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Abstract
In this paper we present two algorithms for computing the g-asymptotes or generalized
asymptotes, of a plane algebraic curve, C , implicitly or parametrically defined. The asymp-
totes of a curve C reflect the status of C at points with sufficiently large coordinates. It
is well known that an asymptote of a curve C is a line such that the distance between C
and the line approaches zero as they tend to infinity. However, a curve C may have more
general curves than lines describing the status of C at infinity. These curves are known as
g-asymptotes or generalized asymptotes. The pseudocodes of these algorithms are presented,
as well as the corresponding implementations. For this purpose, we use the algebra software
Maple. A comparative analysis of the algorithms is carried out, based on some properties of
the input curves and their results to analyze the efficiency of the algorithms and to establish
comparative criteria. The results presented in this paper are a starting point to generalize
this study to surfaces or to curves defined by a non-rational parametrization, as well as to
improve the efficiency of the algorithms. Additionally, the methods developed can provide
a new and different approach in prediction (regression) or classification algorithms in the
machine learning field.
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1 Introduction

In this paper, we present the design and implementation of two Maple packages to deal with
some algebraic-geometric constructions with curves that appear in practical applications in
Computer Aided Design.

More precisely, we develop an algorithmic solution that allows determining the behavior
at infinity of a plane algebraic curve, C , by determining the generalized asymptotes, or g-
asymptotes, of its branches at points with sufficiently large coordinates, i.e., at the infinity
points. The notion of g-asymptote generalizes the classical concept of (line) asymptote and
its calculation methods (see [12, 16]).

This question is very important in the study of algebraic curves because the asymptotes
provide information about the behavior of curves at infinity. For example, determining the
asymptotes of a curve is essential to drawing its graph.

The generalized asymptotes
The asymptotes of an infinity branch, B, of a real plane algebraic curve, C , determine the
behavior of B at the points with “large coordinates”. In analytic geometry, an asymptote of a
curve is a line such that the distance between the curve and the line approaches zero as they
tend to infinity. In the field of algebraic geometry, an asymptote is a tangent line to the curve
at the infinity.

If B can be explicitly defined as y = f (x) or x = g(y) ( f and g are continuous functions
on an infinite interval), one may easily decide whether C has an asymptote at B by analyzing
the existence of the limits of certain functions when x (or y) tends to ∞. In fact, if these
limits can be computed, we may obtain the equation of the asymptote of C at B. However,
if this branch B cannot be defined in an explicit way, both the decision and the computation
of the asymptote of C at B, require some other tools.

It iswell known that an algebraic curvemay havemore general curves than lines describing
the status of a branch at the points with sufficiently large coordinates. In this sense, we say
that a curve ˜C is a generalized asymptote (or g-asymptote) of a given curve C if the distance
between ˜C andC tends to zero as they tend to infinity, andC cannot be approached by another
curve of lower degree (see [1–3]). This motivates our interest in efficiently computing these
generalized asymptotes.

An example is illustrated in Fig. 1 where it can be seen that a hyperbola is a degree 2
curve with two real asymptotes, which implies that the hyperbola degenerates at infinity, into
two lines. The behavior of an ellipse is similar, although in this case, the infinity branches
are complex and therefore, the ellipse degenerates at infinity into two complex lines.

However, the asymptotic behavior of a parabola is different, since at infinity the parabola
cannot be approached by any straight line, that is, by any curve of smaller degree (see
Fig. 2).

As we said previously, the concept of g-asymptote is similar to the classic concept of
asymptote [10, 12, 14]. The difference is that a g-asymptote is not necessarily a line, but
a higher degree curve of the smallest possible degree that approaches the curve at infinity
(a perfect curve). See Section 2 for the formal definition. To clarify this notion, we next
consider a plane curve C defined by the irreducible polynomial f (x, y) = −yx − y2 − x3 +
2x2y + x2 − 2y ∈ R[x, y]. The given curve C has degree 3 and two infinity branches. In
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Design and implementation of symbolic algorithms... 539

Fig. 1 Asymptotic behavior of the hyperbola (left) and ellipse (right).

Fig. 3, it can be seen that these infinity branches are approached by the parabola defined by
the polynomial y − 2x2 + 3/2x + 15/8 and by the line defined by y − x/2 + 1/8.

Other plane curves of degree 3, such as y− x3 = 0 or y2 − x3 = 0, cannot be approached
by any curve of degree less than 3.

Artificial intelligence applications
We strongly believe in the possibility of applying the method presented in this paper to the
field of artificial intelligence (AI) and specifically in the area of machine learning (ML).

Fig. 2 Asymptotic behavior of the parabola.
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Fig. 3 Curve C approached by a parabola and a straight line

These symbolic computing tools can provide new solutions to the analysis of data patterns,
offering an alternative solution to the traditional identification techniques, based on symbolic
reasoning, providing simple and efficient methods for systems that are difficult to observe or
where mathematics are very complicated ([5]).

Future work
We should emphasize that the proposal presented in the paper is opening a promising line
of research in a different version of several ML algorithms. First, the methods proposed in
the paper can be easily generalized to high dimensional spaces (see [3] and [7]), enabling for
separating different classes using generalized asymptotic hyperplanes in classification prob-
lems. Besides, a piecewise generalized asymptotic class separation could be an extension of
the proposed future work that enables a piecewise hyper dimensional generalized asymptote
[8]. Piecewise points should be determined based on data distribution and singular areas,
determined by data distribution. The concept of g-asymptote in the n-dimensional space
could thus be applied to extend the clustering on the whole space.

