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TEDP: An enhanced topology discovery service
for Software-Defined Networking

Elisa Rojas, Joaquin Alvarez-Horcajo, Isaias Martinez-Yelmo, Juan A. Carral and Jose M. Arco

Abstract—Currently, Software-Defined Networking (SDN)
platforms leverage Link Layer Discovery Protocol (LLDP) to
discover the underlying topology. However, LLDP is suboptimal
in terms of message load. In this paper, we present the Tree
Exploration Discovery Protocol (TEDP), proving that shortest
paths can be built at the same time that the topology information
is gathered, without extra messages compared to LLDP. We
also analyze two alternative implementations for TEDP and give
insights into some features that SDN platforms should ideally
provide for an efficient topology discovery service.

Index Terms—SDN, OpenFlow, topology discovery, LLDP.

I. INTRODUCTION

NETWORK services are one of the main benefits of the
thriving Software-Defined Networking (SDN) paradigm.

These services are reusable pieces of network functionality
that may be leveraged by any SDN application. Topology
discovery could be considered one of the central SDN services,
fuelled by the global perspective of the logically centralized
SDN controllers.

Currently, the de facto protocol to implement the topol-
ogy discovery service is the Link Layer Discovery Protocol
(LLDP) [1]. Nevertheless, LLDP only explores SDN devices,
hence the rest of the network (e.g. host or non-SDN devices)
should be indirectly detected. This task depends on the par-
ticular strategy of the SDN platform, usually based on traffic
snooping. Additionally, LLDP was designed for a distributed
approach and, as such, it is suboptimal for SDN in terms of
message overhead.

In this article, we present the Tree Exploration Discov-
ery Protocol (TEDP), which provides an enhanced topology
service without extra messages compared to LLDP. To this
purpose, we first examine the related work in Section II.
Secondly, we describe, implement and evaluate TEDP in
Sections III, IV and V, respectively. Finally, we conclude
the analysis in Section VI.

II. RELATED WORK

Discovery of network nodes is essential to provide the
global vision required in SDN for network management.
Therefore, some of the most popular SDN platforms (such
as Ryu [2], OpenDaylight (ODL) [3] and Open Network
Operating System (ONOS) [4] offer it as a service.
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Distributed approaches to discover forwarding devices are
the standardized LLDP [1] or the proprietary Cisco Discovery
Protocol (CDP). The main centralized –SDN-based– approach
is OpenFlow Discovery Protocol (OFDP) [5], which leverages
LLDP to perform topology discovery in OpenFlow-based
networks. Alternatively, other SDN platforms such as ODL use
the Broadcast Domain Discovery Protocol (BDDP) instead, a
variation of LLDP with a broadcast destination MAC address
–instead of multicast–. It allows discovering links in networks
where traditional and SDN switches coexist.

OFDP is not efficient, as it periodically sends a number of
packets directly proportional to the number of switches, which
limits scalability [6]. One of the first optimizations of OFDP
is OFDPv2 [7], which aims to decrease the SDN controller
load. To this purpose, it reduces the number of PACKET_OUT
messages sent from the SDN platform by modifying the LLDP
frames and preinstalling some rules in the network devices.
But this work was revisited in [8], proving that the number of
messages was actually higher, though still better than OFDP.

sOFTDP [6] relocates part of the discovery process in
the switch, which memorizes topology information to asyn-
chronously notify the controller based on specific events,
instead of periodically, hence saving messages. The same
asynchronous approach, but using ForCES [9] instead of
OpenFlow, is also applied in [10]. Finally SD-TDP [11] is
an optimization for OFDP in which network devices are
assigned a hierarchy, so that only a few of them are in charge
of obtaining the topological information, hence reducing the
number of messages exchanged. Both sOFTDP and SD-TDP
follow a hybrid –non-standard SDN– approach, a modification
where part of the SDN intelligence is delegated to the switch.

Reference [12] presents a deep survey on topology discov-
ery in SDN, describes potential threats, introduces a thematic
taxonomy and provides a list of challenges and directions.
TEDP is aligned with some of these directions, such as the
autonomous discovery by switches. SHTD [13] embraces the
same principle of delegating some services to the data plane,
but focused on its self-healing properties.

Finally, in the case of wireless networks, alternatives to
OFDP are described in [14], [15].

III. TREE EXPLORATION DISCOVERY PROTOCOL

So far, all the presented proposals are based on neigh-
bor discovery. Messages are exchanged point to point by
switches, and this information is then shared with the logically
centralized SDN controller. TEDP follows a totally different
approach: instead of sending and receiving discovery messages
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Fig. 1: TEDP behaviour example.

among neighbors, it simply sends a single probe frame that
floods the network and explores its whole topology at once.

From this idea, two challenges arise:
1) No-loop broadcasting: What is the path that this frame

should follow (if any) to reach all topology nodes? Can
loops be prevented?

2) Topology information conveyance: Should this frame
transport all the topology information encapsulated or
just incremental updates?

