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ABSTRACT—	The objective of the current study was to enhance the proteolytic stability 

of peptide-based inhibitors that target critical protein-protein interactions at the dimerization 

interface of Leishmania infantum trypanothione reductase (Li-TryR) using a backbone 

modification strategy. To achieve this goal we carried out the synthesis, proteolytic stability 

studies and biological evaluation of a small library of α/β3-peptide foldamers of different 

length (from 9-mers to 13-mers) and different α→β substitution patterns related to prototype 

linear α-peptides. We show that several 13-residue α/β3-peptide foldamers retain inhibitory 

potency against the enzyme (in both activity and dimerization assays) while they are far less 

susceptible to proteolytic degradation than an analogous α-peptide. The strong dependence of 

the binding affinities for Li-TryR on the length of the α,β-peptides is supported by theoretical 

calculations on conformational ensembles of the resulting complexes. The conjugation of the 

most proteolytically stable α/β-peptide with oligoarginines results in a molecule with potent 

activity against L. infantum promastigotes and amastigotes. 

 

Keywords- α/β-peptides, foldamers, proteolysis, protein-protein interactions, trypanothione 

reductase, Leishmania infantum  
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Highlights 
 

• α/β-peptide foldamers targeting the dimer interface of Li-TryR are described 

• The length of the α/β-peptide is important for TryR inhibitory activities  

• A substantial increase in proteolytic stability compared to the α-peptides is observed 

• Conjugation to oligoarginines results in potent leishmanicidal activity 

  



INTRODUCTION 

Leishmaniasis is a severe neglected tropical disease caused by parasites belonging to the 

genus Leishmania. One of the most serious clinical forms of this disease is visceral 

leishmaniasis (VL), caused by Leishmania donovani and Leishmania infantum, which is 

invariably fatal if left untreated. According to World Health Organization (WHO), an 

estimated 200,000 to 400,000 new cases of VL and over 20,000 deaths occur worldwide each 

year [1]. The drugs available in clinical use, such as pentavalent antimony, paramomycin, 

amphotericin B and the newest and only oral drug for VL, miltefosine, show serious 

limitations including toxicity and drug resistance [2, 3]. There is clearly an urgent need for 

innovative drugs that act on new molecular targets and/or by new inhibition mechanisms. 

Trypanothione reductase (TryR) is a validated drug target in trypanosomatids, as it is a 

crucial enzyme for the antioxidant defenses of these parasites and it is absent in humans [4, 

5]. TryR is an NADPH-dependent flavoenzyme that combats oxidative stress by maintaining 

adequate levels of the reducing agent trypanothione (an unusual spermidine-glutathione 

conjugate). Another important characteristic of TryR is its significant structural difference 

from glutathione reductase (GR), the enzyme with the corresponding functions in humans. A 

range of structurally diverse inhibitors of TryR have been described [6-8] that are good 

trypanocides in vitro but there are scarce reports of compounds that are also effective in vivo.  

Based of the fact that the functional form of TryR is a homodimer, we have recently reported 

an alternative inhibition strategy directed at disrupting the dimer interface of Leishmania 

infantum TryR (Li-TryR) by means of peptide-based protein-protein interaction (PPI) 

inhibitors [9]. Potential druggable sites for disrupting PPIs were explored by a combination of 

molecular modelling and site-directed mutagenesis studies. From a small library of linear 

peptides of different length, derived from an α-helix spanning residues P435 to M447 that 

contained the identified hotspot E436, the 13-residue wild-peptide sequence PEIIQSVGIS-



Nle-K-Nle (1) and the modified peptide sequence PKIIQSVGIS-Nle-K-Nle (2), in which the 

E residue at position 2 was replaced by a K, emerged as potent Li-TryR dimerization 

inhibitors in the low micromolar range [9]. From a series of C-terminally truncated peptides, 

the linear 11-mer PEIIQSVGIS-Nle (3) maintains potent inhibition of TryR enzymatic 

activity while the 9-mer analogue PKIIQSVGI (4) represents the minimal length required for 

inhibition [9]. 

The use of peptides is hampered by their enzymatic degradation and low bioavailability. 

The most common strategies used to increase stability against proteases include peptide 

cyclization (e.g. stapled peptides) and introduction of D- or unnatural amino acids (e.g. β-

peptides and peptoids) [10-12]. Moreover, short linear peptides also have low conformational 

stability, which could decrease binding to the target. Several strategies for the development of 

peptide-based PPI inhibitors revealed that these drawbacks of α-peptides could be effectively 

reduced [12]. 

Cyclization is one of the most widely used methods for developing PPI inhibitors. In order 

to stabilize the α-helical structure of the short linear “hit” peptides, we recently prepared 

amide- and hydrocarbon-bridged cyclic analogues of 1 and 2 that retained potent inhibitory 

enzymatic activity and showed moderate resistance against degradation by proteinase K (a 

promiscous non-specific serine protease) relative to the linear prototypes [13, 14]. Further 

conjugation of cyclic analogues of the more potent linear peptide 2 with cationic cell-

penetrating peptides (e.g. oligoarginines and Tat) demonstrated, for the first time, an effective 

in vitro antileishmanial activity of TryR dimerization peptide-based inhibitors against 

Leishmania infantum. However, a certain degree of backbone flexibility seems to be 

necessary for keeping the inhibitory potency in the cyclic derivatives [14]. 