Finally, Artificial Neural Networks (ANN), Deep Learning methods and other algorithms
that iteratively minimize a cost function for updating the weights could be an interesting field
of extending the purpose of this paper, considering that weights values tend asymptotically
to the optimal values that minimize the error or cost function [9, 11]. The evolution of the
weights updates themselves could be characterized and asymptotically projected. The study
of the behavior when iterations grow, and the algebraic outcome of an asymptotic weight
convergence function could bring some new trends on weight optimization or interpretability
of the trained networks.
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Structure of the paper
In order to develop the algorithms and to describe the packages, we first recall the basic
required mathematical background. Thus, Section 2 presents the main notions and explains
the intuitive idea of perfect curve and g-asymptote. That is, given a curve C , a curve ˜C is
said to be a g-asymptote of C if ˜C is a curve of the smallest possible degree that approaches
C at infinity (see [1, 2]).

Based on these preliminaries, Section 3 presents the algorithms and pseudocodes which
construct the generalized asymptotes from plane algebraic curves given by their implicit
and parametric equations, considering the infinity branches that converge to the given curve.
These pseudocodes have been illustrated with examples that show the methods developed
in this work, as well as the implementation programmed with the algebra system Maple,
which has been included in Appendix B.

Section 4 analyzes the performance of the previous algorithms based on the computation
of the Puiseux series. For this purpose, we study several cases to observe the system overload,
when Algorithms 3.1 or 3.2 are executed.

In Section 5, a comparative analysis of the previous algorithms is carried out. For this
purpose, some properties of the input curves are considered as well as their results when
constructing the respective g-asymptotes of the input curves. Then, we analyze the efficiency
of each algorithm and we establish a comparative criteria regarding the time of use of the
CPU from the simplest curve to the curve with the highest complexity.

2 Generalized asymptotes of algebraic curves

This section starts by introducing the notions of infinity branches, convergent branches and
approaching curves, derived from previous research (see [1, 2, 6, 7]).

Let C be an irreducible plane algebraic curve defined in the affine space by an irreducible
polynomial f (x, y) ∈ R[x, y]. Taking into account the practical implications of the problem
considered in this paper, the curve is assumed to be real and therefore, the implicit polynomial
is defined over R. Let C ∗ be its corresponding projective curve defined by the homogeneous
polynomial

F(x, y, z) = fd(x, y) + z fd−1(x, y) + z2 fd−2(x, y) + . . . + zd f0(x, y) ∈ R[x, y, z],
with d := deg(C ), and fi (x, y) the homogeneous form of degree i , for i = 0, . . . , d . Let
(1 : m : 0), m ∈ C be the infinity points of C ∗ (if (0 : 1 : 0) is an infinity point of the input
curve, a linear change of coordinates must be applied).

Under these conditions and in order to get the infinity branches of C , we consider the
curve defined by the polynomial g(y, z) = F(1, y, z), and we compute the series expansion
for the solutions of g(y, z) = 0 around z = 0. There exist exactly degy(g) solutions given
by different Puiseux series ϕi , i = 1 . . . degy(g). In the following, we denote as

ϕ(t) = m + a1t
N1/N + a2t

N2/N + a3t
N3/N + · · · ∈ C � t �, ai �= 0, ∀i ∈ N,

where C � t � is the field of formal Puiseux series, Ni ∈ N, i = 1, . . ., and 0 < N1 <

N2 < · · · one of these series. Therefore, g(ϕ(t), t) = 0 in a neighborhood of t = 0 where
ϕ(t) converges.

From these Puiseux series, we get the following definition of infinity branch of C (see
[2]).
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Definition 1 An infinity branch of a plane algebraic curve C , at the infinity point P =
(1 : m : 0), m ∈ C, is the set B = {(z, r(z)) ∈ C

2 : z ∈ C, ‖z‖ > M}, where
r(z) = zϕi (z−1) = mz+a1z1−N1/N +a2z1−N2/N +a3z1−N3/N +· · · and M is some natural
number.

In the following, we introduce the notions of convergent branches and approaching curves.
Intuitively speaking, two infinity branches converge if they get closer as they tend to infinity.
This concept allows us to analyze whether two curves approach each other.

Definition 2 Given two branches, B = {(z, r(z)) ∈ C
2 : z ∈ C, ‖z‖ > M} and

B = {(z, r(z)) ∈ C
2 : z ∈ C, ‖z‖ > M}, we say that they are convergent if

limz→∞(r(z) − r(z)) = 0.

Definition 3 Let C be a plane algebraic curve with an infinity branch B. We say that a
curve C approaches C at the branch B, if limz→∞ d((z, r(z)),C ) = 0, where d(p,C ) =
min{d(p, q) : q ∈ C }, and d(p, q) denotes the Euclidean distance between the points p and
q .

In [2], we show that if C is a plane curve with an infinity branch B, then a plane curve
C approaches C into B, if and only if C has an infinity branch B such that B and B are
convergent.

Given a plane curve C and an infinity branch B, we have described how C can be
approached at B by a second curve C . Let us suppose that deg(C ) < deg(C ). Then, one may
say that C degenerates, since it behaves at infinity as a curve of smaller degree. As we said
in the introduction, a hyperbola is a curve of degree 2 that has two real asymptotes, which
implies that the hyperbola degenerates, at infinity, to two lines (see Fig. 1). However, as we
said, the asymptotic behavior of a parabola is different, since it cannot be approached at infin-
ity by any line (see Fig. 2). This motivates the definitions of perfect curve and generalized
asymptote (see [1]).

Definition 4 A curve of degree d is a perfect curve if it cannot be approached by any curve
of degree less than d .

A curve C that is not perfect can be approached by other curves of smaller degree. If these
curves are perfect, we call them g-asymptotes, and we represent it as ˜C . More precisely, we
have the following definition.

Definition 5 Let C be a plane algebraic curve with an infinity branch B. A curve, ˜C , is a
g-asymptote or generalized asymptote of C in B, if it is a perfect curve that approaches C in
B.

We emphasize that the notion of g-asymptote is similar to the classical concept of asymp-
tote. The difference is that a g-asymptote is not necessarily a line, but a perfect curve.Actually,
it is a generalization, since every line is a perfect curve. Throughout the paper, we sometimes
refer to g-asymptote simply as asymptote

3 Algorithms for computing generalized asymptotes

In this section, we describe two algorithms that construct the parametrizations of the general-
ized asymptotes of the infinity branches of a curveC ; both are described by the corresponding
pseudocode.
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First, in Section 3.1, we introduce Algorithm 3.1 which computes the g-asymptotes of a
curve given by its implicit equation. In Section 3.2, we present a new algorithm, Algorithm
3.2, which is applied to a parametrically given curve.

