
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a postprint version of the following published document: 

 

Fuentes Jiménez, D., Losada Gutiérrez, C., Casillas Pérez, D., Macías 

Guarasa, J., Pizarro, D., Martín López, R. & Luna, C. 2021, “Towards dense 

people detection with deep learning and depth images”, Engineering 

Applications of Artificial Intelligence, vol. 106, art. no. 104484, pp. 1-26. 

 

Available at https://doi.org/10.1016/j.engappai.2021.104484 

 

 

© 2021 Elsevier 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://doi.org/10.1016/j.engappai.2021.104484


Towards Dense People Detection with Deep Learning and Depth images

David Fuentes-Jimeneza,c, Cristina Losada-Gutierreza, David Casillas-Pereza,b, Javier Macias-Guarasaa,
Daniel Pizarroa, Roberto Martin-Lopeza, Carlos A. Lunaa
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Abstract

This paper describes a novel DNN-based system, named PD3net, that detects multiple people from a

single depth image, in real time. The proposed neural network processes a depth image and outputs a like-

lihood map in image coordinates, where each detection corresponds to a Gaussian-shaped local distribution,

centered at each person’s head. This likelihood map encodes both the number of detected people as well

as their position in the image, from which the 3D position can be computed. The proposed DNN includes

spatially separated convolutions to increase performance, and runs in real-time with low budget GPUs. We

use synthetic data for initially training the network, followed by fine tuning with a small amount of real data.

This allows adapting the network to different scenarios without needing large and manually labeled image

datasets. Due to that, the people detection system presented in this paper has numerous potential applica-

tions in different fields, such as capacity control, automatic video-surveillance, people or groups behavior

analysis, healthcare or monitoring and assistance of elderly people in ambient assisted living environments.

In addition, the use of depth information does not allow recognizing the identity of people in the scene, thus

enabling their detection while preserving their privacy. The proposed DNN has been experimentally evalu-

ated and compared with other state-of-the-art approaches, including both classical and DNN-based solutions,

under a wide range of experimental conditions. The achieved results allows concluding that the proposed

architecture and the training strategy are effective, and the network generalize to work with scenes different

from those used during training. We also demonstrate that our proposal outperforms existing methods and

can accurately detect people in scenes with significant occlusions.

Keywords: People detection, Depth camera information, Interest regions estimation, Feature extraction,

Deep learning, Convolutional Neural Networks
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1. Introduction

People detection and localization from cameras have lately received a great deal of attention from the

scientific community, due to their multiple applications in different areas, such as security, automatic video

surveillance (Villamizar et al., 2018; Moro et al., 2018; Susperregi et al., 2013), analysis of people or groups

behavior, healthcare (Lee et al., 2013; Wang et al., 2016; Gavriilidis et al., 2018) or elderly people assistance5

in ambient assisted living environments (Bektüzün et al., 2013; Barabas et al., 2019). However, it remains

an open problem, and presents several challenging tasks (Zhang et al., 2016b, 2018), especially in crowded

scenes.

Early people detection methods used RGB images, mainly captured from frontal viewpoint. Methods

such as (Ramanan et al., 2006; Chen et al., 2010; Jeong et al., 2013; Bak et al., 2017; Aguilar et al., 2017) used10

traditional computer vision algorithms, such as appearance models in (Ramanan et al., 2006), or classical

face detection in (Chen et al., 2010). These approaches achieved good results in controlled environments,

but struggle with the presence of partial occlusions, motion blur, and low resolution images.

Deep Neural Networks (DNN) have greatly improved the state-of-the-art in several critical computer

vision applications, such as object detection (Redmon et al., 2015; Han et al., 2020), semantic segmenta-15

tion (Cao et al., 2017; Li et al., 2020; Ruiz-Santaquiteria et al., 2020), classification (Shin et al., 2016) or

activity recognition (Hayashi et al., 2015; Zhang et al., 2015). Similarly, DNN-based people detection meth-

ods using RGB data (Bochkovskiy et al., 2020; Du et al., 2019; G.Ghiasi et al., 2019; Zhang et al., 2020)

have considerably improved over the classical algorithms. However, these DNN-based methods have also

significant drawbacks, such as the large amount of labeled data needed for training, and the requirement of20

dedicated processing units to run and train the network. Besides, recent DNN-based methods still present

low accuracy in highly cluttered scenes (see Figure 1 for an example).

People detection using depth images is a less popular topic in the literature, mainly because depth cam-

eras are not as widely available as RGB ones. Nonetheless, using depth images has significant advantages:

1) Depth images naturally disambiguate objects at different depths, which may help to process occlusions in25

crowded scenes; 2) depth information is less complex than RGB information as it is not affected by appear-

ance or lighting changes; and 3) once detected in the image, the three dimensional positions of people are

directly available using depth information, which is a desirable feature in many applications.

There exist several depth-based people detection methods in the literature, and some of them also include

RGB information. Recent DNN-based approaches obtain the best detection results in this category. However,30

they bear important limitations. Some methods are specific to zenithal viewpoints (Del Pizzo et al., 2016;

Luna et al., 2017; Fuentes-Jimenez et al., 2019b; Zhou et al., 2017a), which reduce occlusions and make
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Figure 1: Performance example of our PD3net vs the DNN-based method YOLO16. The left image shows the people detection

results obtained by YOLO16, where the green rectangles are its correct detections. The right image shows the results achieved by our

PD3net, where the red dots are its correct detections. Note how YOLO16 generates a false positive (pink rectangle) as a microwave

oven on top of a small fridge at the room back is detected as a person, and a false negative (cyan dotted rectangle) as the woman in

a white shirt is partially occluded by the man in a blue and black striped shirt. On the contrary, our system is able to correctly detect

all people in that scene with a strong occlusion.

the problem less ambiguous, with the drawback of limiting the camera field-of-view. Other strategies use

a conventional frontal viewpoint (Girshick et al., 2013; Zhou et al., 2017a), which covers a wider range

of applications. Girshick et al. (2013) and Zhou et al. (2017a) use a region proposal method to detect35

candidates, and a classifier to select the positive regions that correspond to a person. This strategy is not

optimal, especially for densely populated scenes, and it is not efficient, as its complexity depends on the

number of possible candidates detected in the image.

This paper proposes a new DNN-based approach, that we call PD3net, for detecting multiple people

from a single depth image acquired using a camera in an elevated frontal position, as seen in Figure 1. The40

main contributions of the proposal are listed below:

• The network architecture is fully convolutional and very efficient by using spatially separable convo-

lutions, so that it runs in real-time with low-cost GPU and CPU architectures.

• The neural network is initially trained end-to-end with synthetically generated depth images. After

this initial training we fine-tune the network with a small number of annotated real images. Our45

experimental evaluation shows that this strategy leads to accurate detectors that generalize well in

general scenes.

• The neural network recovers a dense likelihood map that effectively detects multiple people in crowded
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scenes (see Figure 1).

• The experimental results outperform those of existing state-of-the-art proposals, including both clas-50

sical and DNN-based approaches.

• The method works with different cameras and depth sensing technologies.

• The method does not have any restriction in the maximum number of detections per image.

The rest of the paper is structured as follows: Section 2 reviews the latest state-of-the-art methods fo-

cused on the field of people detection. Section 3 explains in detail our DNN-based proposal, describing its55

architecture and the training procedure. Section 4 shows the experimental setup developed to evaluate our

approach. This section includes a thorough comparison with the main state-of-the-art methods over a wide

range of publicly available datasets. Finally, Section 5 describes the main conclusions.

2. Previous works

People detection methods are classified in this section according to three main criteria: a) the type of60

information used, distinguishing between RGB, depth and its combination RGB+D; b) the type of algorithm

used, distinguishing between classical and DNN-based strategies; and finally c) the camera’s point of view.

Table 1 shows the most relevant people detection methods in the state-of-the-art and their corresponding

classification, according to the three criteria.

2.1. RGB methods65

Classical approaches for people detection (Ramanan et al., 2006; Chen et al., 2010; Jeong et al., 2013;

Bak et al., 2017; Aguilar et al., 2017) use conventional RGB images as input, usually taken with a frontal

camera. Within these approaches, Ramanan et al. (2006) proposes a method based on appearance models,

whereas Jeong et al. (2013) suggests an approach for people detection using interest point classification.

Other alternatives for RGB people detection are based in face detection (Chen et al., 2010), image descriptors70

based on Brownian motion statistics (Bak et al., 2017) or HAAR-LBP and HOG cascade classifiers combined

with Saliency Maps (Aguilar et al., 2017). Recently, we can find several RGB people detection methods

based on DNNs, such as (Bochkovskiy et al., 2020; Du et al., 2019; G.Ghiasi et al., 2019; Wang & Zhao,

2017; Zhao et al., 2017; Tian et al., 2015). They outperform classical methods but still struggle in populated

scenes with occlusions.75
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Table 1: Classification of the main people detector methods in the state-of-the-art. The Alg column shows the algorithmic strategy
used (C=Classical, D=DNN). The Input column shows the input information (R=RGB, D=Depth, R+D=RGBD). The View. column
show the camera viewpoint (F=Frontal, Z=Zenithal).

Reference Alg. Input View Description
Ramanan et al. (2006) C R F Tracking by model-building and detection
Chan et al. (2008) C R F Privacy-preserving system based on a mixture of dy-

namic textures motion model
Chen et al. (2010) C R F People counting system based on face detection
Dan et al. (2012) C R+D Z RGB and Depth fusion for people detection
Zhang et al. (2012) C D Z Unsupervised people counting via vertical Kinect Sen-

sor
Stahlschmidt et al.
(2013, 2014)

C D Z Differences from the ground plane are used to develop
regions of interest

Jeong et al. (2013) C R F People counting based in statical and moving detection
points.