The objective of the current study was to develop proteolytically stable analogues of TryR 

dimerization-inhibiting peptides by introducing modifications on the backbone that allow 



flexibility while maintaining potency against the enzyme and the parasites in vitro. To achieve 

this goal we focused on α-helix-mimetic oligomers (foldamers) [15] containing both α and 

unnatural β3-amino acid residues (mixed α/β-peptides) following the sequence-based strategy 

described by Gellman and co-workers [16-18]. This approach involves replacing α residues 

with β3 residues bearing the original side chains according to simple patterns periodically 

distributed along one side of the helix such as ααβαααβ, ααβ and αααβ. These 

replacements result in 25-33% β residue incorporation in contrast with previous foldamers 

with pure β backbones or 1:1 α/β residue alternation. Several studies showed that this 

sequence-based strategy can succesfully lead to formation of α-helix-like conformations and 

significantly disminishes susceptibility to degradation by proteases [19-22]. Moreover, 

backbone flexibility would be increased because the β3-amino acids introduce an extra CH2 

unit. 

With this background in mind, we undertook the synthesis, proteolytic stability studies and 

biological evaluation of a small library of α/β3-peptides of different length (from 9-mers to 

13-mers) and different α→β substitution patterns related to the prototype α-peptide 2. Most 

of the 13-residue α/β3-peptides retained significant potency against TryR (in both activity and 

dimerization assays) and some of them displayed substantially improved stability against 

proteinase K compared to the amide-bridge cyclic analogues of linear prototype α-peptide 2 

[14]. Interestingly, the most proteolytically stable α/β3-peptide of the series, when conjugated 

to oligoarginines acting as cell-penetrating peptides (CPP) showed potent activity in vitro 

against both promastigotic and amastigotic forms of Leishmania infantum and lower toxicity 

against monocytic THP-1 cells than previous CPP-conjugated linear and cyclic peptides. 

 

  



RESULTS AND DISCUSSION 

Design and Synthesis  

The primary sequence of target α/β3-peptides and the α→β substitution patterns are 

depicted in Figure 1.  These compounds retain the side-chain sequences of the 13-mer, 11-mer 

and 9-mer α-peptides 2-4 but the β3-amino acid residues introduce an extra CH2 unit. In 

particular, α/β3-peptide foldamers 5-11 represent all isomers of the 13-mer α-peptide 

prototype 2 sequence with the ααβαααβ backbone pattern while α/β3-peptides 12 and 13 

share the αααβ backbone pattern. Similarly, the ααβαααβ pattern was also used for the 

design of examples of 11- and 9-residue α/β3-peptides 14-18 (Figure 1).  

 

Figure 1. a) Structure of an α-amino acid and a β3 -amino acid; b) Sequences of α-peptides 2-
4 derived from the Li-TryR interface domain, target α/β-peptide analogues 5-18 (13-mer, 11-
mer and 9-mer), and FITC and R9 conjugates 19 and 20. β3 residues are indicated in red. β3 

glycine residues have been replaced by commercially available β3 alanine residues. 
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To visualize the cellular uptake of these molecules, the most proteolytically stable peptide 

(8) was labeled with fluorescein 5-isothiocyanate (5-FITC) through the N-terminus via a PEG 

spacer to enhance aqueous solubility (compound 19). Finally, the α/β3-peptide 8 was 

conjugated to oligoarginines (R9) as cell-penetrating peptides (compound 20) for in vitro 

evaluation against parasites (L. infantum promastigotes and axenic amastigotes) based on 

previous results with prototype 2 and cyclic peptide analogues [14]. 

The α/β-peptide library was prepared manually by microwave-assisted solid-phase peptide 

synthesis (SPPS) on a Rink amide MBHA polystyrene resin. The Fmoc-α-amino acids and 

Fmoc-β3-amino acids were coupled using HCTU/DIEA in DMF at 40 °C under microwave 

conditions. After purification by Biotage or preparative RP-HPLC, compounds 5-18 were 

isolated in 11-49% overall yields. The stepwise SPPS procedures for the synthesis of FITC 

and oligoarginines conjugated compounds 19 and 20 are also detailed in the experimental 

section. The purities of α/β-peptides and conjugates were confirmed by RP-HPLC and 

HRMS. The analytical data, purities and overall yields of compounds are indicated in Table 

S1. 

 

Proteolytic susceptibility 

We examined the impact of nonnatural amino acid incorporation on the susceptibility to 

degradation by proteinase K, a promiscous non-specific serine protease (Table 1). The 13-mer 

linear α-peptide 2 is rapidly degraded, with a half-life of 23 min under the assay conditions. 

In contrast, the half-life of α/β-peptide 8 is 517 min, > 22-fold longer than the half-life for 

cleavage of the α-peptide. This increase in stability is not universal among the series: whereas 

α/β-peptides 7, 9 and 12 do not show any improvement in stability over the α-peptide, the 

half-lives of compounds 6, 10 and 11 is 6- to 14-fold higher relative to 2. Thus, the precise 

positioning of α→β replacements is important with regard to proteolytic susceptibility. 



Table 1. Proteolysis of α-peptide 2 and α/β-peptide analogues 6-12 

α- or α/β-peptide t1/2 (min)a 

2 23 

6 215 

7 23 

8 517 

9 < 15 

10 317 

11 131 

12 < 15 
a Half-life of α- and α/β-peptides (50 µM) in the presence of proteinase K (10 µg/mL) in pH 7.6. 
Remaining peptide was graphed vs time and fit to a simple exponential decay equation to obtain a 
half-life in GraphPad Prism4. 
 

These observations are consistent with previous findings for oligomers and suggest that 

incorporation of 25-30% β3 residues using this backbone pattern can lead to significant 

improvements in half-life in the presence of proteinase K [16-18, 21, 22]. 

  Interestingly, α/β-peptide 8 displayed a 8-10-fold- higher proteolytic resistance relative to 

our previously described lactam-bridged α-peptide analogues (t1/2 517 min vs 52 or 64 min) 

[14]. 

 

Biological activity 

Enzymatic assays  

All the synthetized compounds were evaluated as Li-TryR inhibitors [23] (Table 2). 