3.1 Algorithm for curves implicitly defined

Let C be a curve with a branch

B = {(z, r(z)) ∈ C
2 : z ∈ C, ‖z‖ > M},

where r(z) = mz+a1z1−N1/N +· · ·+akz1−Nk/N +ak+1z1−Nk+1/N +· · · ,with coefficients
a1, a2, . . . ∈ C \ {0}, m ∈ C, N , N1, N2 . . . ∈ N, and 0 < N1 < N2 < · · · . Suppose that
Nk ≤ N < Nk+1, i.e., the monomials a j z1−N j /N with j ≥ k + 1 have a negative exponent.
In the following, we write

r(z) = mz + a1z
1−n1/n + · · · + akz

1−nk/n + ak+1z
1−Nk+1/N + · · ·

with gcd(N , N1, . . . , Nk) = b,N j = n jb, N = nb, j = 1, . . . , k. That is, we simplify the
exponents such that gcd(n, n1, . . . , nk) = 1. Note that 0 < n1 < n2 < · · · , nk ≤ n, and
N < nk+1, i.e. the monomials a j z1−N j /N with j ≥ k + 1 have negative exponents. The
monomials with non-negative exponent of r(z) are

r̃(z) = mz + a1z
1−n1/n + · · · + akz

1−nk/n . (1)

Applying the change z = tn , we obtain a proper (or birational) parametrization of a curve ˜C

˜P(t) = (tn,mtn + a1t
n−n1 + · · · + akt

n−nk ) ∈ C[t]2, (2)

where n, n1, . . . , nk ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 < · · · < nk , which is an
asymptote of C (see Lemma 3 and Theorem 2 [1]).

The notion of proper parametrization can be revised in [15] (see Section 4.1 in Chapter
4). We remind that the question of determining a birational (proper) reparametrization of
an input non-birational parametrization has been analyzed by several authors and there are
effective answers to approach it (see Section 4.2 in [15]).

Algorithm 3.1 computes the parametrizations of the asymptotes of the infinity branches
of the curve C which is implicitly defined. In Example 1, we illustrate this algorithm, which
has been implemented with the mathematical software Maple (see Appendix B).

Algorithm 1 Computation of asymptotes of an implicit curve C .
Require: C , plane algebraic curve defined by f (x, y) ∈ R[x, y]
Ensure: ˜Ci , i = 1, . . . , k /* Asymptotes of C */
1: F(x, y, z) ← ProjectiveCurve(C )

2: P1, . . . , Pm ← I n f ini t yPoints(F(x, y, 0))
3: g(y, z) ← F(1, y, z)
4: φ1(z), . . . , φk (z) ← PuiseuxSeries(g(y, z), z = 0, y)
5: for all φi of Pj do
6: ri (z) ← zφi (z

−1)
7: Bi ← {(z, ri (z)) ∈ C

2 : z ∈ C, ‖z‖ > Mi } /* Definition 1 */

8: r̃i (z) ← mi z + a1,i z
1−n1,i /ni + · · · + aki , j z

1−nki ,i /ni /* Equation 1 */
9: ni ← deg(Bi )
10: ˜Pi (t) ← (tni , r̃i (t

ni )) ∈ C[t]2 /* Equation 2 */
11: end for
12: ˜Ci ← ˜Pi (t) ∈ C[t]2, i = 1, . . . , k
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We remark that the routine ProjectiveCurve(C ) determines the projective curve asso-
ciated to the affine curve C which is defined by the homogenization, F(x, y, z), of the
polynomial f (x, y) that defines C . The routine I n f ini t yPoints(F(x, y, 0)) returns the
infinity points of the projective curve. The routine PuiseuxSeries(g(y, z), z = 0, y) com-
putes the Puiseux Series of the polynomial g(y, z) around z = 0.

Example 1 LetC be a curve of degree d = 6, defined by the irreducible polynomial f (x, y) =
y6 + 2y5x + 3x2 + 4xy ∈ R[x, y]. The points of infinity are P1 = (1 : 0 : 0) and
P2 = (1 : −2 : 0) .

Iteration 1: Let P1 = (1 : 0 : 0).
We have the branch B1 = {(z, r1(z)) ∈ C

2 : z ∈ C, ‖z‖ > M1}, with
r1(z) = −481/5

2
z− −721/5

12
z−3 + 1081/5

18
z−7 − −1621/513

432
z−11 + . . . .

a) r̃1(z) = −481/5

2
z. b) ˜P1(t) =

(

t5,−481/5

2
t

)

.

Iteration 2: Let P2 = (1 : −2 : 0).
We have the branch B2 = {(z, r2(z)) ∈ C

2 : z ∈ C, ‖z‖ > M2} with
r2(z) = −2z − 5

32
z−3 + . . . .

a) r̃2(z) = −2z. b) ˜P2(t) = (t,−2t).

Figure 4 plots the curve C and its generalized asymptotes ˜C1 and ˜C2, defined by the
parametrizations ˜P1(t) and ˜P2(t), respectively.

Fig. 4 Infinity asymptotes ˜C1 (beige) and ˜C2 (pink) of the curve C .
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3.2 Algorithm for curves parametrically defined

Throughout this paper so far, we have dealt with algebraic plane curves implicitly defined.
Now, we present a method to compute infinity branches and g-asymptotes of a plane curve
from their parametric representation, without implicitizing (see [3, Sec.5]). This method also
involves the computation of Puiseux series and infinity branches (see [4]).

