
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a postprint version of the following published document: 

 

Alcázar Arribas, J.G. & Quintero, E. 2020, “Affine equivalences, isometries 

and symmetries of ruled rational surfaces”, Journal of Computational and 

Applied Mathematics, vol. 364, art. no. 112339, pp. 1-14. 

 

 

Available at https://doi.org/10.1016/j.cam.2019.07.004 

 

 

© 2019 Elsevier 

 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://doi.org/10.1016/j.cam.2019.07.004


Affine equivalences, isometries and symmetries of ruled
rational surfaces.

Juan Gerardo Alcázara,1,2, Emily Quinteroa,3

aDepartamento de F́ısica y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain

Abstract

An algorithmic method is presented for computing all the affine equivalences
between two rational ruled surfaces defined by rational parametrizations. The
algorithm works directly in parametric rational form, i.e. without computing or
making use of the implicit equation of the surface. The method translates the
problem into parameter space, and relies on polynomial system solving. Geo-
metrically, the problem is related to finding the projective equivalences between
two projective curves (corresponding to the directions of the rulings of the sur-
faces). This problem was recently addressed in a paper by Hauer and Jüttler,
and we exploit the ideas by these authors in the algorithm presented in this
paper. The general idea for affine equivalences is adapted to computing the
isometries between two rational ruled surfaces, and the symmetries of a given
rational ruled surface. The efficiency of the method is shown through several
examples.

1. Introduction

Two surfaces are affinely equivalent when one of these surfaces is the re-
sult of applying an invertible affine transformation to the other surface. Any
invertible affine transformation is a global diffeomorphism, and therefore the
transformation preserves both the topology and the differential properties of
the surface. Recognizing affine equivalence is important in fields like Computer
Vision or Pattern Recognition, where one often has objects stored in a database,
and needs to recognize those objects up to some transformation.

While affine transformations do not, in general, preserve metric properties,
isometries do. Isometries are well classified [10], and comprise translations,
central symmetries, reflections in a plane, rotational symmetries (with axial
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symmetries as a special case), and their composites. A symmetry of a surface is a
symmetry of 3-space that leaves the surface invariant. In particular, symmetries
of 3-space are orthogonal transformations.

Additionally, knowing the symmetries of a surface is useful in order to un-
derstand the geometry of the surface and to visualize the surface correctly.
Symmetries are also useful in applications like image storage and medial axis
computations, or again, object detection and recognition. In the literature of
applied fields like computer aided geometric design, pattern recognition or com-
puter vision one can find many methods to detect symmetries (see for instance
the Introduction to [2]). However, these methods are usually applied to objects
where no specific structure is assumed, and are more oriented towards finding
approximate symmetries.

The same thing can be said about methods to identify affine equivalences;
see for example the paper [17] and the references provided therein. In fact,
in applications the problem which has received more attention is the detection
of affine equivalences between point clouds, since images and objects are often
represented this way.

In contrast, in this paper we address a type of surface with a strong struc-
ture, namely rational ruled algebraic surfaces. Additionally, we make use of the
structure of these surfaces in order to compute affine equivalences, isometries or
symmetries. Ruled surfaces consist of straight lines, and are classical in Differ-
ential and Algebraic Geometry. A complete account of many properties of these
surfaces is given, for instance, in the books [14, 16].

Some recent publications address similar problems for curves and surfaces.
Projective and affine equivalences between rational curves in arbitrary dimension
are considered in [12]. The same problem for rational and polynomial surfaces
is considered in [13]. However, in [13] the parametrizations of the surfaces are
assumed to have no projective base points, which is not the case, in general, for
rational ruled surfaces. Projective equivalences between some special varieties
are also studied in [7], where ruled surfaces, among others, are considered. In [7]
an algorithm to compute projective equivalences, based in a strong background
of Algebraic Geometry, is provided. Nevertheless, the authors of [7] are not very
specific about computational questions or timings, so it is not easy to compare
their methods with the one in this paper.

A naive approach to solve the problem could be to compute first the im-
plicit equations of the surfaces, which can be done efficiently by using µ-bases
[8, 9], then pick a generic affine transformation, and finally impose that the
transformation maps one surface onto the other. This last step is equivalent to
recovering, up to a constant, the implicit equation of the second surface. This
approach leads to a polynomial system in 12 variables, the parameters of the
affine transformation, where the degree of each polynomial equation is bounded
by the degree of the implicit equation. However, this approach is often imprac-
tical. On one hand, the system has many variables, which makes it complicated
to solve even when the polynomial equations have low total degree. On the other
hand, computing the implicit equation may destroy sparsity, when present in
the parametrization. The same criticism applies to computing isometries or
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symmetries by this method.
In this paper we use a different approach, based on previous work of one of

the authors on symmetries of rational curves [5] and polynomially parametrized
surfaces [2]. The idea is to reduce the problem to computations in the param-
eter space, an idea also present in [12, 13]. In order to perform this reduction,
we observe that whenever the parametrizations defining the surfaces are proper,
i.e. birational, any affine equivalence of the surfaces is associated with a bi-
rational transformation of the parameter space (the plane), i.e. a Cremona
transformation. Taking advantage of the structure of the surfaces, in our case
of the fact that the surfaces are ruled, we prove that the corresponding Cremona
transformation has a specific form.

This specific form reveals something else, namely that the matrix associated
with an affine equivalence corresponds to a projective equivalence between the
projective curves defined by the directions of the rulings of the surfaces. From
this point, we take advantage of the detailed analysis of the computation of
projective equivalences between curves carried out in [12]. In particular, in our
case the main difficulty, from a computational point of view, is the solution of
a polynomial system in the parameters of the Cremona transformation whose
structure is studied in [12]. The core of the computational method we propose
to find the affine equivalences of the surfaces is based on ideas in [12].

For isometries or symmetries, the fact that the transformation we are seek-
ing preserves metric properties provides extra conditions that help reduce the
computation time.

The structure of this paper is the following. We start with a preliminary sec-
tion, Section 2, where we fix the hypotheses required on the input, together with
some general notions to be used later in this paper. Several results behind the
method, and the analysis of the structure of the Cremona transformations be-
hind affine equivalences, are presented in Section 3. The computational method
itself is addressed in Section 4, where we apply many results in [12]. We report
on experiments in Section 5. Some brief observations on projective equivalences
are provided in Section 6. A brief summary of our work is presented in Section
7.

Acknowledgements. Juan G. Alcázar is partially supported by FEDER/
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Investigación/MTM2017-88796-P (Symbolic Computation: new challenges in
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ported by a grant from the Carolina Foundation.