Zhu & Wong (2013) C R+D Z Adaboost algorithm built from weak classifiers for de-
tecting people

Galăı́k & Gargalı́k
(2013)

C D F Real-Time People Detector with minimum-weighted
bipartite graph matching

Tian et al. (2015) D R Z Optimization of pedestrian detection with semantic
tasks

Liu et al. (2015) C R+D Z People detection taking different poses in cluttered and
dynamic environments

Del Pizzo et al. (2016) C R+D Z Depth-RGB and both people detector with crossing-
path points

Vera et al. (2016) D D - Cooperating network for people detection
Bak et al. (2017) C R F Brownian covariance descriptor
Aguilar et al. (2017) C R F Cascade classifier with salience map for pedestrian de-

tection
Wang & Zhao (2017) D R Z Multi-layer regional-based convolutional for crowded

scenes
Zhao et al. (2017) D R F Real-time detection based on physical radius-depth de-

tector
Luna et al. (2017) C D Z ToF people detector based on depth information
Ren et al. (2017) C R+D Z Parallel deep feature extraction from RGB and Depth

simultaneously
Zhou et al. (2017a) C R+D Z Depth-encoding scheme which enhances the informa-

tion for classification
Hu et al. (2018) C R+D Z Uses the 3D Mean-Shift with depth constraints to multi-

person detection
Verma et al. (2019) C R Z Fuzzy-based detector based on CCA components
Fuentes-Jimenez et al.
(2019b)

D D Z Encoder-decoder DNN blocks with refinement.
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2.2. Depth and RGB-D methods

As mentioned above, using depth images has important advantages over RGB information when applied

in people detection tasks, in terms of information complexity and ambiguity reduction. We also include in

this category RGB-D methods that jointly use RGB and Depth information, as RGB cameras are usually

included with commercial depth sensors. We distinguish here between methods that use a zenithal camera80

viewpoint and those using a frontal camera viewpoint.

We find both classical and DNN-based approaches that use a zenithal depth camera. These methods

are highly accurate regardless of the approach, due to the advantages given by the camera viewpoint, that

virtually eliminates occlusions in indoor scenarios. This category includes depth-only methods (Luna et al.,

2017; Fuentes-Jimenez et al., 2019b; Zhang et al., 2012; Stahlschmidt et al., 2013, 2014), and RGB-D ap-85

proaches (Dan et al., 2012; Del Pizzo et al., 2016; Liu et al., 2015; Zhou et al., 2017a; Ren et al., 2017; Hu

et al., 2018). In this context, RGB-D methods do achieve better results than depth-only methods. Among the

classical depth-based methods, the proposal by Zhang et al. (2012) is based on a maximum detector followed

by a water-filling algorithm, while Stahlschmidt et al. (2013, 2014) filter depth images using the normalized

Mexican Hat Wavelet. Both proposals reduce their detection rate when people are very close to each other,90

or when they cross their paths. Besides, false positives appear if there are body parts different from the head

(such as hands) closer to the camera. To address these drawbacks, several proposals include a classification

stage to discriminate people from other elements in the scene (Galăı́k & Gargalı́k, 2013; Vera et al., 2016;

Zhu & Wong, 2013; Luna et al., 2017), thus reducing these false positives. DNN-based methods (Wang

& Zhao, 2017; Fuentes-Jimenez et al., 2019b) are more accurate than the previous ones, and significantly95

reduce the amount of false positives. In particular, the strategy by Fuentes-Jimenez et al. (2019b) achieves

a high degree of generalization, being accurate with data captured from different sensors and environments,

and without the need of retraining.

The zenithal viewpoint greatly reduces the effect of occlusions, but brings some drawbacks, such as the

reduction of the field of view, which is limited by the camera height. In addition to this, most applications100

mainly use frontal camera viewpoints, such as in video-surveillance scenarios. However, in these configu-

rations, the performance decreases due to occlusions between people and the detection task becomes more

complex, requiring more sophisticated algorithms capable of dealing with occlusions. The state-of-the-art

in this category is dominated by DNN-based methods (Girshick et al., 2013; Zhou et al., 2017a), mainly due

to their higher learning capacity and their robustness to occlusions. These methods improve the detection105

results achieved by classical algorithms (Galăı́k & Gargalı́k, 2013). However, both (Girshick et al., 2013)

and (Zhou et al., 2017a) are based on region proposal methods and classifiers. These strategies make them
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not efficient as they are not robust enough to occlusions in crowded scenes, generating a high amount of false

negatives.

Finally, we want to point out that in most of the people detection proposals shown in Table 1, the exper-110

imentation has been done on limited or non-public datasets. Only 10 of the 23 papers shown in the table,

use publicly available datasets that are referenced in the papers themselves (most of them being composed

by RGB images for people detection). The rest of the papers evaluate their methods by means of video

sequences recorded by the authors in controlled experiments, with no citation nor public availability, thus

limiting the possibility of reproducing their findings115

Among the proposals using publicly available data, the approach by Zhang et al. (2012) uses the water

filling datasets detailed in the same paper; Liu et al. (2015) use the RGB images of poses recorded by Choi

et al. (2012); and Vera et al. (2016) use the dataset in (Wang et al., 2014). Bak et al. (2017) carry out

experiments in the RGB dataset recorded by both Dalal & Triggs (2005) and Enzweiler et al. (2010); while

Wang & Zhao (2017) use the RGB images taken in Stewart et al. (2016); and Zhao et al. (2017) use the120

RGB datasets detailed in (Zhang et al., 2016a; Choi et al., 2012). Zhou et al. (2017a) make a comparison

with the three datasets described in (Tao et al., 2015), (Silberman et al., 2012), and (Spinello & Arras, 2011).

Finally, Fuentes-Jimenez et al. (2019b) and Luna et al. (2017) develop their experiments in the GOTPD1

dataset (Fuentes-Jimenez et al., 2019b).

3. PD3net People Detector125

3.1. Problem Formulation

This paper proposes PD3net, a CNN-based multiple people detector from depth images. PD3net re-

ceives a depth image as input and produces a likelihood map as output, with the same size as the input

image, see Figure 2, and where each detection corresponds to a Gaussian-shaped local distribution, centered

at the person’s head position in the image.130

3.2. Architecture of the PD3net Network

Figure 3 shows the PD3net architecture, which is inspired in the architecture initially proposed by Fuentes-

Jimenez et al. (2019b). It is composed of two blocks: the main block (MB) and the hypothesis reinforcement

block (HRB). Both blocks are built using encoder-decoder architectures, which are common in other computer

vision tasks, such as semantic segmentation (Badrinarayanan et al., 2015; Romera et al., 2017), 3D recon-135

struction, registration (Fuentes-Jiménez et al., 2018; Golyanik et al., 2018), or deep-fake detection (Guera
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Figure 2: Depth input image and likelihood output map.

.

& Delp, 2018; Kim et al., 2018). The PD3net structure is based in a non-conventional convolutional neural

network approximation as it does not use classical CNN schemes.
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Max Pooling

 

 

Input
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Figure 3: PD3net Architecture.

The input depth image I, with a size of 240 × 320 in our case, is processed by the MB, which generates

the initial likelihood map C (also with a size of 240 × 320), which is then concatenated with the input image140

I, so that the input tensor of the HRB (I2) is composed by the concatenation of I and C, and has a size of

240× 320× 2, as seen in Figure 3. The HRB output is added to C to produce the final likelihood map Cpolished
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(240 × 320) that contains the refined detections.

(a) Example comparison. (b) General formulation

Figure 4: Differences between conventional and spatially separable convolutions.

The PD3net architecture is optimized to be fast and efficient in terms of parameters and operations (more

details on its computational complexity can be found in Section 4.5). It employs the following elements:145

• Spatially Separable Convolutional Layers: These layers increase the processing speed in compari-

son with regular convolutional layers, and are included in popular architectures, such as the Inception

V3 (Szegedy et al., 2015). Spatially separable convolutions use 1D filters to compose a “2D equiva-

lent” convolution (an example can be seen in Figure 4a). However, spatially separable convolutions

reduce the number of operations and parameters only under certain conditions that we discuss next.150

The number of parameters nparamconv and mathematical operations nopsconv of a regular 2D convo-

lutional layer are given by:
nparamconv = KKdD = K2dD

nopsconv = HWD(K2d + (K2 − 1)d) = HWD((2K2 − 1)d)
(1)

where K is the kernel size, d is the input depth size, D is the output depth size, H is the input height,

and W is the input width (see Figure 4b).

In spatially separable convolutions composed of two 1D filters of 1 × K and K × 1, the number of

parameters nparamsep and mathematical operations nopssep are:
nparamsep = KdD + KD2

nopssep = HWD(Kd + (K − 1)d) + HWD(KD + (K − 1)D) = HWD((2K − 1)(d + D).
(2)

Using equations (1) and (2), the following inequalities give the necessary conditions for reducing the

number of operations and parameters when using spatially separable convolutions instead of conven-
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tional convolutions:
nparamconv > nparamsep ⇒ d >

1
(K − 1)

D

nopsconv > nopssep ⇒ d >
(2K − 1)

2K(K − 1)
D

(3)

where we suppose a stride of 1 and a constant size of the image compensated with the padding. We

apply the conditions of equation (3) to the three specific cases used in our neural network architecture,

where K ∈ {3, 5, 7}. Table 2 shows, for each case, the conditions under which a spatially separable155

convolution improves a conventional convolution in terms of parameters and operations, and also states

the most restrictive condition.

