
����������
�������

Citation: Cruz, C.; Matatagui, D.;

Ramírez, C.; Badillo-Ramirez, I.; de la

O-Cuevas, E.; Saniger, J.M.; Horrillo,

M.C. Carbon SH-SAW-Based

Electronic Nose to Discriminate and

Classify Sub-ppm NO2. Sensors 2022,

22, 1261. https://doi.org/10.3390/

s22031261

Academic Editor: Alisa Rudnitskaya

Received: 2 December 2021

Accepted: 1 February 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Carbon SH-SAW-Based Electronic Nose to Discriminate and
Classify Sub-ppm NO2

Carlos Cruz 1,2,*, Daniel Matatagui 1,3,*, Cristina Ramírez 4, Isidro Badillo-Ramirez 5,6 ,
Emmanuel de la O-Cuevas 5,7, José M. Saniger 5 and Mari Carmen Horrillo 1

1 Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la
Información (ITEFI), CSIC, 28006 Madrid, Spain; carmen.horrillo.guemes@csic.es

2 Department of Electronics, University of Alcala, 28871 Alcala de Henares, Madrid, Spain
3 Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid,

28049 Madrid, Spain
4 Institute of Ceramics and Glass, ICV-CSIC, Kelsen 5, Cantoblanco, 28049 Madrid, Spain;

cristina.ramirez@icv.csic.es
5 Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior

S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico; ibadillo@ciencias.unam.mx (I.B.-R.);
emmanuel.de@correo.nucleares.unam.mx (E.d.l.O.-C.); jose.saniger@icat.unam.mx (J.M.S.)

6 Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

7 Unidad Académica de Física, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
* Correspondence: carlos.cruz@csic.es (C.C.); daniel.matatagui@uam.es (D.M.)

Abstract: In this research, a compact electronic nose (e-nose) based on a shear horizontal surface
acoustic wave (SH-SAW) sensor array is proposed for the NO2 detection, classification and discrimi-
nation among some of the most relevant surrounding toxic chemicals, such as carbon monoxide (CO),
ammonia (NH3), benzene (C6H6) and acetone (C3H6O). Carbon-based nanostructured materials
(CBNm), such as mesoporous carbon (MC), reduced graphene oxide (rGO), graphene oxide (GO)
and polydopamine/reduced graphene oxide (PDA/rGO) are deposited as a sensitive layer with
controlled spray and Langmuir–Blodgett techniques. We show the potential of the mass loading and
elastic effects of the CBNm to enhance the detection, the classification and the discrimination of NO2

among different gases by using Machine Learning (ML) techniques (e.g., PCA, LDA and KNN). The
small dimensions and low cost make this analytical system a promising candidate for the on-site
discrimination of sub-ppm NO2.

Keywords: electronic nose; NO2; carbon nanomaterials; graphene oxide; surface acoustic wave
(SAW); pollutants; discrimination; classification; Machine Learning (ML)

1. Introduction

Chemical sensors play a relevant role in our modern society for mobile applications,
traffic safety and health care. One of the principal functions of these sensors is the moni-
toring of chemical compounds. It has been becoming increasingly challenging in several
applications related to air quality assessment [1–7] and medical diagnostics [8,9]. These
needs have led to the emergence of new generations of low cost, portable and reliable gas
sensor devices with high potential discrimination among low concentrations of analytes
of interest. The combustion of fossil fuels is the major source of nitrogen oxide (NOx)
emissions into the atmosphere. In addition, the long-term exposure to NO2 levels produces
harmful effects for humans and living beings, which can be detected by deploying chemical
sensors based on carbon material [10–12].