The authors are grateful to the reviewers, whose comments allowed us to im-
prove an earlier version of the paper. Particularly, one of the reviewers pointed
out the similarities with the paper [12], and his/her very precise suggestions
helped us greatly to improve the computation strategy and the timings, com-
pared to those of an initial version of the paper.
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2. Preliminaries.

Let S1, S2 be real ruled surfaces, defined by means of real, rational parametriza-
tions x1,x2 in standard form [15]

xxxi(t, s) = pi(t) + s· qi(t). (1)

An algorithm for writing a ruled rational surface in standard form is provided
in [15], where it is shown that any ruled rational surface can be brought into
an equation like Eq. (1), although the parametrization might not be real (e.g.
quadrics). At each point P = xxxi(t, s) ∈ Si, i = 1, 2, the vector qi(t) defines the
direction of the ruling through P , i.e. the line LP through P contained in Si.

Furthermore, we will also suppose that S is not doubly-ruled, i.e. that there
are not two different families of rulings contained in S. It is well-known that
the doubly-ruled surfaces are planes, hyperbolic paraboloids, and single-sheeted
hyperboloids (see [11, §I.3]). For paraboloids and hyperboloids one can study
affine equivalences by first computing the implicit equation, which is easy to do
in the case of quadrics, and then applying matrix methods.

In the rest of this paper we will assume that for i = 1, 2, the xi(t, s) are
proper, i.e. that the parametrizations in Eq. (1) are injective except for, at
most, a 1-dimensional subset of Si. In particular, this assumption implies that
for i = 1, 2, x−1i exist and are rational.

Without loss of generality, we assume that the components of qi(t) are three
polynomials with 1 as greatest common divisor. This assumption, which is
technically important, can be achieved by setting

q̂i(t) := µi(t)qi(t), µi(t) =
µ1,i(t)

µ2,i(t)
, (2)

and
ŝ := s/µi(t), (3)

where µ1,i(t) is the least common multiple of the denominators of the compo-
nents of qi(t), and µ2,i(t) is the greatest common divisor of the numerators of
the components of qi(t). As

pi(t) + s· qi(t) = pi(t) + ŝ · q̂i(t),

one has a new parametrization that satisfies the assumption. If one parametriza-
tion is proper, the other one is also proper, since the change of parameter is
invertible.

Two surfaces S1, S2 are affinely equivalent if there exists an invertible affine
mapping f : R3 −→ R3,

f(x) = Ax + b, x ∈ R3, (4)

with b ∈ R3 and A ∈ R3×3 a nonsingular square matrix or order 3, such that
f(S1) = S2. In this case, the mapping f is an affine equivalence between S1, S2.
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If A is an orthogonal matrix, i.e. ATA = I, where I denotes the 3× 3 identity
matrix, then f defines an isometry between S1, S2, in which case S1, S2 are
isometric. If A = λQ where Q is orthogonal and λ 6= 0, f defines a similarity
between S1, S2, and S1, S2 are similar. Furthermore, if S1 = S2 and f defines
a non-trivial isometry of S onto itself, then f is a symmetry of S, and S is
symmetric.

Finally, f : R3 −→ R3 is an involution if f ◦ f = idR3 . Not every involution
is affine, but when we consider S1 = S2 = S certain notable symmetries of
S are affine involutions. In particular, reflections in a plane, axial symmetries
(i.e. symmetries with respect to a line, or equivalently rotations around a line
of angle π), and central symmetries (i.e. symmetries with respect to a point)
are affine involutions. Rotational symmetries, i.e. rotations leaving S invariant,
with a rotation angle different from π, however, are not involutions.

3. Affine equivalences of ruled surfaces.

Let S1, S2 be real rational ruled surfaces parametrized by x1,x2 as in Eq.
(1), satisfying the conditions of Section 2, i.e. for i = 1, 2 we assume that:
xi(t, s) is proper; qi(t) is polynomial with relatively prime components; Si is
not doubly-ruled. Our goal in this section is to present a method to detect
whether S1, S2 are affinely equivalent, and in the affirmative case to compute
the affine equivalences between S1, S2. In order to develop our method we will
assume that S1, S2 are not cylindrical. Nevertheless, we will address cylindrical
surfaces in Subsection 4.2. Notice that our hypotheses on qi(t) imply that Si is
cylindrical if and only if qi(t) is constant.

The following result is crucial for us.

Theorem 1. Let S1, S2 be two rational real ruled surfaces properly parametrized
by x1,x2 as in Eq. (1). A mapping f : R3 → R3, f(x) = Ax + b, with
A ∈ R3×3, b ∈ R3 and A nonsingular, satisfies f(S1) = S2, so that S1, S2

are affinely equivalent, if and only if there exists a birational transformation
ϕ : R2 → R2, such that the diagram

S1
f
// S2

R2

xxx1

OO

ϕ
// R2

xxx2

OO
(5)

is commutative. In particular, for a generic point (t, s) ∈ R2

f ◦ x1 = x2 ◦ ϕ. (6)

Proof. “⇒” Since x2 is proper by hypothesis, x−12 exists and is rational. There-
fore, ϕ = x−12 ◦ f ◦ x1 is birational, because ϕ is the composite of birational
transformations. “⇐” Since f ◦xxx1 = xxx2 ◦ϕ, whenever x1(t, s) and (x2 ◦ϕ)(t, s)
are well-defined (f ◦x1)(t, s) ∈ S2, so f(S1) ⊂ S2. Since f is nonsingular, f(S1)
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defines a rational surface, i.e. f(S1) does not degenerate into a curve. Addi-
tionally f(S1), S2 are both rational, and therefore irreducible; since f(S1) ⊂ S2

and f(S1), S2 are irreducible, f(S1) = S2, i.e. S1, S2 are affinely equivalent.

Additionally, from Eq. (6) one can easily see that each affine mapping f is
associated with a different ϕ.

From Theorem 1 we observe that ϕ is a birational transformation of the
plane. Such a transformation is called a Cremona transformation. However, un-
like the birational transformations of the line, which are the well-known Möbius
transformations, i.e. the transformations of the type

ψ : R 99K R, ψ(t) =
αt+ β

γt+ δ
, αδ − βγ 6= 0, (7)

Cremona transformations do not have a generic closed form. Therefore, in
order to describe ϕ, we need to make use of the properties of the surfaces we
are investigating, in this case, the fact that they are ruled. The following result
provides a first clue in this direction.