Peptide length showed to be more relevant in the α/β-peptide analogues than in their α-

prototypes. Thus, all short α/β 11-mers and 9-mers (14 and 15-18 respectively) were less 

active against Li-TryR than the α-peptides 3 and 4. Even though most of the 13-residue 

foldamer analogues (5-13) showed relevant inhibitory activity, IC50 values similar to that of 

prototype 2 were only found in peptides with the ααβαααβ backbone pattern (6, 7, 9 and 11). 



In general terms, α/β-peptide analogues were slightly less active in the dimerization assay 

than prototype 2 and, as expected, the compouds found to be the most active in the enzymatic 

assay (6, 7 and 9) were also the best dimerization disruptors in our ELISA.  

Table 2. IC50 ± SEM values for the α/β-peptide analogues 5-18 in the oxidoreductase 
activity and the Li-TryR monomer displacement assays. 
 

Peptidea IC50 activity 
(µM)b 

IC50 dimerization (µM)c 

2 (linear 13-mer prototype) TRL35 1.2 ± 0.17 10.35 ± 2.93 

3 (linear 11-mer prototype) TRL34 (2) 0.82 ± 0.003 4.21 ± 0.23 

4 (linear 9-mer prototype) TRL38 3.59 ± 0.27 15.74 ± 0.56 

5 (Ac-PKβ3IIQSβ3VGIβ3SNLKNL-NH2) 13-mer  8.78 ± 1.1 13.71 ± 1.38 

6 (Ac-PKIβ3IQSβ3VGISβ3NLKNL-NH2) 13-mer  3.11 ± 0.17 10.3 ± 1.26 

7(Ac-β3PKIβ3IQSVβ3AISβ3NLKNL-NH2) 13-mer  2.69 ± 0.95 13.95 ± 0.59 

8 (Ac-PKβ3IIQβ3SVGIβ3SNLKβ3NL-NH2) 13-mer  3.47 ± 0.26 21.68 ± 1.3 

9 (Ac-β3PKIIβ3QSVβ3AISNLβ
3KNL-NH2) 13-mer  1.65 ± 0.43 12.82 ± 0.83 

10 (Ac-Pβ3KIIβ3QSVGβ3ISNLβ
3KNL-NH2) 13-mer  9.28 ± 1.16 15.48 ± 0.83 

11 (Ac-Pβ3KIIQβ3SVGβ3ISNLKβ3NL-NH2) 13-mer  2.08 ± 0.78 18.04 ± 1.38 

12 (Ac-PKβ3IIQSβ3VGISβ3NLKNL-NH2) 13-mer  18.16 ± 2.31 9.72 ± 1.12 

13 (Ac-PKIβ3IQSVβ3AISNLβ
3KNL-NH2) 13-mer 5.38 ± 1.97 13.75 ± 1.09 

14 (Ac-PKIβ3IQSβ3VGISβ3NL-NH2) 11-mer  28.46 ± 3.51 47.3 ± 4.31 

15 (Ac-PKβ3IIQβ3SVGI-NH2) 9-mer  > 75 22.26 ± 0.62 

16 (Ac-PKβ3IIQSβ3VGI-NH2) 9-mer  > 75 53.04 ± 4.66 

17 (Ac-PKIβ3IQSβ3VGI-NH2) 9-mer  > 75 41.84 ± 1.48 

18 (Ac-β3PKIβ3IQSVβ3AI-NH2) 9-mer  39.77 ± 4.92  50.4 ± 0.0 
a β3 residues are indicated in red. b Enzymatic activity > 75 indicates that the IC50 is higher than 75 µM 
(maximum assayed). Results are representative of three independent experiments each performed in 
triplicate. c Dimer quantitation assay (ELISA) [9]. 
 
  



Anti-leishmanial activity in cell culture 
 

All the α/β-peptides were tested in vitro against L. infantum promastigotes and axenic 

amastigotes using edelfosine and miltefosine as positive controls [24]. None of them 

displayed any significant activity at the maximum concentration assayed (25 µM). Previous 

results from our group demonstrated that the cationic CPP composed of 9 arginines (R9) 

facilitated passage through the plasma membrane and converted peptide prototypes into 

leishmanicidal agents [14]. Linkage of the R9 sequence to the N-terminus of α/β-peptide 

foldamer 8 (compound 20) converted our α/β-peptide into a leishmanicidal agent showing an 

EC50 value against amastigotes similar or even better to that observed for edelfosine and 

miltefosine (Table 3). α/β-peptide 8 was selected for R9 ligation because of its high 

proteolytic stability and good IC50 value in the enzyme inhibition assay.  

Table 3.  LC50 ± SEM values for the [CPP]-[α/β-peptide foldamer] conjugate 20, R9 
sequence (21) and linear and cyclic [CPP]-[α-peptide] conjugates on L. infantum 
promastigotes, amastigotes and cytotoxic activity in THP-1 cell line.a 

 
Compoundb LC50 (µM) 

Promastigotes 
LC50 (µM) 
Amastigotes 

EC50 (µM) 
THP-1 

SId 

20 
RRRRRRRRRPKβ3IIQβ3

SVGIβ3SNLKβ3NL 
0.98 ± 0.02 1.9  ± 0.5 5.8 ± 1.4 5.9 / 3.1 

21 RRRRRRRRR  > 25 > 25 > 25 - 

22 
RRRRRRRRRPKIIQSV
AISNLKNL

c  
4.6 ± 0.2 3.5  ± 0.9 1.7 ± 0.5 <1 / <1 

23               
RRRRRRRRRPK-
c[(CH2)2CONH(CH2)4]3,7 

[EIQSK]GISNLKNL
c 

3.5 ± 0.4 2.8 ± 0.3 2.5 ± 0.8 <1 / <1 

Edelfosine 9 ± 0.2 0.6  ± 0.1 1 ± 0.2 < 1 / 1.7 

Miltefosine 47.6 ± 0.6 2  ± 0.1 19 ± 1.6 <1 / 9.5 
a Results are representative of three independent experiments each performed in triplicate. 
b β3 residues are indicated in red. All the peptides are acylated and as carboxamides at the N-terminal 
and C-terminal end, respectively. c LC50 values of linear and cyclic α-peptide conjugates are taken 
from reference 14.d Selectivity index (SI) is the ratio EC50 values of compounds against THP-1 cells 
relative to their corresponding EC50 values against promastigotes and amastigotes, respectively. 