Surface acoustic wave (SAW) devices are a type of chemical sensor with high po-
tentialities to detect low gas concentrations at room temperature (RT) due to the high
sensitivity and reduced size. In addition, novel sensing applications open the possibility for
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custom SAW devices [13–17]. SAW sensors are mainly used as gravimetric (mass sensitive)
transducers. Adsorption of molecules on the SAW surface produces an increase in density
per unit area that modulates the acoustic wave velocity [18,19], which is most commonly
measured through a shift of the oscillation frequency. In recent years, elastic sensitivity
has been presented as a novel way to measure gases by a small shift in elastic properties
of nanostructured layers [11,20–23]. Several studies to achieve sensors based on nanos-
tructured sensitive layers had been performed [24–26], resulting in highly sensitive and
selective sensors to improve electronic nose technology for detecting, discriminating and
classifying target gases. For example, Bhasker et al. [27] conclude that both mass loading
and change in elasticity, are the sensing mechanisms in ammonia detection. On the other
hand, Yongliang et al. [28] emphasize the benefits of the elastic loading effect in the SAW
sensor to a more significant response to H2S gas with excellent stability, selectivity and
humidity resistance. For instance, SAW carbon-based sensors configuration could make it
possible to operate under mass and elastic regimens [22].

Pattern recognition methods are commonly applied to the sustainable environment
domain [29] and can be performed for classification and discrimination of the sensor
field as an important component of the e-nose. Principal component analysis (PCA)
is applied for dimensionality reduction features that contain most of the patterns for
discriminative information [30–33]. Artificial neural network algorithms are widely used
for pattern recognition of chemical compounds [34]. The fast training and robustness make
the suggested patterns procedure an excellent classifier for sensor array data [35]. High
accuracy of up to 90% confirms the effectiveness of the classification analysis, especially
for the e-nose platforms [36,37]. Linear discriminant analysis (LDA) or K nearest-neighbor
(KNN) are also well-known machine learning (ML) approaches for pattern recognition,
able to assign class descriptors to the analytes with a high degree of confidence [38–41].
However, the system needs to be trained with known samples and the results are influenced
by the selected samples tested.

In this work, we analyze the e-nose capabilities of different carbon-based sensors for
selective NO2 classification. In addition, with the ML techniques, we perform both the
extraction of distinctive information to discriminate the observed analytes and the carbon-
based sensor potential for low concentration detection of NO2. The sensing performance of
the developed e-nose operates at RT and under different exposures to analytes, achieving
NO2 selectivity against interfering gases such as CO, NH3, C6H6 and C3H6O. Here, we
demonstrate that the elastic and the mass loading effects of carbon-based sensors are
suitable for NO2 discrimination by supervised and unsupervised ML techniques in a
versatile and compact system.

2. Materials and Methods
2.1. Materials

Graphene oxide (GO) powder was purchased from Graphenea (San Sebastian, Spain).
Dopamine (DA) hydrochloride and Tris buffer were purchased from Sigma Aldrich (St.
Louis, MO, USA). Graphitized mesoporous carbon (MC) and Gum Arabic (GA) powders
were purchased from Sigma Aldrich (Madrid, Spain).

2.2. SH-SAW Sensors Fabrication

SH-SAW was propagated on the ST-cut quartz substrate (perpendicular to the x
crystallographic axis). A wave with λ = 28 µm was generated and detected by interdigital
transducers (IDTs) with a double electrode configuration. The IDTs, with aluminum of
200 nm thickness, were made by RF sputtering combined with standard lithographic
techniques. The distance center to center between IDTs and the acoustic aperture were
150 and 75 λ, respectively. The guided SH-SAW, well-known as the Love wave, was
achieved using a 3.5 µm film of SiO2 grown on the piezoelectric substrate by plasma-
enhanced chemical vapor deposition, obtaining a resonance frequency of around 160 MHz.
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2.3. Sensitive Layer Fabrication

In this research, we developed an array of four sensors using the following carbon-
based materials as sensitive layers:

• Mesoporous Carbon (MC). Gum Arabic (GA) was dissolved in deionized (DI) water to
prepare a solution of 2 mg/mL. Then, 1 mg of MC was added to prepare a dispersion
using an extended low power ultrasonication bath (Branson 5510) for 7 h. Afterwards,
the dispersion was deposited on the SH-SAW sensor by spray coating in order to
obtain a reproducible deposition method.

• Graphene Oxide (GO). An aqueous dispersion of GO (0.5 mg/mL) was prepared by
mixing GO powder with DI water:methanol (1:5 volumetric ratio), then the mixture
was sonicated for 15 min. The dispersion was used immediately for deposition using
the Lagmuir–Blodgett (LB) technique.