Proposition 2. Let S1, S2 be rational ruled surfaces properly parametrized as
in Eq. (1), which are not doubly ruled. Let f(x) = Ax + b be a nonsingular
affine mapping satisfying f(S1) = S2, and let ϕ : R2 → R2 be the birational
transformation making the diagram in Eq. (5) commutative. Then

ϕ(t, s) = (ψ(t), a(t)· s+ c(t)), (8)

where ψ(t) is a Möbius transformation and a(t), c(t) are rational functions.

Proof. Since f is an affine mapping, f maps rulings of S1 onto rulings of S2.
Let ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)). A generic ruling of Si, with i = 1, 2 is defined
by xxxi(tai , s), where tai is a constant. Since S2 is not doubly ruled, the ruling
parametrized by xxx1(ta1 , s) is mapped by f onto the ruling parametrized by
xxx2(ta2 , s). Using Eq. (6), we get

f(x1(ta1 , s)) = x2(ϕ(ta1 , s)) = x2(ϕ1(ta1 , s), ϕ2(ta1 , s)),

so ϕ1(ta1 , s) = ta2 , i.e. ϕ1(ta1 , s) does not depend on s. Since this independence
happens for a generic ta1 , we deduce that ϕ1(t, s) = ϕ1(t). Since ϕ is birational,
ϕ1 is birational as well; in particular, we deduce that ϕ1 is a birational transfor-
mation of the line, so ϕ1 must be a Möbius transformation, which we represent
by ψ(t). The rest of the theorem follows from Eq. (6), taking into account that
f(x) = Ax + b.

Let us now investigate the structure of the function a(t) in Eq. (8). Recall
that xxxi(t, s) = pi(t) + s· qi(t), where qi(t) = (qi,1(t), qi,2(t), qi,3(t)), each qi,j(t)
is polynomial and gcd(qi,1, qi,2, qi,3) = 1. Also, let

ni = max{deg(qi,1(t)),deg(qi,2(t)),deg(qi,3(t))}, (9)
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and let us write

a(t) =
A(t)

B(t)
, ψ(t) =

αt+ β

γt+ δ
,

where A,B ∈ R[t], gcd(A,B) = 1, and αδ − βγ 6= 0. Combining Eq. (8) and
Eq. (6) with f(x) = Ax + b, and comparing the coefficients of s, we get

A· q1(t) = a(t)· q2(ψ(t)). (10)

Since qi(t), i = 1, 2, is polynomial, the left hand-side of Eq. (10) is polynomial
as well, so the right hand-side of Eq. (10) must also be polynomial. This
observation yields the following results; here, we denote the entries of the matrix
A by Aij .

Lemma 3. (γt+ δ)n2 divides A(t).

Proof. From Eq. (10), for i = 1, 2, 3 we get

Ai1· q1,1(t) + Ai2· q1,2(t) + Ai3· q1,3(t) = a(t)· q2,i(ψ(t)), (11)

where q2,i(t) = a`it
`i + a`i−1t

`i−1 + · · · + a0, with `i ≤ n2 for i ∈ {1, 2, 3}.
Furthermore, `i = n2 for at least one i ∈ {1, 2, 3}. Additionally,

q2,i(ψ(t)) =
a`i(αt+ β)`i + a`i−1(αt+ β)`i−1(γt+ δ) + · · ·+ a0(γt+ δ)`i

(γt+ δ)`i
.

(12)
Since γt+δ does not divide αt+β, the numerator and denominator of q2,i(ψ(t))
are relatively prime. Since the left hand-side of Eq. (11) is a polynomial,
a(t)· q2,i(ψ(t)) must be a polynomial as well, so (γt + δ)`i divides A(t). Since
`i = n2 for some i ∈ {1, 2, 3}, the statement follows.

Lemma 4. B(t) is a constant.

Proof. Recall that gcd(q2,1, q2,2, q2,3) = 1. Let Ni(t) be the numerator of
q2,i(ψ(t)). Since the left hand-side of Eq. (11) is a polynomial, B(t)|Ni(t)
for i = 1, 2, 3. Thus, B(t)|G(t), where G = gcd(N1, N2, N3). Now suppose that
G(t) is not constant. Then N1, N2, N3 have a common root t0. Moreover, since
the numerators and denominators of the q2,i(ψ(t)) are relative prime, γt0+δ 6= 0.
Therefore, ψ(t0) is well defined and ψ(t0) is a common root of the q2,i(t), because

q2,i(ψ(t0)) = Ni(t0)

(γt0+δ)`i
. But this contradicts the fact that gcd(q2,1, q2,2, q2,3) = 1.

Thus, G(t) is constant and since B(t)|G(t), B(t) must be a constant.

Finally, we get the following proposition on the form of the function a(t).

Proposition 5. The function a(t) satisfies a(t) = k· (γt + δ)n2 , where k is a
nonzero constant.

Proof. From the two previous lemmas we have a(t) = k(t)· (γt + δ)n2 for some
polynomial k(t). Additionally, from Eq. (10)

A· q1(t) = k(t)· (γt+ δ)n2 · q2(ψ(t)). (13)
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Taking Eq. (12) into account, we observe that (γt + δ)n2 · q2(ψ(t)) is polyno-
mial. If k(t) is not a constant, then the components of A·q1(t) are not relatively
prime, i.e. A · q1(t) = r(t)q?1(t), with r(t) nonconstant, and q?1(t) a polynomial
parametrization with relatively prime components. However, since A is non-
singular, in that case we have q1(t) = r(t)A−1q?1(t), which implies that the
components of q1(t) are not relatively prime either. Since by hypothesis the
components of q1(t) are relatively prime, k(t) must be a constant k. Finally,
since A is nonsingular, from Eq. (13) we get that k 6= 0.

Taking Proposition 5 and Eq. (13) into account, we get the following corol-
lary.

Corollary 6. If S1, S2 are affinely equivalent, then n1 = n2.

We summarize the previous results in the following theorem. In the rest of
this paper, we denote, according to Corollary 6, n1 = n2 = n.