Improvement in K = 3 K = 5 K = 7

Parameters d > 1
(K−1) D d > 0.5D d > 0.25D d > 0.16D

Operations d > (2K−1)
2K(K−1) D d > 0.416D d > 0.225D d > 0.154D

Most restrictive d > 0.5D d > 0.25D d > 0.16D

Table 2: Conditions that the use of factorized convolutions must meet to be faster and more parameter efficient than conventional

convolutions for the proposed CNN.

• Leaky ReLU activations: We use Leaky ReLU activations to improve the generalization capabilities

of the network and the training convergence, as proposed by Xu et al. (2015). Leaky ReLU activations

help to solve the “dying ReLU” problem, where the zero activation zone of the ReLU slows down160

and destabilizes the training process. Instead of the zero activation zone, the Leaky ReLU has a small

negative slope that mitigates this problem.

• Residual blocks: We use residual blocks with a structure similar to that used by He et al. (2016).

The main difference is the inclusion of the spatially separable convolutions inside the residual blocks.

We define two basic residual blocks: the Encoding Convolutional Block (ECBs), and the Decoding165

Convolutional Block (DCBs). The ECBs and DCBs blocks are similar in structure, as shown in Figure 5.

They are formed by two unbalanced branches, where the first one has three convolutional layers,

and the second one has one convolutional layer. The output of the blocks is composed of the added

normalized output of the two branches. The main difference between the ECBs and DCBs lies in the

convolutional part: the ECB uses a factorized convolution, and the DCB uses a resized convolution. In170

Figure 5 the parameters a, b and c define the number of filters in the three-layered branches. The

number of filters of the third convolution in the bottom section must be equal to the number of filters

in the top section (c parameter).
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Figure 5: Architecture of the ECBs and DCBs .

• Resized convolutions: We use the resized convolution as an approximation for the de-convolution

with nearest neighbor interpolation. This is done to avoid the possible checkerboard artifacts that175

could appear in our output likelihood maps if we use the transposed convolution approximation, as

discussed in (Odena et al., 2016). Additionally, we prefer the nearest neighbor interpolation instead of

bilinear or bicubic interpolation, because they led to problems in the interpolation of high-frequency

image features, as also explained by Odena et al. (2016).

It is worth noting that, although the PD3net encoder-decoder structure is similar to that of Fuentes-180

Jimenez et al. (2019b), there are important differences that lead to relevant improvement in its performance

and efficiency. In particular, the use of Spatially Separable Convolutional Layers increases the processing

speed while reducing the number of operations and parameters. Moreover, PD3net includes Leaky ReLU

activations to improve the generalization capability of the network, which facilitates adaptation to different

contexts after training using synthetic data. Finally, the PD3net proposal uses Resized Convolutions as an185

approximation for the deconvolution with nearest neighbor interpolation, improving the interpolation for

high frequency components.

3.2.1. Main Block (MB) Architecture

Table 3 describes the Main Block (MB) architecture, showing the parameters and dimensions of each

layer. The main block follows an encoder-decoder neural structure. The encoder is made up of one regular190

convolutional layer (i.e. composed of a 2D convolution, Batch Normalization, Leaky ReLU activation, and a

max pooling layer), followed by three ECB blocks. The decoder is composed of three DCB blocks, followed by

one de-convolution (upsampling + convolutional layer) and one convolutional layer for adapting the output

11



Table 3: Detailed architecture of the main block.

Main Block (MB)

Layer Output size Parameters

Input 240 × 320 × 1 -

Convolution 120 × 160 × 64 kernel=(7, 7) / strides=(2, 2)

BN -

Activation Leaky ReLU

Max Pooling 40 × 53 × 64 size=(3, 3)

ECB 40 × 53 × 256
kernel=(3, 3) / strides=(1, 1)

(a=64, b=64, c=256)

ECB 20 × 27 × 512
kernel=(3, 3) / strides=(2, 2)

(a=128, b=128, c=512)

ECB 10 × 14 × 1024
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=1024)

DCB 10 × 14 × 256
kernel=(3, 3) / strides=(1, 1)

(a=1024, b=1024, c=256)

DCB 20 × 28 × 128
kernel=(3, 3) / strides=(2, 2)

(a=512, b=512, c=128)

DCB 40 × 56 × 64
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=64)

Cropping 40 × 54 × 64 cropping=[(0, 0) (1, 1)]

Up Sampling 120 × 162 × 64 size=(3, 3)

Convolution 240 × 324 × 64 kernel=(7, 7) / strides=(2, 2)

Cropping 240 × 320 × 64 cropping=[(0, 0) (2, 2)]

BN -

Activation Leaky ReLU

Convolution 240 × 320 × 1 kernel=(3, 3) / strides=(1, 1)

Activation Sigmoidal

Output 240 × 320 × 1 -

12



depth. As opposed to the encoder, the decoder consists of DCB blocks that increase the data size and decreases

depth, to obtain an output with the same size as the I input depth image.195

Regarding the use of spatially separable convolutions in the MB layers, the first layer is not spatially

separable since it would not reduce its computational complexity. In fact, introducing a spatially separable

convolution in the first layer would imply a number of operations 8.71 times higher than a conventional

convolution. As we can see in the conditions previously shown in Table 2, with a kernel K = 7 the input

depth d would have to be at least 0.16 times the output depth D to lead to an improvement in terms of200

parameters and operations, with respect to a traditional convolution operation. The number of required

operations in this case for a traditional convolution is 97, in contrast to the separable one that requires 845,

which finally derives in 8.71 times the operations of a conventional convolutional layer.

3.2.2. Hypothesis Reinforcement Block (HRB) Architecture

The Hypothesis Reinforcement Block (HRB) is a reduced version of the MB. It receives I2 as input, which205

is composed by the concatenation of I and C as described above, with a size of 240 × 320 × 2. The output

of the HRB is added to C, the MB output, to obtain the refined likelihood map Cpolished. The HRB follows the

same structure as the MB and uses an encoder-decoder architecture. It uses two ECB and two DCB blocks for

the encoder and decoder sections, respectively. Table 4 summarizes all the layers and blocks used in the HRB.

210

3.3. Training procedure

The network training process consists of two stages. In stage 1, we use a photo realistic synthetic and

publicly available database named GESDPD (Fuentes-Jimenez et al., 2019a). It was created using the Blender

graphics simulator (Blender Online Community, 2018) to initially train our network end-to-end.

The GESDPD generation procedure started by defining a 3D environment representing a rectangular room215

with some generic elements (round and rectangular tables, and a cylindrical column). The room dimensions

are 8.56m× 5.02m, and it has a height of 3.84m. A top view of the room with three sample users is shown in

Figure 6.

GESDPD is composed of 22000 depth and RGB synthetic images, that simulate to have been taken within

the artificial room with a depth and RGB cameras located in an elevated front position, at a height of 3220

meters.

GESDPD labeled maps are manually generated with the same dimensions as the input images (320×240).

For labeling the people positions, we have placed Gaussian functions around the centroid of the head of each

13



Table 4: Detailed architecture of the hypothesis reinforcement block.

Hypothesis Reinforcement Block (HRB)

Layer Output size Parameters

Input 240 × 320 × 2 -

Convolution 120 × 160 × 64 kernel=(7, 7) / strides=(2, 2)

BN -

Activation Leaky ReLU

Max Pooling 40 × 53 × 64 size=(3, 3)

ECB 40 × 53 × 256
kernel=(3, 3) / strides=(1, 1)

(a=64, b=64, c=256)

ECB 20 × 27 × 512
kernel=(3, 3) / strides=(2, 2)

(a=128, b=128, c=512)

DCB 40 × 54 × 128
kernel=(3, 3) / strides=(2, 2)

(a=512, b=512, c=128)

DCB 80 × 108 × 64
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=64)

Up Sampling 240 × 324 × 64 size=(3, 3)

Cropping 240 × 320 × 64 cropping=[(0, 0) (2, 2)]

Convolution 240 × 320 × 64 kernel=(3, 3) / strides=(1, 1)

BN -

Activation Leaky ReLU

Convolution 240 × 320 × 1 kernel=(3, 3) / strides=(1, 1)

Activation Sigmoidal

Output 240 × 320 × 1 -
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Figure 6: Virtual indoor environment used to create GESDPD.

person in the scene, so that the centroid corresponds to the 2D position of the center of the head and has a

normalized value of one.225

The synthetic images show a room with different persons walking in different directions, specifically 3

men and 1 woman. The set of labeled people is composed of 20800 samples. The camera image resolution

is 320× 240 and its perspective is not stationary, as it moves and rotates around the room along the database,

which avoids having a constant background. This characteristic allows the network to learn the most impor-

tant features for the person detection task, while using a dataset that is automatically generated and labeled.230

We split the synthetic database in training and validation subsets composed by the 67% and the 33% percent

of the available data, respectively.

The two first rows of Figure 7 show the synthetically generated room. As described above, we randomly

place virtual depth cameras so that each generated frame has a varying background. This strategy prevents

the CNN from dealing with a constant background, thus allowing it to more easily generalize to different235

environments. An example of the synthetically generated depth images can be seen in the bottom row of

Figure 7 using a color coded depth scheme.

In stage 2, we use a manually labeled real database composed by 3500 frames, recorded using a realsense

D435 camera (Intel). We use this dataset to fine-tune and adapt the network weights to the real environment.

