
 

  



 

  



 

 

Programa de Doctorado en Tecnologías de la Información 

Geográfica 

 

Enhancing post-fire forest recovery 

monitoring through a remote sensing 

perspective 

 

Tesis doctoral con mención internacional presentada por: 

Alba Viana Soto 

 

 

Directores: 

Dr. Francisco Javier Salas Rey 

Dr. Mariano García Alonso 

 

Alcalá de Henares, 2022

 



 

  



 

 

 

 

 

 

 

 

 

A mi familia 

 

 

 

 

 

 “Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less.”  

– Marie Curie  



  



III 

 

Acknowledgements 

Cuando inicié este camino del doctorado allá por octubre de 2018 no podía 

imaginar todo lo que esta aventura traería, personal y profesionalmente. Pero 

creo que cada uno de nosotros somos el resultado de las personas que nos 

rodean y de las experiencias que vivimos, así que voy a intentar agradecer a 

todas aquellas personas que me han acompañado en este camino. 

En primer lugar me gustaría comenzar agradeciendo a mis directores de Tesis, 

Javier Salas y Mariano García. Gracias por la confianza depositada en mí desde 

el primer minuto, por el apoyo de todos estos años, porque sin su valiosa ayuda 

no habría sido posible la realización de esta tesis. Cuando hablo de directores 

no puedo dejar de agradecer a Inmaculada Aguado, quien me dio la oportunidad 

de sumergirme en este apasionante campo de la investigación en teledetección 

cuando realizaba el máster y también ha estado dirigiendo esta Tesis aunque no 

fuese oficialmente sobre el papel. A todos ellos que han confiado en mí y en este 

trabajo, a menudo más que yo misma, gracias por guiarme y enseñarme tanto 

en estos años, más allá de lo profesional, por su calidad humana. 

I would like to thank the Earth Observation team from the Humboldt-Universität 

zu Berlin, especially Patrick Hostert, for giving me the opportunity and his support 

to do this stay, as well as Akpona Okujeni and Dirk Pflugmacher. I thank all of 

them for their support during the whole stay, for the enriching discussions and 

their interest in the research ongoing. I am also grateful to Sander Veraverbeke 

and his team from the Vrije Universiteit Amsterdam for the chance of doing a 

second stay and dive into their fascinating research on fire-climate interactions in 

boreal forests. I feel fortunate to have had the opportunity of doing such awesome 

stays during my PhD. 

Me gustaría dar las gracias al Ministerio de Ciencia, Innovación y Universidades 

por haber financiado la realización de esta tesis y al proyecto SERGISAT, en el 

marco del cual inicié esta investigación. Destacada mención merecen todos los 

miembros del Grupo de Investigación en Teledetección Ambiental (GITA) de la 



IV 

 

Universidad de Alcalá, y en especial Emilio Chuvieco. Gracias por haberme 

hecho sentir parte de tan maravilloso grupo, por crear ese clima de trabajo y 

colaboración tan enriquecedor. También quiero mostrar mi agradecimiento al 

trabajo de la Comisión Académica del Programa de Doctorado en TIG y a la 

Escuela de Doctorado por la gestión e impartición de cursos de formación 

esenciales. 

Este trabajo es también parte de mis compañeros de doctorado, con los que he 

compartido grandes momentos de risas, de estrés, de alegrías, y de obstáculos 

que hemos superado en compañía. Tarek, Ignacio, Macarena, Rubén, Gonzalo, 

Geovanna, Ramón, Pablo, Roberto, Amin... Y gracias especialmente a Silvia y a 

Andrea, a quienes la casualidad ha puesto en mi camino en cursos de formación 

y cuando transitaba por otros países. A mis compañeros de Complutig, 

especialmente a Dani por darme la primera oportunidad, y a Laura por estar más 

allá del trabajo y los cambios que vinieron. 

Tampoco puedo dejar de agradecer a mis orígenes en la universidad. A Augusto 

Pérez-Alberti, geógrafo incansable que desde el primer momento consiguió que 

mi pasión por la Geografía creciese todavía más, por transmitirme sus ganas de 

seguir descubriendo. 

A mis amigos Eva, Adrián, Alba, Sandra, Ana, por estar a pesar de los kilómetros 

y por sus consejos por muy lejano que también les resultase este trabajo. Pero 

sobre todo gracias por hacerme disfrutar, por hacerme sentir que con ellos 

siempre estoy en casa. 

A mis padres, Aura y Luis, y a mi hermano Diego, sin los que no habría podido 

llegar hasta aquí. Gracias por su inspiración y su apoyo incondicional, por creer 

en mí y en el camino que elegí. A Javi, por compartir cada día conmigo en este 

caótico mundo de la investigación, por crecer y mejorar juntos, por ser y estar. 

Gracias, grazas, thanks, danke, dank je  



V 

 

Contents 

 

Acknowledgements ..................................................................................................... III 

Contents ........................................................................................................................ V 

Abstract ........................................................................................................................ IX 

Resumen ..................................................................................................................... XIII 

List of abbreviations ................................................................................................ XVII 

List of tables .............................................................................................................. XIX 

List of figures ............................................................................................................ XXI 

Chapter 1. Introduction ........................................................................................... 1 

1.1. The role of fire in forest ecosystems .................................................................... 3 

1.2. Fire in Mediterranean ecosystems ....................................................................... 4 

1.3. Earth observation for forest monitoring ................................................................ 6 

1.3.1. Optical data ................................................................................................... 8 

1.3.2. LiDAR data ................................................................................................... 9 

1.4. Measures of forest disturbance and recovery .................................................... 10 

Chapter 2. Hypothesis, objectives and outline of the thesis ............................. 13 

2.1. Hypothesis ......................................................................................................... 15 

2.2. Objectives .......................................................................................................... 15 

2.3. Outline of the thesis ........................................................................................... 16 

Chapter 3. Temporal segmentation of Landsat time series to identify post-fire 

recovery patterns ........................................................................................................ 19 

Abstract ..................................................................................................................... 21 

3.1. Introduction ........................................................................................................ 22 

3.2. Study area ......................................................................................................... 25 

3.3. Materials and methods ...................................................................................... 26 

3.3.1. Data ............................................................................................................ 27 



VI 

 

3.3.2. Landsat Time Series ................................................................................... 28 

3.3.3. Trajectory segmentation and clustering ...................................................... 29 

3.3.4. Assessing driving factors of vegetation recovery ........................................ 31 

3.3.5. Recovery assessment ................................................................................ 33 

3.4. Results ............................................................................................................... 35 

3.4.1. Classification of post-fire trajectories .......................................................... 35 

3.4.2. Assessing drivers of post-fire vegetation recovery ..................................... 38 

3.4.3. Recovery estimation assessment ............................................................... 42 

3.5. Discussion ......................................................................................................... 43 

3.5.1. Post-fire recovery trajectories from LTS ..................................................... 43 

3.5.2. Accuracy assessment of post-fire recovery ................................................ 45 

3.5.3. Assessment of post-fire recovery drivers .................................................... 47 

3.6. Conclusion ......................................................................................................... 49 

3.7. Acknowledgments .............................................................................................. 50 

Chapter 4. Assessing post-fire structure recovery by combining LiDAR and 

Landsat data..………………………………………………………………………………...51 

Abstract ..................................................................................................................... 53 

4.1. Introduction ........................................................................................................ 54 

4.2. Study area ......................................................................................................... 57 

4.3. Materials and methods ...................................................................................... 58 

4.3.1. Data acquisition and processing ................................................................. 59 

4.3.2. Predictor variables and sample selection ................................................... 62 

4.3.3. Support vector regression modelling .......................................................... 63 

4.3.4. Model evaluation and performance ............................................................ 63 

4.3.5. Characterisation of post-fire structural recovery ......................................... 64 

4.4. Results ............................................................................................................... 65 



VII 

 

4.4.1. Model assessment ...................................................................................... 65 

4.4.2. Estimations of annual forest cover and height ............................................ 67 

4.4.3. Quantifying post-fire structural recovery ..................................................... 70 

4.5. Discussion ......................................................................................................... 74 

4.5.1. Performance of Landsat-based forest structure extrapolation .................... 74 

4.5.2. Characterization of forest structure recovery dynamics .............................. 77 

4.6. Conclusion ......................................................................................................... 79 

4.7. Acknowledgments .............................................................................................. 80 

Chapter 5. Unravelling shifts in post-fire woody-vegetation cover from 

unmixing Landsat data ............................................................................................... 81 

Abstract ..................................................................................................................... 83 

5.1. Introduction ........................................................................................................ 84 

5.2. Study sites ......................................................................................................... 87 

5.3. Materials and methods ...................................................................................... 89 

5.3.1. Landsat data ............................................................................................... 90 

5.3.2. Building the STM library .............................................................................. 91 

5.3.3. Regression-based unmixing ....................................................................... 92 

5.3.4. Validation of fraction images ....................................................................... 94 

5.3.5. Analysis of post-fire tree-shrub cover dynamics ......................................... 95 

5.4. Results ............................................................................................................... 96 

5.4.1. Regression unmixing performance ............................................................. 96 

5.4.2. Spatio-temporal patterns of tree and shrub cover ....................................... 97 

5.4.3. Quantifying shifts in tree and shrub cover in burned areas....................... 100 

5.5. Discussion ....................................................................................................... 104 

5.5.1. Regression-based unmixing of annual Landsat STM ............................... 104 

5.5.2. Post-fire recovery dynamics from fraction time-series .............................. 108 



VIII 

 

5.6. Conclusion ....................................................................................................... 111 

5.7. Acknowledgments ............................................................................................ 111 

Chapter 6. Synthesis ........................................................................................... 113 

6.1. Summary of key findings ................................................................................. 115 

6.2. Limitations and outlook .................................................................................... 117 

6.3. Relevance and impact for post-fire recovery management ............................. 119 

Chapter 7. References ......................................................................................... 121 

Appendices ............................................................................................................... 147 

Appendix 1. Supplementary materials paper I ........................................................ 149 

Appendix 2. Supplementary materials paper III ...................................................... 152 

Appendix 3. Scientific production on forest remote sensing ................................... 154 

Appendix 4. Funding sources ................................................................................. 155 

 

 

 

  



IX 

 

Abstract  

Forests are essential for human well-being, providing a wide range of benefits 

like climate regulation, biodiversity conservation, watershed protection and 

prevention of soil erosion. Although forests have historically been modulated by 

a multitude of disturbances, they now face unprecedented challenges due to 

changes in climate and land use. In Mediterranean forests, fire is one of the most 

common disturbance agents, shaping their structure, composition and 

functioning. Mediterranean species exhibit adaptive mechanisms to resist and 

recover, thus being considered fire-resilient ecosystems. Nonetheless, recovery 

may be hampered by the expected increasing exposure to more frequent and 

severe fire events. Yet, estimating recovery poses a challenge as it is a dynamic 

process spanning different spatial and temporal scales. Providing systematic and 

spatio-temporally explicit information is therefore pivotal to better understand 

changes in vegetation dynamics in response to fire disturbance.  

The overall objective of this thesis is to contribute to the understanding of post-

fire forest recovery in Mediterranean ecosystems using remotely sensed data 

from active and passive sensors. The main goal is conducted through the 

following specific objectives: 

1. To obtain the post-fire recovery trajectories from Landsat time series.  

2. To appraise recovery rates and driving factors of forest recovery. 

3. To analyse forest structural changes along the post-fire recovery process 

by combining LiDAR and Landsat data. 

4. To quantify changes in cover composition at the subpixel level from 

unmixing Landsat data. 

These objectives are addressed through three papers that have been published 

in relevant scientific journals. In Paper I we approached the objectives 1 and 2.  

Through two case studies in Mediterranean pine forests in Spain, we 

characterised post-fire spectral recovery dynamics at successional stages. We 



X 

 

identified different categories of spectral recovery trajectories using temporal 

segmentation of Landsat time series (1994–2018) and K-means clustering. 

LandTrendr algorithm was used to derive trajectory metrics from Tasseled Cap 

Wetness (TCW), sensitive to canopy structure, and Tasseled Cap Angle (TCA), 

related to vegetation cover gradients. Different categories of post-fire trajectories 

revealed processes of continuous recovery (continuous recovery, continuous 

recovery with slope changes, continuous recovery stabilised) and non-continuous 

recovery. As fire-prone ecosystems, vegetation quickly colonised the space after 

fire by displaying higher recovery rates in the short-term, but this does not imply 

the recovery to the pre-fire forest conditions two decades after fire. We further 

evaluated the influence of environmental and contextual factors on recovery 

rates. The modelling results indicated that recovery rates were strongly related to 

fire severity in the short term, whereas climatic conditions in relation to drought 

were more determinant in the long-term.  

In paper II we approached the third objective and combined LiDAR data and 

Landsat imagery to provide insights on the return of forest structure after fire in 

fire-prone Mediterranean pine forests in the SE of Spain. We addressed the 

extrapolation of forest structural variables (Vegetation Cover, Tree Cover, Mean 

Height and heterogeneity) over three decades (1990-2020) using a Support 

Vector Regression model (SVR). Model performances to estimate LiDAR-derived 

structural variables using Landsat images and topographic variables was high, 

showing stability of the estimations both temporally and spatially. Time-series of 

structural recovery underlined that less than 50% of burned pixels completely 

recovered to a pre-fire structure 26 years after fire, suggesting an ongoing 

recovery process. 

In paper III we approached the fourth objective and developed a methodology to 

quantify changes in woody-vegetation (tree and shrub) cover composition using 

a regression-based unmixing approach from Landsat Spectral Temporal Metrics 

(STM). We used synthetically mixed training data from Landsat STM as input for 

a SVR model to disentangling tree and shrub cover dynamics in Mediterranean 
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forests, yielding spatio-temporally explicit information on post-fire forest 

compositional recovery. Our findings suggest that successional dynamics of tree 

and shrub strongly depended on pre-fire conditions since the majority of the 

burned areas tended to the pre-fire composition. However, areas shifting from 

tree to shrub dominance were found 26 years after fire, indicating ongoing 

transitions that may constitute a successional stage or would prevail in a mature 

stage. Our results emphasise the utility of unmixing Landsat data to gather 

information on shifts in composition along the recovery process. 

Providing retrospective information on post-fire recovery dynamics can potentially 

support post-fire forest management by acknowledging the spatio-temporal 

patterns of forest recovery. Enhancing forest resilience and adaptation pose a 

challenge for forest managers because Mediterranean forests highly subjected 

to fire occurrence are also those that face changes in fire regimes along with 

susceptibility to other disturbances. Estimations of post-fire recovery from 

remotely sensed data can therefore provide a basis for forest management 

strategies to better cope with climate change and facilitate decision-makers the 

selection of management alternatives. 
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Resumen 

Los bosques son esenciales para el bienestar humano, ya que proporcionan una 

amplia gama de beneficios como la regulación del clima, la conservación de la 

biodiversidad, la protección de las cuencas hidrográficas y la prevención de la 

erosión del suelo. Aunque históricamente los bosques han sido modulados por 

una multitud de perturbaciones, en la actualidad se enfrentan a retos sin 

precedentes debido a cambios en el clima y los usos del suelo. En los bosques 

mediterráneos, el fuego es uno de los agentes de perturbación más  comunes, 

dando forma a su estructura, composición y el funcionamiento. Las especies 

mediterráneas presentan mecanismos de adaptación para resistir y recuperarse, 

por lo que se consideran ecosistemas resilientes al fuego. Sin embargo, la 

capacidad de recuperación puede verse comprometida ante el esperado 

incremento de exposición a eventos de incendios más frecuentes y severos. Con 

todo, la estimación de la recuperación supone un reto, ya que se trata de un 

proceso dinámico que abarca diferentes escalas espaciales y temporales. 

Proporcionar información sistemática y espacio-temporalmente explícita es, por 

tanto, esencial para una mejor compresión de los cambios en la dinámica de la 

vegetación en respuesta a la acción del fuego. 

El objetivo general de esta tesis es contribuir a la comprensión de la recuperación 

forestal post-incendio en ecosistemas mediterráneos utilizando datos de 

teledetección de sensores activos y pasivos. El objetivo principal se aborda a 

través de los siguientes objetivos específicos: 

1. Obtener las trayectorias de recuperación post-incendio a partir de las 

series temporales de Landsat.  

2. Evaluar las tasas de recuperación y los factores que influyen en la 

recuperación del bosque. 

3. Analizar los cambios estructurales del bosque a lo largo del proceso de 

recuperación post-incendio combinando datos LiDAR y Landsat. 
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4. Cuantificar los cambios en la composición de la cubierta a nivel de 

subpixel a partir de la desmezcla de datos Landsat. 

Estos objetivos se abordan a través de tres artículos que se han publicado en 

revistas científicas relevantes. En el artículo I abordamos los objetivos 1 y 2.  A 

través de dos estudios de caso en pinares mediterráneos en España, 

caracterizamos la dinámica de recuperación espectral post-incendio en las 

diferentes etapas sucesivas. Identificamos diferentes categorías de trayectorias 

de recuperación espectral utilizando la segmentación temporal de las series 

temporales de Landsat (1994-2018) y la agrupación mediante K-means. Se 

utilizó el algoritmo LandTrendr para derivar las métricas de trayectorias a partir 

de los componentes de Tasseled Cap de humedad (TCW), sensible a la 

estructura del dosel, y el componente angular (TCA), relacionado con los 

gradientes de la cubierta vegetal. Las diferentes categorías de trayectorias post-

incendio revelaron procesos de recuperación continua (recuperación continua, 

recuperación continua con cambios de pendiente, recuperación continua 

estabilizada) y recuperación no continua. Al tratarse de ecosistemas propensos 

al fuego, la vegetación colonizó rápidamente el espacio tras el incendio 

mostrando mayores tasas de recuperación a corto plazo, aunque ello no implica 

la recuperación de las condiciones del bosque previas al incendio dos décadas 

después del mismo. Además, se evaluó la influencia de los factores ambientales 

y contextuales en las tasas de recuperación. Los resultados de la modelización 

indicaron que las tasas de recuperación estaban fuertemente relacionadas con 

la severidad del incendio a corto plazo, mientras que las condiciones climáticas 

en relación con la sequía fueron más determinantes a largo plazo. 

En el artículo II abordamos el tercer objetivo y combinamos datos LiDAR e 

imágenes Landsat para proporcionar información sobre la recuperación de la 

estructura forestal después del incendio en pinares mediterráneos propensos al 

fuego en el SE de España. Abordamos la extrapolación de las variables 

estructurales del bosque (cobertura de vegetación, cobertura de arbolado, altura 

media y heterogeneidad) a lo largo de tres décadas (1990-2020) utilizando un 
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modelo de Support Vector Regression (SVR). El rendimiento del modelo para 

estimar las variables estructurales derivadas de LiDAR utilizando imágenes 

Landsat y variables topográficas fue alto, mostrando estabilidad de las 

estimaciones tanto temporal como espacialmente. Las series temporales de 

recuperación estructural subrayaron que menos del 50% de los píxeles 

quemados recuperaron completamente a la estructura anterior al incendio 26 

años después, lo que sugiere un proceso de recuperación en curso. 

En el artículo III abordamos el cuarto objetivo y desarrollamos una metodología 

para cuantificar los cambios en la composición de la cubierta vegetal leñosa 

(arbolado y matorral) utilizando un enfoque de desmezcla basado en la regresión 

de las Métricas Spectro-Temporales de Landsat (STM). Utilizamos datos de 

entrenamiento mezclados sintéticamente a partir de Landsat STM como entrada 

para un modelo SVR para desentrañar la dinámica de la cubierta de arbolado y 

matorral en los bosques mediterráneos, proporcionando información espacio-

temporalmente explícita sobre la recuperación de la composición de los bosques 

después del incendio. Nuestros resultados sugieren que la dinámica del arbolado 

y del matorral depende en gran medida de las condiciones previas al incendio, 

ya que una gran mayoría de la superficie quemada tiende a la composición 

anterior al incendio. Sin embargo, se encontraron áreas que cambiaron de un 

dominio del arbolado a un dominio de matorral 26 años después del incendio, 

indicando transiciones en curso que pueden constituir una etapa transitoria o que 

podrían prevalecer en una etapa madura. Nuestros resultados enfatizan la 

utilidad de la desmezcla de datos Landsat para recopilar información sobre los 

cambios en la composición a lo largo del proceso de recuperación. 

Proporcionar información retrospectiva sobre la dinámica de recuperación tras 

los incendios puede potencialmente apoyar la gestión forestal tras los incendios 

al reconocer los patrones espacio-temporales de la recuperación forestal. La 

mejora de la resiliencia y la adaptación de los bosques suponen un reto para los 

gestores forestales, ya que los bosques mediterráneos altamente sujetos a la 

ocurrencia de incendios son también los que se enfrentan a cambios en los 
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regímenes de incendios junto con la susceptibilidad de otras perturbaciones. La 

estimación de la recuperación tras el incendio a partir de datos de teledetección 

puede, por tanto, proporcionar una base a las estrategias de gestión forestal para 

afrontar el cambio climático y facilitar a los responsables de la toma de 

decisiones la selección de alternativas de gestión. 
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1.1. The role of fire in forest ecosystems 

Forests are complex ecosystems covering nearly one third of the Earth's land 

surface (FAO, 2020). Forests provide numerous ecosystem services and play a 

pivotal role in the Earth System contributing to climate regulation by storing water 

and carbon (Fahey et al., 2010), biodiversity conservation, and thereby human 

well-being (Hernández-Blanco et al., 2022). From ages, forests have been 

modulated by multitude of disturbance agents, strongly influencing the 

composition, structure and ecosystem functioning (White and Pickett, 1985). 

Natural disturbances like fire, windthrow, insects and diseases, along with human 

activities have acted continuously over time shaping current ecosystems (Seidl 

et al., 2017).  

Fires are one of the most widespread natural disturbances (Bowman et al., 2020) 

that have been present since plants colonised land over 400 million years ago 

(Scott and Glasspool, 2006), and humans have expanded their use for land 

management (Pausas and Keeley, 2009). They are key phenomena in the 

dynamics of global ecosystems (Chuvieco, 2009) directly influencing Earth 

System’s processes through their impacts on vegetation, the carbon cycle, 

climate (Archibald et al., 2018) and contributing the maintenance of biodiversity 

(Pausas and Ribeiro, 2017). As fire constitutes an essential component of forest 

ecosystems, plants have developed adaptive traits to survive and recover, which 

vary depending on the fire regime (McLauchlan et al., 2020; Pausas and Keeley, 

2014a). Nonetheless, forests worldwide are currently facing unprecedented 

challenges due to changes in climate and land use and other anthropogenic 

actions (McDowell et al., 2020). Forests are therefore under increasing pressure, 

resulting in augmented vegetation stress, carbon and biodiversity losses, or 

changes in soil and hydrology (Aponte et al., 2016; Seidl et al., 2017). 