• Reduced GO (rGO). The reduction of graphene oxide (reduced graphene oxide, rGO)
was performed in a U reactor with a fritted plate 1.5 cm in diameter, where 100 mg
of GO powder was heated at 400 ◦C for 2 h under constant flow of a 100 mL·min−1

H2/Ar (10% H2 balance Ar) mixture. Then, the reaction was allowed to cool until it
reached RT. The synthesized product was a fine black powder. Further, a homogeneous
rGO dispersion was obtained by mixing approximately 2.0 mg of rGO powder with
8 mL of methanol and sonicated for 4 h at RT.

• GO and rGO Langmuir–Blodgett film formation. Langmuir–Blodgett (LB) deposition
on the sensor chip was performed in a trough KSV 5000 alternating multilayer LB
system (KSV Finland). The trough was first cleaned with chloroform and then filled
with ultrapure water (Milli-Q system, 18.2 MΩ cm and simplicity 185, Millipore,
Burlington, MA, USA). The rGO/GO dispersion was spread onto the water surface
dropwise using a glass syringe at a speed of ~100 µL/min. The surface pressure was
monitored using a tensiometer attached to a Wilhelmy plate. Barriers compressed the
film at a speed of 15 mm/min. The rGO monolayer was transferred to an SH-SAW
sensor using the vertical lifting method at 22 ◦C. Z-type multilayer structures were
prepared by the vertical deposition method at a dipping speed of 10 mm/min. The
same procedure was followed to prepare GO monolayer substrates.

• Polydopamine (PDA) film formation on an rGO chip. PDA was obtained by dissolv-
ing DA hydrochloride powder in Tris buffer (pH 8.6) to obtain a DA concentration
of 0.01 M. Then, the previously fabricated rGO (LB) sensor chip was immediately
immersed in the DA/Tris solution at RT for 30 min. The PDA/rGO chip was rinsed
three times with ultrapure water and dried in a dissector.

2.4. Structural and Morphological Characterization

Microstructural characterization of the sensitive layers was performed by field emis-
sion scanning electron microscopy (FESEM, S-4700, Hitachi, Barcelona, Spain) and Raman
microscopy (Alpha 300RA, WITec GmbH, Ulm, Germany). Raman measurements were
acquired with a 532 nm laser excitation wavelength with an integration time of 0.6 s and
10 accumulations; three measurements were acquired at different positions in the central
region of the layer and averaged.

2.5. Experimental Setup for Gas Measurement

The SH-SAW sensor array was characterized by an automatic and controlled gas
line for sensor characterization in groups of different gaseous environments. The gas
sample generator (Figure 1) consisted of three mass flow controllers that obtain desirable
concentrations regulating the flow rates of both the synthetic air and the chosen target. The
process was performed by switching between a gas sample for 2 min (exposition time)
and the synthetic air for 20 min (purge time) at a constant flow of 100 mL/min. Target
gases were supplied by gas cylinders with a selectable concentration balanced with the
carrier gas, all of them from Nippon Gases: NO2 (1 ppm), CO (10 ppm), NH3 (50 ppm),
benzene (C6H6) (50 ppm) and acetone (C3H6O) (50 ppm). It was also possible to distinguish
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among concentrations with higher sensor responses in terms of increasing concentration
steps. Then, the initial sample concentration was diluted with synthetic air to obtain lower
concentrations such as 0.1–0.6 ppm for NO2, 1–6 ppm for CO and 10–40 ppm for NH3,
benzene (C6H6) or acetone (C3H6O).
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Figure 1. Experimental setup deployed for custom concentration measurements.

2.6. Electronic Nose Configuration

The system (e-nose) was deployed in a modular configuration:

• The signal conditioning module. The SH-SAW signals were generated using a set of
microwave circuits that consisted of two amplification states and a directional coupler.

• The multiplexor module. The signal of each sensor oscillator was selected and for-
warded to a single output, which was mixed with an oscillator-based reference signal,
obtaining a new signal around 1 MHz. The reference device also compensates for
external disturbances such as changes of temperature.