To accomplish the first challenge, TEDP leverages the
All-Path locking mechanism [16], which allows a frame to
explore the network without loops. The only requirement is
that network devices should be capable of processing the
TEDP frame, as with LLDP. Regarding the second challenge,
TEDP collects the topology information at each hop and sends
it to the SDN controller, in charge of aggregating it. Thus,
information gathering is performed exactly as in LLDP.

The difference between LLDP and TEDP, and an advantage
at the same time, is that TEDP exploration frames traverse the
network, hence fostering the opportunity to find optimal paths
between pairs of nodes without additional cost.

A. Protocol operation

The operation of TEDP is summarized in Fig. 1a, divided
into 4 steps. In step A, the SDN controller selects a target
switch to start the TEDP discovery procedure from (switch
s1). The TEDP frame (described afterwards) is sent as a
PACKET_OUT to the switch and later on forwarded through
all ports in step B. In step C, the incoming TEDP frame is sent
to the SDN controller by all the network devices that receive
it, i.e. all of its neighbors (s2, s3 and s4 in the figure).

Up to this point, the operation in TEDP is identical to
LLDP. The difference appears in step D (dotted arrows), which
defines that the TEDP frame must be forwarded to the rest of
the network, until it reaches every device in it (repeating step
C for every switch reached). As a consequence, the number of
messages exchanged in the data plane is the same as in LLDP,
but the process is triggered by a single switch in TEDP, thus
requiring fewer control plane messages than LLDP.

Additionally, TEDP is able to gather latency-based paths in
the procedure. To accomplish it, it saves the arrival port of

the first copy of the frame. This port indicates the minimum
latency path towards the source that originated the frame.
For example, Fig. 1b depicts a possible shortest path tree
created after applying the steps previously described. This tree
represents the shortest path per each switch in the network
towards switch s1, and viceversa. These paths are latency-
based and supplement other types of shortest paths that could
be calculated in the SDN controller after topology discovery,
based on diverse metrics, such as hop count.

As in LLDP, the discovery process in TEDP is repeated
periodically and it is topology-agnostic. If started at a differ-
ent switch every time, TEDP eventually discovers minimum
latency paths (tree) towards all switches. As only one tree
is obtained in each iteration, to guarantee it is the fastest at a
time, we should launch the process from that node on demand.
Furthermore, it might not be necessary to run TEDP from all
nodes in the network. For example, in networks where edge
and core nodes are clearly differentiated, it would be much
more advantageous to obtain updated trees for edge nodes, so
the periodicity could be arranged depending on the node type.
We can even ignore certain nodes and take advantage of the
remaining cycles to provide better trees for the rest.

B. Discovery frame
Figure 2 compares both the LLDP (particularly for the Ryu

controller implementation) and the TEDP frame. Both frames
share the header, namely: a multicast destination address,
the source address of the node that sends it and a specific
EtherType. Regarding the payload, both require the port
field to build the topology. The main difference is that, instead
of the Chassis ID in LLDP (which usually represents the
sender ID), TEDP conveys the MAC address to which the
paths are being created (i.e. the node that originated the frame).
The remaining payload fields are optional for TEDP, such as
TTL and End fields. However, TEDP could employ the LLDP
frame format if required.

IV. IMPLEMENTATION

As a proof of concept, we propose two different implemen-
tations of TEDP: a pure SDN service, where the implementa-
tion strictly resides at the controller (TEDP-S), and a hybrid
one, where the service is developed in a shared mode between
the SDN controller and the network switches (TEDP-H).

A. Service in the Ryu platform (TEDP-S)
Inspired by the practical implementation of LLDP in

Ryu [2], we developed TEDP as a service in this platform.
Similarly to LLDP, the code in TEDP is divided into three
main phases, as depicted in Fig. 3. The first phase occurs at
startup, where the controller obtains the relationship between
each switch’s ID and its MAC address. Then the controller
installs the TEDP behaviour (step A) with a FLOW_MOD that
produces a PACKET_IN sent to the controller (step B) and
floods the TEDP frame (step D), as shown in Fig. 3b. Finally,
Fig. 3c explains the procedure after receiving the PACKET_IN
event (step C), which updates the topology and the exploration
tree, and sends an additional FLOW_MOD to remove the flood
rule, previously installed to prevent loops.
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B. Hybrid approach based on ofsoftswitch13 (TEDP-H)

Differently from the previous implementation, in the hy-
brid one (based on a modification of the ofsoftswitch13
switch [17]), we delegate part of the controller intelligence to
the network devices. Therefore, the SDN switches do not need
an initial startup for the protocol, and can proceed to initiate
the process and learn from it by themselves. The discovery
is randomly started at one of the switches, which creates the
TEDP frame and broadcasts it (step A in Fig. 4a). Every other
switch in the network will notify its arrival to the controller
(via a PACKET_IN), update the source address of the frame
(with its own address), flood it and directly apply the lock
(based on the Root MAC field) to avoid loops (step B/D in
Fig. 4b). The PACKET_IN reports the captured information

c1 c2

a1 a2 a3 a4

t1 t2 t3 t4

Exploration tree Topology

Fig. 5: TEDP exploration results in a Clos topology

to the controller, as shown in Fig. 4c (step C). The main
difference with TEDP-S is that no FLOW_MOD is required this
time from the controller in step C, as switches are autonomous
enough to install their own forwarding rules.