Let C be a plane curve defined by the parametrization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), (3)

where gcd(pi1, pi2) = 1, i = 1, 2.
If C ∗ represents the projective curve associated to C , we have that a parametrization of

C ∗ is given by P∗(s) = (p1(s) : p2(s) : 1) or, equivalently,

P∗(s) =
(

1 : p2(s)

p1(s)
: 1

p1(s)

)

. (4)

We assume that we have prepared the input curve C through a suitable linear change of
coordinates (if necessary), such that (0 : 1 : 0) is not a point at infinity of C ∗.

In order to compute the g-asymptotes ofC , first we need to determine the infinity branches
of C . That is, the sets

B = {(z, r(z)) ∈ C
2 : z ∈ C, ‖z‖ > M}, where r(z) = zϕ(z−1).

For this purpose, taking into account Definition 1, we have that

f (z, r(z)) = F(1 : ϕ(z−1) : z−1) = F(1 : ϕ(t) : t) = 0

around t = 0, where t = z−1 and F is the polynomial defining implicitly C ∗. Observe that,
in this section, we are given the parametrization P∗(s) of C ∗ and then,

F(P∗(s)) = F (1 : p2(s)/p1(s) : 1/p1(s)) = 0.

Thus, intuitively speaking, in order to compute the infinity branches of C , and in particular
the series ϕ, one needs to rewrite the parametrizationP∗(s) in the form (1 : ϕ(t) : t) around
t = 0. For this purpose, the idea is to look for a value of the parameter s, say �(t) ∈ C � t �,
such that P∗(�(t)) = (1 : ϕ(t) : t) around t = 0.

Hence, from the above reasoning, we deduce that first, we have to consider the equation

1/p1(s) = t, or equivalently, p12(s) − tp11(s) = 0 (5)

and we solve it in the variable s around t = 0. From Puiseux’s Theorem, there exist solutions
�1(t), �2(t), . . . , �k(t) ∈ C � t � such that, p12(�i (t)) − tp11(�i (t)) = 0, i ∈ {1, . . . , k},
in a neighborhood of t = 0.

Thus, for each i ∈ {1, . . . , k}, there exists Mi ∈ R
+ such that the points (1 : ϕi (t) : t) or

equivalently, the points (t−1 : t−1ϕi (t) : 1), where

ϕi (t) = p2(�i (t))

p1(�i (t))
, (6)

are in C ∗ for ‖t‖ < Mi (note that P∗(�(t)) ∈ C ∗, since P∗(�(t)) is a parametrization of
C ∗). Observe that ϕi (t) is a Puiseux series, since p2(�i (t)) and p1(�i (t)) can be written as
Puiseux series and C � t � is a field.
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Finally, we set z = t−1. Then, we have that the points (z, ri (z)), where ri (z) = zϕi (z−1)

are in C for ‖z‖ > M−1
i . Hence, the infinity branches of C are the sets Bi = {(z, ri (z)) ∈

C
3 : z ∈ C, ‖z‖ > M−1

i }, i ∈ {1, . . . , k}.

Remark 1 Note that the series �i (t) satisfies that p1 (�i (t)) t = 1, for i ∈ {1, . . . , k}. Then,
from equality (6), we have that

ϕi (t) = p2(�i (t))

p1(�i (t))
= p2(�i (t))t,

and
ri (z) = zϕi (z

−1) = p2(�i (z
−1)).

Once we have the infinity branches, we can compute a g-asymptote for each of them by
simply removing the monomials with negative exponent from ri (z).

The following algorithm computes the infinity branches of a given parametric curve, and it
provides a g-asymptote for each of the infinity branch. Similarly, as in Algorithm 3.1, the rou-
tine ProjectiveCurve(C ) determines the projective curve associated to the affine curve C
which is defined by the homogenization, F(x, y, z), of the polynomial f (x, y) that definesC .
The routine I n f ini t yPoints(F(x, y, 0)) returns the infinity points of the projective curve.
The routinePuiseuxSeries(g(y, z), z = 0, y) computes the Puiseux Series of the polynomial
g(y, z) around z = 0. Furthermore, the routine ProjectiveParametri zation(P(s)) deter-
mines the projective curve associated to the curve C which is defined by the parametrization
P(s).

Algorithm 2 Computation of asymptotes of a parametric curve C .
Require: C , plane algebraic curve defined by

P(s) ← (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), /* Equation 3 */
gcd(pi1(s), pi2(s)) = 1, i = 1, 2

Ensure: ˜Ci , i = 1, . . . , k /* Asymptotes of C */
1: P∗(s) ← ProjectiveParametri zation(P(s)) /* Equation 4 */
2: P1, . . . Pm ← I n f ini t yPoints(P∗(s))
3: �1(t), . . . , �k (t) ← PuiseuxSeries (p12(s) − tp11(s) = 0, t = 0, s)/* Eq. 5 */
4: for all �1(t) of Pj do
5: ri (z) ← p2(�i (z

−1)) ∈ C � t �, z ← t−1 /* Remark 1 */
6: Bi ← {(z, ri (z)) ∈ C

2 : z ∈ C, ‖z‖ > Mi } /* Definition 1 */
7: ni ← degree(Bi )

8: r̃i (z) ← mi z + a1,i z
1−n1,i /ni + · · · + aki , j z

1−nki ,i /ni /* Equation 1 */

9: ˜Pi (t) ← (tni , r̃i (t
ni )) ∈ C[t]2, i = 1, . . . , k /* Equation 2 */ X

10: end for
11: ˜Ci ← ˜Pi (t) ∈ C[t]2, i = 1, . . . , k

It should be recalled that the above algorithm has been implemented in Maple (see
Appendix B). We illustrate it by the following example.

Example 2 Let C be the plane curve defined by

P(s) =
(

s2 + 5

s(s − 1)(s − 2)2
,
s2 + 3s + 1

s(s − 2)

)

∈ R(s)2.
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WeapplyAlgorithm3.2 to compute the asymptotes ofC . For this purpose,we start computing
the Puiseux solutions of the equation p12(s) − tp11(s) = 0 around t = 0. We get:

�1(t) = −3475

256
t3 + 25

8
t2 − 5

4
t + . . . .