• The acquisition and transmission module. A microcontroller was used to measure the
resulting signal of the multiplexor module. The e-nose was kept at controlled RT while
variations of the frequency over time were recorded by wireless communication (XBEE
protocol). The experiment control, the real time data acquisition and the classification analyses
were implemented with a PC using the LabVIEW and the Matlab software, respectively.

3. Results and Discussion
3.1. Electrical Characterization

The standard deviation (SD) obtained for the measured SH-SAW sensor signal was
5 Hz. Considering the minimum signal as three times higher than the noise signal, the
minimum detectable measurement is a frequency shift of 15 Hz.

3.2. Morphological and Spectroscopic Characterization of Carbon-Based Sensitive Layers

Figure 2 shows the morphology of the carbon-based materials (CBMs) deposited on
the quartz substrates. A MC nanostructured layer was created by the combination of stable
aqueous dispersion of the particles and air-brush spray deposition technique (Figure 2a).
Particle distribution is identified with particle sizes below 100 nm and pores in the order
of 100–200 nm. Figure 2b shows the GO layer, where there is deposition of completely
extended sheets favored by the LB technique, showing a flat surface with wrinkles, edges
and some particular bumped features of 300 nm in diameter [42]. On the other hand,
Figure 2b,d shows the sensitive layers based on rGO and PDA/rGO, respectively. The
thermal reduction of GO originated the crumpling of rGO sheets, though the use of a PDA
treatment had a smoothening effect. It is important to notice that although the quartz
surface was effectively coated due to the material’s morphology and deposition technique,
the MC layer thickness is expected to be far larger than GO films.
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Figure 2. SEM images of sensitive layers based on (a) mesoporous carbon, (b) reduced graphene
oxide, (c) graphene oxide and (d) polydopamine/reduced graphene oxide.

The Raman spectrum of MC (Figure 3 black) presents the three characteristic bands of
graphitized materials: D, G and 2D vibrational modes, with moderately ordered structure
(ID/IG 0.57). Similarly, GO, rGO and PDA/rGO films show broad D and G Raman bands
of similar intensities, indicating the high disorder of graphitic domains obtained by the
synthesis route. ID/IG ratios of 2.9 and 3.0 were calculated for rGO and PDA/rGO, respec-
tively, whereas GO presented approximately half of the value. This increment in disorder
ratio is associated to the removal of functional groups produced by thermal reduction. In
accordance with SEM observations, the tendency to form crumples by rGO could lead to
an uneven substrate coating.
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3.3. Gas Sensor Characterization

The measured gas could be detected in a complex environment surrounded by gases
for different concentrations, requiring sensors with properties of sensitivity and selectivity
to discriminate and correctly classify the gases. Among the most important interfering
gases, for the above-cited applications where NO2 detection is required, are CO, NH3,
benzene (C6H6) and acetone (C3H6O).
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Experimental measurements for the gas characterization of the sensitive materials
showed that sensor response is dependent on the composition of the sensitive layer. As
shown in Figure 4, sensors based on MC and PDA/rGO behaved as gravimetric sensors,
decreasing their frequency due to an increase in the density per unit area of the sensing
layer as a consequence of the adsorbed molecules. However, the sense of the frequency
shift in rGO and GO sensors was the opposite, increasing their frequency due to the change
in elastic properties of the nanostructured sensitive layers caused by the interaction with
gas target molecules.
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Figure 4. Real time response and recovery of the SH-SAW sensor array based on MC, rGO, GO and
PDA/rGO for a concentration of 0.4 ppm of NO2 (a), 4 ppm of CO (b), 40 ppm of benzene (C6H6)
(c), 40 ppm of acetone (C3H6O) (d) and 40 ppm of NH3 (e).
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The sensitive layers in the developed sensors are different in both surface chemistry
and microstructure, which play a key role in the diverse sensing mechanisms that take
place between the material surface and the tested gases. The MC layer contains both a large
porous surface area per volume ratio and a highly ordered graphitized carbon structure,
which provides a high interaction for the of gas adsorption, mainly through physisorp-
tion processes, even if chemical adsorption processes might also take part; especially for
molecules with easy electronic delocalization, such as NO2, NH3 and C6H6. The GO
layer, besides containing a large surface area, also has a high number of functional groups
with oxygen due to the oxidation process of the graphene, and therefore it provides many
chemical reactive sites for selective gaseous molecule adsorption which causes a large
transfer of electrons, such as NO2 and NH3 [43]. Moreover, the rGO layer contains a large
site of ordered aromatic groups and in addition shows a reduced number of oxygenated
functional groups, in comparison with GO due to the reduction process, which reduces
the chemical adsorption of many of the studied gases, but improves the π–π electrostatic
interactions with aromatic molecules, such as benzene. The PDA/rGO layer contains
different types of functional groups, such as aromatic, amino and hydroxy, which are linked
with the reactive gas molecules, in a similar way to the GO with the oxygenated groups;
however, the obtained gas adsorption performances are lower. This result might be due to
the high number of unordered stacked aromatic groups and hindered reactive oxygenated
groups in PDA after a thick layer formation.