Remarkably, no significant leishmanicidal activity was observed upon incubation of the 

parasites with non-conjugated R9 (compound 21). The increase in EC50 values against L. 

infantum promastigotes and amastigotes compared to that of the R9-conjugated version of α-

linear peptide prototype (compound 22) and lactam-bridged α-peptide analogues (compound 

23) validates our strategy for the design of α/β-peptides as TryR inhibitors. Notably, the 

presence of unnatural β3-amino acid residues not only increased the potency of our peptides as 

leishmanicidal agents but also decreased their toxicity against THP-1 cells resulting in better 

selectivity indexes (Table 3).  

 

Molecular modeling 

The impact of α/β-peptide foldamer length on the computed binding energy with Li-TryR 

was evaluated by means of classical MD simulations and theoretical calculations (Figure 2). 

Figure 2 shows the binding energy of three representative α/β-peptide foldamers (6, 14 and 

17) that share a common sequence and differ in size only.  

 

 

Figure 2. (Left) Computed global binding energies (kcal mol-1) for the three representative 
α/β3-peptides foldamers 6 (13-mer), 14 (11-mer) and 17 (9-mer). (Right) Detail of compound 
6 (coloured in yellow) at the Li-TryR monomer interface.  
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We observed that shortening the foldamer (6 > 14 > 17) strongly affects the binding 

affinity for Li-TryR. The loss of the last 4 C-terminal residues in 17 (Ser-ß3Nle-Lys-Nle) 

decreases the binding energy by one third relative to peptide 6 (-61.8 → -42.6 kcal mol-1) and 

reduce the total number of residues in the protein with a net contribution over 3.0 kcal mol-1 

for the binding energy (Table 4). A representative example is the strong interaction with 

Asp453 that is found in 6 (Figure 2) but is lost in the shorter α/β3-peptides 14 and 17. In all 

cases, a significant interaction with Ser440 is found. 

 

Table 4. Binding energy of α/β3-peptides foldamers 6, 14 and 17 decomposed by residue 
(kcal mol-1). 
 

6 (13-mer) 14 (11-mer) 17 (9-mer) 

Residue E ± SD Residue E ± SD Residue E ± SD 

Asp453 -5.5 ± 0.6 Ser440 -5.2 ± 0.4 Thr457 -4.4 ± 0.7 

Thr457 -5.2 ± 0.9 Val460 -4.8 ± 0.6 Ser440 -3.7 ± 0.4 

Val460 -4.6 ± 0.5 Thr463 -3.1 ± 0.5 Glu436 -3.5 ± 1.5 

Cys444 -4.3 ± 0.5 Cys444 -3.0 ± 0.6 Phe454 -3.5 ± 0.2 

Met447 -3.5 ± 0.9       

Ser440 -3.4 ± 0.5 
      Thr463 -3.1 ± 0.5 
      Phe454 -3.1 ± 0.4 
      Global interaction energies 

-61.8 ± 5.4 -51.0 ± 3.7 -42.6 ± 3.2 
 

  



CONCLUSIONS 

Maintaining the recognition properties of prototype peptides while increasing proteolytic 

stability has been of particular interest for a long time. We herein describe how this goal was 

achieved with oligomers displaying a specific conformational propensity (foldamers) that 

contain both α and β3-amino acid residues (mixed α/β-peptides) designed to target the dimer 

interface of Li-TryR. A small library of 14 hybrid α/β-peptides of different length and α→β 

substitution patterns was prepared and evaluated for Li-TryR inhibition of both activity and 

dimerization. We demonstrated that the 13-residue α/β-peptides were potent inhibitors of both 

Li-TryR oxidoreductase activity and dimerization while shorter analogues displayed a 

markedly decreased potency in both assays. The influence of length on the ability of α/β-

peptides to disrupt Li-TryR dimerization was rationalized in terms of differences in calculated 

binding energies with the Li-TryR monomer. Interestingly, several α/β-peptides display 

significant increases in proteolytic stability against non-specific proteinase K compared to 

both previous cyclic peptide analogues and the native parent linear α-peptide sequence from 

which they are derived. These findings highlight the usefulness of the backbone-modified 

peptide strategy involving periodic α-to-β replacements for designing PPI inhibitors of Li-

TryR with enhanced proteolytic stability. Moreover, the most stable mixed α/β-peptide 8, 

when conjugated to oligoarginines (compound 20), exhibits potent activity against L. infantum 

promastigotes and amastigotes. This conjugate displays not only increased potency as a 

leishmanicidal agent but also decreased toxicity against THP-1 cells in comparison to 

previous α-peptide R9-conjugates. 

 

  



EXPERIMENTAL SECTION 

1. Chemistry 

1.1. General Methods 

Unless otherwise noted, analytical grade solvents and commercially available reagents 

were used without further purification. DIEA, piperidine, Ac2O, and EDT were purchased 

from Aldrich (Germany), TFA from Fluka (Germany) and O-(6-chlorobenzotriazol-1-yl)-

1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU) from Fluorochem (UK). Fmoc-

protected Rink Amide MBHA resin (0.56 mmol/g loading) was purchased from Iris Biotech 

(Germany). Fmoc-α-protected amino acids were purchased from Fluka (Germany), 

Novabiochem (Merck, Germany) and Iris Biotech (Germany). Fmoc-protected β3-homoamino 

acids were purchased from AnandChem (Slovak Republic). 