�2(t) = 375800710285
√
2

254803968
t7/2 − 233069

512
t3 + 32580935

√
2

442368
t5/2 − 409

16
t2+

+1909
√
2

384
t3/2 − 19

8
t + . . . .

�3(t) = 924t3 + 48t2 + 6t + 1 + . . . .

Iteration 1: Let �1(t) = −3475

256
t3 + 25

8
t2 − 5

4
t + . . . .

r1(z) = 2

5
z − 3

4
− 1

8
z−1 − 5335

256
z−2 + . . .

a) r̃1(z) = 2

5
z − 3

4
. b) ˜P1(t) =

(

t,
2

5
t − 3

4

)

.

Iteration 2:

Let �2(t) = −233069

512
t3+ 32580935

√
2

442368
t5/2− 409

16
t2+ 1909

√
2

384
t3/2− 19

8
t+

. . . .

r2(z) = 11
√
2
√
z

6
+ 263

72
− 12409

√
2

3456
√
z

+ 241

16z
− 155680499

√
2

3981312z3/2
+

116201

512z2
+ . . .

a) r̃2(z)= 11
√
2
√
z

6
+263

72
. b) ˜P2(t) =

(

t2,
11

√
2t

6
+ 263

72

)

.

Iteration 3: Let �3(t) = 924t3 + 48t2 + 6t + 1 + . . . .

r3(z) = −5 − 30z−1 − 456z−2 − 9156z−3 − . . . .

a) r̃3(z) = −5. b) ˜P3(t) = (t, −5) .

The asymptotes are the plane curves ˜C1, ˜C2 and ˜C3 defined by the proper rational
parametrizations, ˜P1(t), ˜P2(t) and ˜P3(t) (see Fig. 5).

4 Symbolic algorithms for the computation of generalized asymptotes

This section discusses the performance of the previous algorithms, which construct the g-
asymptotes from an irreducible plane algebraic curve. We recall that the first algorithm
calculates the g-asymptotes of a curve for its implicit expression, considering the infinity
branches that converge to the given curve. The second method deals with the case of para-
metrically defined curves. Both algorithms are based on the computation of the Puiseux
series.

For this purpose, fourteen study cases have been selected as input for the implementation of
Algorithms 3.1 and 3.2. The execution has allowed us to observe the time and memory usage
information for executing a process, obtaining the system overload, and the computational
performance.
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Fig. 5 Infinity asymptotes ˜C1 (beige), ˜C2 (pink) and ˜C3 (grey) of the curve C .

4.1 Analysis of the computational performance

This subsection analyzes the computational performance of the algorithms defined in the
previous section, when the procedures implemented in the Appendix B are executed. Thus,
the usage of CPU and memory, as well as the real time that the process remains in the system,
are evaluated.

In order to measure the efficiency of the algorithms, one hundred input parametric curves
were randomly generated. For this purpose, we use the command randpoly(vars,
opts) of Maple to generate random polynomials, pi , qi , i = 1, 2 in vars (in this case
in the variable t). These polynomials will be used for defining the rational parametrization
P(t) = (p1(t)/q1(t), p2(t)/q2(t)).

We remind that once we have the input parametrization, we consider a change of variables
so that the degree of the denominator is equal or greater than the degree of the numerator
and (0 : 1 : 0) is not an infinity point. We recall that we can compute the implicit polynomial
defining these curves by applying for instance resultants (see [15]). Under these conditions,
seven classes were created according to the following properties:

1. Degree of the curve.
2. Number of monomials.

Subsequently, two curves from each group were randomly chosen, obtaining a set of
fourteen curveswith different characterizations (seeAppendixA). All these curves determine
the study cases to analyze the computational performance of the algorithms presented in
Section 3, which have been programmed with the algebra system Maple, according to the
implementation presented in Appendix B.

Based on all the above considerations, an analysis of the computational performance of
each one of the algorithms presented has been carried out. Thus, the hardware overload
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degree of the machine resources (CPU and memory) has been computed, estimating the time
of use of the microprocessor and the amount of memory used for the execution of each one
of the procedures defined in Appendix B. In addition, the value of real time invested by the
machine has been calculated for both methods presented in Section 3.

To quantify these results, it has been necessary to use the tools provided by CodeTools
package of Maple. Thus, it is important to clarify that the command CodeTools:-Usage
differentiates between the CPU time and the execution real time of a process. Thus, CPU
time is the amount of time used to execute a procedure. On the other hand, the real execution
time calculates the period during which the process remains in the system, from the time
it is launched until it is finished, that is, the entire amount of time in which it is using the
hardware resources of the system: CPU, memory, input/output, and so on.

Note that on mono-processor systems, the total CPU usage time will always be less than
the real execution time. However, on multiprocessor systems, threads could be spread across
multiple cores or CPUs. In this case, the sum of all the usage times of the multiple cores, or
processors, is considered as the total CPU usage time and thus can account for the case that
it is greater than the real execution time of the process.

To calculate the precise overload degree, each algorithm under analysis has been iterated
one hundred times for each one of the study curves. Consequently, it has been possible to
record reliable results on the system requirements, necessary to calculate the asymptotes of a
given curve. The comparative criteria are based on the different properties of the input curves,
such as the degree and the number of monomials, as well as the following results obtained
after each execution:

1. Number of infinity branches.
2. Highest degree of the analyzed asymptotes.
3. Number of real asymptotes.
4. Number of complex asymptotes.

It is important to note that Algorithms 3.1 and 3.2 compute the infinity branches of the
input curve by Puiseux series expansion, using the command algcurves:-puiseux
from the algebra software Maple, with the desired accuracy fixed to ten for the calculation
of these Puiseux series expansions.