The MC sensor presented a high mass response to all gases. However, the rGO and GO
sensors showed an elastic response for all of them. Furthermore, the GO sensor exhibited
a significant elastic response with NO2 gas. This finding allowed us to compare the rGO
and GO sensors and determine their elastic response depending on functional groups. The
relation between responses of rGO and GO sensors can be a useful tool to discriminate
NO2 among other interfering gases.

The response time was determined by defining τ90 as the time taken to reach 90% of
the maximum frequency shift of the response. The MC and GO sensors presented a notable
response for 0.4 ppm of NO2 after exposition of 120 s with a complete recovery. On the
contrary, rGO and PDA/rGO sensors barely offer a noticeable response approach after NO2
exposition, reaching its maximum value at 80 s. (Figure 4a). All sensors showed a response
for NO2, between 300 (sensors with sensitive layer composed of GO or MC) and 50 Hz
(sensors with rGO and PDA/rGO). Furthermore, the limit of detection (LOD) achieved for
NO2 was ~10 ppb on the MC sensor, ~7.5 ppb on the rGO, ~75 ppb on the GO and ~30 ppb
on the PDA/rGO.

Figure 5a shows the performance of the developed sensors for different concentration
levels of NO2. The MC and rGO sensors achieved a high linearity response (0.98 and 0.89,
respectively, adjusted R squared values) in comparison with the GO and PDA/rGO sensors
(0.67 and 0.76, respectively), which shows a saturation regime behavior from 0.4 ppm of
NO2 in advance. To verify that sensor materials are suitable as NO2 gas sensors we further
investigate the sensors’ behavior by measuring the response in short periods (2 min) and
continuous cycles of exposition and purging. Figure 5b shows the reproducibility obtained
at 0.1 ppm of NO2. A high and stable response was obtained for MC or GO materials.
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The humidity influence on the sensor performance was also evaluated for discrim-
ination capabilities. Figure 6 illustrates the sensor effect with a 20% relative humidity
(RH) concentration measured with a handheld thermohygrometer (RS1364) at 21 ◦C. In
the tested humid environment, the frequency decreased in the GO sensor, which implies
a mass sensitivity mechanism. This result differs from the cases of the measured toxic
gases where the frequency increased due to the elastic sensitivity mechanism (Figure 5).
Accordingly, the response set from GO, rGO and PDA/GO sensors provides information
valuable for distinguishing among dry and humid environments. The high detection level
of sub-ppm NO2 makes MC and GO excellent materials with high performance for toxic
gas discrimination, taking rGO and PDA/rGO as references for dry and humid environ-
ments, respectively. The negligible number of hydroxyl groups in the rGO sensitive layer
implies a non-existent response to high humidity environments. However, after the rGO is
covered with PDA the number of hydroxyl groups increased, presenting a high sensitivity
to humidity [44,45]. For the tested humid environment, the frequency decreased in the
GO sensor, which implies a mass sensitivity mechanism. This result differs from the cases
of the measured toxic gases where the frequency increased due to the elastic sensitivity
mechanism. Accordingly, the response set from GO, rGO and PDA/GO sensors provide
information for distinguishing between dry and humid environments.
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3.4. Statistical Treatment and Classification Analysis

