3 4 5 5
APP_STRFREQ 3.68 1.15 1 3 4 5 5
APP_PURP_WRK 0.05 0.23 0 0 0 0 1
APP_PURP_LEI 0.11 0.32 0 0 0 0 1
APP_PURP_SOC 0.21 0.41 0 0 0 0 1
APP_PURP_AIRP 0.11 0.32 0 0 0 0 1
APP_PURP_NEVER 0.49 0.5 0 0 0 1 1
ATT_EC1 2.64 1.02 0 2 3 3 4
ATT_EC2 1.58 1.33 0 0 1 3 4
ATT_TI1 1.44 1.17 0 1 1 2 4
ATT_TI2 1.89 1.26 0 1 2 3 4
ATT_TI3 2.30 1.11 0 2 2 3 4
ATT_TI4 1.59 1.12 0 1 2 2 4
ATT_PROEV1 2.85 0.97 0 2 3 4 4
ATT_PROEV2 1.69 1.25 0 1 1 3 4
ATT_PROEV3 1.82 1.04 0 1 2 2 4
ATT_PROEV4 2.17 1.15 0 1 2 3 4
ATT_PROEV5 2.10 1.15 0 1 2 3 4
CHOICE 0.39 0.48 0 0 0 1 1
AGE 45.77 17.02 18 32 45 60 86
MALE 0.38 0.48 0 0 0 1 1
EGFT 0.07 0.25 0 0 0 0 1
EGPT 0.01 0.09 0 0 0 0 1
EPCFT 0.37 0.48 0 0 0 1 1
EPCPT 0.07 0.26 0 0 0 0 1
ERET 0.17 0.38 0 0 0 0 1
ESELF 0.06 0.24 0 0 0 0 1
STU 0.06 0.24 0 0 0 0 1
UEMPL 0.11 0.32 0 0 0 0 1
EOTHER 0.09 0.29 0 0 0 0 1
EDUDGR 3.52 1.02 1 3 4 4 5
HHMEM 2.79 1.86 0 2 2 4 25
HHMEM_EMP 1.46 1.12 0 1 1 2 8
HHINC_BRA 3.60 1.78 1 2 4 5 7
INDINC_BRA 2.50 1.64 0 1 2 3 7
EV_PRICE 3.75 1.08 2 3 3.3 5 5.5
EV_PROPCOST 0.04 0.01 0.015 0.03 0.04 0.05 0.09
EV_RANGE 2.59 0.71 1.6 1.76 2.5 3 3.95
EV_FASTCHART 31.34 10.82 15 25 30 35 60
EV_TAXDEDAM 3.20 2.48 0 1.5 2.5 5 7.5
GAS_PRICE 3.19 1.01 1.7 2.4 2.8 4.3 5
GAS_PROPCOST 0.08 0.03 0.05 0.055 0.06 0.1 0.16
GAS_RANGE 4.48 0.48 3.25 4.25 4.5 4.78 5.26
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