From a hardware point of view, the processes have been executed by a 2018MacBook Pro,
with an Intel Core i5 processor, with four cores 2.3 GHz, 16 GiB of 2133 MHz LPDDR3
memory, Intel Iris graphics card Plus 1,536 MiB Graphics 655, and 500 GiB SSD. The
computer algebra software Maple 2021.1 has been run on the operating system macOS
Monterrey, version 12.3.1.

The following subsections present the analysis of the results obtained after the application
of the methods developed for the calculation of the asymptotes of plane algebraic curves,
each of them with a different characterization. To facilitate the reading of some expressions,
certain results have been represented in floating-point.

4.1.1 Computation of asymptotes of implicit algebraic curves

This subsection presents the results of running Algorithm 3.1 one hundred times, with accu-
racy equal to ten for the Puiseux series expansion, on the fourteen curves in the Appendix A.

Table 1 shows the properties of the input curves and their asymptotes. The curve with
the highest degree and the highest number of monomials is C3. One may check that the
asymptotes of this curve have degrees 1 and 3, much smaller than the degree of the given
input curve, whose value is 17.
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Table 1 Properties of the implicit curves and their asymptotes

Id Deg. # Monom. # Branch MaxDeg # Real Asymp. # Complex Asymp.

C1 7 21 5 2 3 2

C2 7 21 3 3 3 –

C3 17 114 5 3 1 4

C4 3 8 2 2 2 –

C5 6 25 3 4 3 –

C6 4 11 3 2 3 –

C7 4 12 2 3 2 –

C8 5 13 2 3 2 –

C9 5 15 2 2 2 –

C10 7 19 3 3 1 2

C11 15 58 4 5 2 2

C12 13 31 7 2 1 6

C13 9 22 5 2 3 2

C14 5 15 2 2 2 –

More precisely, the parametric equations of the convergent asymptotes with the curve C3

are:

◦ ˜P3,1(t) :=
(

t4,−731760468 . . . 70022160

(2941595 + 1044237α)9
− 31007116 . . . 24025488

(2941595 + 1044237α)9
α

)

, where

m(α) = 0 and m(t) := t2 + 4 t + 5. We have collected the points whose coordinates
depend algebraically on all the conjugate roots of a same irreducible polynomial,
m(t) ∈ R[t] (see the notion of conjugate points in [15]). Thus, from ˜P3,1, we obtain
two rational parametrizations given by:

• ˜P3,1a(t) := (t4,−2 + i) which can be properly reparametrized as ˜M3,1(t) :=
(t,−2 + i) (see [13]).

• ˜P3,1b(t) := (t4,−2 − i) which can be reparametrized as ˜M3,1(t) := (t,−2 − i)
(see [13]).

Note that ˜P3,1a(t) and ˜P3,1b(t) are the parametrizations of two complex asymptotes
˜C3,1a and ˜C3,1b.

◦ ˜P3,2(t) :=
(

t3,
3175 . . . 113

3√
1032 3

√

(−1915 . . . 880 α + 7311 . . . 759)2 αt

1299560599332066084366131105651465209158301 . . . 664
−

−1254510 . . . 2965
3
√
1032 3

√

(−1915307 . . . 0880α + 7311410 . . . 6759)2t

216593433222011014061021850941910868193050304238221470944
−

−13690955225473280 3
√
103 3

√−1915307 . . . 70880α + 7311410 . . . 26759 α t2

26403789750400376029519659801
+

+8520846961643513 3
√
103 3

√−1915307 . . . 970880α + 7311410 . . . 926759 t2

17602526500266917353013106534
+

+αt3 − 19425159575 α

15549038208
+ 12229619291

2591506368

)

, where m(α) = 0 and m(t) := 209 t2 −
268 t + 492. From ˜P3,2, we obtain two rational parametrizations that define two
complex asymptotes, ˜C3,2a and ˜C3,2b.
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◦ ˜P3,3(t) :=
(

t3, (1/8 − 1/8
√
3 i) t − 1/24

)

has complex coefficients, but it is impor-

tant to highlight that this parametrization defines a real asymptote ˜C3,3 implicitly
defined by the polynomial

˜f3,3(x, y) := −13824 y3 − 1728 y2 − 216 x − 72 y − 1 ∈ R[x, y].
In order to compute the implicit polynomial, we use the resultant method presented in
[15].

The curve C4 is the only one with the lowest degree and the smaller number of mono-
mials. C4 has two infinity branches and the highest degree asymptote has degree 2 and the
parametrizations are

◦ ˜P4,1(t) :=
(

t2, 11/6
√
2 t + 65/72

)

.

◦ ˜P4,2(t) := (t,−2/5t − 5/4).

Table 2 shows that the curve C3 requires the longest execution time and generates the
highest overhead in the microprocessor and memory when Algorithm 3.1 is run.

It is important to note that we should analyze the results obtained for the input curves
C12 and C13, with degrees 13 and 9, respectively. Algorithm 3.1 has presented the highest
performance, and the obtained asymptotes have degree 2.

The curve C12 has six complex asymptotes and one real linear asymptote. More precisely,
the parametrizations defining the asymptotes are

◦ ˜P12,1(t) :=
(

t2,
965084862034 α2 + 1657570956128 α − 10958170857228

7490349α7
√

α
t+

+15127222542616 α2 + 5513812351100 α + 62931415515000

7490349α10
√

α
t−

−326894725 + 516120472α + 64717862α2 − 83621175α3 + 27982896α4

2496783000
−

−1273427α5

416130500

)

,

Table 2 Hardware resources
required by Algorithm 3.1 for the
case of implicit curves

Id. CPU time Real time Memory used

C1 26.17 ms 25.06 ms 1978.84 KiB

C2 66.13 ms 31.56 ms 1386.33 KiB

C3 362.72 ms 283.47 ms 10806.75 KiB

C4 14.86 ms 16.88 ms 810.67 KiB

C5 168.47 ms 124.77 ms 3758.74 KiB

C6 8.78 ms 8.09 ms 695.43 KiB

C7 27.70 ms 39.57 ms 1495.48 KiB

C8 76.90 ms 40.75 ms 1924.63 KiB

C9 86.23 ms 45.01 ms 1755.44 KiB

C10 75.12 ms 51.87 ms 1333.29 KiB

C11 119.21 ms 82.42 ms 3706.32 KiB

C12 8.65 ms 7.93 ms 782.95 KiB

C13 7.13 ms 6.88 ms 602.33 KiB

C14 76.67 ms 52.47 ms 1875.11 KiB
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where m(α) = 0 and m(t) := 3 t6 + 24 t5 − 172 t3 + 318 t2+ +300 t + 1250. .
◦ ˜P12,2(t) := (t, 1/2) that is a real parametrization of the asymptote ˜C12,2.