Figure 7 shows the responses of the four SH-SAW sensors for each gas concentration,
NO2 (0.2 ppm), CO (2 ppm), NH3 (20 ppm), benzene (C6H6) (20 ppm) and acetone (C3H6O)
(20 ppm). In this context, the responses were normalized regarding the highest gas response
for each sensor. The MC, GO, rGO sensors achieved the shortest response time for CO.
Furthermore, the strong point of the elastic loading effect of the GO sensor allowed to
obtain a different behavior for NO2 detection, facilitating NO2 discrimination with respect
to the rest of the interfering gases.
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We configured three ML techniques for pattern discrimination to identify sensors’ be-
haviors as part of different gas environments. The analysis with the unsupervised methods
was focused on PCA visualization. It allowed us to investigate data dimensionality reduc-
tion and discriminate between different target gases. PCA analysis provided summarized
data and visualized the information from the results containing the individual responses.
It is a promising method in case of no labeled data. The scores of the two classes for the
most important components—PC1 and PC2—are represented in Figure 8a, which offers
a way to study the statistical discrimination and provides a cumulative contribution rate
of 87%. The highest possible variation is explained by the first and second components
(65% and 23%, respectively). Although low concentrations of both interfering gases, NH3
and acetone (C3H6O), display scattered data, PCA confirmed well-defined patterns in the
sensor array response and showed a clear discrimination for NO2.

We also deployed two supervised ML techniques to validate the clustering of the PCA
offered. This fact helped us to assure the most adequate classification method to assign the
profiles to a group of responses. We conducted an (i) LDA that is a signal classification
technique that directly maximizes class separability of different gases, and (ii) KNN, which
is applied for classification of mixed gases providing high accuracy results. Figure 8b plots
the results of the LDA projections in which the point feature set is defined by different
responses. The classifier looks for the linear separability among NO2, interferents and
humidity classes, with the examples of each class forming compact clusters and being far
from each other. The result for the accuracy value (LDA classifier) was 0.9 (Figure 8b).
LDA provided similar results to the PCA and, consequently, both seem to be appropriate
methods for pattern discrimination in this gas sensing application.
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KNN is a powerful rule to generate highly nonlinear classifications with a set of data.
Figure 9 shows the KNN classification performance over 38 samples from the sensors’
responses. Table 1 shows true-quality classification indices for NO2, interferents and
humidity. The final result presents an accuracy of 0.95 for the three classes and a value up
to 0.9 on both F1 and precision quality scores. The KNN classifier correctly identified NO2
(100%). On the contrary, two false positives were obtained for the interferents class mainly
due to the heterogeneous behavior of the responses at low concentrations.
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Table 1. Sensitivity, F1 and precision scores for KNN classification (60% tested out of the total sample).

Precision Sensitivity F1-Score

Humidity 1 0.94 0.97
Interferents 0.67 1 0.8

NO2 1 1 1

Accuracy 0.95%

The presented study has demonstrated that a suitable sensitive layer allows measuring
changes in the velocity of the SAW that would be then selectively assigned to the adsorption
of the different gases. Table 2 illustrates the comparison of our developed sensitive layers
with other sensing films SAW sensors reported in the literature for NOx target gas. It also
shows that our materials can perform both mass and elastic detection for NO2 and can
reach similar and improved sub-ppm detection in comparison with the previous reported
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SAW sensors [13–16], within less than 1 min response time. Furthermore, our SAW sensors
show excellent sensitivity by mass loading effect for carbon monoxide, ammonia, acetone
and benzene, which can extend the environmental gas sensing applications.

Table 2. Comparison of different SAW sensor parameters reported in the literature for NOx target gas.