Theorem 7. Let S1, S2 be two rational ruled surfaces, which are not doubly
ruled, properly parametrized as in Eq. (1). Let qi(t) = (qi,1(t), qi,2(t), qi,3(t)),
with qi,j(t) ∈ R[t] for i = 1, 2 and j = 1, 2, 3, and n1 = n2 = n. Let f(x) =
Ax + b, with A nonsingular, such that f(S1) = S2, and let ϕ : R2 → R2 be the
birational transformation making the diagram in Eq. (5) commutative. Then

ϕ(t, s) = (ψ(t), k· (γt+ δ)n· s+ c(t)), (14)

where ψ(t) is a Möbius transformation, k is a constant, and c(t) is a rational
function. Moreover,

A· q1(t) = k· (γt+ δ)n· q2(ψ(t)). (15)

Eq. (15) can be interpreted in geometric terms. In order to do this, it is
preferable to write Eq. (15) projectively. Let q̃i(t, ω) = [qi,1(t, ω) : qi,2(t, ω) :
qi,3(t, ω)] ∈ P2(R), where i = 1, 2 and ω is a homogenization variable. Then Eq.
(15) can be written as

A · q̃1(t, ω) = k · q̃2(αt+ βω, γt+ δω). (16)

This means (see Section 3 of [12]) that the projective curves defined by q̃1(t, ω)
and q̃2(t, ω) are projectively equivalent, and even more, that A defines a projec-
tivity mapping the projective curve defined by q̃1(t, ω) onto the projective curve
defined by q̃2(t, ω) (or k · q̃2(t, ω), since projectively q̃2(t, ω) and k · q̃2(t, ω) can
be identified). This observation makes perfect sense from a geometric point of
view: affine equivalences map rulings of S1 onto rulings of S2, as observed in
the proof of Proposition 2, and q̃1(t, ω), q̃2(t, ω) define the directions of these
rulings. The matrix A defines the map sending the direction of each ruling of
S1 onto the direction of a ruling of S2.

Projective equivalences between curves in any dimension, and in particular
systems of equations like Eq. (16) (and therefore Eq. (15)) are studied in great
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detail in [12]. We will benefit from the study carried out in [12] in the next
section, where we address the computation of the affine equivalences between
S1, S2.

Finally, from Eq. (1), Eq. (6), and Eq. (14) we get the relationship

Ap1(t) + b = p2(ψ(t)) + c(t)q2(ψ(t)). (17)

We will see how to exploit Eq. (15) and Eq. (17) in the next section.

4. Computation of the affine equivalences.

The computation of the affine equivalences between S1, S2 is based on the
following result, which in turn follows from the results of the previous section.

Proposition 8. The affine equivalences f(x) = Ax + b between S1, S2 cor-
respond to the A ∈ R3×3, b ∈ R3 satisfying Eq. (15) and Eq. (17), where
det(A) 6= 0, k 6= 0, ψ(t) = αt+β

γt+δ and αδ − βγ 6= 0.

Notice that since the components of q2(t) are polynomials of degree at most
n, Eq. (15) involves only polynomials, and provides equations which are linear in
the entries Aij of the matrix A. Furthermore, the coefficients of the Aij in these
linear equations are constants, while the constant terms of these linear equations
depend on α, β, γ, δ and k. However, Eq. (17) involves rational functions, i.e.
polynomial denominators. Additionally, since αδ−βγ 6= 0 we can always assume
either that αδ − βγ = 1, or separate the analysis in two different cases, namely
the case γ = 1, and the case γ = 0, δ = 1. This last possibility allows us to
perform the computation with fewer variables (although twice).

The computation proceeds in three different steps, (A), (B), (C). Let us
describe these steps in detail.

(A) Writing A in terms of α, β, γ, δ, and k. At this step we exploit Eq. (15),
which has been studied in great detail in Section 3 of [12]. Writing Eq. (15) in
components, we get

 A11· q1,1(t) + A12· q1,2(t) + A13· q1,3(t) = k(γt+ δ)nq2,1(ψ(t)),
A21· q1,1(t) + A22· q1,2(t) + A23· q1,3(t) = k(γt+ δ)nq2,2(ψ(t)),
A31· q1,1(t) + A32· q1,2(t) + A33· q1,3(t) = k(γt+ δ)nq2,3(ψ(t)).

(18)

Since the q2,j(t) have degree at most n, the expressions on the right hand-
side of Eq. (18) are, in fact, polynomials. Equating the coefficients of t`, for
` = 0, 1, . . . , n, on both sides of Eq. (18), we get a system L, linear in the Aij ,
where the coefficients of the Aij are constant numbers, and where the constant
terms are polynomials in α, β, γ, δ and k. Let us write q1(t) as

q1(t) = v0 + v1t+ · · ·+ vnt
n, (19)

where v` ∈ R3, for ` = 0, . . . , n, is a numeric row vector whose components are
the coefficients in t` of q1,1(t), q1,2(t) and q1,3(t). Then the system L has the
form:
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

v0

...
vn

v0

...
vn

v0

...
vn


︸ ︷︷ ︸

A

·



A11

A12

A13

A21

...
A33


=



•1
...
•n+1

...
•2(n+1)

...
•3(n+1)


(20)

Here we see that A ∈ R3(n+1)×9 is a block matrix with three nonzero blocks
of size (n+ 1)× 3, consisting of the row vectors v0, . . . ,vn. The constant terms
•j , where j = 1, . . . , 3(n + 1), are products of k by a homogeneous polynomial
in α, β, γ, δ of degree n, a structure observed in Section 3.2 of [12]. Notice also
that the number 3(n+ 1) of the equations is in agreement with the observations
raised in Section 3 of [12] (compare to Table 2 in Section 3 of [12], taking into
account that we are dealing with projective curves, defined by q̃1, q̃2, in the
projective plane).

Let r = rank(v0, . . . ,vn); notice that since v` ∈ R3, we get r ≤ 3. Further-
more, if r = 2 then the directions of all the rulings of S1 are parallel to a plane.
If r = 1 then all the rulings of S1 are parallel to a same vector v, i.e. S1 is a
cylindrical surface; this special case is much easier to solve, see Subsection 4.2.

Now by the structure of the matrix A we get rank(A) = 3r. Let us address
the cases r = 3 and r = 2. The case r = 3 is analyzed in detail in Section 3.2 of
[12]; here we adapt several results of [12] to our case. However, the case r = 2
is, apparently, not addressed in [12].

(1) Case r = 3: since rank(A) = 3r, for r = 3 we get rank(A) = 9, so we
can solve the system L and write the Aij in terms of α, β, γ, δ and k.
Additionally, applying the Gauss-Jordan method to the system L, we get
3(n+ 1)− 3r additional conditions on α, β, γ, δ and k that must hold for
L to be consistent. When r = 3, we get 3n − 6 conditions of this type.
Each such condition is a product of k by a homogeneous polynomial in
α, β, γ, δ. Since k 6= 0, we can factor out k and get 3n − 6 homogeneous
conditions on α, β, γ, δ alone, of degree n. Since αδ−βγ 6= 0, one can add
the extra condition αδ − βγ = 1.