Fire disturbance regimes have profoundly changed in recent decades (Pausas 

and Keeley, 2009), with climate shifts acting as one of the major drivers (Seidl et 

al., 2011; Stephens et al., 2013), along with changes in vegetation structure and 

productivity (Pausas and Keeley, 2014b). Alterations in fire regimes, regarding 
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their frequency, intensity, size, type, severity and seasonality (Flannigan et al., 

2009) can potentially undermine ecosystems recovery dynamics or even prevent 

recovery (Anderson-Teixeira et al., 2013; Johnstone et al., 2016). Climate change 

projections indicate an increase in the frequency and severity of forest fires as a 

result of extreme weather conditions and more severe and prolonged droughts,  

particularly in water-limited areas (Bowman et al., 2020; Jones et al., 2022; 

Stephens et al., 2013). Beyond an increase in fire occurrence and area burned, 

numerous studies suggest that fire seasons are lengthening and this trend is 

expected to continue in a warmer world (Flannigan et al., 2009; Senande-Rivera 

et al., 2022). Furthermore, forests will have to adapt not only to changes in fire 

activity and climate dynamics (Anderson-Teixeira et al., 2013), but also to 

increased risk of extreme weather events, such as prolonged droughts, storms 

and floods (IPCC, 2018). The high exposure of forests to global change is likely 

to hamper future forest recovery after disturbances (Anderson-Teixeira et al., 

2013; Qiu et al., 2022). Consequently, improving the understanding of forest 

ecosystems' response to global environmental changes has become especially 

important at global and local scales for designing adaptation and mitigation 

strategies (Ibáñez et al., 2019; Keenan, 2015; Lindner et al., 2010). 

1.2. Fire in Mediterranean ecosystems 

Mediterranean-type climate regions (MTC), comprising the Mediterranean Basin, 

California, southern Australia, the Cape Region of South Africa and central Chile, 

are particularly subjected to fire occurrence (Keeley et al., 2011; Moreira et al., 

2020). These areas share similar climate and structurally similar plant 

communities, comprised of woodlands and sclerophyllous shrublands (Keeley et 

al., 2011). Fire activity underpins the dynamics of Mediterranean ecosystems 

worldwide, exerting an evolutionary pressure on plants (Pausas and Keeley, 

2014a), so that many species have developed adaptive traits to resist and recover 

after fire (Keeley, 2012; Ne’eman and Osem, 2021). 
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In the European context, Mediterranean basin countries concentrate around 85% 

of the total burned area (San-Miguel-Ayanz et al., 2021). Around 25% of forested 

areas are dominated by Mediterranean pine forests, (FOREST EUROPE, 2020), 

forming ecologically and culturally valuable landscapes. These pine forests 

mostly resulted from reforestation of abandoned lands during the nineteenth and 

twentieth centuries (Pausas et al., 2004; Vadell et al., 2016). A high proportion of 

Mediterranean pine forests are currently composed of dense stands and low 

structural heterogeneity (Ruiz-Benito et al., 2012), which makes them vulnerable 

not only to extreme wildfires, but also to other disturbances (droughts, pest, 

pathogens) (Lindner et al., 2010; Senf and Seidl, 2021). 

Pine dominated ecosystems as those comprised of Pinus halepensis Mill. and 

Pinus pinaster Ait. are largely threatened by wildfires (Fernandes et al., 2008). 

Nonetheless, adaptive mechanisms as resprouting from surviving individuals and 

seedling recruitment (Keeley, 2012; Ne’eman and Osem, 2021) have long enable 

them to recover after fire, leading to rapid cover of vegetation, with post-fire 

communities presenting similar characteristics to those prior to the fire (Keeley 

and Pausas, 2022). After a fire event, a phase of establishment and regeneration 

is initiated with the resprouting of remnant vegetation and the recruitment of new 

individuals from seeds released from serotinous cones (Tapias et al., 2001; 

Thanos and Daskalakou, 2000) (Figure 1.1). This first stand initiation phase is 

characterised by seedling growth and competitive interactions between pine 

seedlings and resprouting shrubs (Calvo et al., 2008; Pausas et al., 2002). In a 

later successional phase, pine individuals which survive to competition tend to 

expand, leading to pine canopy dominance (De las Heras et al., 2012).  

Despite the high fire resilience of Mediterranean ecosystems, fire can become a 

destructive force under changing fire regimes and climatic conditions (Pausas 

and Fernández-Muñoz, 2012), which may jeopardise the natural forest recovery 

dynamics (González-De Vega et al., 2016). Obligate seeders as Pinus 

halepensis and Pinus pinaster (Calvo et al., 2008; Moya et al., 2008) are 

especially vulnerable in the face of increasing anthropogenic fire frequency 



Introduction 

6 

 

(Keeley and Pausas, 2022). Natural regeneration strongly depend on the amount 

of seeds stored in the canopy seed bank linked to the immaturity risk period, and 

the quantity of seeds available after fire (Tapias et al., 2001; Thanos and 

Daskalakou, 2000). Shorter fire return intervals can undermine natural seedling 

recruitment (Taboada et al., 2017) since recovery and maturity, both structurally 

and functionally, is estimated to require at least 20-30 years (De las Heras et al., 

2012; Trabaud, 1994). Therefore, fire recurrence can negatively affect the 

ecosystem if the minimum time interval of immaturity risk (estimated in 15 years, 

Eugenio et al., 2006) is exceeded, promoting ecosystem transitions in 

Mediterranean forests (Karavani et al., 2018; Vasques et al., 2022). 

 

Figure 1.1. Diagram of post-fire recovery phases in relation to stand development stages 

(adapted from Oliver and Larson, 1996). 

1.3. Earth observation for forest monitoring 

Detailed knowledge of forest dynamics is essential for enhancing forest resilience 

to fire. Field data measurements of vegetation physical parameters are highly 

valuable when studying forests ecosystems, but cost-effective methodologies to 

support forest resilience strategies at different spatio-temporal scales are 

needed. Remote sensing sensors enable to systematically monitoring forest 

recovery processes, providing spatio-temporally explicit information on 

ecosystems dynamics (Lechner et al., 2020). Given the challenge involved in 
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monitoring continuously changing environments, remote sensing techniques are 

increasingly used for characterising forest recovery as they provide global 

information at a variety of spectral, spatial and temporal resolutions (Banskota et 

al., 2014; Chu and Guo, 2013; Gómez et al., 2019). 

Remotely sensed data have been used to investigate a variety of aspects 

regarding fire and ecosystems interactions: before fire occurrence, to estimate 

fire danger conditions, to monitor fire position and combustion characteristics, 

and after fire to analyse fire effects on vegetation and regeneration (Chuvieco et 

al., 2020). Contributions of remote sensing techniques to forest monitoring 

comprise a wide range of sensors and methods. Remote sensing uses the 

electromagnetic radiation recorded by sensors onboard satellites, planes and 

unmanned aerial vehicles (UAVs) in different spectral regions (Figure 1.2). These 

sensors provide valuable information about the Earth's surface through the 

different interactions between the electromagnetic radiation and cover types 

depending on the wavelength observed. Passive sensors use the solar irradiance 

as source of energy, which is either reflected by the Earth’s surface and 

atmosphere, or absorbed and re-emitted. Active sensors, such as radar and 

LiDAR, in turn, have their own source of radiation and thus are independent of 

sunlight.  

 

Figure 1.2. Electromagnetic spectrum covered by remote sensing systems (adapted from 

Chuvieco, 2016). 
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Furthermore, the range of methods for forest monitoring has broadened 

exponentially in the last decades, including machine learning and deep learning 

algorithms (Lary et al., 2016; Yuan et al., 2020), synergies between optical and 

LiDAR (Coops et al., 2021; García et al., 2011), between optical and radar 

(Baumann et al., 2018; García et al., 2018), more sophisticated change detection 

algorithms (Zhu, 2017) and cloud-computing environments (Gorelick et al., 2017).  

In the following sections the main characteristics of optical and LiDAR data that 

were considered in this thesis are explained in the context of forest monitoring. 

1.3.1. Optical data 

Passive optical sensors have been most commonly used for analysing vegetation 

dynamics (Hirschmugl et al., 2017). Optical sensors vary in the number of bands 

and the width of these bands, determining the spectral resolution. While 

multispectral sensors have a limited number of bands, hyperspectral sensors 

have hundreds of much narrower bands. Data obtained from optical multispectral 

sensors also vary in terms of spatial and temporal resolution depending on the 

satellite orbit characteristics. Multispectral sensors from leading space missions 

vary from medium spatial resolution (10-30 m) such as the Landsat mission 

(Wulder et al., 2016) or Sentinel 2 from the Copernicus program of the European 

Space Agency (ESA) (Berger et al., 2012), with revisit periods of 5-16 days, to 

coarser spatial resolution of MODIS data onboard Terra-Aqua (Salomonson et 

al., 2002) or Sentinel 3, (250-500 m) but with daily revisit periods. 

The opening of the Landsat archive in 2008 undoubtedly changed the way of 

observing Earth's ecosystems (Wulder et al., 2012a). Landsat sensors, with 50 

years of observations (Wulder et al., 2022), provide retrospective information on 

forest dynamics, having the spatial, spectral and temporal characteristics 

adequate to analyse dynamic processes as recovery (Bright et al., 2019; Frazier 

et al., 2015; Griffiths et al., 2014; Hislop et al., 2018). Landsat sensors have 

evolved from initially four broad bands (MSS) to increasingly narrower and 
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numerous wavelength ranges (TM, ETM+, OLI and OLI2), extracting information 

from the visible, infrared and thermal since the launch of Thematic Mapper (TM) 

on Landsat 4 in 1982. Landsat's continuity and improved reprocessing to ensure 

geometric consistency, well-radiometric calibration and harmonization among 

sensors are especially important because it renders a unique measurement 

record for comprehensively tracking vegetation changes (Kennedy et al., 2014). 

1.3.2. LiDAR data 

LiDAR remote sensing data have garnered much attention due to their wide range 

of applications in forestry. LiDAR sensors provide detailed information on many 

structural properties as the height and vertical distribution of the forest canopy 

(Lefsky et al., 2002). Lidar instruments measure the distance between the sensor 

and the target surface based on the elapsed time between the emitted laser 

pulses and reflected energy. Based on their recorded characteristics can be 

classified as discrete return, which record single or multiple returns (Figure 1.3), 

or full waveform recording, which digitise the entire reflected energy from a return, 

resulting in complete vertical profiles (Wulder et al., 2012b). 

 

Figure 1.3. Schema of discrete return LiDAR systems in forest mapping (adapted from 

Montealegre, 2017). 
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Although LiDAR data have been used less than optical data for forest monitoring, 

mainly due to lower spatio-temporal coverage, cost and higher processing 

complexity, software and hardware developments along with new spaceborne 

LiDAR missions have largely expanded their use in recent years. Spaceborne 

LiDAR instruments recently launched as the Global Ecosystem Dynamics 

Investigation (GEDI) on the International Space Station (ISS; Dubayah et al., 

2020) and the Advanced Topographic Laser Altimeter System (ATLAS) onboard 

the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2; Neumann et al., 2019) 

are currently providing near-global observations. However, products derived 

have several limitations for practical applications that need further enhancement 

(Mulverhill et al., 2022; Potapov et al., 2021) such as un-sampled areas, local-

scale analysis and data fusion with optical imagery for the spatiotemporally 

extrapolation (Coops et al., 2021). 

Airborne laser scanning (ALS) on planes or helicopters is one of the most 

common types of LiDAR (Maltamo et al., 2014). ALS data are well suited to 

characterise forest attributes (Bottalico et al., 2017; Wulder et al., 2012b; Zhao et 

al., 2011) and vegetation structural recovery (Gordon et al., 2017; Martín-Alcón 

et al., 2015) over both local-scale and large areas. In the case of the Spanish 

territory, two LiDAR coverages for the period 2008-2015 (1st coverage) and from 

2015 up to date (2nd coverage) have been acquired by the National Plan for Aerial 

Orthophotography of Spain (PNOA). These LiDAR data collected using small-

footprint discrete-return sensors (Figure 1.3) have proved their ability to estimate 

forest attributes across Mediterranean forests in Spain (Gelabert et al., 2020; 

Montealegre et al., 2016; Tijerín et al., 2022). The availability of free ALS data 

makes Spain a particular case for the synergies between ALS data and optical 

imagery to obtain vegetation parameters of forest conditions over time and space. 

1.4. Measures of forest disturbance and recovery 

Disturbance and recovery processes characterise forest current state and 

temporal dynamics. There is no single definition of post-disturbance forest 
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recovery, but it commonly relates to the return of forest characteristics following 

a disturbance event (Frolking et al., 2009). Furthermore, definitions of recovery 

and resilience are often disparate depending on the research field. Engineering 

resilience is mainly defined as recovery of the system, ecological resilience 

considers both resistance and recovery of the system, whereas socio-ecological 

resilience includes resistance, recovery and adaptive capacity (Nikinmaa et al., 

2020). From a remote sensing perspective, engineering definition of the 

resilience is commonly taken, referring to the time a system takes for variables to 

return to their pre-disturbance equilibrium (Reynolds, 1975). Recovery of the 

ecosystem is therefore measured as the speed towards pre-disturbance state or 

the degree of return to pre-disturbance conditions (Nikinmaa et al., 2020) (Figure 

1.4). Yet, estimating recovery is as challenging as it is complex to define and 

multiple approaches from optical and LiDAR data have been proposed (Pérez-

Cabello et al., 2021). 

R
e

c
o

v
e

ry
 m

e
tr

ic

Pre-fire 

conditions Recovery

timeTlong-term Td

Di

DR

Tshort-term 

Figure 1.4. Outline of the dynamics of forest disturbance-recovery. Td: time when disturbance 

occurr; Tshort-term: initial recovery; Tlong-term: moment in time in which recovery stabilises; DI: lowest 

value derived from the impact of disturbance; DR: value of the recovery as function of time. 

Spectral recovery estimated from optical imagery is an indirect measure of the 

recovery. Disturbance and subsequent recovery are detected by the changes in 

spectral properties derived from changes in structure and composition of the 

forest. Stand-replacing disturbances like fire result in a significant removal of 
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vegetation, leaving the ground exposed. Immediately after fire, disturbed areas 

have low reflectance in the NIR and high reflectance in the visible and SWIR 

wavelengths due to the lack of absorption from vegetation and the exposure of 

soil (Escuin et al., 2008). Once the recovery process is initiated, reflectance in 

the NIR increase since vegetation have higher reflectance than soil in the NIR 

(Nilson and Peterson, 1994). Spectral Indices (SI) have been designed to 

enhance these different spectral responses of vegetation at different wavelengths 

and have been extensively used for assessing post-disturbance recovery with 

remotely sensed data (Banskota et al., 2014; Chu and Guo, 2013; Pérez-Cabello 

et al., 2021). Landsat time series analysis and change detection algorithms 

(Hirschmugl et al., 2017; Zhu, 2017) commonly use SI as inputs. Recent research 

on spectral recovery estimations have emphasised the advantages of using 

multiple indices and metrics to provide a more comprehensive assessment of 

recovery (Hislop et al., 2018; Pickell et al., 2016; White et al., 2017). 

In turn, the necessity to provide insights on forest structural recovery has led to 

the emergence of new methodologies for assessing changes over time using 

LiDAR data (Coops et al., 2021). As LiDAR data are collected for limited 

extensions and specific moments on time at the national and regional level, the 

spatiotemporal extrapolation is unavoidable (Matasci et al., 2018; White et al., 

2022). However, uncertainties regarding the performance of models for predicting 

LiDAR-derived metrics still remain depending on the nature of LiDAR data, 

ecosystem’s characteristics and algorithms employed. 

Despite numerous studies address the analysis of disturbance and post-fire 

recovery processes from remotely sensed data, the connections between remote 

sensing and ecological understanding of forest recovery are not conclusive to 

date and highly variable across ecoregions. It is therefore essential to further 

research these dynamics in order to meet the challenges posed by climate 

change. Sustainable management of post-fire actions requires understanding 

and better estimate natural recovery that can be decisive for anticipating and 

enhancing ecosystem resilience (Keenan, 2015; Lindner et al., 2014).  
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2.1. Hypothesis 

Given that vegetation response following fire can be described and analysed from 

spectral information of satellite images and changes in forest structure can be 

quantified from LiDAR data, we hypothesise that: 

 The use of Landsat time series provides multi-decadal information on 

spectral recovery. Rates of recovery can be derived considering pre-fire 

and post-fire values at successional recovery stages.  

 Post-fire forest recovery dynamics can be further influenced by 

environmental and contextual factors. These factors vary across both time 

and space, and, therefore, recovery rates will differ. 

 The integration of LiDAR data and Landsat imagery enables the 

assessment of changes in forest structure over both time and space. 

Structure recovery will be slower than either spectral or compositional 

recovery. 

 Spectral unmixing techniques yield information on forest composition at 

the sub-pixel level. Cover dominance of vegetation types changes along 

the recovery process and transitions from pre-fire dominance may occur. 

2.2. Objectives 

Despite the efforts to provide meaningful information on post-fire recovery from 

remotely sensed data, key gaps remain open regarding connections between 

spectral indicators and ecological understanding of forest recovery and further 

enhancement of the integration of different sensors (Bartels et al., 2016; Pérez-

Cabello et al., 2021). This thesis aims to contribute to the understanding of post-

fire forest recovery in Mediterranean ecosystems using remotely sensed data 

from active and passive sensors. In order to achieve this objective, the following 

objectives were pursued: 
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1. To obtain the post-fire recovery trajectories from Landsat time series. We 

identify classes of spectral recovery trajectories by applying a trajectory 

segmentation approach to Landsat imagery. 

2. To appraise recovery rates and driving factors. We define recovery patterns 

according to the spectral recovery rates and their relation to severity, 

topography, environmental and climatic factors. 

3. To analyse forest structural changes along the post-fire recovery process. 

We combine LiDAR data and Landsat imagery to characterise the recovery 

of structural attributes over both time and space. 

4. To quantify changes in cover composition at the subpixel level. We 

implement a spectral unmixing approach to disentangling post-fire woody-

vegetation cover dynamics from Landsat imagery. 

2.3. Outline of the thesis 

This doctoral thesis is presented as a compendium of articles except for the 

overall Introduction chapter and Synthesis chapter. All other chapters have been 

published in international journals indexed in Journal Citation Reports (JCR) and 

Scopus (Table 2.1). 

In Chapter 1 we introduce the main issues addressed in this thesis and provide 

a theoretical background and state of the art, which leads to the hypothesis and 

objectives described in Chapter 2. The objectives stated are addressed in the 

main part of the thesis, which comprises three papers. 

In Paper I (Chapter 3), we approach the objectives 1 and 2. We identify spectral 

recovery trajectories using temporal segmentation of Landsat time series and 

evaluate the influence of pre-fire conditions, severity, topography and post-fire 

climate on recovery rates for each recovery category at successional stages. 
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In Paper II (Chapter 4), we address the extrapolation of LiDAR-derived metrics to 

Landsat imagery to provide insights on the return of forest structure after fire 

(Objective 3). 

In Paper III (Chapter 5), we perform a regression-based unmixing approach to 

unravel the shifts in post-fire forest cover composition from Landsat imagery 

(Objective 4). 

Chapter 6 summarises the key findings and discusses the relevance of the results 

to forest recovery assessment as well as the potential limitations of the research. 

Moreover, it outlines the future research directions.  

Table 2.1. Publication index and chapters. Impact factor corresponds to Journal Citation Report. 
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Abstract 

Wildfires constitute the most important natural disturbance of Mediterranean 

forests, driving vegetation dynamics. Although Mediterranean species have 

developed ecological post-fire recovery strategies, the impacts of climate change 

and changes in fire regimes may endanger their resilience capacity. This study 

aims at assessing post-fire recovery dynamics at different stages in two large 

fires that occurred in Mediterranean pine forests (Spain) using temporal 

segmentation of the Landsat time series (1994–2018). Landsat-based detection 

of Trends in Disturbance and Recovery (LandTrendr) was used to derive 

trajectory metrics from Tasseled Cap Wetness (TCW), sensitive to canopy 

moisture and structure, and Tasseled Cap Angle (TCA), related to vegetation 

cover gradients. Different groups of post-fire trajectories were identified through 

K-means clustering of the Recovery Ratios (RR) from fitted trajectories: 

continuous recovery, continuous recovery with slope changes, continuous 

recovery stabilised and non-continuous recovery. The influence of pre-fire 

conditions, fire severity, topographic variables and post-fire climate on recovery 

rates for each recovery category at successional stages was analysed through 

Geographically Weighted Regression (GWR). The modelling results indicated 

that pine forest recovery rates were highly sensitive to post-fire climate in the mid 

and long-term and to fire severity in the short-term, but less influenced by 

topographic conditions (adjusted R-squared ranged from 0.58 to 0.88 and from 

0.54 to 0.93 for TCA and TCW, respectively). Recovery estimation was assessed 

through orthophotos, showing a high accuracy (Dice Coefficient ranged from 0.81 

to 0.97 and from 0.74 to 0.96 for TCA and TCW, respectively). This study provides 

new insights into the post-fire recovery dynamics at successional stages and 

driving factors. The proposed method could be an approach to model the 

recovery for the Mediterranean areas and help managers in determining which 

areas may not be able to recover naturally. 

Keywords: post-fire recovery, Landsat, time series, LandTrendr, K-means, 

driving factors, Mediterranean, pine forests. 
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3.1. Introduction 

Wildfires constitute one of the most widespread and important natural 

disturbances of forest ecosystems, playing a paramount role in the dynamics of 

the terrestrial system (Bowman et al., 2009). Forest fires impact at a wide range 

of scales causing ecological, economic and human health impacts (Aponte et al., 

2016; Chuvieco, 2009). Specifically in Europe, the Mediterranean region registers 

the highest number of fires and burned areas (San-Miguel-Ayanz et al., 2019), 

with around 85% of the total burnt area (San-Miguel-Ayanz et al., 2013). 