This stage is necessary because the synthetic data does not include the image conditions that appear in a240

real scenario, such as motion blur, measurement noise or the influence of the ambient light in the depth
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Figure 7: Sample images of the Blender simulated room with different perspectives (top two rows), and samples of synthetic depth

images for training (belonging to the GESDPD dataset, bottom row).
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measures. Regarding the labeling process, we again placed 2D Gaussian-like distributions centered at each

person’s head labeled positions. The Gaussian function is normalized, so that its maximum is equal to 1.

The standard deviation of the Gaussian function is constant in all the cases, because using a variable standard

deviation (e.g. varying it with the depth value) proved to decrease the detection performance in preliminary245

experiments. The standard deviation value has been calculated using the average estimate of a human head

diameter, which is D = 15 pixels, from which we set σ = D/2.5 = 6. With multiple people, the overall

likelihood map for each given point is computed assigning the maximum value among all the maps created

for each individual person at the given point. Finally, we truncate the likelihood, making it equal to 0 for all

values below the threshold 1/255. This truncation plays an important role in the loss function. An example250

of a zoomed labeled image with the overlap of two labeled positions is showed in Figure 8.

Figure 8: Gaussians Overlap Example.

With respect to the optimizer, we apply the Swats optimization strategy proposed by Keskar & Socher

(2017). It involves a first training phase with the Adam solver (Kingma & Ba, 2014) corresponding to stage 1,

and a second phase with SGD+Momemtum that corresponds to stage 2. This strategy improves the network

generalization capabilities, as demonstrated in (Keskar & Socher, 2017). The initial learning rate of the first255

stage is 0.001, which is combined with the use of an early stopping callback to save the best possible model.

In the second stage we use the SGD+Momemtum solver with a learning rate equal to 10−5.

Our CNN uses a training set composed of input depth images Ii and ground truth likelihood maps

[Ci,C
polished
i ], where Ci = C

polished
i . The proposed loss function minimizes the mean square error (MSE)
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between the ground-truth likelihood maps [Ci,C
polished
i ] and their values estimated by the network, denoted260

by [Ĉi, Ĉ
polished
i ]. We have to highlight that the proposed loss considers two groups of points in the likelihood

maps. The first group corresponds to points where Ci > 0, and we mark them with the + subindex in any of

the maps (e.g. Ci+ and Ĉi+). The second group corresponds to those points where Ci = 0, and we mark them

with the subindex 0 (e.g. Ci0 and Ĉi0). An example of the Ci = 0 and Ci > 0 points considered can be seen

in Figure 9.265

Figure 9: Example ground truth likelihood map of Ci = 0 and Ci > 0 points. In the left image, we can see an output likelihood map.

In the right image we can observe the Ci = 0 and Ci > 0 points plotted in blue and red, respectively.

The proposed loss function is calculated as the addition of two terms, L1 and L2:

L = L1 +L2, (4)

where L1 corresponds to the loss at the MB output C, and L2 correspond to the loss at the PD3net output

Cpolished. The L1 term is the weighted sum of two MSE functions, involving the two points groups described

above, denoted by the subindexes + and 0:

L1 = λ1
1
N

N∑
i=1

‖Ĉi+ − Ci+‖
2 + λ2

1
N

N∑
i=1

‖Ĉi0 − Ci0‖
2. (5)

The hyperparameters λ1 and λ2 balance the relative importance of each term, and N is the batch size. The

L2 term is similar L1 but involving the maps generated at the output, denoted by the superindex polished:

L2 = λ1
1
N

N∑
i=1

‖Ĉ
polished
i+

− C
polished
i+

‖2 + λ2
1
N

N∑
i=1

‖Ĉ
polished
i0

− C
polished
i0

‖2. (6)

In our experiments, we empirically selected λ2 = 1 and λ1 = 1.3 after an initial experimental validation on

independent data, for which we used the GESDPD validation subset. The term L1 forces the MB to produce

the best possible initial map and L2 forces HRB to refine the MB output.

We train the network for 30 epochs with the Adam Optimizer in the first stage, and for 20 epochs with

SGD+Momemtum in the second stage, choosing the best possible model obtained along the training process.270
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4. Experimental Work

In this section we first describe the used datasets and their partition scheme (Subsection 4.1); and

the thorough experimental setup developed (Subsection 4.2), including a description of the state-of-the-art

algorithms we are comparing with, the evaluation metrics, and additional relevant issues to the experimental

approach. After that, the results achieved and its comparison with a wide range of state-of-the-art proposals275

are included. The results are first presented for the synthetic data case in Section 4.3. This allows us to

introduce and explain the effectiveness of a synthetic pre-training such as the one performed here, and which

are the limitations that can be found in the real world. The results for each of the used realistic datasets

are presented in Section 4.4, including a final comparison of the average results of all the databases, and

a discussion about the use of a global training approach. Finally, the computational performance is briefly280

reviewed in Section 4.5.

4.1. Datasets & Data Partition

We have used five different databases which cover a wide range of the evaluation conditions presented

in the state-of-the-art section. For each dataset, figures 10 11 and 12 provide some sample frames to give an

idea on the style and quality of these different datasets, and their detailed description is included next:285

1. GESDPD, described in (Fuentes-Jimenez et al., 2019a): The GEintra Synthetic Depth Person De-

tection Dataset (GESDPD) is a synthetic dataset which contains 22000 depth images, that simulate

to have been taken with a sensor in an elevated front position, in an indoor working environment.

As described in Section 3.3, these images have been generated using the Blender simulation soft-

ware (Blender Online Community, 2018). The simulated scene shows a room with different people290

walking in different directions. The camera perspective is not stationary, as it rotates and moves along

the dataset, which avoids a constant background that could be learned by CNN in the training, as it can

be seen in Figure 7, which shows different perspectives of the synthetic room. Using different back-

grounds around the synthetic room allows CNN to see the background as noise and focus the training

in the people that come along the image, immunizing the network to the change of camera perspective295

and assembly conditions.

The generated images have a resolution of 320 × 240 pixels codified as 16 bits unsigned integers. In

the synthetic examples shown in Figure 7, the images correspond to three different perspectives, with

the depth values represented using a color map. Additional samples of this dataset are included in Fig-

ure 10a using a grey level depth coding scheme, where the Gaussian-shaped ground truth information300

has been represented as green blobs.
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(a) Sample frames with labeled groundtruth from the GESDPD dataset (Fuentes-Jimenez et al., 2019a).

(b) Sample frames with labeled groundtruth from the GFPD dataset (Fuentes-Jimenez et al., 2020).

Figure 10: Sample frames from the GESDPD and GFPD (gray coded depth) with ground truth as green blobs.

2. GFPD, presented in (Fuentes-Jimenez et al., 2020): The Geintra Frontal Person Detection Dataset

(GFPD) is a high-resolution dataset recorded with an realsense D435 camera Intel. The GFPD contains

5270 depth frames with 13827 annotated people instances. The camera has an active stereo depth

sensor that provides depth maps with a resolution of 1280 × 720. The recordings of this dataset305

consider a great variety of conditions including different sensor heights (2200-2700 mm), different tilt

angles (26-41 degrees), as well as different backgrounds and lighting conditions. Some samples of this

dataset are shown in Figure 10b.

3. EPFL, presented in (Bagautdinov et al., 2015), that includes two different datasets:

(a) EPFL-LAB: The first one (EPFL-LAB) contains around 1000 RGB-D frames with around 3000310

annotated people instances. There are at most 4 people simultaneously present in the room.

They are mostly facing the camera, presumably a scenario for which the Kinect software was

fine-tuned. Some samples of this dataset can be visualized in Figure 11a.

(b) EPFL-CORRIDOR: The second one (EPFL-CORRIDOR) was recorded in a more realistic envi-

ronment, a corridor in a university building. It contains over 3000 frames with up to 8 individuals315

simultaneously present. It is a challenging dataset since there are important occlusions given the
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(a) Sample frames with labeled groundtruth from the EPFL-LAB dataset (Bagautdinov et al., 2015).

(b) Sample frames with labeled groundtruth from the EPFL-CORRIDOR dataset (Bagautdinov et al.,

2015).

Figure 11: Sample frames from the EPFL-LAB, EPFL-CORRIDOR databases (gray coded depth).
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(a) Sample frames with labeled groundtruth from the KTP dataset (Munaro & Menegatti, 2014).

(b) Sample frames with labeled groundtruth from the UNIHALL dataset (Spinello & Arras, 2011).

Figure 12: Sample frames from the KTP and UNIHALL databases (gray coded depth) with ground truth as green blobs..
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camera position at one end of a narrow corridor, as can be seen in the sample frames of Fig-

ure 11b.

4. KTP, described in (Munaro & Menegatti, 2014): The Kinect Tracking Precision dataset (KTP) contains

several sequences of at most 5 people walking in a small lab environment. They were recorded by a320

depth camera mounted on a robot platform. Here we only uses the subset that was recorded while the

camera was static. The authors provide ground truth locations of the individuals, both on the image

plane, and on the ground plane. Unfortunately, the quality of the ground truth for the ground plane is

limited, due to the poor quality registration of the depth sensor location in the environment. In order to

fix this, we manually specified points corresponding to individuals on the depth maps, then projected325

them on the ground plane, and took the average to get a single point representing the location of each

person. This approach introduced a small localization bias as we only observe the outer surface of the

person, but any motion capture system would have similar issues. Some samples of this dataset can be

visualized in Figure 12a.

5. UNIHALL, presented in (Spinello & Arras, 2011; Luber et al., 2011), in which the authors report their330

results in a dataset containing about 4500 RGB-D images recorded in an University hall from three

statically mounted Kinect cameras. Unfortunately, there is no ground plane ground truth available,

thus we only report results in the image plane. To compare with their results, we follow the evaluation

procedure described in (Spinello & Arras, 2011), that is, without penalizing approaches for not detect-

ing occluded or hidden people. We also report our performance for the full dataset separately. Some335

samples of this dataset can be visualized in Figure 12b.