This way we get a polynomial system PA in α, β, γ, δ: if this polynomial
system is not consistent, the surfaces S1, S2 are identified as non-affinely
equivalent, and the computation stops. Otherwise we can get either ten-
tative values for α, β, γ, δ that may or may not give rise to an affine equiv-
alence between S1, S2 (this must be tested later), or a number of relations
between the α, β, γ, δ. If these relations allow writing some of these pa-
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rameters in terms of the others, we can reduce the number of parameters
in the subsequent computations.

Notice that when n = 2, we get 3n−6 = 3·2−6 = 0, so no extra conditions
in α, β, γ, δ are generated. However, we can still write the Aij in terms of
α, β, γ, δ and k.

(2) Case r = 2: in this case, since r = 2 applying the Gauss-Jordan method
to the system L we get 3(n+ 1)− 3 · 2 = 3n− 3 additional conditions on
α, β, γ, δ, k that must hold for L to be consistent, with the same properties
as in the previous case. As before, we denote the collection of all these
polynomial conditions by PA. However, since rank(A) = 6 is less than the
number of Aij , we cannot, in this case, write all the Aij only in terms
of α, β, γ, δ, k, i.e. three of the Aij must be considered as parameters
as well. This observation makes sense from a geometric point of view: if
r = 2 then q1(t), q2(t) parametrize projective lines, and there are infinitely
many projective transformations mapping a projective line onto another
projective line.

Observe that when the components of q1(t) are linear we are always either
in the case r = 1, or in the case r = 2. In this last case, we do not get any
extra conditions on α, β, γ, δ, because since n = 1 the number 3n − 3 of extra
conditions vanishes.

Summarizing, at this step we write either all the Aij , when r = 3, or only
six of the Aij , when r = 2, in terms of α, β, γ, δ, k. Furthermore, except in the
case r = 3, n = 2 and the case n = 1, we get polynomial conditions on α, β, γ, δ,
which may help either to detect that the surfaces are not affine equivalent (when
these conditions are not compatible), or to reduce the number of parameters.

(B) Writing b in terms of α, β, γ, δ, and k, and computing c(t). Writing Eq.
(17) in components, we get

 A11· p1,1(t) + A12· p1,2(t) + A13· p1,3(t) + b1 = p2,1(ψ(t)) + c(t)q2,1(ψ(t)),
A21· p1,1(t) + A22· p1,2(t) + A23· p1,3(t) + b2 = p2,2(ψ(t)) + c(t)q2,2(ψ(t)),
A31· p1,1(t) + A32· p1,2(t) + A33· p1,3(t) + b3 = p2,3(ψ(t)) + c(t)q2,3(ψ(t)),

(21)
where we assume that the Aij , or some of the Aij , have already been written
in terms of α, β, γ, δ, k. Now we proceed as follows:

(i) Eliminating c(t) between the first and second equations of Eq. (21) pro-
vides an equation E1 linear in b1, b2, with coefficients that are rational
functions of t.

(ii) Proceeding in the same way with the second and third equations, we get
an equation E2, linear in b2, b3.

(iii) Evaluating E1 and E2 at several random t-values we get a linear system
in b1, b2, b3, whose solution provides b.

11



(iv) Finally, we compute c(t) from any equation of Eq. (21).

We will refer later to this procedure as “the steps (i)-(iv)”.

(C) Deriving a polynomial system S, and computing the affine equivalences.
Substituting the expressions for A, b and c(t) computed in steps (A) and (B)
into Eq. (6), we get a polynomial system S. If r = 3, the unknowns of S are, at
most, k, α, β, γ, δ, and we can have fewer unknowns if the polynomial conditions
PA in step (A) allow us to write some of these variables in terms of the others.
If r = 2, we can have at most three more unknowns besides k, α, β, γ, δ, namely
three of the Aij . Again, the polynomial system PA may help reduce the total
number of parameters, and therefore of unknowns in S. Thus, the number of
unknowns in S is ≤ 5, if r = 3, and ≤ 8, if r = 2.

The solutions of this polynomial system provide the affine equivalences be-
tween S1, S2. We summarize the whole procedure to find the affine equivalences
between S1, S2 in Algorithm Affine-Eq-Ruled.

Algorithm 1 Affine-Eq-Ruled

Require: Two ruled surfaces S1, S2, properly parametrized by xi(t, s) =
pi(t) + sqi(t), i = 1, 2, where each qi(t) is polynomial with relatively prime
components of degree ≤ n.

Ensure: The affine equivalences f(x) = Ax + b between S1, S2.
1: Compute the system L in Eq. (20).
2: Apply the Gauss-Jordan method on the system L.
3: if r = 3 and n ≥ 3, or r = 2 and n ≥ 2 then
4: solve the polynomial system PA in α, β, γ, δ.
5: if PA is not consistent then
6: return S1 and S2 are not affinely equivalent, and stop
7: end if
8: end if
9: Solve the system L

10: Write the solutions of L with as few variables as possible, using, if any, the
solutions of PA

11: Follow steps (i)-(iv) to write b in terms of the variables in step 10, and to
compute c(t)

12: Substitute A, b, c(t) and the ϕ in Eq. (14) into Eq. (6)
13: Derive from the preceding substitution a polynomial system S in the pa-

rameters appearing in step 9
14: if no solution is found then
15: return S1 and S2 are not affinely equivalent.

16: else
17: for each solution found do
18: compute the corresponding mapping f(x) = Ax + b
19: end for
20: end if
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4.1. The special case of conical surfaces.

We say that S is a conical surface if all the rulings of S intersect at a point
p0 ∈ S, called the vertex. The vertex can be computed by using the results
in [3]. By applying a translation if necessary, we can always assume that p0 is
the origin. Therefore, if S is rational and properly parametrized we can assume
that S is given by means of a parametrization x(t, s) = sq(t), where q(t) is
polynomial.

Now given two rational conical surfaces S1, S2 parametrized by xi(t, s) =
sqi(t), with qi(t) polynomial for i = 1, 2, any affine equivalence between S1, S2

has the form f(x) = Ax, so b = 0. Since p1(t), p2(t) are identically zero, the
function c(t) is identically zero as well, and therefore Eq. (17) is reduced to
0 = 0. Thus, the computation of the affine equivalences between S1, S2 reduces
to solving Eq. (15). Notice as well that the system derived from Eq. (15)
is homogeneous in k and the entries of the matrix A, which implies that A
is defined only up to a multiplicative constant. This observation makes perfect
sense, since any conical surface is invariant by homotheties where the homothety
center is the vertex.