Finally, the curve C13 has one real linear asymptote and four complex asymptotes. The
parametric equations of these asymptotes are

◦ ˜P13,1(t) := (t, 1).

◦ ˜P13,2(t) :=
(

t2,
3905 . . . 16α3 + 2835 . . . 00 α2 + 30317 . . . 16α + 7637 . . . 12

α9
√

α
t+

+−112 + 8α − 98α2 + 3α3

384α

)

,

wherem(α) = 0 andm(t) := t4 −32 t3 −16 t2 −256 t +64. It is easy to check that two
of these asymptotes are complex and the other two are real (we may compute the implicit
polynomial defined by ˜P13,2 by using for instance the resultant method presented in
[15]).

4.1.2 Computation of asymptotes of parametric algebraic curves

This subsection presents the results obtained by executing the methods described in the
Appendix B, with an accuracy equal to ten for the Puiseux series expansion, for the case of
the parametric curves defined in the Appendix A defined according to Equation 7

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), (7)

gcd(pi1(s), pi2(s)) = 1, i = 1, 2.

Table 3 shows that, for the case of curves expressed in parametric form, Algorithm 3.2
presents a lower efficiency than Algorithm 3.1. In most cases, this algorithm produces a
higher system overhead and requires more hardware resources. Thus, it can be seen that
Algorithm 3.2 generates the highest real execution times, requiring a greater time of use of
the microprocessor and a bigger memory capacity for all the study cases.

Thus, the greatest hardware resource requirements correspond to the calculation of the
asymptotes of the curves C3 and C11, where the algorithm has needed more than 24 hours of
CPU usage and more than 100 GiB of memory.

Also, the execution of the algorithm with the curve C13 requires 17 seconds of real time,
23 seconds of microprocessor usage time, and 2.55 GiB of memory; which contrasts sharply
with applying Algorithm 3.1 to the implicit curve C13, with a real execution time of 6.88 ms.,
7.13 ms. of CPU usage and 602.33 KiB of memory.

On the other hand, it is interesting to note that the application of Algorithm 3.2 for the
calculation of the asymptotes of the curve C4 presents the least degree of overload, even
compared to the application of Algorithm 3.1 to the case of the implicit curve C4. However,
if these results are compared with those of Table 2, it is observed that as the complexity of the
curve increases, the CPU usage time, the real execution time and the memory needs increase
exponentially. In the next section, we compare both algorithms in depth.

5 Results and discussion

In this section, a comparative analysis of Algorithms 3.1 and 3.2 is carried out. For this
purpose, some properties of the input curves are considered, and the results obtained when
constructing the respective asymptotes (see Appendix A).
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Table 3 Hardware resources used
by Algorithm 3.2 for the case of
parametric curves

Id. CPU time Real time Memory used

C1 16.13 ms 20.38 ms 2014.46 KiB

C2 131.45 ms 117.78 ms 17305.41 KiB

C3 > 108 ms > 108 ms > 108 KiB

C4 3.98 ms 3.60 ms 276.03 KiB

C5 114.12 ms 63.74 ms 10630.93 KiB

C6 2.57 ms 2.69 ms 288.92 KiB

C7 25.10 ms 26.58 ms 3193.96 KiB

C8 102.26 ms 72.53 ms 8634.75 KiB

C9 47.83 ms 25.44 ms 2832.28 KiB

C10 18496.00 ms 16028.00 ms 1795206.41 KiB

C11 > 108 ms > 108 ms > 108 KiB

C12 21726.00 ms 18961.00 ms 2720673.58 KiB

C13 22877.00 ms 17054.00 ms 2667242.91 KiB

C14 24.00 ms 24.00 ms 3668.91 KiB

Table 4 allows us to analyze the efficiency of each algorithm and establishes comparative
criteria regarding the time of use of the CPU from the simplest curve, that is, the one with
the lowest degree and the fewest number of monomials, C4, to the curve with the highest
complexity, C3. So, the best result for each algorithm is shown in bold.

Afterward, we illustrate in some figures the behavior of each algorithm from the values
obtained in Table 4. The graphics illustrate the time, in milliseconds, and memory, in KiB,
needed to execute Algorithm 3.1 (blue) and/or Algorithm 3.2 (pink) considering the input
and also the output parameters of the algebraic curves defined implicitly and parametrically.

Figure 6 shows that analyzing the case of Algorithm 3.1, the highest efficiency is observed
since it requires the least amount of CPU time. Likewise, it is shown that, for both algorithms,
the degree of the curve determines the microprocessor time needed to build the asymptotes.

On the other hand, it is remarkable that although Algorithm 3.2 behaves well with simple
curves (see curve C6 in Table 4), however, CPU usage time increases exponentially as the
degree of the input curve increases (see curves C3 and C11 in Table 4).

The following graphics represent the behavior of each algorithm depending on the param-
eter of the input curve (axis x), concerning the CPU usage time expressed in milliseconds or
memory capacity given in KiB, respectively (axis y). Note that this is a linear-logarithmic
plot, based on 10, in which the trend lines are exponential.