Notwithstanding, Mediterranean ecosystems are adapted to fire recurrence as it 

constitutes the most important natural disturbance, driving vegetation dynamics 

(Peterson, 2014). Mediterranean species have developed post-fire ecological 

strategies including resprouting capacity, seed bank persistence and increased 

dispersal capacity (De las Heras et al., 2012; González-De Vega et al., 2018). 

Nevertheless, land use changes and the impacts of climate change may affect 

the dynamics of post-fire ecological succession in the immediate future (Aponte 

et al., 2016; Pausas and Keeley, 2009). Although large fire (i.e. ≥ 500 ha) 

occurrence for the European Mediterranean region does not show a strong 

increasing trend in the recent decades (San-Miguel-Ayanz et al., 2013), climate 

change projections indicate an increase in the frequency and intensity of 

megafires, as a result of more extended and severe seasonal droughts (Stephens 

et al., 2013), which will impact ecosystems’ species composition and functioning 

(Aponte et al., 2016). Forest ecosystems must adapt not only to changes in 

average climatic variables, but also to a wide variability with higher risk of extreme 

climatic events, such as prolonged droughts. Thus, forest management in 

European Mediterranean countries is challenging due to the vulnerability of 

natural regrowth capability of these ecosystems (González-De Vega et al., 2016; 

Lindner et al., 2010). 

Time-series of satellite data have long been used for retrospectively generating 

information on forest disturbance and recovery dynamics (Gitas et al., 2012). The 

opening of the Landsat archive in 2008, now available geometrically and 
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radiometrically corrected, provided new opportunities for improved understanding 

of the mechanisms of forest changes (Banskota et al., 2014; Wulder et al., 2019). 

Several studies have addressed the spatial and temporal analysis of post-fire 

vegetation dynamics through different forest ecosystems: Mediterranean 

(Fernández-Manso et al., 2016; Meng et al., 2015), boreal (Ireland and 

Petropoulos, 2015; Pickell et al., 2016), Siberian (Chu et al., 2017; Shvetsov et 

al., 2019), temperate (Griffiths et al., 2014), tropical (DeVries et al., 2015), 

savannah (Lhermitte et al., 2011) or across different ecozones at the regional or 

national scale (Bright et al., 2019; Frazier et al., 2018; Kennedy et al., 2012; White 

et al., 2017). 

The use of Landsat Time Series (LTS) for change detection has increased 

substantially in recent years as new methodological approaches have emerged 

(Zhu, 2017). Early approaches characterised post-fire recovery dynamics by 

applying linear regression functions to spectral trajectories obtained from Landsat 

time-series (Hope et al., 2007; Röder et al., 2008). More recently, several change 

detection algorithms have been developed and widely used in analysing forest 

changes, such as Landsat-based detection of Trends in Disturbance and 

Recovery (LandTrendr) (Kennedy et al., 2010) and Vegetation Change Tracker 

(VCT) (Huang et al., 2010), to provide change information on an annual time-

scale (Zhu, 2017). Others include, Breaks For Additive Seasonal and Trend 

(BFAST) (Verbesselt et al., 2010) and Continuous Monitoring of Forest 

Disturbance Algorithm (CMFDA) (Zhu et al., 2012), which use a high frequency 

of time-series. The trajectory-based segmentation algorithm LandTrendr enables 

the characterization of distinct subtrends within a simplified representation of the 

spectral trajectory, which provides the essential information needed to identify 

abrupt disturbances in forests (e.g. fire and harvest), as well as slowly evolving 

processes (e.g. regrowth and defoliation). The utility of LandTrendr has been 

demonstrated in different regions for assessing disturbance and recovery 

dynamics (Bright et al., 2019; Kennedy et al., 2012; Nguyen et al., 2018). 
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Several spectral measures can be derived from LTS and used as inputs for 

segmentation algorithms such as spectral indices or Tasseled Cap 

Transformations (TCT). Some spectral indices focused more on the red and near-

infrared bands, making them sensitive to canopy greenness and photosynthetic 

activity, such as the Normalised Difference Vegetation Index (NDVI) employed 

for characterizing post-fire recovery (Ireland and Petropoulos, 2015; Meng et al., 

2015; Viana-Soto et al., 2017), whereas other indices using the SWIR bands are 

more sensitive to vegetation moisture and forest structure (Hislop et al., 2018), 

such as the Normalised Burn Ratio (NBR) (Key and Benson, 2006), commonly 

used for recovery assessment (Bright et al., 2019; Morresi et al., 2019; Pickell et 

al., 2016). TCT are created via linear transformations using defined coefficients 

(Crist, 1985) and have been widely used for studying forest changes (Frazier et 

al., 2015; Gómez et al., 2011; Nguyen et al., 2018; Pflugmacher et al., 2014). 

TCT components correspond to the physical characteristics of vegetation: 

Brightness (TCB) is related to the pixel albedo of the land surface and values are 

typically high after a stand replacing disturbance; Greenness (TCG) is a contrast 

between the visible and near-infrared bands, being sensitive to green vegetation 

(Pickell et al., 2016), and Wetness (TCW) is a contrast of the visible and near-

infrared with the SWIR bands, making it sensitive to canopy moisture and 

structure (Hansen et al., 2001). Several metrics can be derived from TCT such 

as TC Angle (TCA), which is related to the vegetation cover within the TCB-TCG 

spectral plane (Powell et al., 2010). Considering that spectral indices are 

sensitive to different vegetation conditions, the use of TCT components and 

derived metrics enables the characterization of different forest conditions (Frazier 

et al., 2015; Gómez et al., 2012; Hislop et al., 2018; Pickell et al., 2016). 

Although the dynamics of post-fire vegetation recovery has been studied through 

different forest ecosystems, few studies have investigated the recovery driving 

factors in Mediterranean ecosystems (Martín-Alcón and Coll, 2016; Meng et al., 

2015; Röder et al., 2008; Viana-Soto et al., 2017) and fewer have focused on 

characterizing successional recovery stages (Bartels et al., 2016; Oliver and 

Larson, 1996), which are key to understanding forest changes for sustainable 
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forest management. This study assesses the post-fire recovery dynamics at 

different stages in fire-prone Mediterranean pine forests. The specific objectives 

of this study were: (1) to identify the different post-fire recovery trajectories using 

temporal segmentation of LTS; (2) to analyse the recovery patterns for each 

trajectory group through stages; and (3) to appraise the environmental and 

contextual drivers of the recovery process. 

3.2. Study area 

This research is based on two large fires that occurred in the summer of 1994 

(Figure 3.1): The Yeste Fire (August 7th), which burned 11,685 ha of wooded area 

and the Requena Fire (July 5th), which burned 16,373 ha of wooded area For this 

study, we selected sections that had neither burned in subsequent fires nor been 

reforested after the main disturbance of 1994 in order to ensure the analysis of 

natural recovery only.   

Both study areas are located in the Southeast of the Iberian Peninsula, in the 

Mediterranean biogeographic region, which is characterised by mean annual 

precipitations of 600-700 mm with soil hydrological deficit in summer and mean 

annual temperatures around 15oC. These areas were dominated by 

anthropogenic coniferous forests, mainly composed by species of the genus 

Pinus along with certain deciduous species of the genus Quercus, and , 

sclerophyll species such as Rosmarinus, Thymus, or Juniperus species in the 

understory (Rivas-Martínez, 1981). Due to the differences in post-fire ecological 

strategies to recover, we selected those patches dominated by Pinus halepensis 

and Pinus pinaster according to the Second National Forest Inventory of Spain 

(SNFI) (Ministerio de Agricultura Pesca y Alimentación, 1990). Both species are 

obligate seeders since they have serotinous cones that enable the natural post-

fire regeneration (De las Heras et al., 2012; Fernández-García et al., 2019). The 

post-fire recovery stages which can be identified in a Mediterranean pine forest 

24 years after fire, range from the stand initiation (establishment phase including 

remnant pines, herbaceous and pine seeding processes)(González-De Vega et 
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al., 2018) to the stem exclusion (a young regrowth forest composed by shrubs 

and tree plantlets) (Eugenio et al., 2006; Moya et al., 2018; Oliver and Larson, 

1996). Since competition between shrubs and trees starts immediately following 

fire (Bartels et al., 2016; Crotteau et al., 2013), vegetation recovery in this study 

refers to both tree and shrub recovery. 

 

Figure 3.1. Study areas located in the Iberian Peninsula: Requena above, Yeste below; (a) 

Location of the study areas; (b) Pre- and post-fire Landsat composition for Requena RGB 

(SWIR2, NIR, Blue); (c) Pre- and post-fire Landsat composition for Yeste RGB (SWIR2, NIR, 

Blue). 

3.3. Materials and methods 

A flowchart of the methodology is depicted in Figure 3.2. Firstly, annual 

composites were created for the available time-series. Secondly, spectral indices 

and TCT was performed to delineate burned areas and derive trajectory metrics 
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of forested pixels based on the LandTrendr segmentation algorithm (Kennedy et 

al., 2010). Fitted trajectories were categorised according to the change 

magnitude and duration represented in the sequence of segments of each 

trajectory using a K-means algorithm. Finally, we analysed the environmental and 

contextual drivers of the recovery process. The accuracy assessment of the 

recovery classes was carried out by visual assessment of vegetation cover in 

randomly distributed sample plots, in reference to high-resolution orthophotos. 

 

Figure 3.2. Flowchart of the methodology. 

3.3.1. Data 

We downloaded the Landsat TM/ETM+/OLI images from the United States 

Geological Survey (USGS) Earth Explorer server to build the time-series covering 

the period 1990–2018, including 4 years pre-fire (Path/Row: 200/033, 199/032, 

199/033). We selected images from Tier 1 Surface Reflectance products 

generated from the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) software (Masek et al., 2006) for TM and ETM + images and 

Landsat 8 Surface Reflectance Code (LaSRC) for the OLI dataset (Vermote et 

al., 2016). We prioritised scenes with less than 10% cloud-cover, within the 
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summer period to minimise the effect of phenological changes. To delimit fire 

perimeters and to assess fire severity we used two Landsat 5 TM images 

acquired in 1994 for the Yeste Fire (July 22th pre-fire, August 23th post-fire) and 

for the Requena Fire (June 29th pre-fire, 16thAugust post-fire) (Figure 3.1). Fire 

perimeters were constructed by applying the USGS thresholds (Key and Benson, 

2006) to the differenced Normalised Burn Ratio (dNBR) (Miller and Thode, 2007). 

Spatial reference to vegetation types was based upon the Forest Map of Spain 

which was made between 1986 and 1997 through aerial photographs and field 

work (Ministerio de Agricultura Pesca y Alimentación). Topographic variables 

were built from the LiDAR-based Digital Elevation Model (25-m spatial resolution) 

from the National Geographic Institute of Spain (IGN). As climatic information we 

used the Standardised Precipitation-Evapotranspiration Index (SPEI) (Vicente-

Serrano et al., 2017), a multi-scalar drought index that calculates the effect of 

potential evapotranspiration (PET) on drought severity. Compared to other 

drought indices, the SPEI has the advantage of combining multi-scalar character 

with the capacity to include the effects of temperature variability (Vicente-Serrano 

et al., 2010). Data are available for the entire time-series (1990-2018) at 1-km 

resolution. We also downloaded the orthophotos at 0.5-m resolution from the 

Aerial Orthophotography National Plan, as reference data to assess recovery 

through time-series (Years 2002, 2009, 2010, 2017 and 2018) (IGN). 

3.3.2. Landsat Time Series 

Summer time-series was created for the 28-year time period using the closest 

cloud-free image to the mid of the summer season: Requena median Julian day 

209; Yeste median Julian day 218. The temporal window used to select the 

images spanned ±38 days around the reference date (Figure 3.3) in order to 

ensure consistency through the time-series. 
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Figure 3.3. Scene selection dates according to the Julian Day. 

We used the R package LandsatLinkr (Braaten et al., 2017; Vogeler et al., 2018) 

to create annual cloud-free image stacks and calculate the TCT components 

using the coefficients defined for reflectance data (Crist, 1985): Brightness (TCB), 

Greenness (TCG) and Wetness (TCW). Subsequently, the angular component of 

the TCT (TCA) was computed as follows (Powell et al., 2010):  

𝑇𝐶𝐴 = tan−1 (
𝑇𝐶𝐺

𝑇𝐶𝐵
) 

     (1) 

3.3.3. Trajectory segmentation and clustering 

To extract recovery trajectories, we applied the LandTrendr trajectory-based 

segmentation algorithm (Kennedy et al., 2010) to TCA and TCW time-series. In 

this study we opted to use the TCA due to its relation with the percentage of 

vegetation cover in coniferous and mixed forests (Gómez et al., 2012; Powell et 

al., 2010), and the TCW since it is sensitive to canopy moisture and structure 

(Frazier et al., 2015; Hansen et al., 2001). LandTrendr goes through the time-

series and creates a fitted trajectory as a sequence of line segments for each 

pixel. Firstly, the vertices of each segments were established from an iterative 

regression process using Ordinary Least Squares (OLS) by estimating the years 

of change using the TCA and TCW time-series. Then, the trajectories are 

iteratively simplified from a selection process using the angle criterion until a 

number of segments equal to or less than a user-defined threshold were obtained 



Temporal segmentation of Landsat time series to identify post-fire recovery patterns 

30 

 

(segmentation process) (Kennedy et al., 2010). We set this threshold to the 

maximum available (6) as we attempted to unravel multiple recovery trends. In a 

second step, the spectral values at candidate vertices are estimated (fitting 

process), generating a trajectory of connected segments for each pixel. The best 

model was chosen based on the p-value according to the F-statistics (p <0.05). 

Further details on the segmentation process can be found in Kennedy et al. 

(2010) (Kennedy et al., 2010).  

From the derived trajectories, we selected the change magnitude and duration of 

the segments, at the pixel level, as parameters for the classification. We 

calculated a recovery ratio (RR) for each segment (Eq. 2), which allows us to 

describe the recovery rates through time or alternatively for each successional 

stage defined by the number of segments (Figure 3.4). 

 

Figure 3.4. Example of fitted trajectory. 

We performed an unsupervised clustering method, since our first objective was 

to unravel the different vegetation recovery patterns. K-means clustering 

(Hartigan and Wong, 1979) is one of the most popular unsupervised machine 

learning algorithms and has been previously applied to summarise vegetation 

RR =
Magnitude of Change𝑥

Duration of Change𝑥
         (2) 



Chapter 3 

31 

 

types and changes (Gouveia et al., 2010). K-means allowed us to group the 

trajectories (defined by the RR of the segments) in k groups, minimizing the sum 

of the distances between each trajectory and the centroid of a given class. To 

define the optimal number of classes we employed the Elbow Method, which is 

based on the percentage of variance explained as a function of the number of 

clusters (Purnima and Arvind, 2014). This process has been carried out with the 

scikit-learn library of Python (Pedregosa et al., 2011). The clusters obtained were 

overlapped to the LandTrendr outputs to characterise the categories (see Table 

3.3). 

3.3.4. Assessing driving factors of vegetation recovery 

We aimed to explain the influence of fire severity, pre-fire conditions, topographic 

and climatic variables on recovery ratios through regression analysis. Six 

explanatory variables obtained from the Landsat imagery as well as auxiliary data 

sources (see 3.3.1) were derived to model post-fire recovery (Table 3.1). For the 

variables that did not meet the assumptions of normality of the residuals and 

homogeneity of variance, we used log-transformed or rank-transformed data. 

Previous studies have shown strong effects of fire severity on post-fire vegetation 

recovery (Crotteau et al., 2013; González-De Vega et al., 2016; Meng et al., 

2015). Fire severity, defined as the degree of ecosystem change caused by a fire 

with respect to the pre-fire situation (Lentile et al., 2006), was evaluated through 

the dNBR (Miller and Thode, 2007): 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡−𝑓𝑖𝑟𝑒 (3) 

𝑁𝐵𝑅 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅2)

(𝑆𝑊𝐼𝑅2+𝑁𝐼𝑅)
 (Key and Benson, 2006)  (4) 

Previous work has also addressed the important role of topography in explaining 

variations in forest establishment following fire (Chu et al., 2017; Ireland and 

Petropoulos, 2015; Röder et al., 2008). Other studies have established the 
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relevance of the post-fire climate (Bright et al., 2019; Meng et al., 2015; Viana-

Soto et al., 2017) since it is related to water availability, and pre-fire vegetation 

conditions (Chu et al., 2017) due to its relationship with post-fire seed availability 

(González-De Vega et al., 2016). Regarding the drought index (SPEI), the 3 

month-scale (cumulative from June, July, August) was selected since vegetation 

activity responds predominantly to short drought time-scales (Vicente-Serrano et 

al., 2013) and because maximum Pearson correlation coefficients between SPEI 

aggregated from summer season and TCA-TCW time-series were recorded for 

both study areas.  

Table 3.1. List of variables used in the regression analysis. 

Variable  Units Description 

Dependent 

Recovery 

Ratiox 

(RR-TCAx 

RR-TCWx) 

Z value 
Represents the slope of the fitted trajectory at 

each segment  

Explanatory  

Pre-fire 

conditions 

TCA90-93 or 

TCW90-93  
Z value 

TCA shows the percent vegetation cover and 

TCW the moisture and structure before the fire  

Fire severity dNBR 

Values 

between −1 

and 1 

Represents the short-term post-fire effects on 

vegetation cover and structure. Severity 

thresholds proposed by the USGS (Key and 

Benson, 2006):  

Low: 0.1≤dNBR<0.27 

Moderate-low: 0.27≤dNBR<0.44 

Moderate-high: 0.44≤dNBR<0.66 

High: ≥0.66 

Topography  

Elevation Meters  

Slope Percent  

Aspect 

Values 

between 0 

and 1 

(TRASP) (Roberts and Cooper, 1989). Values of 

0 correspond to cooler, wetter north-northeastern 

aspects; values of 1 correspond to hotter, dryer 

south-southwestern aspects 

Climatic 

Anomalies 

Drought 

index 
Z value 

(SPEI) (Vicente-Serrano et al., 2017). Positive 

values mean positive water balance and 

negative values indicate drought conditions 
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Firstly, an exploratory regression analysis was carried out to diagnose the 

suitability of the selected variables. Due to the presence of spatial autocorrelation 

and heteroscedasticity in our data (significance of Koenker statistics at 95% 

confidence level), we executed a Geographically Weighted Regression (GWR) 

(Brunsdon et al., 2010; Fotheringham et al., 2003), a local regression model 

which considers spatial heterogeneity in data relationships. Model fitting was 

conducted using optimised Adaptive Bi-square Kernel bandwidth (according to 

the Corrected Akaike Information Criterion) (Hurvich et al., 1998). 

3.3.5. Recovery assessment 

We evaluated the recovery through TCA and TCW trajectories in the short, mid 

and long-term as Key and Benson (2006) (Key and Benson, 2006) proposed to 

burn severity assessment: 2002 (8 years post-fire), 2009-2010 (15-16 years post-

fire), and 2017-2018 (23-24 years post-fire), with 80% of the pre-fire value of TCA 

and TCW as recovery threshold (Pickell et al., 2016).  

We carried out a stratified validation based on the recovery categories identified 

with a sample size of 500 plots randomly selected at each phase for each index 

(a total of 3000 reference plots). Vegetation recovery was evaluated by visual 

analysis of high resolution orthophotos. To facilitate the visual interpretation, we 

divided the 30-m pixel of Landsat images equally with a 6 m by 6 m grid (25 cells 

in one 30-m pixel) and overlaid the grids onto the orthophotos (Figure 3.5), 

similarly to Zhao et al. (2016). As an approximation to the pre-fire fractional cover 

due to the lack of pre-fire orthophotos, we established as reference the pre-fire 

fractional cover obtained from the SNFI (mean cover of 42.9% and 47.9% for 

Requena and Yeste, respectively). A disturbed pixel was considered to have 

recovered if the tree and shrub cover was at least 40% (i.e., 10/25) (Figure 3.5a 

and 3.5b). Otherwise, that pixel was interpreted as having not recovered (Figure 

3.5c). 
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Figure 3.5. Examples of high resolution orthophotos of recovered (a, b) and non-recovered pixels 

(c) in 5 by 5 grids. 

Four accuracy metrics derived from confusion matrices were computed to 

validate our vegetation recovery classification (Table 3.2), the omission error 

(OE) (Eq. 5), the commission error (CE) (Eq. 6), the overall accuracy (OA) (Eq. 

7) and the Dice coefficient (DC) (Eq. 8) (Congalton and Green, 1999). 

Table 3.2. Confusion matrix example. 

 Reference data   

Estimation Recovered Non-recovered Row total 

Recovered P11 P12 P1+ 

Non-recovered P21 P22 P2+ 

Col. total P+1 P+2 N 

OE P21/P+1  (5) 

CE P12/P1+  (6) 

OA P11+P22/N  (7) 

DC 2P11/(P1++P+1)  (8) 
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3.4. Results 

3.4.1. Classification of post-fire trajectories 

Four different categories were identified for TCA (CR, CRSC, CRS, and NCR) 

and five for TCW (CR, CR2, CRSC, CRSC2 and CRS). The main characteristics 

of the categories describing recovery are defined in Table 3.3. 

Table 3.3. Recovery categories definition. 

Category Acronym Stages Description 

Continuous 

Recovery 

CR 

CR2 

1 

2 

Pixels show a continuous increase in the TCA and 

TCW values since the year of fire (CR) or since the 

first year post-fire (CR2). 

Continuous 

Recovery 

with Slope 

Changes 

CRSC 

CRSC2 

4 

3 

Continuous recovery follows disturbance but slope 

changes occur through the time-series. Changes 

occur at a different time for TCA and TCW (CRSC 

and CRSC2). 

Continuous 

Recovery 

Stabilised 

CRS 2 
Continuous recovery which slow down or stop 4-5 

years after fire. 

Non-

continuous 

Recovery 

NCR 3 

Recovery process is interrupted in the mid-term 

followed by a second phase of continuous recovery 

(only found with TCA). 

Recovery dynamics in TCA and TCW tended to be spatially clustered, indicating 

strong spatial effects (Figure 3.6). Moreover, there are differences in terms of the 

magnitude of change, as well as the year in which changes detected between 

TCA and TCW occurred, and both fires. For the Requena Fire we observed 

greater homogeneity, with CR as the main category, whereas for the Yeste Fire 

the CRSC category predominates. 