Regarding the data partition approach for the training and testing subsets, Table 5 summarizes the total

number of people labeled in the ground truth in these frames (column #PeopleFull ), and the partition statis-

tics for the training subsets (column #PeopleTrain) and for the testing subsets (column #PeopleTest).

Table 5 also provides the percentages corresponding to these subsets below the accumulated totals for the340

#PeopleTrain and #PeopleTest columns to give an idea of their relative sizes1.

4.2. Experimental setup

4.2.1. Evaluated algorithms

We compared the performance of our proposal PD3net with up to ten different strategies described in

the literature that use depth cameras with an elevated non-overhead position in a people detection task.345

1Extended details for the interested reader can be found in Table A.10 in Appendix A.
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Table 5: Data partition summary (full details in Table A.10).

#PeopleFull #PeopleTrain #PeopleTest

GESDPD 54215 36063 18152
(67%) (33%)

GFPD 13827 9490 4337
(69%) (31%)

EPFL-LAB 2287 1385 902
(61%) (39%)

EPFL-CORRIDOR 8032 3598 4434
(45%) (55%)

KTP 6719 3299 3420
(49%) (51%)

UNIHALL 2979 2054 925
(69%) (31%)

ALL Datasets 88059 55889 32170
(63%) (37%)

The algorithm selection procedure initially had to do with the nature of the algorithmic approximations

used, as we wanted to include both classical methods (Dollár et al., 2009; Shotton et al., 2011; Munaro &

Menegatti, 2014; Spinello & Arras, 2011; Bagautdinov et al., 2015), and those based on DNNs (Redmon

& Farhadi, 2018; Zhou et al., 2017b; Uijlings et al., 2013). Within these, we tried to include the widest

possible variability of the proposed solutions. The second criterion was the information they use. Priority350

has been given to the search for methods only on depth only data (Bagautdinov et al., 2015). Given the lack

of this type of methods, we also considered those merging RGB and depth information (Zhou et al., 2017b;

Spinello & Arras, 2011; Shotton et al., 2011; Munaro & Menegatti, 2014), and finally those using only

RGB (Dollár et al., 2009; Zhou et al., 2017b) methods. Because of this second criterion and given the lack

of depth-only methods, we decided to develop additional depth-only proposals, such as the YOLO-Depth355

method, in order to bring variability to this group. Given the limited number of state-of-the-art methods that

address these tasks and share data or source code, we have not been very restrictive in adding methods to the

evaluation. The finally selected proposals allow for a retrospective evaluation of how the resolution of the

person detection task has progressed over time and depending on the information or nature of the methods.

Table 6 shows the main characteristics of all the evaluated methods, considering both classical and DNN360

approaches. It is relevant to note that we are comparing our depth-only proposal with others using different

combinations of RGB and depth information, which imposes strong differences in the quality of the exploited

data.
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Table 6: Evaluated state-of-the-art methods for multiple people detection.

Solutions Methods
Input

information
References

ACF RGB Dollár et al. (2012)

PCL-Munaro RGB-D Munaro & Menegatti (2014)

Kinect2 RGB-D Kinect-SDK (2014)
Classic

Unihall RGB-D Spinello & Arras (2011)

DPOM D Bagautdinov et al. (2015)

RCNN RGB Girshick et al. (2013)

RGBCNN RGB Zhou et al. (2017b)

RGBCECDCNN RGB-D Zhou et al. (2017b)

YOLO v3 RGB Redmon & Farhadi (2018)

DNN

YOLO depth D New development

Below, we explain in detail the evaluated state-of-the-art methods that we use in the comparison:

• ACF (Dollár et al., 2012): That uses a RGB detector, based on AdaBoost and aggregated channel365

features (Dollár et al., 2009) to give an idea on how a state-of-the-art detector that does not use depth

can perform on these sequences.

• PCL-MUNARO (Munaro & Menegatti, 2014): That uses a RGB-D detector based on modified HOG

features on regions extracted by depth segmentation.

• KINECT2 (Kinect-SDK, 2014): Based on the results obtained from the human pose estimation of the370

latest Kinect for Windows SDK (Kinect-SDK, 2014). It is not publicly known what specific algorithm

is used. However in (Shotton et al., 2011), the authors report that their algorithm is at the core of

the human pose estimation for the older version of the Kinect software. For undisclosed reasons, the

framework supports tracking up to 6 people, with the working depth range limited to 4.5 meters. To

ensure fairness, we keep these restrictions in mind when using the EPFL-LAB and EPFL-CORRIDOR375

datasets, that is, we do not penalize algorithms for not detecting more than 6 people or people who are

further than 4.5 meters away.

• UNIHALL (Spinello & Arras, 2011): That uses a RGB-D detector based on HOG and HOD features.

The code is not available and we, therefore, report only a single point on the precision-recall curves.

• DPOM (Bagautdinov et al., 2015): This method checks for a human presence on the ground plane using380

Bayesian inference. Before that, the first step is to detect the ground plane and remove it from the 3D

25



processed point cloud. After the ground plane elimination, all the remaining points will be clustered

and segmented as possible person detections. The algorithm stops when it groups all the clustered

regions in the whole depth image.

• RCNN (Girshick et al., 2013): That uses a region proposal based CNN, with an architecture that was385

originally used for region segmentation and classification. In addition to this architecture, it uses the

region of interest method from (Zhou et al., 2017b).

• RGBCNN (Zhou et al., 2017b): That uses a RGB CNN-based object detector with region of interest

selection method and selective search from (Uijlings et al., 2013).

• RGBCECDCNN (Zhou et al., 2017b): That uses a RGB and Depth combined CNN-based object detector390

with CECD channel encoding.

It is important to highlight that in the case of the RCNN based strategies, the results could be poor due

to the fact that their relatively simple architecture was originally designed for a region segmentation and

classification system, not specifically oriented to the person detection task.

In addition to these methods, and to allow for additional experimentation on our GESDPD dataset, we have395

also used the YOLO (You Only Look Once) object detector (Redmon & Farhadi, 2018) to be applied in the

person detection task using depth and RGB data. Our use of the YOLO strategy comprises two approaches,

using the YOLO system as is, and adapting it to more properly handle the depth information. These are the

two developed systems on this line:

• YOLO-V3 (Redmon & Farhadi, 2018): RGB object detector based on CNN and the bounding box based400

approximation. This implementation was based on the original Yolo V3 architecture and trained with

the COCO 2017 dataset (Lin et al., 2014). The parameters used to configure the architecture were an

input image size of 416 × 416, 9 anchors, and all the COCO classes. The evaluation is done on the

RGB data available for the corresponding datasets.

• YOLO-Depth: Depth object detector based on the (Redmon & Farhadi, 2018) structure, modifying it405

so that it is able to use depth images as input instead of RGB images. This implementation is trained

with the depth datasets used in this paper. Thus the size of the depth training size is lower that that of

the RGB training used in the original YOLO, which can affect the results obtained by this approach.

Nevertheless, this is still a valid approach to be considered for its potential to work using depth data.

The parameters used to configure the architecture, were an input image size of 416 × 416, 9 anchors,410
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and only with the person class. No structural changes have been made to the architecture as compared

to the original version.

4.2.2. Evaluation Metrics

To provide a detailed view of the performance on the evaluated algorithms, we have calculated the main

standard metrics in a detection problem, namely Precision, Recall, and F1score. The results are shown both415

in tables (to provide the precise values), and in bar graphs (to provide an easier visual comparison).

In the scoring process, the following convention has been adopted regarding occlusions: In the case that

an occluded person is not detected, it does not generate a detection error if the heads of the users are occluded

in a percentage higher than 50%. Therefore the occlusion limitation does not practically affect occlusions

between the bodies of the users, but only considering the occlusion of the upper body part.420

In the results tables, we also include confidence intervals for the F1score metric, for a confidence value

of 95%, to assess the statistical significance of the results when comparing different strategies. Additionally,

the confidence intervals for the Precision, Recall, and F1score metrics are also shown in the bar graphs.

In the evaluation with real data, Precision-Recall curves are also included. In the case of the DPOM,

ACF, KINECT2, UNIHALL, PCL-MUNARO, RGBCNN, and RGBCECDCNN algorithms, we use those already pro-425

vided in (Zhou et al., 2017b) and (Bagautdinov et al., 2015). For the YOLO-Depth and YOLO-V3 (Redmon &

Farhadi, 2018) algorithms, we generate the Precision-Recall curves through a sweep of the algorithm confi-

dence threshold. However, building these curves in our proposal is somehow artificial, leading to curves with

strange appearances, as the threshold sweep is done on the Gaussian distribution threshold. In Section 4.2.3

we describe the Precision-Recall curve generation procedure for our proposal, and the considerations that430

should be taken into account when addressing the interpretation of the Precision-Recall curves for our sys-

tem.

In the case of the F1score, the obtained curves are scanned with each of the possible thresholds, to obtain

their corresponding F1score and to be able to create the F1score vs threshold curve, which allows choosing the

best operation point or range of operation points, with a criterion aimed at getting the best possible F1score.435

An additional parameter of the evaluation metrics is the region on which they are calculated, including

restrictions on the image plane and the depth range. In some cases (that will be clearly stated when showing

the results), the evaluation metrics have been calculated considering:

• An image plane region which is smaller than the full-frame size. The objective is to only focus on

full detections of people, avoiding the cases of incomplete persons in which they could otherwise be440

partially occluded by the image borders.
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• A depth range that is smaller than the full depth range of the sensor. The objective is avoiding mea-

surements greatly contaminated with noise that, for some recording conditions, can be found near the

image borders or at depths near the sensor sensing limits.