Figure 7 shows the behavior of the algorithms considering the number of monomials (axis
x). In this case, we can see that the number of monomials only influences Algorithm 3.1,
however, it does not seem to have a significant impact when Algorithm 3.2 is run. In order to
explain this point, we consider two aspects. The first one is that a curve parametrically defined
always can be expressed implicitly and in this case, the number of monomials defining the
implicit expression is, in general, higher. On the other side, the computation of the Puiseux
series has more overload when the number of monomials increases (see the implementa-
tions of Appendix B, specifically the execution of the command algcurves:-puiseux)
and also with the presence of conjugated roots. This point explains Fig. 10, which shows the
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Fig. 6 CPUt (left) versus memory (right) resources needed to run Algorithm 3.1 (blue) and Algorithm 3.2
(pink) depending on the curve degree.

machine requirements to construct the asymptotes of the input curves, depending on the num-
ber of the real or complex asymptotes (axis x). As we can see, the number of complex asymp-
totes clearly influences the performance of Algorithm 3.2, because executing the command

Fig. 7 CPUt (top) versus memory (bottom) resources needed to run Algorithm 3.1 (blue) and Algorithm 3.2
(pink) depending on the number of monomials.
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Fig. 8 CPUt (left) versus memory (right) resources needed to run Algorithm 3.1 (blue) and Algorithm 3.2
(pink) depending on the number of branches.

algcurves:-puiseux on such input parameters can generate conjugate roots in some
cases.

On the other hand, Fig. 8 shows the result for the number of branches (axis x). In this case,
it does not seem that the number of the branches determines the time of the microprocessor
or memory capacity for Algorithm 3.1, although it does influence the case of Algorithm 3.2.
Note that number of branches is the same that the number of Puiseux solutions and also, the
overload introduced by the command algcurves:-puiseux is higher for the parametric
case.

Figure 9 shows that the system performance depends on the highest asymptotes degree.
Both algorithms require more CPU time and memory capacity as the degree increases
(remember that trend lines are exponential).

Finally, we can state that Algorithm 3.1 presents the best computational performance,
requiring the least amount of hardware resources: CPU time, real execution time, and capacity
of memory. Likewise, it has been shown that for both algorithms, the degree of the curve is
the parameter that determines the overload and amount of system resources needed to build
the asymptotes.

Fig. 9 CPUt (left) versus memory (right) resources needed to run Algorithm 3.1 (blue) and Algorithm 3.2
(pink) depending on the highest asymptotes degree.
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Fig. 10 CPUt (top) versusmemory (bottom) resources needed to run Algorithm 3.1 (blue) and Algorithm 3.2
(pink) depending on the number of the real or complex asymptotes.

It is note worthy, that Algorithm 3.2 has a good behavior with simple curves (see values
for the curves C4 and C6 in Table 4). However, it is a very “heavy” algorithmwhen the degree
of the input curve increases, in which case the hardware needs to grow up exponentially (see
the curves C3 and C11 in Table 4).

Also, we have observed that the highest overhead occurs in the systemwhen the parameter
accuracy is increased (equal to 3 − 5 − 7 − 10), although this improves accuracy, it also
increases the overhead introduced by computing the Puiseux series.

Appendix A: Definition of parametric curves

• P1(s) :=
(

s2 + 1
(

s3 − s + 1
) (

s2 − 1
)2 ,

2s3 + 5s2 + 1

s5 − 2s3 + s2 + s − 1

)

.

• P2(s) :=
(

(

10s3 − 1
)

s2
(

s2 − 1
)2

(s − 2)3
,

s3 + s2 + 3

(s − 2)2
(

s2 − 1
)

)

.

• P3(s) :=
(

s8 + 2s4 − s2 − s − 1
(

s2 + 1
)4 (

s2 + 2
)3 s3

,
s7 + s6 − s5 + s2 + 1

(

s2 + 2
)3 s

)

.
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• P4(s) :=
(

5 + s2

s (s − 2)2
,
s2 + 3s + 1

s (s − 2)

)

.

• P5(s) :=
(

s4 − s3 + 5s2 + 2s + 1

s4 (s − 1) (s − 2)
,
2s4 − 3s3 − 2s2 − 26s − 18

s4 (s − 1) (s − 2)

)

.

• P6(s) :=
(

s3 + 2s − 1
(

s2 − 1
)

(s − 2)2
,

2s3 + s2 + 1

(s − 2)
(

s2 − 1
)

)

.

• P7(s) :=
(

s3 + 2s − 1

(s − 1) (s − 2)3
,

2s3 + s2 + 1

(s − 2)2 (s − 1)

)

.

• P8(s) :=
(

4
(

s2 + 1
)

s2 (s − 2)3
,

(

2s2 + 2s − 1
)

s2 (s − 2)2

)

.

• P9(s) :=
(

2s2 − 9

s2 (s + 3)3
,
s2 + s − 1

s2

)

.

• P10(s) :=
(

s3 + 2s − 1
(

s2 + 1
)2

(s − 2)3
,

2s3 + s2 + 1

(s − 2)2
(

s2 + 1
)

)

.

• P11(s) :=
(

s5 + 2s2 + s − 1

s2 (s − 1)3
(

s2 + 1
)5

,
2s4 − s3 + s2 + 1
(

s2 + 1
)3

(s − 1)2

)

.

• P12(s) :=
(

s − 1

s
(

s6 + 2
)2 ,

s3 − s + 1
(

s6 + 2
)

)

.

• P13(s) :=
(

s − 1

(s + 1)
(

s4 − 2
)2 ,

s3

s4 − 2

)

.

• P14(s) :=
(

s2 + 10

s2 (s − 2)3
,
s2 + 1

s2

)

.

Appendix B: Implementations

The following page shows the procedures which implement Algorithms 3.1 and 3.2 with the
Maple algebra software.

Procedure AsymptotesImplicit (implicit_curve, accuracy)

Description

Computes the parametrizations of the g-asymptotes of an implicit curve, considering Puiseux
expansion up to a fixed accuracy.
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Procedure AsymptotesParametric (parametric_curve, accPuiseux)

DescriptionComputes the parametrizations of the g-asymptotes from a parametric
curve, considering Puiseux expansions up to a fixed accuracy.
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