Temporal segmentation of Landsat time series to identify post-fire recovery patterns 

36 

 

 
Figure 3.6. Maps of trajectory categories according to TCA (a) and TCW (b). Requena (left), 

Yeste (right). 

The plots in Figure 3.7 show the mean fitted trajectories of recovery categories 

from the TCA and the TCW. In the pre-fire period, the TCA and TCW trajectories 

did not show significant changes, indicating relative stability in forest cover until 

the occurrence of fire. Nevertheless, the trend is negative in the case of TCA 

trajectories which could be due to loss of vegetation vigour before the fires 
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occurred. The structure seems to have not changed in the pre-fire period 

according to stable values in TCW trajectories. 

 

Figure 3.7. Time-series of mean fitted trajectories for each category: (a) TCA, (b) TCW; Requena 

(left), Yeste (right). 

Although burned areas were generally characterised by an increase in spectral 

values after the fire events, the mean TCA and TCW trajectories showed 

differences in vegetation recovery between the two fires and across time-series. 

TCA showed faster recovery, with high slopes in trajectories in the short-term, 

because it is associated with the percent of vegetation cover, whereas TCW 

showed slower recovery since it is related to the vegetation structure and 

moisture 

Regarding the TCA categories, same trends were found in both fires and post-

fire mean values tended to overtake pre-fire values in the mid-term. Even so, 

recovery rates were higher in Requena, as the post-fire mean values reached the 

pre-fire values before 2005, whereas in Yeste the pre-fire values were reached 

around 2010. CR pixels correspond to lower disturbance magnitude whereas in 
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CRSC, CRS and NCR the magnitude of change is clearly higher. In the cases of 

CRSC and NCR the recovery rates were high even though the recovery dynamic 

was interrupted. CRS showed a particular trajectory as it stabilised in the mid-

term and maintained the values across a subsequent phase of slight recovery.  

According to the TCW categories, different trends were found between fires with 

the exception of CR and CRS pixels. In the case of the Yeste Fire the categories 

CR2 and CRSC continued to decrease until one year after the fire. In the case of 

Requena Fire, two different categories of CRSC were found since breakpoints in 

the recovery process occurred in different years. In spite of the trend toward pre-

fire values none of the TCW trajectories reached pre-fire conditions after 24 

years. 

3.4.2. Assessing drivers of post-fire vegetation recovery 

We summarised the results from regression analysis for TCA and TCW in Tables 

S3.1 and S3.2 (Appendices - Appendix 1), respectively. All of the aforementioned 

variables for predicting the Recovery Ratio (RR-TCAx and RR-TCWx) at each 

stage were statistically significant at the 95% level. The successional stages 

correspond to the segments of the fitted trajectories from each category. 

With regards to the relationship between the RR-TCAx and the predictor 

variables, different responses were found between the categories but also 

common trends among recovery classes (Table S3.1). There was a positive 

influence of pre-fire conditions since a higher percent of vegetation cover prior to 

the fire will lead to a higher percent of vegetation cover also after the fire. In 

addition, climate was positively related to RR-TCAx in all stages. Positive water 

balance resulted in a higher ratio of percent vegetation cover. The coefficients 

varied for the different stages since post-fire climate increases its explanatory 

power until stage 3 and drops in the long-term. In relation to severity, high 

recovery rates were related to high severities whereas low ratios were associated 

with low-burned pixels. Regarding topographic variables, coefficients varied 
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according to the stage and category. Elevation showed a negative relation as a 

result of the limiting effects of temperature on vegetation growth, being more 

important in the short-term and decreasing through subsequent stages. The 

slope showed a weaker, negative influence as well as the aspect since cooler, 

wetter north-northeastern aspects (i.e. lower aspect values according to TRASP) 

were preferred. 

The relationship between the RR-TCWx and the predictor variables showed 

different responses reflecting changes in forest structural complexity (Table 

S3.2.). In this case, a negative relationship with pre-fire values was found 

because the greater complexity of the forest structure (i.e. higher TCW), the lower 

the recovery ratio, indicating slower recovery processes of remnant trees and 

seeding in contrast to the quicker recovery of shrubs. With regard to severity 

higher values also lead to higher recovery rates. Concerning topographic 

variables, the slightly positive relationship of the slope might be attributed to pine 

forest distribution preferably in the foothills. Identically to TCA, elevation and 

aspect relationship tended to be negative although in the mid-term stages south-

southwestern aspects lead to higher recovery rates. Post-fire climate conditions 

showed a positive or negative relationship depending on the stage. Enough 

available moisture post-fire is important for seed germination but abrupt changes 

in the climate conditions seem to reduce the recovery ratio in the long-term.  

The relative importance of the explanatory variables for each trajectory category 

was assessed through t-statistics (Figures 3.8 and 3.9). Post-fire climate in terms 

of drought had high predictive power in most of the stages and categories 

according to both TCA and TCW regression analysis. This power increased in 

the mid-term and long-term while all other variables decreased. Fire severity had 

the second largest power for explaining percent vegetation cover in the short-

term, although its power diminished in the estimation of the recovery in terms of 

forest structure. Pre-fire conditions also had a higher importance in the short-

term, since the seed bank and the seeding processes will depend on the pre-fire 

forest cover and structure. Topographic variables showed the lowest explanation 
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power. Elevation had higher relative importance in the case of TCA compared to 

TCW, in which aspect was the most important topographic variable in all stages. 

 

Figure 3.8. Relative importance of explanatory variables in TCA regression analysis. 
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Figure 3.9. Relative importance of explanatory variables in TCW regression analysis. 
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3.4.3. Recovery estimation assessment 

According to the recovered and non-recovered definitions, all categories showed 

high accuracy, with OA values ranging from 0.7 to 0.94 (Table 3.4). The OE and 

CE of the recovery categories varied, with the highest errors in the short-term 

(OE of 0.36 for TCW and CE of 0.22 for TCA). Post-fire recovery estimated by 

TCA shows more balanced errors, although with higher CE due to early 

successional recovery processes of herbs and shrubs. In contrast, recovery 

estimated by means of TCW shows higher OE since it is more sensitive to 

moisture and structure than early soil colonization of herbs. In both cases, more 

stable recovery classes (CR and CRS) showed higher accuracy than the more 

disrupted ones (CRSC). DC increases through the time-series since forest cover 

and structure are more clearly defined. 

Table 3.4. Error metrics for recovery estimations according to TCA and TCW. 

 

 2002 2009-2010 2017-2018 

 OA DC OE CE OA DC OE CE OA DC OE CE 

TCA 

CR 0.86 0.91 0.07 0.11 0.90 0.94 0.04 0.07 0.95 0.97 0.00 0.05 

CRSC 0.70 0.84 0.14 0.19 0.82 0.90 0.09 0.11 0.87 0.93 0.07 0.07 

CRS 0.79 0.86 0.05 0.22 0.86 0.92 0.08 0.08 0.94 0.97 0.02 0.05 

NCR 0.74 0.81 0.16 0.20 0.88 0.93 0.10 0.04 0.92 0.96 0.03 0.05 

TCW 

CR 0.91 0.85 0.21 0.04 0.84 0.88 0.20 0.02 0.93 0.96 0.08 0.00 

CR2 0.82 0.74 0.36 0.13 0.86 0.85 0.21 0.08 0.89 0.93 0.13 0.00 

CRSC 0.82 0.78 0.33 0.06 0.87 0.89 0.15 0.01 0.82 0.91 0.16 0.01 

CRSC2 0.82 0.82 0.29 0.04 0.86 0.91 0.16 0.00 0.88 0.92 0.14 0.00 

CRS 0.86 0.87 0.17 0.10 0.77 0.93 0.12 0.01 0.89 0.93 0.10 0.04 

OA – Overall Accuracy; DC - Dice coefficient; OE - omission error; and CE - commission error. 
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3.5. Discussion 

3.5.1. Post-fire recovery trajectories from LTS 

Characterizing post-fire recovery processes is challenging due to the variety of 

factors driving vegetation recovery, resulting in different recovery dynamics. Post-

fire vegetation recovery estimated from spectral data is not a direct measure of 

actual forest regrowth. However, trends of forest recovery can be quantified by 

linking spectral change metrics with a reference dataset (Bartels et al., 2016). 

Here, we identified different recovery categories according to TCA and TCW 

recovery ratios at different stages through a 24-year-series in Mediterranean pine 

forests. 

Time-series analysis from Landsat data using the LandTrendr segmentation 

algorithm has been suitable to capture the different post-fire recovery trends. The 

trajectories extracted revealed continuous and non-continuous recovery 

processes, allowing us to identify slight changes in the slowly evolving recovery 

process. This was of great importance in determining slow but more stable 

recovery processes (CR, CR2) compared to other faster, but also interrupted, 

recovery processes (CRSC, CRSC2, CRS, NCR), indicating changes in greenery 

and forest structure throughout the recovering process. Other studies which also 

employed a Landsat trajectory-based approach with LandTrendr were able to 

identify different patterns of vegetative regrowth depending on the state, owner 

category and ecoregion in North America (Kennedy et al., 2012) or set recovery 

levels across sclerophyll forest in Australia (Nguyen et al., 2018). Even though 

several studies have addressed the analysis of post-fire recovery trends, our 

findings highlight the importance of defining and grouping recovery patterns to 

facilitate the understanding of recovery processes. 

TCA and TCW have been proved useful to characterise both vegetation cover 

(TCA) and forest structure (TCW). TCW trajectories were much more gradual, 

while TCA trajectories tended to saturate around 5 years post-disturbance. 

Frazier et al. (2015) and Nguyen et al. (2018) also concluded that the TCW 
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contained more detail on the vegetation structure and regrowth in the 

regeneration processes since it is highly correlated to stand age and structural 

complexity in mature forest stands. The wetness values rise with an increasing 

amount of canopy (Hansen et al., 2001), making it more suitable for analysing 

mid and long-term recovery. Alternatively, initial increases in vegetation cover 

were well-characterised with shorter visible and near-infrared wavelengths as 

used in TCA (Gómez et al., 2012; Pflugmacher et al., 2014; Schroeder et al., 

2011). In contrast to the canopy layer, recovery of the understory through both 

resprouting and seeding is quicker (Eugenio et al., 2006; González-De Vega et 

al., 2018). Thus, TCA was more suitable for tracking early stages, suggesting 

greater sensitivity toward shrub recovery and changes in vegetation condition 

rather than structure.  

The Recovery Ratio (RR) varied across the stages and for each category (Figure 

3.7). Generally, the recovery rates of TCA and TCW were greatest shortly after 

the fire (Stage 1 in CRSC, CRSC2, CRS and NCR), decreasing afterwards, due 

to the early post-fire colonization of annual herbs and shrubs (Crotteau et al., 

2013; González-De Vega et al., 2018). In the following stages (2, 3 and 4), the 

RR according to both TCA and TCW was lower, associated with stem exclusion 

processes in a young regrowth forest characterised by intense competition 

among regenerated species (De las Heras et al., 2012; Fernández-García et al., 

2019; Oliver and Larson, 1996). Our results agree with other studies which also 

obtained higher recovery rates in the short-term according to spectral vegetation 

indices in Mediterranean forests (Morresi et al., 2019) and NBR trajectories in 

pine, mixed conifer and conifer-oak forest (Bright et al., 2019). .  

Accordingly, the recovery time for the fitted mean trajectories also varied across 

categories. TCA categories tended to reach mean pre-fire values quicker, as it 

tends to saturate earlier (short-mid-term) due to the influence of herbaceous 

vegetation on TCA. Specifically, in the Requena Fire, the TCA trajectories tended 

to overtake pre-fire values in the long-term, possibly because these are fire-

adapted forests in which fire creates favourable conditions for vegetation 
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germination and regeneration (De las Heras et al., 2012). Nevertheless, TCW 

trajectories did not reach the previous values 24 years after the fire, suggesting 

that burned areas did not recover the complexity of the pre-fire forest structure. 

This agrees with the interval of minimum 15 years to consider a Pinus halepensis 

forest recovered after a fire proposed by Eugenio et al. (2006) (Eugenio et al., 

2006) since post-fire populations of seeder species does not overpass the 

reproductive juvenile phase up to 12–20 years after fire (Thanos and Daskalakou, 

2000) and thus, canopy seed bank is not completely fulfilled (González-De Vega 

et al., 2016). Some studies in Mediterranean ecosystems reported recovery times 

from remote sensing which fit with our findings (Viana Soto et al., 2019). In this 

sense, Gouveia et al. (2010) found recovery times of vegetation cover around 3-

5 years according to NDVI (highly correlated with TCA), and Fernández-Manso 

et al. (2016) estimated the time of vegetation cover with VRI between 7 and 20 

years depending on fire severity level. However, the estimated recovery times 

with NBR, which is highly correlated with TCW, were generally longer compared 

to NDVI (Morresi et al., 2019).  

Some of the limitations for the modelling of post-fire vegetation recovery using 

optical data are related to saturation at high LAI values. Previous studies found 

that the saturation of optical indices is reached after 20 years in Mediterranean 

environments (Tanase et al., 2011). Likewise, Schroeder et al. (2011), Pickell et 

al. (2016), Viana-Soto et al. (2017) and Hislop et al. (2018) found post-fire 

recovery of NDVI or TCA returning back to pre-fire levels rapidly (i.e. around 5-7 

years post-fire).  Structural information derived from airborne LiDAR data would 

enable a better characterization of the recovery trajectories and to improve our 

understanding post-fire vegetation recovery (Bolton et al., 2015; Martín-Alcón et 

al., 2015). 

3.5.2. Accuracy assessment of post-fire recovery 

Accuracy assessment of post-fire recovery is often avoided because historical 

reference datasets are scarce and field data are costly and time-consuming 
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(Banskota et al., 2014). Here, we used a human interpretation approach to derive 

reference data of recovered and non-recovered areas, which has been widely 

employed to derive reference data for disturbance and recovery mapping (Cohen 

et al., 2010; DeVries et al., 2015; Nguyen et al., 2018; Zhao et al., 2016). 

All classes showed high accuracy, with increasing OA and DC from the short-

term to the long-term since forest cover and structure are more clearly defined 24 

years post-fire. DC values were slightly lower in the long-term for TCW compared 

to TCA, which might indicate a recovery process that evolves to a secondary 

forest with higher shrub domain (González-De Vega et al., 2016). This could also 

be related to the uncertainty associated with signal sensitivity to changes in 

vegetation cover and biomass (Storey et al., 2020). Moreover, the highest 

accuracy in the more stable categories (CR), in contrast to the more variable 

(CRSC), also highlights the difficulty in establishing the level of recovery for those 

more dynamic areas. Nguyen et al. (2018) also pointed out the challenge of 

determining the post-disturbance recovery level, and identified recovery levels 

from NBR trajectories after fires according to whether pre-fire conditions were 

reached or not. Here, we did not distinguish among recovery levels as we were 

unable to accurately characterise the pre-fire forest structure due to the lack of 

high-resolution imagery, for which a more extensive reference dataset would also 

be needed. 

The main source of error stemming from OE for both TCA and TCW in the 

recovered pixels. Our results showed that the TCW had higher accuracy for the 

non-recovered areas but omitted pixels that had already recovered. Zhao et al. 

(2016) also found higher OE in the recovered class regarding post-fire and post-

harvest forest recovery. Similarly, DeVries et al. (2015) assessed post-harvest 

regrowth in tropical forests obtaining lower CE in the regrowth class but the 

highest OE. On the other hand, TCA showed higher CE, as it is more sensitive to 

fast detection of early recovering processes but also tends to saturate earlier as 

Schroeder et al. (2011) reported.  
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3.5.3. Assessment of post-fire recovery drivers 

Regression modelling of TCA and TCW recovery ratios for the recovery 

categories identified showed a varied influence of environmental factors, fire 

severity and pre-fire conditions. The results indicated post-fire climate as one of 

the most important factors for vegetation recovery in Mediterranean pine forests 

in Spain. Likewise, Meng et al. (2015), Liu (2016) and Viana-Soto et al. (2017) 

found that climate conditions in the first post-fire seasons were critical for 

predicting short-term recovery. Tree regeneration after disturbances in 

Mediterranean ecosystems could be limited under post-fire drought events since 

droughts constrain seedling establishment and growth (De las Heras et al., 2012; 

Fernández-García et al., 2019). Bright et al. (2019) also reported that post-fire 

climate explained substantial variation of the degree to which vegetation 

greenness recovered after a fire. Further analysis between trajectories and post-

fire climate revealed that stages of recovery slowdown and even breakpoints 

coincided with negative SPEI values (i.e. dry or very dry periods). The year of the 

fires was followed by a slightly humid period which supported the recovery. 

However, 5 years after the fires, a new drought event interrupted the recovery, 

as can be observed very clearly in the stabilisation of the recovery in the CRS 

category from 1999-2000, not only in the TCA trajectories but also in TCW 

trajectories. The effect of this drought event was also noticeable in the categories 

of CRSC and CRSC2. Furthermore, the impact of post-fire climate on the 

recovery process was also shown in the mid-term and long-term. In the case of 

the Yeste Fire, an extreme drought event in 2005 coincided with the breakpoints 

in NCR and CRSC, whereas in the Requena fire this event was not as severe as 

it was in 2012, coinciding with the breakpoints in NCR and CRSC2.  

Fire severity was also a key factor in the short-term recovery of pine forests. 

Some studies also found that fire severity was decisive in recovery dynamics both 

in mixed-conifer forests (Meng et al., 2015) and pine forests (Ireland and 

Petropoulos, 2015) due to its relation to pine seedling densities after fire, 

depending on pre-fire vegetation composition, seedling mortality and 
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reestablishment processes (Crotteau et al., 2013; Fernández-García et al., 2019; 

González-De Vega et al., 2018). In this study, the areas were burned at high 

severity (dNBR > 0.66) as forested areas tended to experience a higher severity 

compared to herbaceous and shrublands. Moderate-high severity was only found 

in those pixels of CR, which showed a slower but stable recovery trend. In 

agreement with the results reported by Shvetsov et al. (2019), a positive 

relationship between recovery rate and fire severity was found, since recovery 

rates were higher for the higher severity areas than for high-moderate severity 

(corresponding to successful recovery). Moderate fire severity sites might result 

in higher soil organic matter mineralisation, and thus in higher post-fire soil fertility 

that produces faster growth in pine seedlings (Pausas et al., 2002). Bright et al. 

(2019) also found that areas burned at higher severities recovered at faster rates, 

possibly because they are fire-adapted forest in which fire creates favourable 

conditions for vegetation germination and regeneration. Nevertheless, some 

studies in Mediterranean pine forest reported that conversion from forest to 

shrubland occurred in the most xeric sites (south-facing areas) (Martín-Alcón and 

Coll, 2016) or in those areas with a high severity (González-De Vega et al., 2016). 

In this sense, Baudena et al. (2019) predicted that future potential increases in 

aridity may drive these fire-prone ecosystems past a tipping point, after which 

closed forest structure would be replaced by open shrublands. 

Topographic variables can also influence post-fire vegetation recovery through 

its effects on local microclimate, soil and hydrological processes (Chu et al., 2017; 

Ireland and Petropoulos, 2015). Wittenberg et al. (2007) and Ireland and 

Petropulous (2015) found that north facing aspects exhibit higher rates of 

vegetation recovery compared to south facing aspects as we found in the short-

term recovery in CRS, NCR and CR categories according to TCA, but also in 

CRSC according to TCW. The negative influence of elevation was also detected 

in Mediterranean pine forest (Viana-Soto et al., 2017) and red fir forests (Meng 

et al., 2015) that might be attributed to the decreased temperature with elevation. 

In contrast, Chu et al. (2017) and Shvetsov et al. (2019) reported that topographic 

variables were the least important factors in explaining the regeneration rate in 
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Siberian forests. In our study, recovery in relation to topographic position did not 

show any clear pattern. This could be due to the fact that most of the pixels were 

located at either upper or mid-slope in the foothills and very few were bottom 

slopes.  

Although we found that post-fire climate was the most important variable in 

explaining post-fire recovery in the mid and long-term, other variables not 

included could be influencing the recovery process. Further analysis would 

consider the influence of historical management legacies as well as the distance 

to seed banks in the post-fire recovery patterns.  

3.6. Conclusion 

Time-series analysis from a temporal segmentation approach allowed us to 

unravel and characterise different post-fire recovery trajectories. Although 

several studies have addressed the estimation of post-fire recovery rates, fewer 

have been done in defining and characterizing the differences among recovery 

trends in Mediterranean pine forests. Here, we identified different recovery 

categories according to TCA trajectories and TCW trajectories, which enabled us 

to define slow but more stable recovery processes (CR, CR2) compared to other 

faster but also interrupted recovery processes (CRSC, CRSC2, CRS, NCR). The 

appraisal of the environmental and contextual drivers of the recovery process 

showed that fire severity is important to predict the RR in the short-term but post-

fire climate in terms of drought better explained the RR in the mid and long-term.  

The thermophilous pine forests are the most affected by wildfires in Europe. 

Increased wildfire activity is expected to continue under warmer and drier 

conditions, making post-fire vegetation recovery of concern to researchers and 

forest managers. Since these forests may not be allowed the time to develop into 

a mature forest that would be able to recover rapidly, the resilience of these 

ecosystems will therefore be significantly reduced. Hence, a better understanding 

of fire regimes and forest recovery patterns in different environmental and climatic 
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conditions is needed for developing forest management strategies that enhance 

forest resilience. 
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Abstract 

Understanding post-fire recovery dynamics is critical for effective management 

that enhance forest resilience to fire. Mediterranean pine forests have been 

largely affected by wildfires, but the impacts of both changes in land use and 

climate endanger their capacity to naturally recover. Multispectral imagery is 

commonly used to estimate post-fire recovery, yet changes in forest structure 

must be considered for a comprehensive evaluation of forest recovery. In this 

research, we combine Light Detection and Ranging (LiDAR) with Landsat 

imagery to extrapolate forest structure variables over a 30-year period (1990-

2020) to provide insights on how forest structure has recovered after fire in 

Mediterranean pine forests. Forest recovery was evaluated attending to 

vegetation cover (VC), tree cover (TC), mean height (MH) and heterogeneity 

(CVH). Structure variables were derived from two LiDAR acquisitions from 2016 

and 2009, for calibration and independent spatial and temporal validation. A 

Support Vector Regression model (SVR) was calibrated to extrapolate LiDAR-

derived variables using a series of Landsat imagery, achieving an R2 of 0.78, 

0.64, 0.70 and 0.63, and a relative RMSE of 24.4%, 30.2%, 36.5% and 27.4% for 

VC, TC, MH and CVH, respectively. Models showed to be consistent in the 

temporal validation, although a wider variability was observed, with R2 ranging 

from 0.51 to 0.74. A different response to fire was revealed attending to forest 

cover and height since vegetation cover recovered to a pre-fire state but mean 

height did not 26-years after fire. Less than 50% of the area completely recovered 

to the pre-fire structure within 26 years, and the area subjected to fire recurrence 

showed signs of greater difficulty in initiating the recovery. Our results provide 

valuable information on forest structure recovery, which can support the 

implementation of mitigation and adaptation strategies that enhance fire 

resilience. 