 α,β3-peptide foldamers 5-20 were synthesized using the standard Fmoc/tBu solid-phase 

orthogonal protection strategy. Compounds were synthesized manually on a 20-positions 

vacuum manifold (Omega) connected to a vacuum pump using 20-mL polypropylene plastic 

syringes (Dubelcco) with a preinserted frit and a Teflon stopcock to do the washings and 

remove the solvents and excess of the reagents. The coupling reactions were carried out on 

solid phase using microwave radiation in a Biotage Initiator reactor in a 10-mL vial. 

Excluding the coupling reaction on the microwave reactor, the rest of the SPPS reactions were 

stirred using an IKA-100 orbital shaker. The monitoring of the reactions was also performed 

by HPLC/MS through a HPLC-waters 12695 connected to a Waters Micromass ZQ 

spectrometer. After cleavage, the acidic crudes were sedimented in Et2O on a Hettlich 

Universal 320R centrifuge at 5000 rpm. All the crude and samples were lyophilized using 

mixtures water/acetonitrile on a Telstar 6-80 instrument. The compounds were purified on a 

SP1 Isolera Biotage instrument using reverse phase columns or on a semipreparative HPLC 

Waters equipment as detailed below. As mobile phase, mixtures of A:B were used, where A = 



0.05% TFA water and B = acetonitrile with a flow rate of 7 mL/min. The peptides were 

purified using a gradient from 0% of B to 100% of B in 30-45 min and were detected at 217 

nm. After purification, α,β3-peptide foldamers were lyophilized and dried under reduced 

pressure in the presence of P2O5.  

The purity of the final products was checked by analytical RP-HPLC on an Agilent Infinity 

instrument equipped with a Diode Array and a C18 Sunfire column (4.6 mm x 150 mm, 3.5 

μm). As mobile phase, A:B mixtures were used, where A = 0.05% TFA water and B = 

acetonitrile. The samples were analyzed at 214 and 254 nm in a gradient from 2% of B to 

100% of B in 15 min (gradient 1). HRMS (EI+) was carried out in an Agilent 6520 Accurate-

Mass Q-TOF LC/MS spectrometer using water/acetonitrile. MALDI-TOF mass spectrometer 

(Voyager DE-STR Applied Biosystems) operated in reflectron mode to obtain better 

resolution was used for the [R9]-[α/β3-peptide] conjugate 20. Thus, the purity and identity of 

α,β-peptide foldamers and conjugates was confirmed by HRMS or MALDI-TOF-MS.  

General elongation procedure. Fmoc-protected Rink Amide MBHA resin was swollen in 

DCM/DMF/DCM/DMF (4 x 0.5 min). Then, the resin was treated with 20% piperidine in 

DMF or with a mixture of DBU:piperidine:DMF (1:1:48, in volume) at room temperature (1 x 

1 min) and (3 x 10 min) and washed with DMF/DCM/DMF/DCM (4 x 0.5 min). Later, to the 

free Nα-terminal swollen resin (1 equiv), a solution of the corresponding fmoc-α-amino 

acid or fmoc-β3-amino acids (1.2 equiv), HCTU (1.2 equiv) and DIEA (2.4 equiv) in DMF 

(5 mL) was added. After sealing the vial, the reaction was heated in a microwave vial 

equipped with a magnetic stirrer for 10 minutes at 40 ºC. Then, the vial was opened, the 

supernatant removed and new coupling mixture added. This process was repeated 3 times in 

total (3 x 10 min) until complete coupling. Finally, the resin was transferred to a fritted 

syringe, drained and washed in vacuo extensively (DMF/DCM/DMF/DCM, 5 x 0.5 min). 

This protocol was repeated for each amino acid. Coupling reactions to primary amines were 



monitored by the Kaiser ninhydrin test and to secondary amines by the Choranil test. In some 

cases, the progress of the reactions was also followed by analysis of a small sample of 

peptidyl-resin after acidic cleavage in an HPLC-MS instrument. 

General acetylation procedure. After elongation of the α,β-peptide foldamers, the N-terminal 

group was acetylated in all the cases by deprotection of the Fmoc-resin-bounded derivative as 

mentioned above followed by treatment of the deprotected resin with a mixture of 

Ac2O:DIEA:DMF (1:1:1, in volume) at room temperature (1 x 1 min) and (4 x 10 min). The 

resin was finally washed with DMF/DCM/DMF/DCM (4 x 0.5 min). 

General cleavage procedure. The well dried resin-bound derivative (1 volume) in a fritted 

syringe was treated with TFA:TIPS:H2O 95:2.5:2.5 (5 volumes) for 4 h at room temperature. 

In the case of peptides. The filtrates were precipitated over cold Et2O and centrifuged three 

times at 5000 rpm for 10 min. After removing the supernatant, the pellet was redissolved in 

water/acetonitrile and lyophilized. 

Purification of α ,β-peptide foldamers. The crudes were purified by two different methods to 

obtain the target α,β-peptide foldamers in high purity:  

1) In a SP1 Isolera Biotage equipment using presoaked cartridges KP-C18-HS 12 g (21 x 55 

mm). As mobile phase, mixtures of A:B were used, where A = 0.05% TFA water and B = 

acetonitrile with a gradient of 10 to 20% of acetonitrile in water, in 30 min, with a flow of 12 

mL/min. Samples were loaded dissolved or suspended in the minimal quantity of water. 

2) In a preparative reverse phase HPLC Waters equipment connected to a Fraction Colector 

III, using a C18 ACE 5 C18-300 (250 x 10 mm) column. The gradient mobile phases 

consisted on acetonitrile and water with 0.1% of formic acid as modifier and the gradient 

consisted of 2 to 95% of strong solvent in 30 min with a flow of 6 mL/min. Samples were 

loaded dissolved in the minimal quantity of water/acetonitrile/DMSO. The peptides were 

detected at 217 nm. 