4.2. The special case of cylindrical surfaces.

Under the assumption that q1(t), q2(t) are polynomials with relatively prime
components, S1, S2 are cylindrical iff the qi(t) are constant vectors. These
vectors define the directions of all the rulings of S1, S2. Then in order to check
whether S1, S2 are affinely equivalent, it suffices to check whether the planar
curves C1, C2, obtained by intersecting S1, S2 with planes Π1,Π2 respectively
normal to q1(t), q2(t), are affinely equivalent. This can be done, for instance,
by using the algorithm in [12]. Notice that the affine equivalences of S1, S2

are, in this case, the affine equivalences of the plane sections followed by any
translations along the direction of the rulings of S2, and any dilatation in the
same direction.

4.3. Computing isometries and symmetries.

Let us address now the case when the affine mapping f(x) = Ax + b is
an isometry, that is, A is an orthogonal matrix. For finding the isometries
between S1, S2 we can certainly apply Algorithm Affine-Eq-Ruled, with the
extra condition that A is orthogonal. However, in this case we have additional
conditions, which may be an advantage for simplifying the computation. Indeed,
since orthogonal mappings preserve norms, taking norms in Eq. (10), with k a
constant, we get the condition

‖q1(t)‖2 − k2 · (γt+ δ)2n · ‖q2(ψ(t))‖2 = 0. (22)

Equating to zero all the coefficients in t at the left hand-side of Eq. (22),
we get a polynomial system P of 2n + 1 equations, each one consisting of a
homogeneous polynomial of degree 2n in the variables α, β, γ, δ multiplied by
k2, plus a constant. These equations have a higher degree than the equations
of the polynomial system PA, all of degree n. However, collecting the equations
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in PA and P provides a bigger polynomial system in α, β, γ, δ, k, which may
help to reduce the total number of parameters in the polynomial system S,
and/or the number of tentative values for α, β, γ, δ, k. In particular, in the cases
r = 3, n = 2 and n = 1 applying Algorithm Affine-Eq-Ruled does not provide
extra conditions on α, β, γ, δ, k; however, Eq. (22) does.

If S1 = S2 = S, the isometries leaving S invariant are the symmetries of
S. We can find the symmetries of S by proceeding as before with S1 = S2.
However, recall from Section 2 that certain notable symmetries, like central
symmetries, axial symmetries and reflections in a plane, are affine involutions,
i.e. affine mappings f satisfying f ◦ f = idR3 . If we are interested only in affine
involutions (isometric, or non-isometric) we can improve the computation as
follows. First, from Eq. (6) one can see that f ◦ f = idR3 iff the corresponding
ϕ satisfies ϕ ◦ ϕ = idR2 . By Theorem 7, one has

ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)) = (ψ(t), s · k(γt+ δ)n + c(t)),

and the condition (ϕ ◦ ϕ)(t, s) = (t, s) introduces two constraints:

(i) (ϕ1 ◦ϕ1)(t, s) = t, i.e. (ψ ◦ψ)(t) = t. In turn, this constraint implies that

α2 − δ2 = 0, β(α+ δ) = 0, γ(α+ δ) = 0.

Therefore, either α = −δ, or α+ δ 6= 0 and α = δ, β = γ = 0.

(ii) ϕ2(ϕ1(t), ϕ2(t, s)) = s, which implies

[s · k(γt+ δ)n + c(t)] · k ·
[
γ · αt+ β

γt+ δ
+ δ

]n
+ c(ψ(t)) = s.

Comparing coefficients of s, we deduce that

k2 ·
[
γ(α+ δ)t+ (γβ + δ2)

]n
= 1,

which in turn yields

γ(α+ δ) = 0, k2(γβ + δ2)n = 1.

Thus, either α = −δ and k2(γβ+δ2)n = 1, or α = δ, γ = 0 and k2δ2n = 1.

Putting (i) and (ii) together, we get the following result, which allows de-
creasing the total number of parameters, and therefore of unknowns in the poly-
nomial system S. Notice that this result is applicable to any affine involution
(in particular, isometric involutions).

Theorem 9. Let S be a rational ruled surface, which is not doubly ruled, prop-
erly parametrized as in Eq. (1). Let q(t) = (q1(t), q2(t), q3(t)), with qi(t) ∈ R[t]
for i = 1, 2, 3, and

n = max{deg(q1(t)),deg(q2(t)),deg(q3(t))}.

Finally, let f(x) = Ax+b, with A ∈ R3, b ∈ R3, be an affine involution leaving
S invariant. With the notation of Theorem 7, one has:
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(I) α = −δ, k2(γβ + δ2)n = 1, or

(II) ϕ(t, s) = (t,−s+ c(t)), with c(t) a rational function.

Observe that in case (II) f fixes each line of the ruling, and acts on these lines
as an affine involution.

Remark 1. Since any similarity can be written as f(x) = λQ+b, where λ 6= 0
is the scaling constant, taking norms in Eq. (10), with k a constant, we get the
condition

λ2‖q1(t)‖2 − k2 · (γt+ δ)2n2 · ‖q2(ψ(t))‖2 = 0. (23)

The analysis in this case is very similar to that of isometries, although the
polynomial system has one more variable, namely λ.

4.4. Two examples

We illustrate the previous ideas in the following examples, one corresponding
to the case r = 3, and the other one to the case r = 2.

Example 1. Let S1 and S2 be the rational ruled surfaces parametrized by
x1x1x1(t, s) = p1p1p1(t) + s · q1q1q1(t) and x2x2x2(t, s) = p2p2p2(t) + s · q2q2q2(t), where

p1(t) = (t4 + t2 + t, t6 + t3, t5 + t3 + t2 + 3t),
q1(t) = (t3 + t, t5, t4 + t2 + 3),
p2(t) = (5t4 + 5t2 + 5t− 1, 3t5 + 3t3 + 3t2 + 9t+ 5,−t6 + t4 − t3 + t2 + t),
q2(t) =

(
5t3 + 5t, 3t4 + 3t2 + 9,−t5 + t3 + t

)
.

In this case, n = 5. Furthermore, when we write q1(t) as in Eq. (19), we observe
that we fall in the case r = 3. The surfaces S1, S2 are shown in Fig. 1.

We consider first the symmetries of S1. If we apply Algorithm 1 directly,
with S1 = S2, the solvability of the linear system derived from Eq. (15) in
the entries of the matrix A yields, after factoring out k, the following three
conditions on the coefficients α, β, γ, δ :

(a) 2α3δγ−3α2βδ2+3α2βγ2−6αβ2δγ−4αδ3γ+4αδγ3−β3γ2−6βδ2γ2+βγ4 =
0.