Keywords: Post-fire recovery, canopy cover, height, LiDAR, Landsat, support 

vector regression (SVR). 
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4.1. Introduction 

Forest fires are one of the recurrent disturbances in Mediterranean biomes, 

shaping forest structure and composition (Keeley, 2012). Fire activity is 

particularly intense in Southern Europe, where half a million hectares are burnt 

every year (Rigo et al., 2017) causing ecological, economic and human health 

impacts (Bowman et al., 2017). Since fire is an integral component of the 

Mediterranean ecosystems (Pausas and Keeley, 2014a), plant species have 

developed diverse post-fire ecological strategies to recover including resprouting, 

seed bank persistence and dispersal capacity (De las Heras et al., 2012). 

Nonetheless, impacts of both changes in land use and climate, and the resulting 

alterations in fire regimes, may endanger their natural capability to recover 

(Pausas and Keeley, 2014a). Therefore, Mediterranean forests must adapt to 

new induced fire regimes with an increase in the frequency and intensity of fires, 

as a result of drier and longer droughts (Seidl et al., 2017; Turco et al., 2018). 

Consequently, the vulnerability of these ecosystems to not naturally recover is 

likely to increase, requiring forest management to focus on their resilience to fire 

(Ibáñez et al., 2019). 

In this forthcoming situation, post-fire recovery has emerged as an important 

indicator of ecosystem resilience (González-De Vega et al., 2016; Nikinmaa et 

al., 2020), defined as the time the system needs to reach the pre-disturbance 

values. Remote sensing offers a powerful alternative to field methods for 

monitoring forest recovery based on the spectral response of vegetation at 

multiple spatial and temporal scales (Pérez-Cabello et al., 2021). The Landsat 

archive, with more than four decades of observations, has become the most 

widely used imagery source to monitor forest disturbances and subsequent 

recovery (Chuvieco et al., 2020). These datasets have both temporal and spatial 

characteristics appropriate to analyse dynamic processes as recovery, giving an 

overview of successional forest changes following a disturbance (Kennedy et al., 

2014). Spectral indices and Tasseled Cap Transformations (TCT) have long been 

used to estimate parameters related to vegetation recovery (Hislop et al., 2018; 
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Pickell et al., 2016; White et al., 2017). More recently, time-series analysis has 

become increasingly important to characterise post-fire vegetation recovery, 

taking advantage of the development of change detection algorithms (Zhu, 2017) 

and cloud computing capabilities through the Google Earth Platform (Gorelick et 

al., 2017). Particularly, the use of recovery trajectories from time-series analysis 

provides essential information to identify abrupt disturbances and subsequent 

recovery processes (Bright et al., 2019; Frazier et al., 2015; Nguyen et al., 2018; 

Viana-Soto et al., 2020). 

Notwithstanding, changes in forest structure in combination to the spectral signal 

of recovery must be considered for a comprehensive evaluation of forest 

resilience to fire (Bartels et al., 2016; Kennedy et al., 2014). LiDAR sensors are 

capable of penetrating through vegetation and recording forest structural 

characteristics (Lefsky et al., 2002). Previous studies have successfully used 

LiDAR data for estimating forest attributes (Bottalico et al., 2017; Zhao et al., 

2011), quantify post-disturbance structural characteristics (Bolton et al., 2015; 

McCarley et al., 2017), fire severity assessment (García et al., 2020; Montealegre 

et al., 2014) and vegetation recovery analysis (Gordon et al., 2017; Martín-Alcón 

et al., 2015). The use of low-density LiDAR data has also proved its ability to 

estimate forest attributes in Mediterranean forests (Gelabert et al., 2020; Tijerín 

et al., 2022), providing a suitable representation of the post-fire forest conditions 

attending to both vertical structure and horizontal continuity of vegetation (Kane 

et al., 2010). Estimates of vegetation cover and height as well as structural 

heterogeneity provide valuable information on how the dominance of shrub and 

tree strata is shifting within the recovery process (Bartels et al., 2016). 

Considering that airborne LiDAR data availability is limited in space and time, 

combining it with Landsat imagery to temporally and spatially extrapolate LiDAR-

derived structural variables emerges as a promising approach to model post-fire 

recovery regarding forest structure (Ahmed et al., 2015; García et al., 2017; 

Matasci et al., 2018; Pflugmacher et al., 2014; Senf et al., 2019; Zald et al., 2016). 

The lack of a direct relationship between structure and reflectance can be solved 
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by non-parametric machine learning methods (Ahmed et al., 2014; García et al., 

2017, 2011). In fact, the use of machine learning algorithms for combining 

multisource remotely sensed data have greatly increased due to their ability to 

model complex relationships between the dependent and independent variables 

and no assumption of data distribution (Lary et al., 2016), even in cases of high 

dimensionality and relatively small sample sizes. A diversity of machine learning 

regression algorithms has been used to address the extrapolation procedure, 

such as Random Forests (Martín-Alcón et al., 2015; Senf et al., 2019), k-Nearest 

Neighbour (Ahmed et al., 2015; Matasci et al., 2018) or Support Vector 

Regression (SVR) (García et al., 2017). From these, SVR has been proved an 

effective tool to capture complex non-linear relationships between the dependent 

and the explanatory variables, and thus enabling the extrapolation of LiDAR-

derived canopy cover and height based on Landsat images (García et al., 2017; 

Zhao et al., 2011). However, attempts to extrapolate over time are limited due to 

the difficulty to achieve a stability of the estimates among sensors and across 

different environmental conditions (Matasci et al., 2018). Our understanding on 

how LiDAR-to-Landsat extrapolation will perform in high structurally 

heterogeneous and opened landscapes as the Mediterranean forests using 

LiDAR collected at low point densities remains incomplete. 

In this current research, we aimed at combining LiDAR data and Landsat imagery 

to provide insights on how forest structure has recovered after fire in 

Mediterranean pine forests over a 30-year period. The specific objectives were:  

i) to assess the feasibility of temporally extrapolating LiDAR-based cover, 

height and canopy heterogeneity using Landsat data based on a support 

vector regression (SVR) approach 

ii) to generate a 30-year series of forest structural variables based on the 

temporal extrapolation of LiDAR based estimates using Landsat imagery 

iii) to characterise post-fire forest structure recovery from the generated time-

series of structure variables 
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4.2. Study area 

The study site is located in the Mediterranean semi-arid region from southeastern 

Spain (Figure 4.1). The Yeste Fire occurred in the summer of 1994 (7th August), 

which burned 11,685 ha of pine dominated. Average annual rainfall is 600–700 

mm and the average annual temperature is around 15 °C, subjected to soil 

hydrological deficit in summer (Ninyerola et al., 2005). Pinus halepensis Mill. and 

Pinus pinaster Ait. dominate in those relatively young semi-natural forests 

resulting from plantations carried out in the mid-20th century (Pausas et al., 2004). 

Both species are obligate seeders, requiring a minimum of 15 years and up to 30 

years to reach reproductive maturity. The understory is mainly composed by 

shrub species such as Thymus L., Rosmarinus L. or Juniperus L., but Quercus 

ilex L. occurs in the understory at some areas. Fire recurrence in the northwest 

sector in 2017 (27th July, with approximately 3,000 ha burned) makes this site of 

particular interest. Patches dominated by P. halepensis and P. pinaster in the 

overstory were selected according to the Forest Map of Spain (MFE) (1:50.000), 

including those forested pixels that were burned as well as unburned from a buffer 

of 2 km from the fire perimeter, which represented the natural dynamics of the 

ecosystem. Other cover types present in the scene were masked. 



Assessing post-fire structure recovery by combining LiDAR and Landsat data 

58 

 

 

Figure 4.1. Location of the study area: a) post-fire Landsat images (RGB composition: SWIR2, 

NIR, Blue) from August 1994 (left) and August 2017 (right); b) Examples of Pinus forest from 

unburned and burned plots (photographs were taken in March 2021). 

4.3. Materials and methods 

The main methodological steps are shown in Figure 4.2. Firstly, we computed a 

set of forest structure variables from LiDAR data for two different dates, 2009 and 

2016. Then, we extracted a series of predictor variables (Landsat spectral bands, 

indices and transformations, and topographic variables) to model the LiDAR-

derived structure variables from a SVR approach. The SVR model was calibrated 

and applied to a 30-year series of Landsat imagery to generate a time-series of 

forest structure attributes. We validated the estimations both temporally and 

spatially from an independent sample of LiDAR-derived estimates. 
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Figure 4.2. Workflow of the methodology for the modelling forest cover and height using Landsat 

imagery and LiDAR data. 

4.3.1. Data acquisition and processing 

LiDAR data 

Airborne Laser Scanner (ALS) data were acquired in 2009 (September - 

November) and 2016 (August - September) by the National Plan for Aerial 

Orthophotography of Spain (PNOA) and distributed by the National Geographic 

Institute of Spain (IGN). Data were acquired using small-footprint discrete-return 

airborne sensors (LEICA ALS50 and ALS60), with a maximum scan angle of 50°, 

at a scanning frequency of 70 Hz (minimum of 40 Hz), and a minimum pulse 



Assessing post-fire structure recovery by combining LiDAR and Landsat data 

60 

 

frequency of 45 kHz. The maximum flight height was 3000 m above ground level. 

The point density of the study area was 0.5 pts/m2, with a vertical accuracy of 

0.30 m (2009) and 0.20 m (2016). Data processing and subsequent statistical 

metrics computation were carried out using the U.S. Forest Service’s FUSION 

software v3.80 (McGaughey, 2018). 

We calculated a set of forest structural variables from LiDAR data at 30-m 

resolution to match the spatial resolution of the Landsat data: vegetation cover, 

tree cover, mean height, and coefficient of variation of height. Cover metrics were 

extracted directly from the cloud point using the “GridMetrics” command at a 30-

m spatial resolution using all the returns (Morsdorf et al., 2006). Vegetation Cover 

(VC), defined as the percentage of ground covered by the vertical projection of 

vegetation for a given pixel (Jennings et al., 1999), was calculated as the ratio of 

vegetation returns above 0.3 m to all returns (Eq. 1). This height threshold was 

selected to avoid ground points in relation to the vertical accuracy (Gelabert et 

al., 2020). Similarly, the Tree Cover (TC) was computed using a 2 m height 

threshold (Shi et al., 2018), which was enough to exclude shrubs and herbs. 

𝐶𝑜𝑣𝑒𝑟 =
𝑅𝑒𝑡𝑢𝑟𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝑎𝑙𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠
 𝑥 100 

     (1) 

Metrics of forest height were derived from the Canopy Height Model (CHM) 

constructed by subtracting the terrain heights (DEM) to the points. The DEM was 

previously generated by interpolating the points classified as ground. Canopy 

height for each 30-m cell was computed by averaging the contained pixels of the 

original CHM computed at 2-m spatial resolution. Subsequently, we calculated 

the coefficient of variation of height (CVH) by dividing the standard deviation of 

height (STDH) to the mean height (MH) to assess the vertical structural 

heterogeneity. 
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Landsat data 

Annual Landsat composites for the period 1990-2020 were generated through 

the Google Earth Engine platform (Gorelick et al., 2017) using a medoid selection 

process choosing the pixel closest to the median among images (Flood, 2013). 

Landsat TM, ETM + and OLI Surface Reflectance images  were selected 

according to a target period (31st August - 15th October) to minimise the effect of 

phenological changes, filtering by cloud cover (less than 20%). Inter-sensor 

harmonization was carried out due to differences among the spectral 

characteristics of Landsat ETM+ and OLI datasets (Vogeler et al., 2018). We 

normalised Landsat TM and ETM+ to Landsat OLI from a multilinear regression 

approach (Roy et al., 2016). We applied the topographic correction SCS+C 

(Soenen et al., 2005) to remove the effect of the terrain slope. The SCS+C is 

based on the Sun-Canopy-Sensor correction proposed by (Gu and Gillespie, 

1998), specifically designed for forested areas (Chance et al., 2016; García et al., 

2011).  

Apart from the Landsat spectral bands, we computed a set of spectral indices to 

encompass the diversity of vegetation characteristics: the Normalised Difference 

Vegetation Index (NDVI) (Tucker, 1979), the Enhanced Vegetation Index (EVI) 

(Huete et al., 2002), the Normalised Difference Water Index (NWMI) (Gao, 1996), 

and the Normalised Burn Ratio (NBR) (Key and Benson, 2006). Tasselled Cap 

Transformations (Brightness, Greenness and Wetness) (Crist, 1985) were 

calculated using the coefficients derived by Baig et al. (2014) and then the 

Tasseled Cap Angle (TCA) (Powell et al., 2010) and Tasseled Cap Distance 

(TCD) (Duane et al., 2010) were computed from brightness and greenness 

components. TCA is sensitive to the gradient of vegetation cover (Gómez et al., 

2011), and TCD is related to vegetation composition and structure (Pflugmacher 

et al., 2014). 
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Topographic data 

Topographic variables were derived from the LiDAR-based Digital Elevation 

Model (DEM) (25-m spatial resolution) from the National Geographic Institute 

(IGN) of Spain, as they are known to be related to forest vegetation distribution: 

elevation, slope and transformed aspect (TRASP, Roberts and Cooper, 1989) 

(Eq. 2). The post-processing of this DEM included the removal of possible 

artefacts and gap filling.  

𝑇𝑅𝐴𝑆𝑃 =
1 − (cos(𝑎𝑠𝑝𝑒𝑐𝑡 − 30))

2
 

       (2) 

where aspect is in degrees. TRASP ranges from 0 to 1: values of 0 correspond 

to cooler, wetter north-northeast aspects, whereas values of 1 correspond to 

hotter, dryer south-southwestern aspects. 

4.3.2. Predictor variables and sample selection 

LiDAR-derived variables to describe structural recovery (Vegetation Cover-VC-, 

Tree Cover-TC-, Mean Height -MH- and Coefficient of Variation of Height -CVH-

) were set as response variables, and Landsat variables (bands and spectral 

indices), topography and position were set as predictors. A sample of 10,000 

pixels was selected for the model training and validation by a stratified random 

sampling method. Outliers were previously removed to provide meaningful 

training and validation pixels considering 3 standard deviations from the mean 

value of the target variable. We stratified the dataset depending on the response 

variable histogram distribution to ensure all strata were represented in the train-

test and validation datasets. Mean height was stratified in equal intervals of 0.5 

m in a range of 0 to 15 m while cover variables were stratified in equal intervals 

of 5% in a range of 0 to 100 %. We then carried out a spatial random selection 

within each strata avoiding forested edge pixels considering a distance of 100 m 

from the borders. The 2016 data sample was split into 60% for calibration of the 

model (i.e. 6,000 pixels) and 40% for independent validation. In addition, to 
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evaluate the temporal robustness of the model, we extracted an independent 

sample from the 2009 dataset for the temporal validation, with a size equal to the 

sample used for the spatial validation.  

4.3.3. Support vector regression modelling 

We calibrated a Support Vector Regression model (SVR) (Smola and Scholkopf, 

2004) to estimate forest cover and height from predictor variables using the 

module of Scikit-learn in Python (Pedregosa et al., 2011). SVR is a supervised 

learning algorithm designed to solve regression problems, which can deal with 

non -linearity by transforming the data into higher-dimensional space using a 

kernel function. SVR attempts to find an optimal loss function deviating from the 

target (training data) less than a value  while being as flat as possible (Smola 

and Scholkopf, 2004). SVR was selected  for  the  extrapolation as it has been 

demonstrated an effective tool to model forest canopy height (García et al., 2018; 

Pourshamsi et al., 2021) with a good generalization capability (Awad and 

Khanna, 2015). Input data were scaled to prevent variables of higher numerical 

ranges dominating variables of lower numerical ranges. We used the radial basis 

function kernel and performed a grid search using 5-fold cross validation for the 

parameter tuning (Xu and Goodacre, 2018).  

4.3.4. Model evaluation and performance 

The performance of the SVR models was evaluated both temporally and spatially. 

The spatial assessment was conducted using the reserved validation sample 

from the reference year (2016) (4,000 samples), and the temporal assessment 

using a sample from the independent LiDAR acquisition collected in 2009 (4,000 

samples). Models were assessed by comparing predicted to observed values 

using a series of goodness of fit measures, including the coefficient of 

determination R2, mean absolute error (MAE), root mean squared error (RMSE), 

relative root mean square error (rRMSE) and bias (i.e., average of predicted 

minus observed values) for each response variable. 



Assessing post-fire structure recovery by combining LiDAR and Landsat data 

64 

 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖|

𝑁

𝑖=1

 
       (3) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖)2

𝑁

𝑖=1

 

       (4) 

𝑟𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖
 100 

       (5) 

4.3.5. Characterisation of post-fire structural recovery 

Post-fire recovery was quantified using a relative indicate of recovery within each 

of the estimated structural variables (VC, TC, MH and CVH). Similarly to Kennedy 

et al. (2012) and White et al. (2017), the Recovery Indicator (RI) was defined as 

the ratio of the post-fire recovery (Δ Recovery) by the magnitude of the fire (Δ 

Disturbance) (Figure 4.3): 

𝑅𝐼(𝑉𝐶,𝑇𝐶,𝑀𝐻,𝐶𝑉𝐻) =  
∆ 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

∆ 𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒
 

     (6) 

Where ∆ Recovery is the change in the forest structural variable value at a 

defined year following fire: 

∆ 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑉𝐶,𝑇𝐶,𝑀𝐻,𝐶𝑉𝐻) = 𝑉𝑎𝑙𝑢𝑒𝑦+𝑖 − 𝑉𝑎𝑙𝑢𝑒𝑦      (7) 

and ∆ Disturbance is defined as the difference in the forest structural variable 

value from the year before the fire and the year of the fire: 

∆ 𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑉𝐶,𝑇𝐶,𝑀𝐻,𝐶𝑉𝐻) = 𝑉𝑎𝑙𝑢𝑒𝑦−1  − 𝑉𝑎𝑙𝑢𝑒𝑦        (8) 

Recovery Indicator (RI) was calculated at different successional stages to assess 

post-fire structural conditions immediately after fire (y+1, 1995), in the short term 

(y+6, 2000), mid-term (y+11 and y +16, -2005 and 2010-), and long-term (y+21 

and y+26, -2015 and 2020-).  
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Figure 4.3. Schema of recovery metrics: ∆ Recovery, ∆ Disturbance, pre-fire value and Recovery 

Indicator (RI). 

4.4. Results 

4.4.1. Model assessment 

Comparing forest structure variables estimated from Landsat to the reference 

dataset of LiDAR estimates, we found the overall best agreement for VC, followed 

by MH, TC and CVH (Figure 4.4). Models explain a good percentage of the 

variance, with model R2 ranging from 0.63 to 0.78, and rRMSE below 30% for all 

variables except for the mean height (2016). Models from the temporal 

extrapolation (2009) maintain a good performance, although R2 decreases (0.51 

- 0.74) and the errors increase (rRMSE ranging from 31 to 44%). VC showed the 

highest agreement close to the 1:1 line with a MAE of 9.6% for 2016 and 11.1% 

for 2009. The agreement of TC estimates was lower (MAE of 11.3% for 2016 and 

12.6% for 2009) displaying an over- and underestimation in the lowest and 

highest TC values, respectively. Mean height (MH) estimations showed moderate 

agreement with a MAE of 1.25 m (2016) and 1.5 m (2009) while Coefficient of 

Variation of height (CVH) estimations achieved a less strong correlation to the 

reference dataset. Positive bias in 2009 indicates that the model generally 

overestimated cover and height values, while we observed an underestimation of 

cover and height values in 2016. 
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Figure 4.4. Scatterplots between predicted and observed values for canopy cover (VC and TC) 

and height (MH and CVH) response variables on the independent validation samples (2016 and 

2009). 
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4.4.2. Estimations of annual forest cover and height 

Figure 4.5 contains the time-series of VC, TC, MH and CVH variables for the 

burned pixels in 1994, burned pixels in both 1994 and 2017, and unburned 

forested pixels for the period 1990-2020. In those unburned areas, forest cover 

and height variables remained stable over the three decades, with a slight upward 

trend. Time-series of burned areas shows a loss of cover and height in the year 

of the fire that even extends into the following post-fire year. Most noticeable is 

that burned areas did not return to its pre-fire value in terms of Tree Cover and 

Mean Height within the temporal window of the time-series (26 years post-fire), 

although they remain close. Those patches with fire recurrence in 2017 were 

burned before reaching the previous conditions, returning to a starting point of 

the recovery process. Attending to the evolution of the CVH, the variability 

increases after the fire at the pixel level due to the presence of a mixture of soil, 

remnant vegetation and dead wood. In the following years after the fire, variability 

tends to be reduced by the regrowth of vegetation. Nonetheless, given the high 

heterogeneity of forests, even in unburned areas, the CVH remained above 0.5 

m. 

These temporal patterns are also observed in the detailed maps of the estimated 

variables for the years 1990, 1995, 2005 and 2020 (Figure 4.6). Vegetation cover, 

tree cover and mean height values are clearly more homogeneous throughout 

the area before the fire occurs (1990) with intermediate values of Coefficient of 

Variation of height. One year after fire (1995), vegetation cover, tree cover and 

mean height values drop sharply, increasing the CVH. The heterogeneity of the 

landscape in terms of cover and height is well visible in those burned areas in the 

mid-term and long-term (2005, 2020) while the unburned sector maintains stable 

values with a slight increase.  
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Figure 4.5. Time-series of mean values of forest structure variables for burned and unburned 

pixels. Shading around the mean values indicate the standard deviation. Vertical red lines indicate 

the year of the fire. 
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Figure 4.6. Maps of Vegetation Cover, Tree Cover, Mean Height and Coefficient of Variation of 

Height at four successional stages: 1990 (y-4), 1995 (y+1), 2005 (y+11) and 2020 (y+26). White 

spaces indicate masked areas. 
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4.4.3. Quantifying post-fire structural recovery 

From a spatio-temporal perspective, we examined the annual maps to get a 

detailed wall-to wall analysis of the forest structure recovery from the fire 

occurrence until 2020. Figure 4.7 shows the difference between 2020 and 1994 

(immediately after fire) of the estimated forest structural attributes over burned 

and unburned forested areas. Vegetation cover, tree cover and mean height 

remained relatively stable in unburned forests with a slight increase over the 

period (10-20% in cover, 2-4 m in height). CVH also showed small changes in 

magnitude (-0.2), associated to the natural successional process of the forest.  