V. EVALUATION AND DISCUSSION

The evaluation of the two implementations of TEDP was
performed in an infrastructure consisting of 2 hosts with
Intel(R) Core(TM) i7 processors and 24 GB of RAM, running
Ryu as SDN controller and Mininet. Each experiment was
repeated 10 times, to compute mean and standard deviation.

A. Topology and shortest-path discovery

To evaluate the concepts and the implementation of TEDP,
we first executed the protocol in diverse topologies to validate
the correctness of both topology and shortest path discovery.
These topologies include real world (see next section), data
center, mesh and random networks. As an example, Fig. 5
illustrates one TEDP execution in a Clos (data center) topology
composed of 10 switches (2 core, 4 aggregated and 4 top-of-
rack switches). The topology was explored completely, and the
shortest paths (as an exploration tree) were created correctly
towards the originating switch, t1 in Fig. 5.

B. Control and data message load

Secondly, we analyzed the expected (Table I) and exper-
imental (Table II) number of messages generated both for
LLDP and TEDP, as in [7]. To perform the comparison,
we leveraged the GÉANT pan-European network topology
(consisting of 44 nodes and 144 ports), as in SD-TDP [11].

TEDP and LLDP should require the same number of data
plane messages, one per link in each direction, i.e. one per port
(144 for GÉANT). Regarding the control plane, both protocols
require the same number of PACKET_IN messages, one per
port (144 as well), but a different number of PACKET_OUT
and FLOW_MOD messages also depending on TEDP mode.
TEDP-H does not need neither of them, as forwarding and
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Control PlanePacket # Packet_In Packet_Out Flow_Mod Data Plane

LLDP 144 144 44 144
TEDP-S 144 1 88 144
TEDP-H 144 0 0 144

TABLE I: Expected results of LLDP and TEDP

Control PlanePacket # Packet_In Packet_Out Flow_Mod Data Plane

x 145,00 160.06 44,00 160.06LLDP
σ 14,24 19,78 0,00 19,78
x 10,77K 1,00 10,82K –TEDP-S
σ 2,26K 0,00 2,26K –
x 170,63 1,00 227,44 170,63TEDP-S*
σ 2,31 0,00 1,71 2,31
x 146,00 0,00 0,00 146,13TEDP-H
σ 0,73 0,00 0,00 0,81

TABLE II: Experimental comparison of LLDP and TEDP [18]

rule installation are performed by switches alone. TEDP-S
requires one PACKET_OUT message to start the discovery and
two FLOW_MOD messages per switch to install the forwarding
rule and to remove it afterwards to prevent loops (88 for
GÉANT). Finally, LLDP requires one PACKET_OUT per port,
i.e. one per PACKET_IN received (144 for GÉANT), and one
FLOW_MOD message per switch to install the LLDP behavior
(44 for GÉANT). Table I summarizes these results.

Therefore, in both implementations and in comparison with
LLDP, TEDP not only reduces the total number of messages
exchanged, but it also adds the shortest path discovery func-
tionality.

The experimental results of TEDP-H are extremely close to
the expected ones (as shown in Table II). However, we found
out a problem in the TEDP-S implementation: The locking
mechanism (to stop flooding frames and prevent loops) is
installed via a FLOW_MOD after receiving the first copy of the
frame (as described in Fig. 3c), which is not fast enough to stop
the frame copies arriving in the meantime. Thus, these later
copies generate new PACKET_IN (and hence FLOW_MOD),
flooded as well, creating a temporary explosion of frames that
eventually ceases when the first FLOW_MOD arrives.

This behavior is due to the limitations of the OpenFlow
protocol, which only allows the installation of the lock via
the combination of a PACKET_IN plus a FLOW_MOD. We
envision two modifications of OpenFlow that could solve this
issue: (1) adding a counter to time out entries (e.g. removing
the flooding action after it is used once), or (2) allowing
the installation of table entries after a packet match (e.g. for
installing the lock rule after the first matching frame). As a
reference, we added a filtered version of TEDP-S in Table II as
TEDP-S* (removing the extra PACKET_IN and FLOW_MOD
messages generated due to this limitation).

VI. CONCLUSION

We have defined, implemented and evaluated TEDP. This
protocol initiates the topology discovery at a single node, by
flooding a probe frame to explore the network and collect its
information, instead of polling each device and aggregating the
replies afterwards, as in LLDP. The results are encouraging,

not only the number of control messages are reduced, but the
topology service is enhanced to provide latency-based paths.

Nevertheless, the change of approach proposed by TEDP
has also disclosed some constraints in the current SDN imple-
mentations. For this reason, our conclusion is twofold. Firstly,
network services should be specifically redesigned for SDN
from scratch; it is our opportunity to think out of the box,
instead of simply migrating old protocols. Secondly, the SDN
architecture is still flourishing and should capture new ideas to
reformulate its foundations, such as the OpenFlow protocol.
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