(b) 5α4β − 10α2β3 = 0.

(c) α4δ + 4α3βγ − 6α2β2δ − α2δ3 + 3α2δγ2 − 4αβ3γ − 6αβδ2γ + 2αβγ3 −
3β2δγ2 − 30δ3γ2 + 15δγ4 = 0.

Since αδ − βγ 6= 0, we add the equation (αδ − βγ)u − 1 = 0. Additionally,
from Eq. (22) we get 11 equations of degree 10 in α, β, γ, δ and degree 2 in k.
These 11 conditions, (a), (b), (c) and (αδ − βγ)u− 1 = 0 imply

{α = ±1, β = 0, γ = 0, δ = 1, k = ±1}. (24)
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Then we compute (numeric) values for A, b and explicit forms for c(t). Fi-
nally, using Eq. (6) as a test, we get one nontrivial symmetry for S1, corre-
sponding to {α = −1, β = 0, δ = 1, γ = 0, k = 1}, with ϕ(t, s) = (−t, s + 2t).
The symmetry is defined by f0(x) = A0x + b0, where

A0 =

 −1 0 0
0 −1 0
0 0 1

 , b0 =
(

0 0 0
)T
, (25)

so S1 is symmetric with respect to the z-axis. The total computation time here
is 3.744 seconds. An alternative possibility to using the above 11 conditions,
is the following: (1) write the entries of A in terms of α, β, γ, δ; (2) compute
the six conditions (of degree 10) derived from the fact that A is orthogonal; (3)
solve the polynomial system consisting of these six conditions, and (a), (b), (c).
Solving the polynomial system yields {α = ±1, β = 0, γ = 0, δ = 1, k = k}, and
the corresponding expressions for b, c(t) depend on k as well. Finally, using Eq.
(6) the symmetry is computed. However, the total computation time of this
strategy is slightly slower, namely 4.602 seconds.

In order to check whether S1, S2 are affinely equivalent, we apply Algorithm

1. The solvability conditions of the linear systems derived from Eq. (13) in the
entries of the matrix A are:

• 10α3δγ − 15α2βδ2 + 15α2βγ2 − 30αβ2δγ − 20αδ3γ + 20αδγ3 − 5β3γ2 −
30βδ2γ2 + 5βγ4 = 0.

• 3α4δ+12α3βγ−18α2β2δ−3α2δ3+9α2δγ2−12αβ3γ−18αβδ2γ+6αβγ3−
9β2δγ2 − 90δ3γ2 + 45δγ4 = 0.

• −5α4β+ 2α3δγ+ 10α2β3−3α2βδ2 + 3α2βγ2−6αβ2δγ−4αδ3γ+ 4αδγ3−
β3γ2 − 6βδ2γ2 + βγ4 = 0.

Since αδ − βγ 6= 0, we add the equation (αδ − βγ)u − 1 = 0, obtaining
expressions for α, β, γ, δ depending only on k; the same thing happens with b
and c(t). Finally, we get two ϕs corresponding to affine equivalences, namely

ϕ1(t, s) = (t, s), ϕ2(t, s) = (−t, s+ 2t).

The mapping ϕ1(t, s) corresponds to the affine mapping f1(x) = A1x + b1,
where

A1 =

 5 0 0
0 0 3
1 −1 0

 , b1 =
(
−1 5 0

)T
. (26)

The mapping ϕ2(t, s) corresponds to the affine mapping f2(x) = A2x + b2,
where

A2 =

 −5 0 0
0 0 3
−1 1 0

 , b2 =
(
−1 5 0

)T
. (27)
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Figure 1: S1 (left) and S2 (right).

Therefore, we conclude that S1, S2 are related by two affine mappings f1, f2.
Notice that this result is consistent with the fact that S1 has a non-trivial
symmetry; in fact, one can check that f2 = f1 ◦ f0. The computation time is
5.179 seconds.

Example 2. Let S1 and S2 be the rational ruled surfaces parametrized by
x1x1x1(t, s) = p1p1p1(t) + s · q1q1q1(t) and x2x2x2(t, s) = p2p2p2(t) + s · q2q2q2(t), where

p1(t) =

(
t+

3

4
, 4t2 + 3, t

)
,

q1(t) = (t3 + 2t2 + 1,−t3 + t2 + t,−t3 + t2 + t),

p2(t) =

(√
3 + 1

2
t+

3
√

3

8
− 1

2
, 4t2 + 5,

√
3− 1

2
t−
√

3

2
− 3

8

)
,

and

q2(t) =

(√
3− 1

2
t3 +

(√
3 +

1

2

)
t2 +

t

2
+

√
3

2
,−t3 + t2 + t,

−

(√
3 + 1

2

)
t3 +

(√
3

2
− 1

)
t2 +

√
3

2
t− 1

2

)
,

Here, n = 3. Furthermore, when we write q1(t) as in Eq. (19), we observe that
we are in the case r = 2.

In this case, we analyze the isometries mapping S1 onto S2. There is only
one isometry, associated with ϕ(t, s) = (t, s), defined by f(x) = Ax + b, where

A =


√

3

2
0

1

2
0 1 0

−1

2
0

√
3

2

 , b =

(
−1

2
2 −

√
3

2

)T
, (28)
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corresponding to a rotation of
π

6
around the y-axis. Applying Algorithm 1 with

the additional equations corresponding to Eq. (22), we need to test only two
tentative solutions, and the computation time is 3.588 seconds. If, instead of
Eq. (22), we use the orthogonality conditions on the columns of the matrix
A, we need to test four tentative solutions, and the computation time is 4.696
seconds.

5. Experimentation and performance of the method.

We have implemented the method described in Section 4 in the computer
algebra system Maple 18, and we have tried several examples in an Intel(R)
Core(TM) 2, Quad CPU Q6600, with 2.40 GHz and 4 Gb RAM; this is also the
machine used in the examples of Subsection 4.4. We have analyzed both affine
equivalences and isometries. For isometries, we used the conditions derived from
Eq. (22), because this tends to speed up the computation.

The results for affine equivalences of some representative examples (“Ex.”)
are summarized in Table 1. When the surfaces are affinely equivalent, the second
surface is the result of applying to the first surface an affine equivalence with
matrix  −1/2 −1 0

0 1 1
0 2 3

 .