Burned areas display different percentages of increases in vegetation cover but 

also patches with non-recovery in tree cover and mean height. Largest increases 

occur in terms of vegetation cover indicating a quick recovery of vegetation in the 

horizontal plane, whereas tree cover shows considerably lower values. Burned 

areas also show positive increases in mean height values throughout the study 

area, with higher regrowth along on north-facing valley slopes. Most negative 

values correspond to the area burned in 2017 that was not disturbed in 1994. The 

area subjected to fire-recurrence, meaning burned in 1994 and 2017, show low 

percentages of vegetation cover and mean height 3 years after the second fire. 

The variability of height decreased with respect to the year of the fire as the 

recovery process moves forward and vegetation starts to encroach the ground. 
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Figure 4.7. Difference (2020-1994) maps of post-fire Vegetation Cover, Tree Cover, Mean Height 

and Coefficient of Variation of Height. White spaces indicate masked areas. 

Results from the Recovery Indicator (RI) of the forest structure variables at 5-

yearly intervals (Figure 4.8) provide a measure of the immediately post-fire 

conditions (y+1, 1995) and the state of recovery in the short term (y+6, 2000), in 
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the mid-term (y+11-y+16, 2005-2010) and, in the long term (y+21-y+26, 2015-

2020). The evolution of the RI shows a gradual recovery for all variables, although 

only vegetation cover reaches pre-fire values 26 years after fire. RI values 

reached the threshold of 0.5 (i.e. half of pre-fire state) in terms of vegetation cover 

in the short term, but remain below 0.5 according to the mean height, indicating 

an initial recovery of pioneer herbs and shrubs and an initial reestablishment of 

remnant trees. Over the mid-term to long-term (from 2010 onwards), tree cover 

almost recovered to pre-fire values, while mean height continues to increase at a 

slower pace. CVH shows the sharpest increase in the short-term and stabilises 

thereafter. 

 

Figure 4.8. Violin plots and boxplots of the Recovery Indicator for each forest structure variable. 

Boxes indicate the 25, 50 and 75 percentiles, and the whiskers show confidence intervals (95%). 

Vertical line indicates a full recovery (RI = 1). 
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A quantitative overview of the recovery at the successional stages is provided by 

the percentage of pixels that recovered the pre-fire values regarding the four 

forest structure variables at 5-year intervals. We considered two scenarios to 

account for a completely recovery (threshold of 100%) (Figure 4.9a) and for an 

advanced state of the recovery (threshold of 80%)  (Figure 4.9b). Considering a 

recovery threshold of 100%, less than 10% of the pixels completely recovered to 

its pre-fire structure before 6 years after fire and around 15-20% recovered in the 

mid-term (16 years post-fire). Approximately 40% of pixels recovered the pre-fire 

values in terms of tree cover 26 years after fire, while less than 30% of pixels 

were recovered attending to mean height. Nevertheless, considering a recovery 

threshold of 80% from the pre-fire values, the amount of recovered pixels 

increase to 73 % on vegetation cover, 58.6 % on tree cover, and 43.8% on mean 

height 26 years after fire, meaning a relatively advanced state of the recovery. 

 

Figure 4.9. Statistics of recovered pixels from burned area in 1994 at a) 100% and b) 80% of 

recovery attending to the four structure variables in 1995 (y+1), 2000 (y+6), 2005 (y+11), 2010 

(y+16), 2015 (y+21) and 2020 (y+26). 
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4.5. Discussion 

4.5.1. Performance of Landsat-based forest structure extrapolation 

Post-fire forest recovery dynamics are highly complex due to their high variability 

and processes undergone in changing environmental conditions. LiDAR data in 

combination with Landsat imagery provides a unique opportunity to extrapolate 

information on forest structure over time for a comprehensive evaluation of forest 

resilience to fire. Here we extrapolated LiDAR-derived cover and height variables 

over a 30-year window using Landsat imagery and topography variables through 

a SVR model. Our results confirm previous studies in boreal and temperate 

forests showing that Landsat data are well suited for mapping LiDAR-derived 

forest cover and height (Ahmed et al., 2015; Matasci et al., 2018; Senf et al., 

2019; Zald et al., 2016). We assessed the performance of the models both 

spatially and temporally, thereby ensuring their capability to extrapolate LiDAR-

based information on forest variables (Matasci et al., 2018; Zald et al., 2016).  

The models performed better for the cover estimations, as cover metrics are 

assumed to be more directly related to the spectral response of the pixel (García 

et al., 2017; Zhao et al., 2011), resulting in RMSE of 12.8% (2016) and 14.3% 

(2009) for VC, and RMSE of 14.8% (2016) and 16.5% (2009) for TC. In this way, 

Matasci et al. (2018) better estimated annual forest cover than forest height by 

combining Landsat composites and LiDAR plots using a nearest neighbour 

imputation approach. Out of the cover variables, they also obtained higher errors 

for the cover above 2 m (RMSE ranging from 13.2% to 18.6%) than for the cover 

mean (9 to 11.7%). Limitations from optical data to characterise vertical structure 

are well-known in relation to the decrease of the sensor sensitivity in closed 

canopy conditions (Goetz and Dubayah, 2011; Pflugmacher et al., 2014). Even 

so, the models yielded a MAE below 1.5 m for mean height estimates in both 

spatial and temporal validation (RMSE of 1.67 and 1.93 m, respectively). Errors 

found here are in the same order of magnitude as those reported by Zald et al. 

(2016) (RMSE of 1.84 m in mean height) across taiga and boreal forests in 
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Central Canada. Compared to other research, our SVR model outperformed 

linear regression approaches according to the results obtained by Pascual et al. 

(2010) in central Spain (RMSE of 1.9-2.3 m) from a unique date of LiDAR data 

collected at higher point density (5pts/m2). In the same line, Ahmed et al. (2015) 

reported varying errors in canopy height estimates according to forest maturity 

(RMSE ranging from 2.4 and 3.5 m) using Random Forests algorithm in boreal 

forests from West Canada. In accordance to our findings, the coefficient of 

variation of heights is the variable estimated with the lowest precision in both Zald 

et al. (2016) and Matasci et al. (2018) due to the limitations in capturing vertical 

structure variability from the spectral signal. Similarly, Senf et al. (2019) in a study 

carried out in temperate forest from Central Europe found better results for tree 

cover than for stand height estimations with a RMSE in tree cover of 15% and a 

RMSE in stand height estimates up to 3 m when comparing to an independent 

sample from the same LiDAR acquisition. 

Limitations of Landsat indices related to saturation in closed canopies and the 

influence of soil and understory reflectance in open forests may explain the slight 

underestimations of forest attributes observed in the higher mean height ranges 

in contrast to the overestimations observed at the lower values (García et al., 

2018; Potapov et al., 2021). A further potential source of error can be attributed 

to the dynamics of vegetation succession itself, implying that the spectral signal 

of vegetation at 2 metres in height (tree cover) within a pixel is a mixture of early-

growing trees and shrubs in the initial stages of the recovery (Martín-Alcón et al., 

2015). Although uncertainties may also arise due to the nature of the low-density 

LiDAR data itself, we can assume that LiDAR-derived cover and mean vegetation 

height display similar trends to the natural vegetation dynamics (Falkowski et al., 

2009; Kane et al., 2010).  

Another crucial factor is that the model accuracy relies on relationships between 

response variables and predictor variables. This means to assume that the 

dataset adequately contains the variables of interest and represents the range of 

variation in these forest variables. The models here obtained show high values 
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regarding the goodness of fit spatially achieving an R2 from 0.63 to 0.78. Previous 

studies that also attempted to integrate LiDAR and Landsat to derive forest 

structure attributes confirmed that indices including SWIR bands (NBR, NDWI) 

but also TCT as TCA and TCW are closely related to LiDAR-derived structural 

variables in different ecosystems (Ahmed et al., 2015; García et al., 2018; Gómez 

et al., 2011; Pflugmacher et al., 2014).  

Temporally, the models also showed to be consistent when calibrating the model 

in a different year (2016), although a wider variability was observed for the 2009 

estimates, with model R2 ranging between 0.51 to 0.74, and an increase in the 

errors (relative RMSE from 30 to 44%). Errors reported here are in the same order 

of magnitude as those found by Matasci et al. (2018) in the temporal assessment, 

with  relative RMSE ranging from 38.3% to 46.6 % in mean height and 23% to 

32% in cover mean. The relatively good temporal performance of the models is 

crucial for the generation of time series of structural variables that enable the 

assessment of vegetation recovery. Differences in the vegetative conditions of 

ecosystems require the model to adapt to these differences to accurately capture 

forest structure changes over the time-series (Matasci et al., 2018). Moreover, 

the temporal validation between two years of Landsat data from different sensors 

(TM in 2009 and OLI in 2016) ensures a temporal stability of the estimates despite 

the change in sensor, making it possible to extend the series in the future with 

the ongoing Landsat 8 data acquisitions and the recently launch of Landsat 9 with 

similar characteristics (Masek et al., 2020).  

The possibility to validate models both temporally and spatially is crucial to obtain 

robust estimates (Matasci et al., 2018). Model performance could improve with 

the availability of more LiDAR datasets at different dates throughout the time 

series. This methodology is appropriate for regional and national analysis, using 

LiDAR coverages collected at low point densities. The annual maps of forest 

structure variables could be considered a starting point for the analysis of post-

fire forest dynamics at larger scales. The recent accessibility to LiDAR 

acquisitions from the near-global mission GEDI (Dubayah et al., 2020) makes 
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possible the integration with Landsat imagery to generate information on forest 

attributes for larger area applications (Potapov et al., 2021). 

4.5.2. Characterization of forest structure recovery dynamics  

We examined the evolution of post-fire recovery attending to the LiDAR-derived 

forest cover, height and heterogeneity attributes to get a broad overview of forest 

structure dynamics after fire. Vegetation cover and mean height displayed a 

different rhythm of recovery. Vegetation cover reached pre-fire values within 26-

years on average and tree cover remains close to pre-fire values, which can be 

attributed to tree regrowth and a higher density of stems per hectare (Bolton et 

al., 2015; Kane et al., 2014; Matasci et al., 2018). Although mean height showed 

a slower recovery, it reached values close to the pre-fire situation. Nonetheless, 

it should be mentioned that the recovery of forest height might also be 

underestimated, since small footprint LiDAR tend to underestimate the canopy 

height in coniferous forests, particularly when point density is low, because of the 

low probability of  pulses hitting the tree tops (Magnussen and Boudewyn, 1998). 

Studies addressing temporal extrapolation of LiDAR-derived forest attributes for 

recovery quantification are limited. Comparing our findings with those obtained 

by  Matasci et al. (2018) in boreal forests, both agree on the marked differences 

in the evolution of cover with respect to height estimates, where tree cover 

reached pre-fire values earlier but canopy height did not recovered before 25 

years after fire. Recovery estimates obtained from Landsat time-series in 

previous studies, were clearly overestimated, since estimations from spectral 

indices suggested that vegetation reached the pre-fire state in the short and mid-

term in Mediterranean ecosystems (Hislop et al., 2018; Morresi et al., 2019; 

Viana-Soto et al., 2017). Although the results obtained here show that after 26 

years we have a forest in an advanced state of recovery in terms of structure, our 

results evidenced that the variables used to characterise forest structure had not 

reached the pre-fire state. A temporal window of 26 years can give a clear picture 
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of whether there is a recovery process ongoing even if a longer period is needed 

to reach a mature forest (González-De Vega et al., 2016). 

Many factors influence post-fire successional pathways (McLauchlan et al., 

2020), depending not only on fire severity but also on the adaptations, surviving 

trees, canopy seed banks, changes in dominant species associated with inter-

species competition processes (Calvo et al., 2008; Pausas and Keeley, 2014a) 

and post-fire climatic conditions (Mazza and Sarris, 2021). In these pine forests, 

the minimum interval commonly used for considering a forest as having 

recovered is above 15-20 years (Eugenio et al., 2006). This is connected to the 

fact that the juvenile reproductive phase is not reached until 20 years after fire in 

seed-species (Thanos and Daskalakou, 2000), meaning that pine trees take 

several years to establish from seed. Therefore, we expected a lower rhythm of 

recovery in mean height in the short-term that slightly increases after the first 

decade on average (Figure 4.5).  

Using the Recovery Indicator (RI) for the four structure variables, we managed to 

monitor how the recovery has evolved at successive stages (Figure 4.8). 

Vegetation cover increased rapidly following fire indicating a quicker recovery of 

the canopy-filling gaps with the colonization of pioneer herbs and shrubs and an 

initial reestablishment of remnant trees (Bolton et al., 2015; González-De Vega 

et al., 2016). On the contrary, mean height remained further from reaching pre-

fire values in the first decade, but values gradually increased according to the 

progress from a stage of stand initiation to the stem exclusion, in which shrub 

dominance is replaced by greater tree dominance (Martín-Alcón et al., 2015).  

The recovery scenarios evidenced that percentage of pixels that completely 

recovered the pre-fire values of cover and height does not fulfil 50% within 26 

years. Nevertheless, considering a recovery threshold of 80% of the pre-fire value 

(White et al., 2018), we observe higher percentages of recovered pixels (70% in 

vegetation cover and 44% in mean height). With these results, we can consider 

that resilience to fire of these Mediterranean pine forests is moderate. The 

challenge here is, as suggested by Moya et al. (2018) and Taboada et al. (2018), 
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the risk involved if the ecosystem remains in an immature state in the face of a 

likely recurrence of fire in shorter intervals than these pine species need to 

develop a productive seed bank. Combining the results of the time series (Figure 

4.5) and the Recovery Indicator (Figure 4.8), these suggest the presence of 

patches that remain in ongoing recovery although they have not reached the pre-

fire benchmark. In this way, a new fire may limit recovery by producing ecosystem 

degradation involving changes in ecosystem composition (Baudena et al., 2019). 

Analysing the forest structure values obtained for the first 3 years after the 2017 

fire in the area with fire recurrence (Figure 4.5), signals of difficulty in initiating 

recovery after fire recurrence can be gathered from the time-series of cover and 

height estimates, whereas this initial recovery was observed in the 1994 fire. 

Some methodological considerations should be considered when explaining 

ecological processes from the findings obtained here. Our approach provides an 

overview of the evolution of the forest structure after a large forest fire in 

concordance with the potential and limitations of the available low-resolution 

LiDAR data (Martín-Alcón et al., 2015). The use of Landsat data provides a 

unique opportunity to analyse the evolution through decades, but the 30-m pixel 

size may conceal a larger structural variability within. Even so, cover and height 

are important indicators of forest recovery that can be derived to larger areas, 

providing useful information to support post-fire restoration activities (De las 

Heras et al., 2012). 

4.6. Conclusion 

The feasibility of extrapolating LiDAR-derived structural variables using Landsat 

images over time has been demonstrated. The stability of the estimations both 

temporal and spatially enabled to analyse differences in post-fire forest structure 

recovery. Noticeable differences were found in terms of vegetation cover and 

mean height, as the cover values recovered to a pre-fire state but mean height 

did not reach this benchmark along the temporal window analysed. With less than 

50% of burned pixels completely recovered to a pre-fire structure 26 years after 
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fire, we may conclude that the resilience to fire of these Mediterranean pine 

forests is moderate. Providing data on the dynamics of forest structure response 

is a valuable source of information to stakeholders and decision makers 

concerned with the assessment of post-fire forest recovery. Our work provides a 

first step in investigating the temporal evolution of the Mediterranean pine forests 

structure over three decades, which can support the design of mitigation and 

adaptation strategies that enhance fire resilience. 
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Abstract 

Mediterranean forests are highly subjected to fire occurrence. Altered fire 

regimes resulting from changes in land use and climate may jeopardise their 

resilience to fire and induce changes in forest composition. Disentangling forest 

cover composition is therefore critical for understanding post-fire forest recovery 

dynamics. In this study, we demonstrate how fractional time series of different 

woody-vegetation types support the analysis of post-fire vegetation recovery in 

relation to the pre-fire situation for two burned areas in Mediterranean pine forests 

in Spain. We separately estimated tree, shrub and background (combining 

herbaceous, soil and rock) cover fractions on an annual basis (1990-2020) using 

Landsat Spectral-Temporal Metrics (STMs) and a regression-based unmixing 

approach. Our regression models effectively estimated fractions of the three 

cover types with Mean Absolute Errors ranging from 8.6% to 13.4% when 

comparing to a reference dataset derived from high-resolution orthophotos 

across 6 different years. Slightly overestimations of low cover fractions where 

found in tree and shrub cover fractions across the study sites. Despite these 

minor errors, time series of cover fractions revealed characteristic spatio-

temporal patterns of different woody-vegetation types for burned and unburned 

areas. Based on the fractional cover estimates, we derived a Normalised 

Difference Tree-Shrub Fraction index (NDTSF) to contrast tree cover fraction 

relative to the shrub cover and map post-fire shifts in composition. Annual maps 

of NDTSF revealed a high spatial and temporal variability and a general dynamic 

towards the pre-fire cover composition in 79-80% of burned areas but a shift from 

tree to shrub dominance in 12.3-15.4% 26 years after fire. Our regression-based 

unmixing approach advances the analysis of post-fire recovery dynamics, 

unravelling shifts in forest composition that are of major concern to forest 

management. 

Keywords: Post-fire recovery, Landsat, spectral unmixing, fractional cover, 

support vector regression (SVR), Mediterranean forest. 
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5.1. Introduction 

Wildfires are a critical component in shaping the structure and composition of 

forest ecosystems worldwide (McLauchlan et al., 2020). In recent years, 

Mediterranean regions have suffered major fire disasters (Australia, California, 

Chile, Southern Europe), causing ecological, economic and human damage 

(Bowman et al., 2020; Keeley, 2012). In European Mediterranean areas, fire-

prone ecosystems, such as those dominated by Pinus species (Pinus halepensis 

Mill. and Pinus pinaster Ait.), are highly subjected to fire occurrence (Fernández-

García et al., 2019; Pausas and Vallejo, 1999). As an integral part of these 

ecosystems, pine species have long been adapted to fire activity by developing 

ecological strategies to naturally recover (i.e. resprouting from survival individuals 

and seedling recruitment) (Calvo et al., 2008; De las Heras et al., 2012; Pausas 

and Keeley, 2014a). Nevertheless, predictions of future fire regimes indicate an 

increased frequency of large forest fires under warmer conditions and more 

extended and severe droughts (Stephens et al., 2013; Turco et al., 2018). These 

changes in fire regimes induced by both climate and land use changes associated 

with rural abandonment may endanger their high resilience to fire (Moreno et al., 

2014; Pausas and Fernández-Muñoz, 2012).  

Mediterranean ecosystems are likely to face constraints in recovering after fire 

(Doblas-Miranda et al., 2017; Santana et al., 2014), depending on species 

adaptive traits (González-De Vega et al., 2016; Hernández-Serrano et al., 2013). 

The post-fire environments of Mediterranean forests are usually composed of a 

mixture of dead vegetation, remnant live trees, pioneer shrub and herbaceous 

species and bare soil (Quintano et al., 2013).  In the stand initiation phase, 

seedling growth and competitive interactions between pine seedlings and 

sprouting shrubs occur (Calvo et al., 2008). Tree individuals surviving to 

competition tend to expand in a successional stage, leading to tree canopy 

dominance (De las Heras et al., 2012; Pausas et al., 2002). Nonetheless, recent 

studies suggest that fire recurrence and increased aridity may shift 

Mediterranean forests towards shrub-dominated ecosystems (Karavani et al., 
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2018; Vasques et al., 2022), degrading forests to quickly regrowing low 

vegetation. Evaluating whether forests evolve towards their pre-fire state or 

whether vegetation transition is taking place requires meaningful information on 

how the composition of tree and shrub vegetation is shifting along the recovery 

process (Bartels et al., 2016).  

Remote sensing offers powerful tools for monitoring forest recovery based on the 

spectral response of vegetation at multiple spatial and temporal scales. The 

Landsat archive, covering more than four decades of imagery, also enables the 

analysis of historical fire-recovery dynamics (Chuvieco et al., 2020; Wulder et al., 

2019). Advances in data processing have increased the use of Landsat time 

series to estimate parameters related to vegetation recovery (Pérez-Cabello et 

al., 2021), taking advantage of trend analysis and change detection techniques 

(Zhu, 2017). Post-fire vegetation recovery is commonly measured by the time 

required for a burned pixel to return to the pre-fire spectral value (Pickell et al., 

2016; White et al., 2022) or by the amount of pixels which reach the pre-fire 

threshold (Bright et al., 2019; Morresi et al., 2019; Viana-Soto et al., 2020). 

However, spectral bands or spectral indices represent reflectance, and 

respectively, unitless values that do not distinguish between different vegetation 

types within a pixel (Quintano et al., 2012). When post-fire vegetation recovery 

analysis aims at quantifying variations in forest composition within different 

successional stages or major compositional shifts relative to the pre-fire situation, 

the use of spectral bands or spectral indices alone is not sufficient to describe 

such cover type specific change processes (Kuemmerle et al., 2006; Suess et 

al., 2018). 

Disentangling forest cover composition by means of cover fractions of different 

woody-vegetation types such as trees and shrubs through time provides a more 

comprehensive picture of post-fire forest recovery dynamics (Röder et al., 2008). 