1.2. Solid-Phase Peptide Synthesis of α ,β-peptide foldamers.  

Ac-Pro-Lys-β3Ile-Ile-Gln-Ser-β3Val-Gly-Ile-β3Ser-Nle-Lys-Nle-NH2 (5)  

Following the general coupling procedure for the synthesis of α,β-peptide foldamers on solid 

phase, starting with 0.14 mmol of Rink Amide MBHA resin (0.56 mmol/g loading), and prior 

acetylation and acidic cleavage, the resulting residue was purified in a Isolera Biotage® and 

lyophilized to obtain 5 as a white solid in a 13% yield. HPLC: tR = 8.62 min (G2-100, 15 

min), 95% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated C70H127N17O17 

1477.9596; Found [M+H]+ 1477.9604 (0.58 ppm). 

Ac-Pro-Lys-Ile-β3Ile-Gln-Ser-β3Val-Gly-Ile-Ser-β3Nle-Lys-Nle-NH2 (6) 

The general protocol was followed with 0.14 mmol of resin. After purification of the crude, 6 

was isolated as a white lyophilized cotton-like solid (48.05 mg, 23% overall yield). HPLC: tR 

= 8.99 min (G2-100, 15 min), 91% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated 

C70H127N17O17 1477.9596; Found [M+H]+ 1477.9612 (0.27 ppm). 

Ac-β3Pro-Lys-Ile-β3Ile-Gln-Ser-Val-β3Ala-Ile-Ser-β3Nle-Lys-Nle-NH2 (7) 

The general protocol was followed with 0.14 mmol of resin. After purification of the crude 

peptide, 7 was isolated as a white lyophilized cotton-like solid (45.21 mg, 21% overall yield). 

HPLC: tR = 9.61 min (G2-100, 15 min), 95% purity (at 214 nm). HRMS (ESI positive) m/z: 

Calculated C72H131N17O17 1505.9909; Found [M+H]+ 1505.9903 (-0.39 ppm). 

Ac-Pro-Lys-β3Ile-Ile-Gln-Gln-β3Ser-Val-Gly-Ile-β3Ser-Nle-Lys-β3Nle-NH2 (8) 

Starting from 0.14 mmol of resin, and after following the general protocol, 8 was purified and 

isolated as a white lyophilized cotton-like solid (53.74 mg, 26% overall yield). HPLC: tR = 

8.58 min (G2-100, 15 min), 98% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated 

C71H129N17O17 1491.9752; Found [M+H]+ 1491.9721 (-2.09 ppm). 



Ac-β3Pro-Lys-Ile-Ile-β3Gln-Ser-Val-β3Ala-Ile-Ser-Nle-β3Lys-Nle-NH2 (9) 

The general protocol was followed with 0.112 mmol of resin. The crude peptide was purified 

to give 9 as a white lyophilized cotton-like solid (37.67 mg, 22% overall yield). HPLC: tR = 

8.66 min (G2-100, 15 min), 95% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated 

C72H131N17O17 1505.9909; Found [M+H]+ 1505.9916 (0.5 ppm). 

Ac-Pro-β3Lys-Ile-Ile-β3Gln-Ser-Val-Gly-β3Ile-Ser-Nle-β3Lys-Nle-NH2 (10) 

Starting from 0.112 mmol of resin, and after following the general protocol, 10 was purified 

and isolated as a white lyophilized cotton-like solid (76.14 mg, 45% overall yield). HPLC: tR 

= 7.72 min (G2-100, 15 min), 99% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated 

C71H129N17O17 1491.9752; Found [M+H]+ 1491.9745 (-0.52 ppm). 

Ac-Pro-β3Lys-Ile-Ile-Gln-β3Ser-Val-Gly-β3Ile-Ser-Nle-Lys-β3Nle-NH2 (11) 

The general protocol was followed starting from 0.089 mmol of resin. The final residue was 

purified to yield 11 as a white lyophilized cotton-like solid (15.07 mg, 11% overall yield). 

HPLC: tR = 8.26 min (G2-100, 15 min), 97% purity (at 214 nm). HRMS (ESI positive) m/z: 

Calculated C71H129N17O17 1491.9752; Found [M+H]+ 1491.9701 (-3.47 ppm). 

Ac-Pro-Lys-β3Ile-Ile-Gln-Ser-β3Val-Gly-Ile-Ser-β3Nle-Lys-Nle-NH2 (12) 

The general protocol was followed starting from 0.14 mmol of resin. The final residue was 

purified to yield 12 as a white lyophilized cotton-like solid (39.93 mg, 19% overall yield). 

HPLC: tR = 8.90 min (G2-100, 15 min), 97% purity (at 214 nm). HRMS (ESI positive) m/z: 

Calculated C70H127N17O17 1477.9596; Found [M+H]+ 1477.9613 (1.18 ppm). 

Ac-Pro-Lys-Ile-β3Ile-Gln-Ser-Val-β3Ala-Ile-Ser-Nle-β3Lys-Nle-NH2 (13) 

The general protocol was followed with 0.14 mmol of resin. After purification of the crude 

peptide, 13 was isolated as a white lyophilized cotton-like solid (47.77 mg, 23% overall 



yield). HPLC: tR = 9.20 min (G2-100, 15 min), 97% purity (at 214 nm). HRMS (ESI 

positive) m/z: Calculated C71H129N17O17 1491.9752; Found [M+H]+ 1491.9821 (4.58 ppm). 