4.2.3. Precision-Recall curves generation for the PD3net algorithm445

In this section we provide details on how the threshold to be optimized in PD3net works. The need for

this explanation is given because it is not a conventional confidence threshold like the one that can be found

in algorithms such as YoloV3 (in which the threshold sweep generates a smooth variation in the performance

curves), so that it can produce effects that are radically different from the usual ones, which will be reflected

in the appearance of the Precision-Recall curves.450

Figure 13 shows a schematic example of a Gaussian-like likelihood/confidence map, which could be

generated by our system. In the 2D representation of the figure (left image), we can see two small Gaussian-

like regions with a small overlap between them. In the 3D representation (right image), the apparent overlap

between the two Gaussian structures is greater than the one observed in 2D.

2D Confidence Map 3D Confidence Map

Figure 13: Schematic representation of the likelihood/confidence map in 2D (left) and 3D (right).

The decision threshold that we use in the PD3net algorithm can be shown geometrically as a plane455

parallel to the XY plane that would cut the Gaussian distributions at a given height (decision threshold

value), separating them both by their maximum height and by their overlap at the threshold level. So, unlike

conventional thresholds, this threshold affects both the inter-Gaussian overlap and the maximum confidence

peak.

Figure 14 shows the three-dimensional representation of the two detected Gaussians after the application460

of three thresholds values at 0.1, 0.4, and 0.8.

In the case of the 0.1 threshold, it can be roughly seen that the two Gaussians are overlapping by their

intersection at the threshold level, so that in terms of detections, it would generate a single detected person,

as there would be a single joint area in the 2D map. In the case of the 0.4 threshold, it can be observed that the

Gaussians no longer have overlap considering the threshold level, so that the two Gaussians will be separated465
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Threshold=0.1 Threshold=0.4 Threshold=0.8

Figure 14: Representation of the effect of different threshold values.

in the 2D map, and both of them will be correctly detected. Finally, in the case of the 0.8 threshold, only

the Gaussian with the highest height would be found in the 2D map, as the other one is below the detection

threshold, thus being discarded.

To show a real example on how we build the Precision-Recall curves for the PD3net system, Figure 15

includes data obtained from a sample frame of the GFPD dataset. The upper part of the figure includes the470

2D ground truth likelihood/confidence map (left image), showing three users with Gaussians normalized at

their maximum peaks of 1.0; and the network prediction (right image), with four estimated Gaussians whose

maximum peaks correspond to 1.0, 1.0, 0.7 and 0.3 (not all the predictions will reach the 1.0 level).

In the lower part of Figure 15 we can see two graphs. The one to the left is the Precision-Recall graph

on the test set, and the one to the right is the F1score − Threshold graph calculated on the training set. In475

these two graphs we find three well-differentiated sections that will allow to get an idea of the distribution of

Precision-Recall curve values when varying the threshold value:

• The first region, indicated by a blue ellipse, covers a threshold range below 0.1. In that range, due to

the increased Gaussian overlapping and the acceptance of low confidence Gaussians, both the number

of false positives and false negatives increase.480

• The second region, indicated by a black ellipse, covers a threshold range between 0.1 and 0.4. In that

range, as we increase the threshold value the Gaussian overlapping decreases, and also the Gaussians

with low confidence values can be discarded, thus decreasing the number of false positives and false

negatives.

• The third region, indicated by a green ellipse, covers a threshold range between 0.4 and 0.8, and485

within this range is where the system performs the best, with well and correctly separated Gaussians,
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Figure 15: Representation of the threshold variation effect on a GFPD example. From this example, we can conclude that a threshold

variation have a simultaneous impact on both the false positive rate (all the low confidence Gaussians for low threshold levels) and

the false negatives (all the overlapping Gaussians for low threshold levels).

and good rejection of low confidence ones. This behavior leads to the optimum working point shown

as a red star.

4.2.4. Training and threshold selection strategy

As discussed above, one of the key issues in the PD3net proposal is the correct selection of the detection490

threshold used in the Cpolished output map. This selection is very relevant because the threshold is responsible

for deciding which Gaussian distributions are considered as possible person detections. Both the network

and the threshold training have been done using two different approaches:

• Tuned network training and threshold selection (Dataset specific): In this scenario, the network is

trained on the training subset for each specific dataset, and the corresponding threshold is selected as495

that achieving the best F1score on this training subset. This way we can evaluate the best possible result

with the network and threshold tuned to the conditions of each particular dataset.

• Global network training and threshold selection: In this scenario, the network is trained on all the

available training subsets, and the threshold is selected as that achieving the best average F1score eval-

uated on all of these training subsets. This way we can evaluate a more realistic performance using the500

same single network and threshold for all the datasets.
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We will provide results for both approaches in the next subsections.

4.3. Results training with Synthetic Data Only

Our first evaluation task was devoted to exploring the extent to which training with simulated data could

cope with the variability found in real datasets. To do so, we first run a set of preliminary experiments using505

the GESDPD as the training data, and both GFPD and EPFL-LAB for testing.

The first row in Table 7 shows the results of our proposal trained with the GESDPD when evaluated on

an independent subset of the GESDPD dataset. The results indicate that the simulated training data seems to

be valid to achieve reasonably good results when facing similar simulated conditions, with an overall error

below 6.8% and an F1score of 96.5%.510

Table 7: Results on the GESDPD and EPFL-LAB datasets, trained on the training subset of the GESDPD.

#FramesTest #PeopleTest FN (FNR%) FP (FPR%) Error Precision Recall F1score

GESDPD 2200 3176 212 (6.68%) 3 (0.09%) 6.77% 99.89% 93.32% 96.50 ± 0.11%

EPFL-LAB 950 1959 474 (24.07%) 3 (0.15%) 24.35% 99.80% 75.80% 86.16 ± 1.53%

The second row of Table 7 shows the results of our proposal trained with the GESDPD and evaluated on

a testing subset of the EPFL-LAB dataset. In this case, the search area in the image plane was restricted to

280 × 150 and the depth range considered up to 3.5m. Our objective was to produce an environment more

controlled in which unnecessary noise is removed from the image. For example, this noise was present in the

ceiling, which occupies around 40% of the image or on the floor. These results indicate that the simulated515

training data is not capable of leading to reliable results when facing a realistic dataset, with an overall error

above 24% and an F1score of 86.16%.

These preliminary experiments clearly indicate that training with simulated data only can be a good

starting point, but it is still far from allowing us to get good results on realistic data. This conclusion led us

to develop a training procedure in two stages: first a full training using the simulated data, and then use a520

small subset of the evaluated datasets to fine-tune the pre-trained model.

4.4. Results on real data

In this section, we present the results and discussion when evaluating our proposal on the realistic datasets

described in Section 4.1, and using all the available algorithms in each case. Table 8 shows the results of all

the evaluated algorithms in all the available datasets2. Empty cells in the table are due to the fact that the525

2Except for RCNN, RGBCNN, RGBCECDCNN on the UNIHALL dataset that have been excluded due to their low performance, as can

be seen in Table A.11 in Appendix A.
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corresponding algorithms were not available, and we have replicated the results published by the respective

authors on the given datasets.

Table 8: Performance results on all the avaible datasets comparing the “tuned” and “global” versions for the PD3net proposal

(P = Precision,R = Recall (best result are displayed with green background, and orange background indicates results within the

best one significant bands).

GFPD KTP UNIHALL EPFL-LAB EPFL-CORRIDOR

P R F1score P R F1score P R F1score P R F1score P R F1score

PD3net tuned 99.7 96.36 98.0 ± 0.20 96.2 96.3 96.3 ± 0.64 92.5 99.2 95.7 ± 1.30 98.8 94.5 96.6 ± 1.18 90.3 80.1 84.9 ± 1.05

PD3net global 100.0 95.9 97.9 ± 0.21 95.4 95.1 95.3 ± 0.71 91.2 97.3 94.2 ± 1.51 99.5 92.5 95.9 ± 1.30 90.9 76.1 82.8 ± 1.11

YOLO-V3

(Redmon & Farhadi, 2018)
82.3 86.4 84.3 ± 0.53 99.1 98.2 98.7 ± 0.39 84.5 93.1 88.6 ± 2.05 93.3 93.0 93.2 ± 1.65 58.6 59.8 59.2 ± 1.45

YOLO-Depth 79.8 55.1 65.2 ± 0.69 91.1 72.3 80.6 ± 1.32 63.2 52.4 57.3 ± 3.19 90.2 89.2 89.7 ± 1.98 78.4 47.9 59.5 ± 1.45

PCL-MUNARO

(Munaro & Menegatti, 2014)
98.7 76.4 86.1 ± 1.16 82.5 78.2 80.3 ± 2.56 96.9 86.5 91.4 ± 1.83 95.0 56.3 70.7 ± 1.34

DPOM

(Bagautdinov et al., 2015)
95.3 94.5 94.9 ± 0.74 90.2 98.1 94.0 ± 1.53 98.5 85.4 91.5 ± 1.82 96.3 70.9 81.7 ± 1.14

ACF

(Dollár et al., 2012)
87.4 72.7 79.4 ± 1.36 90.2 85.4 87.7 ± 2.11 83.8 86.4 85.1 ± 2.33 66.3 40.3 50.1 ± 1.47

UNIHALL

(Spinello & Arras, 2011)
86.3 84.5 85.4 ± 2.28

KINECT2

(Kinect-SDK, 2014)
99.8 38.2 55.3 ± 3.24 86.3 41.2 55.8 ± 1.46

For the PD3net algorithm, two results are provided for the conditions discussed in Section 4.2.4: one

with the tuned version of the network model and threshold, and the other with their globally trained versions.