For each example, we have included: (1) the degree of pi(t) (“deg(pi(t))”) for
the surfaces; (2) the degree of qi(t) (“deg(qi(t))”); (3) the computation time (in
CPU seconds) of the method for all the affine mappings, and the computation
time using the implicit equation of the surfaces (in red); (4) the number of affine
equivalences between the two surfaces. The parametrizations of the surfaces in
the examples of Table 1 can be found in [1]. In Figure 2 (left) we provide the
surface in Ex. 7, Table 1. It is easy to observe that this surface is symmetric with
respect to a plane, which explains why we get two affine equivalences between
the surface, and its image under an affine mapping. The pictures corresponding
to the rest of the surfaces in Table 1 can be found in [1].

The examples in Table 1 with more than one affine equivalence correspond
to surfaces with symmetries. Furthermore, in some cases we identify infinitely
many equivalences, implying that the surfaces are invariant under infinitely
many affine mappings. In the column of timings, we highlight in red the worst
time between our method, and the naive method mentioned in the Introduction
using the implicit equation. This last timing does not include the time for
computing the implicit equation, i.e. we assume that the implicit equation is
already known. Only in one of the examples shown, where the implicit equation
is very simple (F (x, y, z) = x3−27yz2) is the method using the implicit equation
faster.

The results for symmetries and isometries for several representative examples
are summarized in Table 2: for each example, we include data also included in
the affine equivalences table, plus the computation time (in CPU seconds) of
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our method for computing all the symmetries of the surface (“all sym.”), for
computing only the involutive symmetries of the surface (“involutions”), and
for computing the isometries (“isometries”) between each surface and its image
under an orthogonal transformation with associated matrix 0 1 0

4/5 0 −3/5
3/5 0 4/5

 . (29)

The parametrizations of the surfaces in the examples of Table 2 can be found
in [1]. We also include the computation time using the implicit equation of the
surface (“implicit”), assuming that this equation is available. Maple was able to
provide an answer with this last method in less than 90 seconds in only two of
the examples. In one of the examples, as observed before, the implicit equation
turns out to be very simple, which explains why the method using the implicit
equation is faster. Finally, we also include the type of symmetries found. In
some cases, the symmetries detected are composites of rotations and reflections,
denoted as “rotation+reflection”. The surface in Ex. 1 of Table 2 is shown in
Fig. 2 (right). One can observe that this surface has several symmetry axes and
symmetry planes. To be more precise, this surface has three axial symmetries
and two symmetry planes, and is invariant under two different symmetries,
composites of a rotation and a reflection. The pictures of the surfaces in the
remaining examples of Table 2 are shown in [1].

Figure 2: Surfaces in Ex. 7, Table 1 (left) and Ex. 1, Table 2 (right)
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Ex. deg(pi(t)) deg(qi(t)) computation time (secs.)/ Affine
implicit equivalences

1 5 3 2.309 /> 90 2

2 1 2 16.676 /> 90 ∞
3 0 3 2.870 / 0.687 ∞
4 3 3 3.167 /> 90 2

5 4 4 0.452 /> 90 2

6 3 3 6.583 /> 90 1

7 4 4 0.608 /> 90 2

8 7 6 11.563 /> 90 2

9 4 3 0.469 / 7.800 0

Table 1
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Ex. deg(pi(t)) deg(qi(t)) computation time (secs.) symmetries
all sym / involutions/ isometries/ implicit and isometries

2 mirror
1 9 6 9.640 / 7.410 / 9.267 /> 90 3 axial

2 rotational + reflect
8 isometries

2 7 4 1.981 / 1.812 / 1.996 /> 90 1 reflect
2 isometries

3 7 6 1.888 / 1.778 / 2.184 /> 90 1 reflect.
2 isometries

4 5 3 1.684 / 1.607 / 2.043 /> 90 1 mirror
2 isometries

5 reflect.
5 axial

5 0 6 4.587 / 3.291 /10.280 /> 90 central
2 rotational

2 rotational + reflect
16 isometries

6 1 2 3.448 / 0.390 /3.978 /63.648 1 axial
2 isometries

central
7 0 3 1.451 / 1.185 /2.901 /0.296 1 reflection

1 axial
4 isometries

8 7 7 1.935 / 1.809 / 2.372 /> 90 central
2 isometries

9 6 5 1.716 / 1.653 /2.200 /> 90 1 axial
2 isometries

4 reflect.
10 17 6 9.828 / 6.973 /10.124 /> 90 1 axial sym.

2 rotational
8 isometries

Table 2

21



6. Observations on the computation of projective equivalences.

Projective equivalences between S1, S2 correspond to rational mappings f(x)
from R3 to R3 satisfying f(S1) = S2, where the components of f have the form

ai1x+ ai2y + ai3z + bi
a41x+ a42y + a43z + b4

, (30)

for i = 1, 2, 3. Whenever f is invertible, Theorem 1 is also valid for this case, so
each projective equivalence between S1, S2 has an associated mapping ϕ(t, s) =
(ϕ1(t, s), ϕ2(t, s)) in parameter space. Additionally, projective mappings are
collineations, i.e. they map lines to lines. Thus, we can argue as in the first
part of Proposition 2 to conclude that ϕ1(t, s) = ψ(t), where ψ(t) is a Möbius
transformation. However, in general, the form of ϕ2(t, s) is not the same as in
Proposition 2. Indeed, using Eq. (30) one has that

ϕ2(t, s) =
ξ1(t) + sξ2(t)

ξ3(t) + sξ4(t)
,

where the ξj(t) are polynomials. As a consequence, the remaining results of
Section 3, and in particular the form of ϕ predicted by Theorem 7, cannot be
easily generalized. Therefore, an approach analogous to the one in this paper
for projective equivalences requires further work.

7. Conclusion.

We have presented a unifying method to compute affine equivalences, isome-
tries and symmetries of ruled rational surfaces, working directly on the rational
parametric form. In order to do this computation, we reduce the problem to
parameter space, taking advantage of the fact that, under our hypotheses, these
transformations have an associated birational transformation of the real plane
with a specific structure. From here, we observe that the matrix defining any
affine equivalence (resp. isometry or symmetry) between the surfaces defines a
projective equivalence between two projective curves corresponding to the di-
rections of the rulings of the surfaces. Thus, we take advantage of the ideas in
[12], where projective equivalences of curves in any dimension are considered, to
solve our problem. In the case of isometries or symmetries, we have extra con-
ditions coming from the fact that orthogonal transformations preserve norms.
The algorithm is efficient, as shown in several nontrivial examples. For projec-
tive equivalences, we provide only a small hint on the form of the birational
transformation of the plane behind such equivalences: giving a complete de-
scription, and generalizing the method to also cover these equivalences, requires
more effort.
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