Sensitive
Layer Target Gas Operating

Frequency Sensitivity Detected ppm Response
Time

Detection
Mechanics Reference

SnO2 NO2 433.9 Mhz - 20 ppm 2 s Elastic loading [13]

ZnO NO2 99.5 Mhz 2.9 Hz/ppb 400 ppb–16 ppm - Mass loading [14]

PPy/WO/rGO NO 98 Hhz 12 Hz/ppb 5–110 ppb <2min Mass loading [15]

PZT NO2 99.4 Mhz 9.6 Hz/ppm 80–250 ppm - Mass loading [16]

MC
rGO
GO

PDA/rGO

NO2 160 Mhz

10 Hz/ppb
7.5 Hz/ppb
75 Hz/ppb
30 Hz/ppb

0.1–1 ppm <1min

Mass loading
Elastic loading
Elastic loading
Mass loading

This work

4. Conclusions

For the present study, we used a portable array of SH-SAW sensors for a real-time
monitoring system in order to provide discrimination of toxic chemicals. The system was
designed using a modular architecture, which makes it a very self-contained and versatile
platform incorporating ML capabilities for gas detection such as PCA, LDA or KNN.

The e-nose successfully detected nitrogen dioxide (NO2), monoxide (CO), ammonia
(NH3), benzene (C6H6) and acetone (C3H6O), in a wide variety of concentrations, with high
selectivity and sensitivity, showing a pattern for each toxic agent and high efficiency to
discriminate between interfering gases and NO2. The sensor array was effective at detecting
NO2 even at a low concentration (0.1 ppm). On the other hand, the elastic-loading effect
on the GO-based sensor shows a characteristic behavior for NO2 which, together with the
other sensors, allows NO2 to be discriminated from other interferents. The PCA plot data
clustering did not present a significant discrimination between the interfering gases, but it
showed that NO2 was discriminated from these other gases. Thus, PCA did not provide a
clear discrimination among interfering gases with high selectivity and sensitivity, mainly
due to the similar responses of acetone or ammonia at low concentrations. The SH-SAW
sensors showed different sensitivities at room temperature, excellent repeatability and fast
responses, and therefore all of them are considered good candidates for compact array
sensors (e-nose) for environmental applications.
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30. Marczyński, P.; Szpakowski, A.; Tyszkiewicz, C.; Pustelny, T. Pattern Recognition Applied to Analysis of Gas Sensors’ Array Data.
Acta Phys. Pol. A 2012, 122, 847–849. [CrossRef]

31. Jha, S.K.; Yadava, R.D.S. Preprocessing of SAW Sensor Array Data and Pattern Recognition. IEEE Sens. J. 2009, 9, 1202–1208.
[CrossRef]

32. Singh, H.; Raj, V.B.; Kumar, J.; Durani, F.; Mishra, M.; Nimal, A.T.; Sharma, M.U. SAW mono sen-sor for identification of harmful
vapors using PCA and ANN. Process. Saf. Environ. Prot. 2016, 102, 577–588. [CrossRef]

33. García, M.; Fernández, M.; Fontecha, J.; Lozano, J.; Santos, J.; Aleixandre, M.; Sayago, I.; Gutiérrez, J.; Horrillo, M. Differentiation
of red wines using an electronic nose based on surface acoustic wave devices. Talanta 2006, 68, 1162–1165. [CrossRef] [PubMed]

34. Herrera-Chacon, A.; Campos, I.; González-Calabuig, A.; Torres, M.; del Valle, M. Coupling of Sensors and Machine Learning
Algorithms in the Qualitative Analysis of Wine. Eng. Proc. 2021, 6, 50. [CrossRef]

35. Ciosek, P.; Wróblewski, W. The analysis of sensor array data with various pattern recognition techniques. Sens. Actuators B Chem.
2006, 114, 85–93. [CrossRef]

36. Zhang, W.; Tian, F.; Song, A.; Hu, Y. Research on electronic nose system based on continuous wide spectral gas sensing. Microchem.
J. 2018, 140, 1–7. [CrossRef]

37. Dang, L.; Tian, F.; Zhang, L.; Kadri, C.; Yin, X.; Peng, X.; Liu, S. A novel classifier ensemble for recognition of multiple indoor air
contaminants by an electronic nose. Sens. Actuators A Phys. 2014, 207, 67–74. [CrossRef]

38. Sisk, B.C.; Lewis, N.S. Estimation of chemical and physical characteristics of analyte vapors through analysis of the response data
of arrays of polymer-carbon black composite vapor detectors. Sens. Actuators B Chem. 2003, 96, 268–282. [CrossRef]

39. Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760.
[CrossRef]

40. Al-Dayyeni, W.S.; Al-Yousif, S.; Taher, M.M.; Al-Faouri, A.W.; Tahir, N.M.; Jaber, M.M.; Ghabban, F.; Najm, I.A.; Alfadli, I.M.;
Ameerbakhsh, O.Z.; et al. A Review on Electronic Nose: Coherent Taxonomy, Classification, Motivations, Challenges, Recommen-
dations and Datasets. IEEE Access 2021, 9, 88535–88551. [CrossRef]

41. Gutiérrez, J.; Horrillo, M.C. Advances in artificial olfaction. Sens. Appl. Talanta 2014, 124, 95–105. [CrossRef] [PubMed]
42. de la O-Cuevas, E.; Alvarez-Venicio, V.; Badillo-Ramírez, I.; Islas, S.R.; Carreón-Castro, M.D.P.; Saniger, J.M. Graphenic substrates

as modifiers of the emission and vibrational responses of interacting molecules: The case of BODIPY dyes. Spectrochim. Acta Part
A Mol. Biomol. Spectrosc. 2020, 246, 119020. [CrossRef] [PubMed]

43. Lu, G.; Ocola, L.E.; Chen, J. Reduced graphene oxide for room-temperature gas sen-sors. Nanotechnology 2009, 20, 445502.
[CrossRef] [PubMed]

44. Zhang, D.; Song, X.; Wang, Z.; Chen, H. Ultra-highly sensitive humidity sensing by polydopa-mine/graphene oxide nanostructure
on quartz crystal microbalance. Appl. Surface Sci. 2021, 538, 147816. [CrossRef]

45. Hallil, H.; Zhang, Q.; Flahaut, E.; Lachaud, J.-L.; Coquet, P.; Dejous, C.; Rebière, D. Guided SH-SAW sensor based on DWNTs
sensitive material for VOCs and humidity detection. J. Integr. Circuits Syst. 2018, 13, 1–4. [CrossRef]

http://doi.org/10.3390/s19245406
http://doi.org/10.1002/inf2.12029
http://doi.org/10.3390/bios11080244
http://doi.org/10.1016/j.snb.2016.07.040
http://doi.org/10.1016/j.snb.2019.127395
http://doi.org/10.1016/j.scs.2021.103001
http://doi.org/10.12693/APhysPolA.122.847
http://doi.org/10.1109/JSEN.2009.2029452
http://doi.org/10.1016/j.psep.2016.05.014
http://doi.org/10.1016/j.talanta.2005.07.031
http://www.ncbi.nlm.nih.gov/pubmed/18970446
http://doi.org/10.3390/I3S2021Dresden-10117
http://doi.org/10.1016/j.snb.2005.04.008
http://doi.org/10.1016/j.microc.2018.03.030
http://doi.org/10.1016/j.sna.2013.12.029
http://doi.org/10.1016/S0925-4005(03)00543-4
http://doi.org/10.3390/s19173760
http://doi.org/10.1109/ACCESS.2021.3090165
http://doi.org/10.1016/j.talanta.2014.02.016
http://www.ncbi.nlm.nih.gov/pubmed/24767451
http://doi.org/10.1016/j.saa.2020.119020
http://www.ncbi.nlm.nih.gov/pubmed/33075704
http://doi.org/10.1088/0957-4484/20/44/445502
http://www.ncbi.nlm.nih.gov/pubmed/19809107
http://doi.org/10.1016/j.apsusc.2020.147816
http://doi.org/10.29292/jics.v13i3.32

	Introduction 
	Materials and Methods 
	Materials 
	SH-SAW Sensors Fabrication 
	Sensitive Layer Fabrication 
	Structural and Morphological Characterization 
	Experimental Setup for Gas Measurement 
	Electronic Nose Configuration 

	Results and Discussion 
	Electrical Characterization 
	Morphological and Spectroscopic Characterization of Carbon-Based Sensitive Layers 
	Gas Sensor Characterization 
	Statistical Treatment and Classification Analysis 

	Conclusions 
	References