The results show, as expected, a slight decrease in performance when using the global threshold as compared530

to the tuned one, but these differences are not statistically significant. This support the conclusion that the

PD3net strategy is robust enough to face very different training and testing conditions.

In the next subsections we discuss the results for each specific dataset and the tuned approach, providing

a graphical comparison of the evaluated metrics, along with the Precision-Recall and F1score − threshold

curves for the tuned approach. The discussion of these curves for the global approach is later addressed in535

Section 4.4.7.

4.4.1. Results for the GFPD database

The second column of Table 8 and Figure 16 show the results when evaluating on the GFPD dataset, using

our proposal PD3net and the YOLO-V3 and YOLO-Depth algorithms. We could not apply any of the other

proposals described in Section 4.2 as they were not readily available.540

The results in the table show that both approaches of the PD3net algorithm clearly outperform the

YOLO-based strategies, being the best in the three metrics used and in a statistically significant way, placing
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Figure 16: Results on the GFPD dataset.

a great distance between it and YOLO-V3 as the second-best solution. The worse results of the YOLO-based

algorithms probably rely in the fact that they were not designed to deal with depth data, and to the great

number of occlusions and complex situations that GFPD contains.545

Figure 17 shows the Precision-Recall curve corresponding to the behavior of the three algorithms and

the F1score − threshold curve corresponding to the PD3net algorithm. As described in Section 4.2.3, the

appearance of the curve for our proposal is far from standard, and it is due to the effect of the threshold

sweep procedure so that the area under the curve should not be taken into account as the comparison metric.

If we consider the actual working point of the algorithm (marked with a red start), the figure clearly shows550

that our working point greatly outperforms the other proposals.

With respect to the Precision-Recall curve, the F1score metric is represented as a function of the threshold

sweep used to generate the Precision-Recall curve. This curve shows how the working point is located in

the middle of a reasonably wide and flat area which outperforms the other two algorithms, indicating that its

sensitivity to the threshold value is reduced.555

Figure B.29 in Appendix B shows a sample frame of the results achieved by our proposal on the GFPD

dataset.

The capabilities of our proposal are further established in the next sections where the availability of

performance metrics on additional datasets and with a broad range of different algorithms are exploited in

the comparisons.560
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Figure 17: Precision-Recall curve comparison and F1score-Threshold results for the experiments on the GFPD dataset.

4.4.2. Results for the KTP database

The third column of Table 8 and Figure 18 show the results when evaluating on the KTP dataset, using our

proposal PD3net, the YOLO-V3 and YOLO-Depth algorithms, and three other proposals from the literature:

PCL-MUNARO, DPOM and ACF.

From the table, it is surprising the top performance of the YOLO-V3 algorithm in terms of F1score, with565

statistically significant different as compared with the second-best result (achieved by our PD3net). In this

case, the YOLO-V3 system obtains better results than all the other proposals as the KTP database does not

contain a lot of hard occlusions and has been prepared from a low frontal perspective, which are the perfect

conditions for the operation of YOLO-V3, whose training images are also low frontal and with almost no

occlusions.570

Figure 19 shows the Precision-Recall curve corresponding to the behavior of the five algorithms and the

F1score − Threshold curve corresponding to the PD3net algorithm. Again, the later curve shows how the

working point is placed in a wide reasonably flat area, indicating that its sensitivity to the threshold value is

small. In addition to this, we can see that YOLO-V3 shows a Precision-Recall curve that is near the perfection

in KTP, compared to DPOM or PD3net.575

Figure B.30 in Appendix B shows a sample frame of the results achieved by our proposal on the KTP

dataset.

4.4.3. Results for the UNIHALL database

The fourth column of Table 8 and Figure 20 show the results when evaluating on the UNIHALL dataset,

using our proposal PD3net, the YOLO-V3 and YOLO-Depth algorithms, and four other proposals from the580
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Figure 18: Results on the KTP dataset.

a) Precision-Recall Curve Comparison b) F1score Threshold results
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Figure 19: Precision-Recall curve comparison and F1score-Threshold results for the experiments on the KTP dataset.
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literature: PCL-MUNARO, DPOM, ACF and UNIHALL3.

In this case, the PD3net algorithm is the best one in terms of the three evaluated metrics, but its improve-

ment as compared with the second best (DPOM) is not statistically significant.

Figure 20: Results on the UNIHALL dataset.

Figure 21 shows the Precision-Recall curve and the F1score sweep curve corresponding to PD3net algo-

rithm. With respect to the F1score metric, the curve shows a stable working point that falls sharply compared585

to other databases from a threshold of 0.6, so we can see that the working point represented by a sharp peak

in the Precision-Recall curve is, in fact, a long-range of stable working points. In this case, the Precision-

Recall curve clearly shows that the proposed PD3net algorithm has the best possible working point, very

closely followed as the second-best solution by DPOM and with a large distance in this case to the best third

solution represented by YOLO-V3, which is again affected by the presence of strong occlusions in this dataset.590

Figure B.31 in Appendix B shows a sample frame of the results achieved by our proposal on the UNIHALL

dataset.

4.4.4. Results for the EPFL-LAB database

The fifth column of Table 8 and Figure 22 show the results when evaluating on the EPFL-LAB dataset,

using our proposal PD3net, the YOLO-V3 and YOLO-Depth algorithms, and four other proposals from the595

literature: PCL-MUNARO, DPOM, ACF, and KINECT2.

3As discussed above, we excluded here the results for RCNN, RGBCNN, RGBCECDCNN due to their low performance (see Table A.11

in Appendix A).
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a) Precision-Recall Curve Comparison b) F1score Threshold results
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Figure 21: Precision-Recall curve comparison and F1score-Threshold results for the experiments on the UNIHALL dataset.

In this case, the PD3net algorithm is the best in terms of the three evaluated metrics, and its improve-

ments as compared with the second best (YOLO-V3) are again statistically significant.

Figure 22: Results on the EPFL-LAB dataset.

Figure 23 shows the Precision-Recall curve and the F1score sweep curve corresponding to PD3net al-

gorithm. Again, the best algorithm in terms of working point in the Precision-Recall curve is PD3net.600

This curve exhibits a very different behavior from the one seen in previous datasets, forming a very steep
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slope and peak. To demonstrate that this peak represents a large number of good and stable working points,

the F1score-Threshold graph clearly shows how there is a range of threshold values (from 0.6 to 0.8 that is

practically stable in terms of F1score.

a) Precision-Recall Curve Comparison b) F1score Threshold results
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Figure 23: Precision-Recall curve comparison and F1score-Threshold results for the experiments on the EPFL-LAB dataset.

Figure B.32 in Appendix B shows a sample frame of the results achieved by our proposal on the605

EPFL-LAB dataset.

4.4.5. Results for the EPFL-CORRIDOR database

The sixth column of Table 8 and Figure 24 show the results when evaluating on the EPFL-CORRIDOR

dataset, using our proposal PD3net, the YOLO-V3 and YOLO-Depth algorithms, and four other proposals

from the literature: PCL-MUNARO, DPOM, ACF, and KINECT2. In this case, the PD3net algorithm is again the610

best in terms of recall and F1score metrics and the third in terms of precision (although the good results in

Precision by the DPOM algorithm are related to a poor behavior in terms of Recall). Its improvements in terms

of Recall and F1score compared to the second best algorithm (DPOM) are statistically significant.

Figure 25 shows the Precision-Recall curve and the F1score sweep curve corresponding to PD3net algo-

rithm. EPFL-CORRIDOR is one of the most complex databases, bringing together difficulties such as many615

occlusions and people very close to each other, detection in small spaces with a lot of perspective, high noise

in the depth data and many false detections due to people occluded by the image borders. All these issues

lead to algorithms like YOLO-V3 to drastically reduce their performance, while PD3net manages to keep a

more robust performance, this time with a less stable working point in terms of F1score, as compared to the
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Figure 24: Results on the EPFL-CORRIDOR dataset.

results obtained in other databases. The second best system is again DPOM, in this case with significant differ-620

ences in the results in terms of working point. Finally, in third place we find PCL-MUNARO closely following

the DPOM but with remarkable differences in their Precision-Recall curves.
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Figure 25: Precision-Recall curve comparison and F1score-Threshold results for the experiments on the EPFL-CORRIDOR dataset.

Figure B.33 in Appendix B shows a sample frame of the results achieved by our proposal on the

EPFL-CORRIDOR dataset.
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4.4.6. Average results for all the available datasets625

Table 9 and Figure 26 show the weighted average results when evaluating all the available datasets using

all the available algorithms4. They have been calculated integrating the results from the above sections,

weighting each result according to the number of ground truth elements of each testing subset.

Table 9: Average weighted results using all the available datasets.