Fractional cover mapping typically relies on spectral unmixing methods, including 

spectral mixture analysis (SMA) (Adams et al., 1986) or Multiple Endmember 

Spectral Mixture Analysis (MESMA) (Roberts et al., 1998). Previous studies 
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applied SMA to derive Landsat-based time series of green vegetation fraction for 

analysing vegetation dynamics (Hostert et al., 2003) and post-fire vegetation 

recovery (Röder et al., 2008; Solans Vila and Barbosa, 2010). As a variation of 

the SMA approach, MESMA has been commonly used for assessing burn 

severity (Quintano et al., 2017, 2013) and post-fire recovery in Mediterranean 

ecosystems (Fernández-Guisuraga et al., 2020; Fernández-Manso et al., 2016; 

Kibler et al., 2019; Veraverbeke et al., 2012) by means of photosynthetic 

vegetation (PV), non-photosynthetic vegetation (NPV) and soil. Other studies 

have used MESMA to quantify temporal changes in cover fractions for different 

vegetation growth forms (e.g. trees, shrubs, herbaceous) in fire-prone 

ecosystems from multi-temporal multispectral data (Lippitt et al., 2018; 

Sonnentag et al., 2007). Yet,  the differentiation of tree and shrub fractions within 

the photosynthetic active vegetation remains challenging due to the spectral 

similarity of these vegetation types when represented by multispectral data 

(Baumann et al., 2018). 

Regression-based unmixing has been demonstrated as an alternative approach 

for estimating fractions of different vegetation types within different ecosystems, 

including fire-prone Mediterranean forests and shrublands (Cooper et al., 2020; 

Montorio et al., 2020; Suess et al., 2018). Particularly, the generation of synthetic 

data from spectral libraries for regression model training (Okujeni et al., 2017, 

2013) has been demonstrated as a useful strategy for deriving time series of 

vegetation-type fractions to be used for environmental change assessment from 

the Landsat archive. Following this method, Suess et al. (2018) derived annual 

fraction maps of shrub cover over three decades to characterise change intensity 

patterns in shrublands in Southern Portugal. Senf et al. (2020) demonstrated the 

value of the same approach to derive time series of forest cover fractions, thereby 

differentiating coniferous and broadleaved cover across temperate forests of 

Central Europe. However, both studies make use of annual Landsat images 

representative of a single date per year or a best observation composite for a 

specific period per year, and thus do not make use of the full spectral temporal 

variably within a year. Particularly when disentangling cover fractions of spectrally 
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similar vegetation types, the use of Spectral-Temporal Metrics (STM) in the 

unmixing procedure has been demonstrated as a better choice (Okujeni et al., 

2021) because it incorporates not only the spectral-temporal variability of cover 

types, but also the variations caused by phenology or illumination and shading of 

the canopy (Pflugmacher et al., 2019). Moreover, none of these studies focused 

on the analysis of post-fire vegetation recovery and post-fire shifts in vegetation 

composition by separating different woody-vegetation types through time. 

The overall objective of this paper is to analyse post-fire changes in tree-shrub 

dominance over large forest fires in the Mediterranean basin in Spain that 

occurred during the 1990s. We here considered recovery as an ongoing process, 

and therefore analyse if forest is trending toward its pre-fire composition of woody 

vegetation (i.e. tree versus shrubs). Therefore, fractional cover of two target 

classes, i.e. tree and shrub, and a background class representing all other 

relevant cover types were estimated on an annual basis using Landsat STM and 

a regression-based unmixing approach. We accordingly addressed the following 

research questions: 

i) How accurate can time series of tree and shrub cover fractions be quantified 

based on annual Landsat STM and regression-based unmixing? 

ii) What are the characteristic spatio-temporal patterns of cover fractions for 

burned and unburned areas? 

iii) How does tree-shrub dominance shift over time and space after fire and with 

respect to the pre-fire situation? 

5.2. Study sites 

The study sites correspond to two areas that burned in the summer of 1994 in 

the southeast of the Iberian Peninsula (Figure 5.1): the Yeste Fire (Fig. 1A) (7th 

August, 11,685 ha of woody-vegetation burned), and the Requena Fire (Fig. 1B) 

(5th July, 16,373 ha of woody-vegetation burned). Fire perimeters were obtained 
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from previous work by using the Burned Area Algorithm Software (BAMS) 

(Bastarrika et al., 2014), selecting burned patches that were not recently burned, 

although neighbouring areas were affected by fires. These areas represent 

typical Mediterranean landscapes composed of a mosaic of coniferous trees 

(mainly Pinus halepensis Mill. and Pinus pinaster Ait.), shrubs (Rosmarinus, Ulex, 

Juniperus) and interspersed agricultural areas. The selected case studies 

represent regions highly subjected to fire recurrence (Pausas and Fernández-

Muñoz, 2012), and based on pre-fire conditions ranged from higher shrub 

dominance in Requena to a higher proportion of tree cover in Yeste (affected by 

a recurrent fire in 2017). Both areas have a semi-arid Mediterranean climate, with 

hot dry summers (mean annual temperature around 15 °C) and mean annual 

rainfall around 600–700 mm, concentrated from October to March (Ninyerola et 

al., 2005). Heterogeneous topography characterises these areas, with elevations 

varying from 300 m to above 1500 m, and Calcisols and Calcari-lithic Leptosols 

as predominant soils (Jones et al., 2005). 
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Figure 5.1. Location of burned area perimeters: A) Yeste Fire (August 7th 1994) and B) Requena 

Fire (July 5th1994), including validation samples (see section 3.4.). Bottom, photographs showing 

typical landscape patterns of the Mediterranean pine ecosystem in the SE of Spain: open-canopy 

pine forest with a high proportion of shrubs (1), mosaic of agricultural lands and forest patches 

(2), detail of an unburned Pinus halepensis plot (3) (Source: A. Viana-Soto March 2021). White: 

Masked areas correspond to water, croplands and artificial surfaces. 

5.3. Materials and methods 

The workflow of our study is presented in Figure 5.2. Each study site was 

processed separately as follows: First, we derived annual STM based on all 

available, cloud-free Landsat reflectance data for the period 1990-2020. Second, 

we developed an image spectral library from Landsat STM (in the following 

referred to as STM library). Third, regression based-unmixing with synthetic 

training data from the spectral library (Okujeni et al., 2017, 2013) was 
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implemented to derive annual fractional cover time series for the tree, shrub and 

background classes. We subsequently validated fractional cover estimates for six 

different years based on reference fractions from visually interpreted very high-

resolution orthophotos. To quantify shifts in tree-shrub dominance over time and 

space, we finally calculated a normalised ratio based on the fraction estimates.  

 

Figure 5.2. Workflow of the methodology for the estimation of cover fractions of tree, shrub and 

background using Landsat imagery and a regression-based unmixing approach. 

5.3.1. Landsat data 

We downloaded all available Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI 

collection 1 Level 1 Tier 1 images covering the study areas with cloud cover less 

than 75% for the period 1990-2020 from the United States Geological Survey 

(USGS). Clear observations (on average) per year ranged between 13 and 38 for 

the Yeste area and between 8 and 26 for Requena (Figure S5.1). Landsat images 

were processed to Level 2 Analysis Ready Data (ARD) using the Framework for 

Operational Radiometric Correction for Environmental Monitoring (FORCE 

version 3.6.5, Frantz, 2019). Atmospheric and topographic correction 

(Copernicus DEM GLO-30 dataset, Airbus Defence and Space, 2020), adjacency 

effect and bidirectional reflectance distribution function corrections as well as 

cloud and cloud shadow masking (Frantz et al., 2016; Roy et al., 2016; Zhu and 

Woodcock, 2012) were carried out. STM for each year were computed from six 
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reflectance bands to account for spectral variability of cover types using the Time 

Series Analysis submodule provided in FORCE to derive annual STMs 

aggregated over the year of the ARD. We calculated reflectance percentiles 

(Q10, Q25, Q50m Q75 and Q90) as well as Interquartile Range (IQR) and Range 

(RNG) representing reflectance variation (Schug et al., 2020). Water, urban and 

agricultural areas were masked using the National Forest maps of Spain 

(1:50.000).  

5.3.2. Building the STM library 

We developed an image-based STM library for each site. Each library contains 

STM for the two target classes, tree and shrub, as well as for the background 

class, which represents herbaceous, soil and rock surface cover types (Figure 

5.3). 

For STM library development, we extracted Landsat-based STM signatures for 

2016 from temporally stable pixels of pure tree and shrub cover types as well as 

from pure and mixed herbaceous, soil and rock types. The use of such mixed 

cover types within the background class is feasible as long as the fraction of the 

tree or shrub components is 0% (Suess et al. 2018). In a first step, we preselected 

pixels that displayed a stable NDVI-trajectory (i.e. undisturbed pixels) throughout 

the 30-year observation period to ensure the temporal transferability of the STM 

library. NDVI-trajectories were derived in a previous study (Viana-Soto et al., 

2020) using the LandTrendr algorithm (see Kennedy et al., 2010, for a detailed 

explanation of the trajectory-fitting process). Then, pixels with homogeneous 

cover were identified from the preselection based on visual interpretation of very 

high-resolution orthophotos (0.25-0.5-m spatial resolution) for 1983, 1998, 2002, 

2006, 2008, 2009, 2012, 2015, and 2018 (National Geographic Institute of Spain 

- IGN) (Figure S5.2).  
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Figure 5.3. A) STM for tree, shrub and background (herbaceous, soil, rock) classes for Yeste 

(A1) and Requena (A2). Each class is represented by the mean Q50 STM and the variability (one 

standard deviation) of the Q50 STM is indicated by the shaded area. B) Example STM for tree 

and shrub classes for Yeste (B1) and Requena (B2). Q10 indicates 10% percentile of reflectance, 

Q50 medium reflectance and Q90 90% percentile of reflectance. 

5.3.3. Regression-based unmixing 

Synthetic training data 

We followed the approach described in Cooper et al. (2020) and Okujeni et al. 

(2021) to generate synthetic training data from our STM libraries for subsequent 

regression-based unmixing using the Synthmix submodule provided in FORCE. 
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For each site, five synthetic training datasets were created for each class (tree, 

shrub and background). Each dataset contains 1,000 synthetic mixtures and 

related mixing proportions generated by mixing library STM with cover 

proportions between 0 and 1, thus ensuring that the regression model is capable 

of predicting the full potential range of cover proportions that may be present in 

the areas. Each synthetic mixture was randomly created as follows: First, we 

assigned the number of library STM contributing to the mixture such that there 

were chances of 60% for a mixture of two and 40% for a mixture of three STM. 

Second, a random library STM from the target class was drawn and assigned a 

random mixing fraction between 0 and 1. Third, the second and, if applicable, the 

third library STM was extracted randomly based on class-likelihoods and mixing 

fractions were assigned so that the sum of all mixing fractions was equal to one. 

Class-likelihoods were based on the proportional share of class entries in the 

library. Finally, the synthetic mixture was calculated as linear combination of the 

drawn STM weighted by the assigned mixing proportion. 

Support vector regression modelling 

We used SVR  (Smola and Scholkopf, 2004) for cover fraction mapping. SVR is 

a state-of-the-art machine learning approach for predicting quantitative 

parameters from remote sensing data, including vegetation class fractions 

(Okujeni et al., 2021; Senf et al., 2020). We chose the standard version of SVR, 

which implements Vapnik’s ε-insensitive loss function (Vapnik, 1995) and a 

Gaussian Radial Basis Function kernel. SVR model parameter tuning was 

performed based on a grid search using a 10-fold cross validation. 

For each site, SVR models were trained for each class based on the synthetic 

training data. Instead of developing a single model per class, an ensemble of 

models for each class was trained based on the five randomly generated 

synthetic training datasets, and intermediate estimates were combined to a final 

class estimate based on averaging. This ensemble strategy enables the inclusion 

of a variety of different types of synthetic mixtures in small sample sizes (Okujeni 
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et al., 2017). The ensemble of SVR models were applied to each year to derive 

annual time series of tree, shrub and background cover fractions from 1990 to 

2020. 

5.3.4. Validation of fraction images 

We validated our time series of tree, shrub and background cover fractions using 

reference cover fractions derived from visual interpretation of very high-resolution 

orthophotos across six years (2002, 2006, 2009, 2012, 2015 and 2018 –Yeste; 

2002, 2006, 2008, 2012, 2015 and 2018 – Requena). Due to reduced quality, 

orthophotos from 1983 and 1998 were not considered for reference data 

generation. 

Validation was based on separate sets of samples for each year and site. 

Validation samples, i.e. Landsat pixels to be validated, were selected by stratified 

random sampling (Stehman, 1996), thus ensuring that all variations of cover 

types were included. Estimated tree, shrub and background fractions were 

stratified from 0 to 100% in 20% steps (5 stratum). Then, four pixels were 

randomly sampled from each stratum, resulting in 60 samples per year and site. 

To avoid spatial correlation, we constrained the eligible pixels to a minimum 

distance of 90 m (3 pixels distance). 

Reference cover fractions were estimated based on a grid method (Zhao et al., 

2016). First, each pixel to be validated was divided into 36 cells of 5×5 m (Figure 

S5.3). Second, the dominant cover type, i.e., tree, shrub, or background, was 

assigned to each cell through visual interpretation. Third, the percentages of the 

cover types were calculated for the respective pixel. The final reference dataset 

was eventually reduced in 6.7% as some pixels could not be properly interpreted. 

For each cover type, year and site, estimated fractions were compared to 

reference values using the following goodness of fit measures: the coefficient of 

determination R2, mean absolute error (MAE), root mean squared error (RMSE), 

and bias (i.e., average of estimated minus reference values). 
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5.3.5. Analysis of post-fire tree-shrub cover dynamics 

In a post-fire scenario, tree and shrub cover are expected to decrease in the year 

of the fire. After this event, shrub cover is expected to quickly increase, followed 

by a period of both tree and shrub cover increase, related to competitive 

interactions between pine seedlings and sprouting shrubs. In those pre-fire tree 

dominated areas, tree cover is expected to also dominate again in the long-term 

as a result of the success of seedling growth, requiring a minimum of 15-20 years 

(De las Heras et al., 2012; Pausas and Keeley, 2014a). To contrast cover 

fractions Souza et al. (2005) proposed a ratio of cover fractions, the Normalised 

Difference Fraction Index (NDFI), to map canopy damage from forest fires. More 

recently, Bullock et al. (2020) used the NDFI to characterise tropical forest 

degradation from Landsat images and Kowalski et al. (2022) quantified drought 

effects in grasslands by contrasting NPV and soil to PV cover fractions from 

Sentinel 2 imagery. Following a similar approach we propose a normalised ratio 

to compare tree cover fraction relative to the shrub cover (NDTSF) to analyse 

how tree cover evolves with respect to shrub after fire: 

𝑁𝐷𝑇𝑆𝐹 =  
(𝑓𝑡𝑟𝑒𝑒 −  𝑓𝑠ℎ𝑟𝑢𝑏)

(𝑓𝑡𝑟𝑒𝑒 +  𝑓𝑠ℎ𝑟𝑢𝑏)
 

If NDTSF is positive, the tree fraction is the predominant cover compared to the 

shrub. We used the NDTSF maps to quantify shifts in post-fire cover dominance. 

To evaluate the significance of the post-fire NDTSF trends we used the Mann-

Kendall (MK) test (Kendall, 1955; Mann, 1945). MK is a non-parametric statistical 

test appropriate for identifying whether a time series exhibit a significant 

monotonic trend (pvalue < 0.05). The rate of the change was subsequently 

assessed by means of the Sen’s slope (Sen, 1968), a non-parametric method for 

estimating the median slope. Non-significant trends were not considered for 

further analysis, although all pixels are still displayed in the maps of the NDTSF 

for completeness. Finally, we applied a rule set to the pre-fire (mean 1992-1993) 

and most recent (2020) NDTSF to classify areas characterised by shifts (i.e. tree 
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to shrub, shrub to tree) and areas without compositional shifts (i.e. tree-tree, 

shrub-shrub). 

5.4. Results 

5.4.1. Regression unmixing performance 

Scatter plots with predicted and reference fraction values for the validation 

samples underline a high correspondence of estimated and observed fractions 

across all six years (Figures 5.4 and 5.5). Mean Absolute Errors (MAE) ranged 

between 9.6% and 13.4% (for tree), 8.9% and 12.2% (for shrub) and 8.6% and 

11.6% (for background). Overall, R2 values were consistent over successive 

years, ranging between 0.64 and 0.83. Estimation bias ranged between 1.1 and 

6.9 (for tree), 1.2 and 9.6 (for shrub) and -7.8 and -2.5 (for background). 

Generally, there was a slight tendency towards underestimation for background 

fractions and overestimation for tree and shrub cover fractions, especially in low 

cover fractions. 

 

Figure 5.4. Comparison of tree, shrub and background fractional cover estimates from Landsat 

imagery and reference fractional cover from orthophotos from Yeste. 
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Figure 5.5. Comparison of tree, shrub and background fractional cover estimates from Landsat 

imagery and reference fractional cover from orthophotos from Requena. 

5.4.2. Spatio-temporal patterns of tree and shrub cover 

In 2020 the study areas are characterised by high spatial heterogeneity in tree 

and shrub cover due to their topographic complexity as well as the variability in 

land use (Figure 5.6). Most of the burned area is dominated by shrub cover 26 

years after fire. In the northwestern part of the Yeste fire perimeter (Figure 5.6, 

top) a marked dominance of herbaceous-soil and shrub cover relates to a recent 

fire in 2017.  

The annual fractional cover time series show common trends in vegetation 

recovery after fire in both study sites (Figure 5.7). Following the fire event in 1994, 

there is an abrupt increase of background fraction (early regrowing herbs and 

soil) to about 50% on average and a corresponding abrupt decrease in tree and 

shrub cover. Tree and shrub vegetation recovery strongly depended on pre-fire 

(1992-1993) and post-fire conditions. Areas dominated by shrubs prior to the fire 

(tree cover < 40%) recovered to the same shrub cover conditions about 5 years 

after the fire, whereas it took two and more decades to reach pre-fire tree cover. 
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After twenty-six years, tree cover in previously tree dominated (> 40%) areas was 

higher than previously shrub dominated areas. However, tree cover was slightly 

below pre-fire conditions, indicating that tree-cover dominated areas were not 

fully recovered within the time window analysed. Further, the time it took to shift 

from shrub dominance to tree dominance depended on pre-fire cover and varied 

by study region.  In the Yeste area, a shift to tree cover dominance took on 

average about 23 years in areas with previous tree cover of 41-60% and 15 years 

in areas with previous tree cover above 61%, whereas in the Requena region, a 

shift to tree dominance occurred around 10 years earlier in areas with pre-fire 

tree cover above 61%.  

As a reference, the fraction cover time series of unburned areas were generally 

stable. However, some areas also showed a slight but steady increase in tree 

cover at the expense of background and shrub cover related to natural 

succession. Moreover, a common pattern is also observed in the evolution of tree 

cover, with a clear slight decrease coinciding with severe droughts in 1994-1995, 

2005 and 2012. 
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Figure 5.6. RGB composites illustrating cover fractions from 2020 for tree, shrub and background. 

Close-ups: high resolution orthophotos from National Plan of Orthophotography of Spain. White: 

Masked areas correspond to water, croplands and artificial surfaces. 
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Figure 5.7. Annual time series of tree, shrub and background fractional cover from burned and 

unburned pixels for the Yeste area (a) and the Requena area (b). Shading indicates 25th and 

75th percentiles. Vertical line indicates the year of the fire (1994). Time series are grouped 

according to pre-fire (PF) tree cover (mean tree cover fraction 1992-1993). 

5.4.3. Quantifying shifts in tree and shrub cover in burned areas 

Maps of the NDTSF for four selected years enhance the patterns of pre-fire and 

post-fire woody-vegetation cover proportions with regard to tree and shrub 

dominance (Figure 5.8). The composition of vegetation types was spatially 

heterogeneous before the fire showing a mixture of tree dominated areas 

(NDTSF > 0) and areas dominated by shrub (NDTSF < 0). In 1995, wildfires lead 
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to a relative homogenous composition with shrub dominance. Ten years after the 

fire (2004), the spatial recovery patterns start to resemble pre-fire conditions, 

whereas most of the tree dominated area has not reached pre-fire conditions, yet. 

The spatial patterns of the NDTSF in 2020 compare well to the pre-fire patterns 

in 1993, although there are also areas that still have less tree cover than before 

the fire. 

 

Figure 5.8. NDTSF for pre-fire (1993), 1 year post-fire (1995), 10 years post-fire (2004) and 2020 

(26 years post-fire) for Yeste (a) and Requena (b). Masked areas correspond to water, croplands 

and artificial surfaces. Note that the area subjected to fire recurrence in Yeste in 2017 is masked 

in 2020. 
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Comparing the NDTSF maps from 2020 with the pre-fire situation, shifts in the 

cover dominance were found in 20% and 17.6% of the burned areas in Yeste and 

Requena, respectively (Figure 5.9). 12.3% and 15.4% of the pre-fire tree 

dominated areas shifted to shrub dominance 26 years after fire in Yeste and 

Requena, respectively, indicating a decline in the area of tree dominance 

(negative post-fire NDTSF trend, Figure 5.10).  Shifts from shrub to tree 

dominance were 7.8% in Yeste and 4.2% in Requena, corresponding to mixed 

pixels with a similar proportion of trees and shrubs that display positive post-fire 

NDTSF trends (Figure 5.10). As a baseline, the rate of shift from tree to shrub 

dominance for unburned areas was 3.2% in Yeste and 5.5% in Requena, while 

areas shifting from shrub to tree dominance reached 20.1% and 19.4%, 

respectively. In contrast, 46.1% and 28% of the burned area maintain a 

dominance of tree cover (positive post-fire NDTSF trend) and 33.8% and 52.4% 

of the pre-fire shrub dominated areas remain with shrub dominance in the post-

fire scenario, indicating a generalised tendency to the pre-fire composition 

throughout the burned areas in the long-term.  
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Figure 5.9. Shifts in tree and shrub cover dominance in 2020 compared to pre-fire for Yeste (a) 

and Requena (b). Only pixels exhibiting a significant trend are displayed on the maps and 

represented in the statistics. 



Unravelling shifts in post-fire woody-vegetation cover from unmixing Landsat data 

104 

 

 

Figure 5.10. Annual time series of significant NDTSF according to Mann-Kendall test for the 

Yeste area (a) and the Requena area (b) grouped by category of change (T-T, T-S, S-S, and S-

T). Shown are the mean and ± 1 standard deviation (grey ribbons). Vertical line indicates the year 

of the fire (1994). Horizontal line indicates the limit between tree dominance (NDTSF > 0) and 

shrub dominance (NDTSF < 0). 