Ac-Pro-Lys-Ile-β3Ile-Gln-Ser-β3Val-Gly-Ile-Ser-β3Nle-NH2 (14) 

Starting from 0.112 mmol of resin, and after following the general protocol, 14 was purified 

and isolated as a white lyophilized cotton-like solid (21.80 mg, 15% overall yield). HPLC: tR 

= 9.00 min (G2-100, 15 min), 98% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated 

C58H104N14O15 1236.7806; Found [M+H]+ 1236.7806 (0.07 ppm). 

Ac-Pro-Lys-β3Ile-Ile-Gln-β3Ser-Val-Gly-Ile-NH2 (15) 

The general protocol was followed with 0.168 mmol of resin. After purification of the crude 

peptide, 15 was isolated as a white lyophilized cotton-like solid (81.19 mg, 44% overall 

yield). HPLC: tR = 7.65 min (G2-100, 15 min), 96% purity (at 214 nm). HRMS (ESI 

positive) m/z: Calculated C48H86N12O12 1022.6488; Found [M+H]+ 1022.6499 (1.02 ppm). 

Ac-Pro-Lys-β3Ile-Ile-Gln-Ser-β3Val-Gly-Ile-NH2 (16) 

The general protocol was followed with 0.14 mmol of resin. After purification of the crude 

peptide, 16 was isolated as a white lyophilized cotton-like solid (70.61 mg, 49% overall 

yield). HPLC: tR = 8.01 min (G2-100, 15 min), 98% purity (at 214 nm). HRMS (ESI 

positive) m/z: Calculated C48H86N12O12 1022.6488; Found [M+H]+ 1022.6490 (0.22 ppm). 

Ac-Pro-Lys-Ile-β3Ile-Gln-Ser-β3Val-Gly-Ile-NH2 (17) 

Starting from 0.14 mmol of resin, and after following the general protocol, 17 was purified 

and isolated as a white lyophilized cotton-like solid (55.26 mg, 39% overall yield). HPLC: tR 

= 8.10 min (G2-100, 15 min), 98% purity (at 214 nm). HRMS (ESI positive) m/z: Calculated 

C48H86N12O12 1022.6488; Found [M+H]+ 1022.6516 (2.75 ppm). 

 



Ac-β3Pro-Lys-Ile-β3Ile-Gln-Ser-Val-β3Ala-Ile-NH2 (18) 

The general protocol was followed with 0.14 mmol of resin. After purification of the crude 

peptide, 18 was isolated as a white lyophilized cotton-like solid (53.74 mg, 26% overall 

yield). HPLC: tR = 8.50 min (G2-100, 15 min), 99% purity (at 214 nm). HRMS (ESI 

positive) m/z: Calculated C50H90N12O12 1050.6801; Found [M+H]+ 1050.6805 (0.4 ppm). 

FITC-PEG-Pro-Lys-β3Ile-Ile-Gln-β3Ser-Val-Gly-Ile-β3Ser-Nle-Lys-β3Nle-NH2 (19) 

After elongation of the foldamer starting from 0.14 mmol of Rink amide resin, the treatment 

with PEG and FITC was carried out following the general protocol at room temperature. The 

crude was purified by semipreparative HPLC to yield the final product 19 as a yellow solid 

(12.37 mg, 14% overall yield). HPLC: tR = 9.24 min (G2-100, 15 min), 92% purity (at 254 

nm). HRMS (ESI positive) m/z: Calculated C96H149N19O24S 1984.0744; Found [M+H]+ 

1984.0754 (0.54 ppm). 

Ac-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg-Pro-Lys-β 3Ile-Ile-Gln-β 3Ser-Val-Gly-Ile-

β3Ser-Nle-Lys-β3Nle-NH2 (20) 

The general elongation protocol was followed with 0.168 mmol of resin. After purification of 

the crude, 20 was isolated as a white lyophilized cotton-like solid (36.00 mg, 7% overall 

yield). HPLC: tR = 4.23 min (G2-100, 15 min), 91% purity (at 214 nm). MALDI-TOF-MS 

C125H237N53O26 2899.08. 

The analytical data and overall yields of target α,β-peptide foldamers are detailed in Table S1 

(see Supplementary material). 

2. Protease susceptibility assays. Stock solutions of each α/β-peptide foldamer were 

prepared in tris-buffered saline (TBS buffer, pH = 7.6, Aldrich) with 10% DMSO (for 

solubility) at 100 µM. A 10 µg/mL stock solution of proteinase K (based on weight to 

volumen) was prepared in TBS. For each proteolysis reaction, the former foldamer stock 



solutions (250 µL) were mixed with TBS (208 µL). Then, proteinase K stock solution (42 µL) 

was added (final concentration enzyme 10 µg/mL), the solution was mixed, and the reaction 

was allowed to proceed at room temperatura with orbital shaking. The reaction was quenched 

at the desired time point (0, 5, 15, 30, 60, 180, 300 and 360 min for α/β-peptides 7 and 12; 

0, 30, 60, 120, 180, 300, 420, 540 min and 24 and 32 h for α/β-peptides 6, 8, 10 and 11; and 

0, 5, 10, 30, 60, 120, 180, 240, 300, 360, 480 min and 10, 27 and 48 h for α/β-peptide 15) 

by addition of 1% TFA in water (100 µL). 100 µL of the resulting quenched reaction was 

injected onto an analytical reverse phase HPLC, and the amount of starting foldamer present 

quantified by integration of the peak at 214 nm. Duplicate or triplicate reactions were run for 

each time point and half-lives determined by fitting time dependent peptide concentration to 

an exponential decay using GraphPad Prism. 