Precision Recall F1score

PD3net tuned 97.51 93.80 95.62 ± 0.24

PD3net global 97.68 92.59 95.07 ± 0.25

YOLO-V3

(Redmon & Farhadi, 2018)
81.02 84.05 82.51 ± 0.45

YOLO-Depth 80.75 57.08 66.88 ± 0.55

PCL-MUNARO

(Munaro & Menegatti, 2014)
95.29 68.31 79.57 ± 0.80

DPOM

(Bagautdinov et al., 2015)
95.57 83.19 88.95 ± 0.62

ACF

(Dollár et al., 2012)
77.67 60.35 67.92 ± 0.93

UNIHALL

(Spinello & Arras, 2011)
86.30 84.50 85.39 ± 2.28

KINECT2

(Kinect-SDK, 2014)
88.58 40.69 55.77 ± 1.33

In the average comparison over all the datasets, we can observe that the statistical significance of the

results is increased, provided the higher number of considered samples. In terms of Precision, the best630

algorithm is PD3net, with DPOM and PCL-MUNARO coming second and third. In terms of Recall the differences

increase, with a large distance among the first three best proposals. The top system is again PD3net, followed

by DPOM and YOLO-V3. Finally, considering the F1score that relates the two previous metrics offering a final

joint one, PD3net comes first, clearly surpassing DPOM, which is the second-best method with a wide margin

of statistical significance.635

4In the table we have again excluded the results for the RCNN, RGBCNN, RGBCECDCNN, due to their low performance, and they

have been moved to Table A.12 in Appendix A.
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Figure 26: Average weighted results using all the available datasets.

4.4.7. Discussion on the Precision − Recall curves for the Global training approach

In this section we provide details on the comparison of our proposal with the other state of the art

methods considering the Precision − Recall and F1score − Threshold curves, when the network model and

the threshold have been trained using all the available training subsets (referred to as the Global approach in

Section 4.2.4).640

Figure 27 shows the Precision-Recall curves for all the datasets and different algorithms. The curves

obtained in this case for each dataset are very similar to those found in Figures 17, 19, 21, 23 and 25,

which is consistent with the performance metric results in Table 8, which showed non statistically significant

differences between the tuned and global approaches.

Figure 28 shows the F1score-Threshold curve for the proposed PD3net algorithm and the different datasets.645

We also include the average curve (labeled “Combined F1”), from which a single threshold of 0.54 was se-

lected, as the one with the maximum average F1score. The fact that this best threshold is located around the

middle of the threshold span also supports the robustness of the proposed strategy.

4.5. Computational Performance Evaluation

Regarding the practical evaluation of our proposal computational complexity, we first experimentally650

calculated the complexity of the network using the Tensorflow profiling tools. We expressed the complexity

of the network using FLOPS (Floating Operations Per Second), estimating a number of 55,6 MFLOPS for

our proposal, which is actually a very low number of operations as compared with typical deep learning
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Figure 27: Precision-Recall curve comparison using a single global network model and a single global threshold for all datasets.
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Figure 28: F1score-Threshold results in the experiments using a single global network model and a single global threshold for all

datasets.

image processing architectures (Bianco et al., 2018).

We also evaluated the average frame rate of the system, which is 42 FPS (frames per second), bench-655

marked on a conventional GNU/Linux desktop PC, with a Processor Intel®Core(TM) i7-6700K CPU @

4.00 GHz with 64 GB of RAM, and an NVIDIA GTX-1080 TI GPU.

This high frame rate implies the possibility of running our system in real time, and it is worth mentioning

that its computational complexity does not depend on the number of people in the scene.

5. Conclusions660

This work proposes a new people detection method, based on an efficient convolutional neural network

architecture, that only uses depth information. The article includes a full description of the network archi-

tecture, and extensive evaluation and comparison with a wide range of different state-of-the-art methods for

people detection, considering both classical and DNN-based strategies. Our experimental evaluation has

been carried out on five different RGB-D image datasets, using different depth sensor technologies (ToF,665

active stereo, or structured light), and adopting a rigorous experimental evaluation procedure. The scenes

used for training and those used for evaluation are as realistic as possible, including a wide variety in what

respect to the number of users, occlusion conditions, and background content. We have evaluated the pro-

posed method networks and detection thresholds tuned for each of the databases. We also have tested a
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shared neural model with a single detection threshold for all of them, accompanied by a detailed analysis of670

the results for both approaches.

In most of the evaluated databases, our depth only proposal achieved top performance compared to state-

of-the-art methods, including modern RGB DNN-based methods YOLO-V3 or classical methods, such as

DPOM. Our system obtains accurate results in challenging scenarios, with a large number of users and severe

occlusions. Considering the average overall performance, i.e. by averaging the results across all databases,675

our method clearly surpasses the rest of the approaches with statistically significant differences. This result

is especially relevant since the recording conditions across all datasets are very different, even when using

a shared network and threshold. Our results show that our architecture and training method, based on fine-

tuning a system trained with synthetic data, leads to a high degree of generalization. Therefore, our approach

has a potentially high impact on many practical real applications, where a robust, general, and accurate680

people detection method is needed.

Appendix A. Tables with the detailed information on the experimental work

Regarding the data partition approach for the training and testing subsets, Table A.10 extends the infor-

mation included in Table 5. It provides full details on the total number of frames (column #framesFull), the

total number of people labeled in the ground truth in these frames (column #PeopleFull ), and the partition685

statistics for the training subsets (columns #framesTrain and #PeopleTrain) and for the testing subsets

(columns #PeopleTest and #framesTest). Table A.10 also provides details of the used sequences: Total

numbers are shown right-aligned, and when the partition involved several sequences, the corresponding data

for individual sequences is shown left-aligned. Table A.10 also provides the percentages corresponding to

these subsets below the accumulated totals for the #PeopleTrain and #PeopleTest columns to give an690

idea of their relative sizes.

Table A.11 shows the results of RCNN, RGBCNN, RGBCECDCNN on the UNIHALL dataset that were excluded

in Table 8 due to their low performance. They are included here for completeness.

Table A.12 show the weighted average results of of RCNN, RGBCNN, RGBCECDCNN when evaluating all

the available datasets using all the available algorithms. They were excluded in Table 9 due to their low695

performance. They are included here for completeness.
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Table A.10: Data partition details.

Sequence #framesFull #PeopleFull #FramesTrain #PeopleTrain #FramesTest #PeopleTest

GESDPD 22000 54215 17600 36063 4400 18152
(67%) (33%)

GFPD

1 1690 4462 1690 4462

2 900 3760 900 3760

3 1090 4337 1090 4337

4 500 1268 500 1268

Total GFPD 4180 13827 3090 9490 1090 4337
(69%) (31%)

EPFL-LAB 1 920 2287 600 1385 320 902
(61%) (39%)

EPFL-CORRIDOR

20141008 141829 00 390 899 390 899

20141008 1414 30 00 420 813 420 813

20141008 141913 00 396 1886 396 1886

20141008 141537 00 430 853 430 853

20141008 141537 00 1100 3581 1100 3581

Total EPFL-CORRIDOR 2736 8032 1206 3598 1530 4434
(45%) (55%)

KTP

ROTATION 2200 3299 2200 3299

STILL 2100 3420 2100 3420

Total KTP 4300 6719 2200 3299 2100 3420
(49%) (51%)

UNIHALL mensa seq0 1.1 2900 2979 1400 2054 1500 925
(69%) (31%)

ALL Datasets Total ALL Datasets 37036 88059 26096 55889 10940 32170
(63%) (37%)

Table A.11: Performance results of RCNN, RGBCNN, RGBCECDCNN on the UNIHALL dataset, previously excluded in Table 8. Results

for the “tuned” and “global” versions for the PD3net proposal (P = Precision,R = Recall are also shown for comparison.

GFPD KTP UNIHALL EPFL-LAB EPFL-CORRIDOR

P R F1score P R F1score P R F1score P R F1score P R F1score

PD3net tuned 99.7 96.36 98.0 ± 0.20 96.2 96.3 96.3 ± 0.64 92.5 99.2 95.7 ± 1.30 98.8 94.5 96.6 ± 1.18 90.3 80.1 84.9 ± 1.05

PD3net global 100.0 95.9 97.9 ± 0.21 95.4 95.1 95.3 ± 0.71 91.2 97.3 94.2 ± 1.51 99.5 92.5 95.9 ± 1.30 90.9 76.1 82.8 ± 1.11

RCNN

(Girshick et al., 2013)
50.1 51.4 50.7 ± 3.22

RGBCNN

(Zhou et al., 2017b)
49.7 51.2 50.4 ± 3.22

RGBCECDCNN

(Zhou et al., 2017b)
52.3 52.3 52.3 ± 3.22
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Table A.12: Average weighted results of RCNN, RGBCNN, RGBCECDCNN using all the available datasets, previously excluded in Table 8.

Results for the “tuned” and “global” versions for the PD3net proposal are also shown for comparison purposes.

Precision Recall F1score

PD3net tuned 97.51 93.80 95.62 ± 0.24

PD3net global 97.68 92.59 95.07 ± 0.25

RCNN

(Girshick et al., 2013)
50.10 51.40 50.74 ± 3.22

RGBCNN

(Zhou et al., 2017b)
49.70 51.20 50.44 ± 3.22

RGBCECDCNN

(Zhou et al., 2017b)
52.30 52.30 52.30 ± 3.22
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Appendix B. Sample image based results

In this section we include some sample image results when applying our proposal to the different datasets.

Figure B.29: Qualitative example of our proposal on the GFPD dataset (6 people in the ground truth, 6 correct detections).

Figure B.30: Qualitative example of our proposal on the KTP dataset (5 people in the ground truth, 5 correct detections).
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Figure B.31: Qualitative example of our proposal on the UNIHALL dataset (2 people in the ground truth, 2 correct detections).

Figure B.32: Qualitative example of our proposal on the EPFL-LAB dataset (2 people in the ground truth, 2 correct detections).

Figure B.33: Qualitative example of evaluation in EPFL-CORRIDOR (4 people in the ground truth, correct detections).
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