3. Li-TryR oxidoreductase activity. Oxidoreductase activity was determined according to 

the method described by Hamilton et al. [23] Briefly, reactions were carried out at 26 ºC (250 

μL) of HEPES pH 8.0 (40 mM) buffer containing EDTA (1 mM), NADPH (150 μM), 

NADP+ (30 μM), DTNB (25 μM), T[S]2 (1 μM), glicerol (0.02%), DMSO (1.5%) and 

recombinant Li-TryR (7 nM). For IC50 determinations (5-18) the enzyme was pre-incubated 

with the peptides (concentrations ranging from 75 μM to 0.29 μM) for 10 min prior the 

addition of T[S]2 and NADPH. Enzyme activity was monitored by the increase in absorbance 

at 412 nm for 1 h at 26 °C in a VERSAmax microplate reader (Molecular Devices, California, 

USA). All the assays were conducted in triplicate in at least three independent experiments. 

Data were analyzed using a nonlineal regression model with the Grafit6 software (Erithacus, 

Horley, Surrey, UK). 

4. Dimer quantitation assay. The stability of the Li-TryR dimeric form in the presence of 

α/β-peptide foldamers 5-18 was evaluated using the novel Enzyme-Linked ImmunoSorbent 

Assay (ELISA) recently developed in our laboratory.9 Briefly a dual (HIS/FLAG) tagged Li-



TryR (400 nM) was incubated in a dimerization buffer (200 µL 300 mM NaCl, 50 mM Tris 

pH 8.0) for 16 h at 37 °C with agitation and in a humid atmosphere in the presence of 

different peptide concentration (10 to 90 µM). Next the plates were washed ten times with 

TTBS (Tween 0.1%, 2 mM Tris, 138 mM NaCl 138 pH 7.6) and incubated with diluted 

monoclonal α-HIS HRP conjugated antibody (200 µL, Abcam, Cambridge, UK) in BSA (5%) 

in TTBS for 1 h at room temperature. The plates were washed once again as previously 

described and 1,2-phenylenediamine dihydrochloride (OPD) substrate (100 µL, Dako, 

Glostrup, Denmark) prepared according to manufacturer’s instructions was added. The 

enzymatic reaction was stopped after 10 min with H2SO4 (100 µL, 0.5 M) and the absorbances 

were measured at 490 nm in a VERSAmax microplate reader (Molecular Devices, California, 

USA). All the assays were conducted in triplicate in at least three independent experiments. 

Data were analyzed using a non-linear regression model with the Grafit6 software (Erithacus, 

Horley, Surrey, UK).  

5. Cells and culture conditions. L. infantum axenic amastigotes were grown in M199 

(Invitrogen, Leiden, The Netherlands) medium supplemented with 10% heat inactivated FCS, 

1 g/L β-alanine, 100 mg/L L-asparagine, 200 mg/L sucrose, 50 mg/L sodium pyruvate, 320 

mg/L malic acid, 40 mg/L fumaric acid, 70 mg/L succinic acid, 200 mg/L α-ketoglutaric acid, 

300 mg/L citric acid, 1.1 g/L sodium bicarbonate, 5 g/L MES, 0.4 mg/L hemin, 10 mg/L 

gentamicine pH 5.4 at 37 ºC. THP-1 cells were grown in RPMI-1640 medium (Gibco, Leiden, 

The Netherlands) supplemented with 10% heat inactivated FCS, antibiotics, 1 mM HEPES, 2 

mM glutamine and 1 mM sodium pyruvate, pH 7.2 at 37 ºC and 5% CO2. 

L. infantum promastigotes (MCAN/ES/ 89/IPZ229/1/89) were grown in RPMI-1640 

medium (Sigma–Aldrich, St. Louis, MO, USA) supplemented with 10% heat-inactivated fetal 

calf serum (FCS), antibiotics, and 25 mm HEPES (pH 7.2) at 26 oC.	



6. Leishmanicidal activity and cytotoxicity assays. Drug treatment of amastigotes was 

performed during the logarithmic growth phase at a concentration of 1×106 parasites/mL at 37 

ºC for 24. Drug treatment of promastigotes was performed during the logarithmic growth 

phase at a concentration of 2 × 106 parasites/mL at 26 ºC for 24 h. Drug treatment of THP-1 

cells was performed during the logarithmic growth phase at a concentration of 4×105 cells/mL 

at 37 ºC and 5% CO2 for 24 h. LC50 was evaluated by flow cytometry by the propidium iodide 

(PI) exclusion method [24]. After selection of the parasite population based on their forward 

scatter (FSC) and side scatter (SSC) values, live and dead parasite cells were identified by 

their permeability to PI. This is a conservative procedure that may underestimate LC50 values 

as parasites that became fragmented as a consequence of cell death are excluded from the 

analysis. To minimize the presence of fragmented parasites drug treatment never exceeded 24 

h. 

7. Molecular modeling. The crystallographic coordinates of Leishmania infantum TryR 

were retrieved from the Protein Data Bank (entry id. 2JK6) [25]. The non-natural β3-amino 

derivatives of isoulecine, norleucine and valine were parametrized for the force field using the 

RED RESP server [26]. The ff14SB force field parameter set in AMBER 16 was used [27]. 

Each complex foldamer: Li-TryR was immersed in a box of 27,000 TIP3P water molecules 

that extended 12 Å away from any solute atom and Na+ ions were added to ensure electrical 

neutrality. The MD simulation protocol at 300 K and 1 atm (NPT ensemble) was carried out 

as described before [28] using the pmemd_cuda. SPFP module in AMBER16. In this case, the 

positions of all the Cα atoms of protein residues were restrained (5 kcal mol-1). The energy 

analysis was carried out using our in-house program MM-ISMSA [29] on 20 snapshots taken 

from the last 10 ns of the simulation that were previously cooled down to 100 K over 1 ns of 

simulation during which the former positional constraints were kept. 

 



Appendix A. Supplementary data 

The analytical data and overall yields of final α,β,-peptides 5-20 (Table S1), HPLC, HRMS or 

MALDI-TOF-MS of α,β,-peptide foldamers analogues, and proteolysis stability data are also 

included. 

Supplementary data related to this article can be found at   
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