5.5. Discussion 

5.5.1.  Regression-based unmixing of annual Landsat STM 

We retrieved a time series of tree, shrub and background (herbaceous-soil-rock) 

cover fractions for two burned areas from 30 years of annual Landsat STM. Model 

performances to predict cover fractions were overall high, as MAE remained 

stable and below 14% across the cover types and years, and for the two study 

sites. These results are in accordance with previous research showing that 

Landsat STM for a full year well suited for estimating different vegetation cover 

fractions (Okujeni et al., 2021). Visual inspection of fraction maps and validation 

plots indicated that the highest errors may stem from mixed pixels composed of 

young stands (recovering trees) and a well-developed shrub cover that are 



Chapter 5 

105 

 

difficult to distinguish in early recovery stages (Latifi et al., 2016; Martín-Alcón et 

al., 2015). Further errors such as the overestimations of tree and shrub indicated 

a confusion of these cover types due to the unsolvable spectral similarity among 

vegetation types even when incorporating the temporal information of 

multispectral data (Okujeni et al., 2021). This overestimation of shrub cover was 

also reported by previous studies in Mediterranean landscapes (Cooper et al., 

2020) with MAE errors ranging from 8 to 20% that can be attributed to a confusion 

with background cover fractions (Figure 5.6C). Moreover, confusion in early 

regeneration stages may arise from changes in the spectral behaviour of tree 

stands in relation to age and crown shape (Nilson and Peterson, 1994; Rautiainen 

et al., 2004). Previous studies also suggested that there might be a tendency to 

overestimate cover fractions in pixels with low overall vegetation cover but this 

allocation remains unclear (Cooper et al., 2020; Senf et al., 2020). Despite these 

uncertainties, time-series of cover fractions well represented the temporal 

patterns of tree-shrub cover in our study sites. Although overall consistency was 

high, some slight declines in tree cover estimates were observed coinciding with 

dry years in the early 1990s, mid-2000s (2005, 2008) and 2012 in relation to the 

loss of water content leading to a higher reflectance in the SWIR and, therefore, 

higher similarity to shrub cover. 

To our best knowledge, there are no studies focusing on regression-based 

unmixing approaches incorporating Landsat STM to differentiate annual tree and 

shrub cover fractions along the post-fire recovery process in Mediterranean forest 

ecosystems. SMA and MESMA methodologies were previously used to extract 

green vegetation together with non-photosynthetic, soil and ash cover types to 

assess burn severity (Fernández-Manso et al., 2016; Quintano et al., 2019) and 

short-term recovery of the green vegetation fraction (Fernández-Guisuraga et al., 

2020; Kibler et al., 2019; Riaño et al., 2002; Veraverbeke et al., 2012). We here 

focused on differentiating woody-vegetation types, i.e. tree and shrub, from our 

background cover types, i.e. herbaceous, soil and rock, to provide a more 

detailed picture of the recovery process. Of the limited studies that used 

regression-based unmixing approaches in post-fire environments, Montorio et al. 
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(2020) demonstrated the value of a Random Forest Regression approach based 

on synthetic training data for quantifying fire severity by means of unitemporal 

fractional cover of green vegetation, non-photosynthetic vegetation, soil and ash. 

Our study should therefore be discussed in this context, providing an alternative 

approach that allows retrieving information on subpixel components of forest 

recovery attending to overstory evolution.  

A crucial step in the unmixing procedure lies in the development of a 

representative spectral library (Somers et al., 2016). With regard to our strategy 

of developing an image STM library, finding suitable pure 30-m pixels with 

homogeneous cover for tree, shrub and background cover types was challenging. 

In highly heterogeneous landscapes such as Mediterranean forests, trees and 

shrubs are highly mixed (Guerschman et al., 2015; Hostert et al., 2003; Röder et 

al., 2008). We collected library STM from Landsat data with regard to 

homogeneity over time and in space, putting a lot of effort in representing pure 

cover. Incorporating LandTrendr-derived trajectory information prevented the 

high dependence on interpreting orthophotos alone by ensuring temporal stability 

of pure pixels based on a reproducible method. Still, in such open canopies the 

spectral signal of the purest pixels may still be laterally influenced by other cover 

types (Quintano et al., 2017; Suess et al., 2018). We consider this uncertainty as 

an acceptable limitation of our approach and acknowledge that may partially 

explain some of the observed errors. Further, temporally stable pixels for STM 

library development were spread all over each study site. Library STM for each 

class thus incorporate a wide range of spectral-temporal variability resulting from 

the intra-class spectral diversity, but also from the variations caused by 

phenology or illumination and shading of the canopy. Compared to other 

approaches (Fernández-Manso et al., 2016; Quintano et al., 2017), no explicit 

artificial shadow signature was therefore included into the library. In addition, it is 

important to mention that the synthetic training data created in this study was 

conceptualised to evaluate post-fire changes in tree-shrub cover over three 

decades, not to fire damage assessment. Thus, ash was also not included due 

to the short-lived nature of this cover (Quintano et al., 2017) and because its 
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signal can only be observed from days to a few months after a fire (Pérez-Cabello 

et al., 2012). 

Our results show that the implementation of a workflow based on regression-

based unmixing using synthetic mixing training data from annual Landsat STM 

enables the separation of spectrally similar woody-vegetation types, shrub and 

trees. Incorporating STM into unmixing has been previously shown to lead to 

accurate vegetation class fraction maps as they account for spectral-temporal 

variability from a full year that is not included using single-date imagery or best-

available pixel composites (Okujeni et al., 2021).  Based on a STM library with 

temporally stable spectral signatures, we here further demonstrate the great use 

of the same approach for retrieving annual time series of shrub, tree and 

background cover fractions from the Landsat archive for Mediterranean forest 

ecosystems, specifically related to post-fire ecosystem regeneration.  

The potential of the regression-based unmixing with synthetic training datasets 

for mapping fractions at local, regional and national scales has been previously 

demonstrated (Okujeni et al., 2021; Schug et al., 2020; Senf et al., 2020; Suess 

et al., 2018). Particularly, large-scale mapping was made possible through the 

use of an image-based spectral library representative of the entire geographical 

area. Through embedding the unmixing approach into an ensemble framework, 

a high variability of different synthetic spectral mixtures from a large spectral 

library can be included using small-sized training sets (Okujeni et al., 2017). An 

extension of this work regarding large-area assessment of post-fire shifts in 

woody-vegetation cover using an extended image-based STM library therefore 

appears feasible. However, further research is required to better understand 

possibilities and limitations of model applications across larger areas and model 

transferability to other sites. Our study is based on a typical Mediterranean pine 

forest and we assume that our unmixing models will work in structurally and 

spectrally similar ecosystems. Extending the approach or transferring models to 

fire-prone ecosystems comprising different vegetation types and possibly also 

low numbers of clear sky observations, such as the tropical or boreal forests, 
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likely requires a further enhancement of the methodological approach. This 

particularly applies to the development of more generic spectral libraries 

representative of multiple biomes, and investigation on the possibilities and 

limitations to generalise unmixing models through space and time. 

5.5.2. Post-fire recovery dynamics from fraction time-series 

We evaluated forest recovery pertaining to the temporal evolution of tree and 

shrub cover fractions over three decades. We here considered recovery as an 

ongoing process, and therefore analyse if forest is trending toward its pre-fire 

composition of woody vegetation. Although measuring forest recovery is 

increasingly important to deal with the altered disturbance regimes caused by 

global change, assessing recovery is highly complex as it is an ongoing process 

that spans over decades (Bartels et al., 2016). Remote sensing-based studies 

commonly apply the engineering resilience definition, quantifying resilience as 

the time to return to the pre-fire state using a variety of indicators of forest 

characteristics (Nikinmaa et al., 2020). This study illustrates that time-series of 

different woody-vegetation cover fractions provides a means for an improved 

understanding of the post-fire forest recovery process.   

Time-series of cover fractions well represented the spatial-temporal patterns of 

tree-shrub cover changes in our study sites (Figures 5.6 and 5.7). Pre-fire and 

post-fire cover proportions displayed common patterns over successional stages 

at both study sites. The increase in estimated background fractions immediately 

after the fire is related to the loss of woody vegetation and the emergence of soil 

and dead vegetation (De las Heras et al., 2012) followed by early-regrowing herbs 

(González-De Vega et al., 2018). Along the recovery process shifts in forest cover 

occurred at different times closely related to the pre-fire situation (Figure 5.7). 

Interactions between shrub species and pine establishment occur mostly during 

early recruitment processes (Calvo et al., 2008; Pausas and Keeley, 2014a). In 

those mixed pixels where shrubs intersperses with the tree (Figure 5.7), 

competition of cover dominance is well-visible during the first decade after fire 
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(Fernández-Guisuraga et al., 2022). Tree cover proportions gradually increase 

according to the progress from a stage of stand initiation to the stem exclusion 

(De las Heras et al., 2012), in which shrub dominance is replaced by greater tree 

dominance (in those pixels with pre-fire tree cover domain). However, tree cover 

was slightly below pre-fire conditions, indicating that tree-cover dominated areas 

were not yet fully recovered, as reported by Viana-Soto et al. (2022) from LiDAR 

estimations. In those pixels with pre-fire shrub cover dominance, shrubs also 

domain in the post-fire scenario, linked to their high resilience to fire by means of 

resprouting from fire-resistant structures and fire-protected seeds (Baudena et 

al., 2019; Santana et al., 2018).  

Through the normalised ratio between tree and shrub (NDTSF) we emphasise 

how tree and shrub cover dominance evolve after fire. NDTSF well suited to 

capture those areas that remain treed-dominated or shrub-dominated in contrast 

to those areas that display a shift to more shrub dominance 26 years after fire 

(12.3-15.4%). Pre-fire composition explain the current situation (2020) since the 

same cover type prevails in 79-80% after 26 years (Figure 5.9). The Mann-

Kendall test allowed us to extract significant trends over time for each type of 

change, illustrating positive trends in areas which recovered tree dominance and 

those which shifted from shrub to tree dominance. Negative trends in the NDTSF 

series correspond to areas that either lost the tree dominance, or those in which 

shrubs consolidates its dominance in the time series analysed (Figure 5.10). 

Forest recovery hence depends on a combination of factors related to the fire 

severity (González-De Vega et al., 2016), pre-fire composition (Taboada et al., 

2018), post-fire climatic conditions (Mazza and Sarris, 2021) and site 

characteristics (Rodríguez-García et al., 2022). According to our results, the 

spatial distribution of tree and shrub cover is highly controlled by topography, 

which may also be linked to soil conditions (Moya et al., 2018). Previous research 

also indicated that frequent fires and high fire severities can induce changes in 

woody vegetation composition, favouring the development of fast-growing 

resprouter shrubs (Fernández-García et al., 2019; Taboada et al., 2018) which 
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compete with pines for space (Pausas and Keeley, 2014a). Recovery patterns 

associated with tree and shrub cover show high spatial heterogeneity, requiring 

further analysis to better understand the factors driving recovery dynamics. 

Nonetheless, it is noticeable that 26 years after fire a considerable proportion of 

the burned area is undergoing recovery towards its pre-fire state and some 

sectors show signs of vegetation transition as the dominant cover is shifting from 

tree to shrub 26 years after the fire (Figure 5.9). In line with these findings, Baeza 

et al. (2007) reported a low pine resilience 23 years after fire and a clear domain 

of successional shrublands in the Mediterranean basin in Spain. Recent studies 

from other Mediterranean regions around the world also investigated this 

transition from tree dominance to fire-prone shrubs, e.g., California (Tubbesing 

et al., 2020), Patagonia (Paritsis et al., 2015) and Australia (Nolan et al., 2021), 

suggesting that resprouting species are likely to be more resilient under changing 

fire regimes (Karavani et al., 2018). However, considering the time period 

analysed here we cannot determine whether the shrub dominance found 

constitutes a successional stage or will prevail and consolidate in a mature stage. 

Therefore, a broadening of the timeframe and expanding this analysis to other 

areas will be required to get a clearer picture of the recovery process in later 

successional stages. 

In areas undergoing recovery, recurrent fires may jeopardise the recovery 

process affecting the success of pine re-establishment (González-De Vega et al., 

2016; Taboada et al., 2018). Fire may induce changes in vegetation composition 

and structure since maturity (structurally and functionally) is estimated to require 

at least 20–30 years in pine forests (Trabaud, 1994; Vega et al., 2011). In line 

with this, ecosystem diversity can be negatively affected as a result of the 

immaturity risk of species under recovery processes (González-De Vega et al., 

2018). We did not attempt here to differentiate tree species, which may also 

occur, e.g. regarding fire-induced change in relation to oak thriving (Quercus ilex 

L.), a shade-tolerant that resprouts vigorously after fire (Zavala et al., 2000). 

Further research may address estimating of tree species-related cover fractions, 



Chapter 5 

111 

 

for example by combining LiDAR data and unmixing from multispectral imagery 

to help in determining the composition of post-fire communities.  

5.6. Conclusion 

Mapping changes in vegetation cover types after fire is crucial to better 

understand forest resilience to fire. In this study, we addressed the 

characterization of changes in tree and shrub cover in large burned areas in 

Spain using Landsat imagery and a regression-based unmixing approach. Our 

study thereby contributes to the research on post-fire forest recovery using 

remote sensing data. This approach includes (i) the retrieval of woody-vegetation 

cover fractions over three decades using synthetically mixed training data from 

Landsat STMs, and (ii) the quantification of post-fire shifts in cover dominance 

through the NDTSF.  According to our findings, the combination of synthetically 

mixed training data from Landsat-based STM as input for an SVR model was very 

well-suited to disentangling tree and shrub cover dynamics in Mediterranean 

forests. For the first time, we provide spatio-temporally explicit, multi-decadal 

information on forest composition recovery in a post-fire environment, ultimately 

allowing to identify shifts in cover dominance. Maps and time series of cover 

fractions revealed different succession dynamics in relation to pre-fire conditions. 

Annual maps of NDTSF highlighted areas that shifted from tree to shrub cover 

dominance after 26 years whereas the majority of the burned areas tend to the 

pre-fire composition. Our results emphasise the utility of regression-based 

unmixing from Landsat to provide meaningful information on post-fire forest 

composition to design forest management that enhance fire resilience under 

environmental changing conditions. 
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6.1. Summary of key findings 

This thesis advances in the understanding of post-fire forest recovery dynamics 

using remotely sensed data from active and passive sensors. Firstly, Paper I 

(Chapter 3) disentangles post-fire recovery trajectories from Landsat time series 

and provides insights on the influence of environmental and contextual factors on 

the recovery rates. Then, Paper II (Chapter 4) addresses the integration of LiDAR 

data and Landsat imagery to characterise changes in forest structure along the 

recovery process. Lastly, Paper III (Chapter 5) presents a novel approach to 

unravel shifts in post-fire forest cover composition from unmixing Landsat data. 

Therefore, this thesis investigates forest recovery from three perspectives: 

spectral (Paper I), structural (Paper II) and compositional (Paper III). Below, the 

main results are summarised in reference to the hypothesis and objectives 

presented in Chapter 2. 

First, Paper I identified post-fire recovery trajectories from Landsat time series 

using the LandTrendr segmentation algorithm, thereby accounting for spectral 

recovery. Different categories of recovery trajectories were distinguished 

underlying slow but more stable recovery processes (continuous recovery) 

compared to other faster but interrupted recovery processes (continuous 

recovery with slope changes, continuous recovery stabilised, and non-continuous 

recovery). Our findings showed that recovery rates vary not only in space and 

time, but also depending on the Tasseled Cap component used. Trajectories 

derived from the Wetness component, which is related to forest structure, were 

much more gradual, whereas trajectories extracted from the Angle metric, which 

is more linked to vegetation cover, tended to saturate quickly after fire. As fire-

prone ecosystems, vegetation quickly colonised the space after fire by displaying 

higher recovery rates in the short-term, but this does not imply the recovery to the 

pre-fire forests conditions two decades after fire.  

Second, the appraisal of factors driving the recovery at successional stages 

revealed that fire severity strongly influenced short-term recovery rates, but post-

fire climate in relation to drought further explained recovery rates in the medium 
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and long term. Pre-fire conditions mainly contributed to explain the recovery rates 

in the first stage. Despite showing less influence, site conditions represented by 

topographic variables such as elevation or aspect also contributed to explain the 

recovery rates. Although we found that post-fire climate was the most important 

variable in explaining post-fir recovery in the mid and long-term, other variables 

related to forest management, disturbance legacies or soil conditions may be 

affecting the recovery rates. 

Third, the integration of LiDAR data and Landsat imagery in Paper II enabled an 

accurate quantification of forest structural recovery over three decades. Model 

performances to estimate LiDAR-derived structural variables (Vegetation Cover, 

Tree Cover, Mean Height and heterogeneity) using Landsat images was high, 

showing stability of the estimations both temporal and spatially. Time-series of 

structural metrics revealed differences in cover and height recovery. Although 

vegetation cover recovered pre-fire conditions within the 26 years post-fire, Mean 

height and Tree cover did not reach the pre-fire benchmark. Overall, less than 

50% of burned pixels completely recovered to a pre-fire structure 26 years after 

fire, suggesting an ongoing recovery process and moderate resilience of the 

analysed Mediterranean pine forests. 

Finally, Paper III provided insights on how woody-vegetation (tree and shrub) 

cover composition shift over time using a regression-based unmixing approach 

from Landsat Spectral Temporal Metrics (STM). Encouraged by recent studies 

on fire ecology suggesting possible shifts from Mediterranean pine forests to 

shrub-dominated ecosystems, we yielded spatio-temporally explicit information 

on post-fire forest compositional recovery in Mediterranean burned areas. Our 

findings suggest that successional dynamics of tree and shrub strongly depended 

on pre-fire conditions since the majority of the burned areas tended to the pre-

fire composition. However, areas shifting from tree to shrub dominance were 

found 26 years after fire, indicating ongoing transitions that may constitute a 

successional stage or would prevail in a mature stage. Our results emphasise the 

utility of combining synthetically mixed data from Landsat STM as input for SVR 
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models to disentangling tree and shrub cover dynamics, which is of major 

concern for supporting management strategies that aim to leading fire-prone 

Mediterranean forests toward more resilient ecosystems. 

6.2. Limitations and outlook 

Forest recovery is a dynamic process that span different spatial and temporal 

scales. Forest recovery after a fire event takes several decades, and therefore 

requires a temporal perspective for a comprehensive evaluation of the recovery 

at successional stages (Bartels et al., 2016). One of the limitations for analysing 

recovery is the time period for which data are available. This limitation can be 

partially overcome using long time series of Landsat imagery to provide spatially-

explicit baseline information concerning spectral recovery (Kennedy et al., 2014), 

as we demonstrated in Paper I. We analysed post-fire forest recovery at 

Mediterranean areas burned in the 1990s, thus obtaining retrospective 

information on the pre-fire forest conditions and almost 25 years of data after fire. 

Spectral trajectories derived from temporal segmentation of Landsat time series 

are a good proxy to monitor multiple aspects of forest recovery, such as the 

impact of fire disturbance and the return of vegetation (Frazier et al., 2015; Hislop 

et al., 2019; Pickell et al., 2016; Röder et al., 2008; Shvetsov et al., 2019). 

However, limitations of spectral recovery measures in relation to signal saturation 

at closed canopies mean that spectral recovery rates are frequently faster than 

the actual recovery of ecosystem structure and composition (Pérez-Cabello et 

al., 2021). 

Beyond the analysis of the spectral recovery, we advanced in the study of post-

fire structural recovery (Paper II). Data fusion of LiDAR and Landsat imagery 

provided a means to estimate changes on forest structure along the recovery 

process. The major challenge in this regard lies in adequately calibrate a model 

that enables the extrapolation of LiDAR-derived metrics in space and time (Coops 

et al., 2021). LiDAR data used herein from two different dates allowed to calibrate 

and independently validate estimations of forest structure, ensuring the good 
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performance of the extrapolation procedure. However, LiDAR data were acquired 

at low densities (< 1pt/m2), therefore a higher density as well as a third coverage 

would allow developing more robust models. In addition to the aforementioned 

limitations for predicting forest structure regarding optical data saturation in 

closed canopies (García et al., 2018), difficulties arise when attempting to map 

forest attributes at large scales (Matasci et al., 2018; Potapov et al., 2021; White 

et al., 2022). Achieving stability of estimates between Landsat sensors and under 

different environmental conditions is crucial to further extend the estimations 

presented in this thesis. Future efforts would investigate scaling-up methods for 

large scale estimation of recovery rates in Mediterranean ecosystems.  

Recovery assessment in terms of forest compositional changes has been limited 

primarily to studies based on plot-based measurements collected at specific 

times and spatially limited (González-De Vega et al., 2018; Santana et al., 2014; 

Tubbesing et al., 2020). As presented in Paper III, this limitation can be partially 

overcome with the implementation of a regression-based unmixing approach 

using spectral-temporal information from Landsat imagery. We further explored 

changes in woody-vegetation cover composition at the sub-pixel level over three 

decades, thus opening the opportunity for larger area characterization. As a first 

attempt of application, we addressed the estimation of fire-induced changes in 

cover dominance between tree and shrub that intensely compete and strongly 

determine long-term forest composition (De las Heras et al., 2012). We 

acknowledge that fire-induced changes in tree species composition may also 

occur in Mediterranean ecosystems, such as oak thriving in post-fire plant 

communities (Vasques et al., 2022). Therefore, forthcoming research should 

delve into the estimation of species composition while keeping the broad scope 

of application in larger areas. 

In addition to the mentioned challenges arising from each research paper in this 

thesis, open questions and opportunities for the future also remain to bridge the 

remote sensing, ecology and forest management fields. Recovery processes 

depend on several factors that span from pre-fire conditions, e.g. legacy effects 
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of land use, impacts of fire disturbance and recurrence effects, ecosystem 

adaptive traits, environmental and site conditions to post-fire interventions. 

Bringing together the influence of all these factors with the spatial driving factors 

analysed in this thesis is an outstanding future challenge. 

6.3. Relevance and impact for post-fire recovery management 

With increasing awareness about forest resilience under changing fire regimes 

and climate conditions (Anderson-Teixeira et al., 2013; Forzieri et al., 2022), 

remote sensing has come into the spotlight as a powerful source of information 

that is well suited to monitoring forest recovery. Although the research in this 

thesis is focused on the post-fire recovery of Mediterranean forests in Spain, it 

has a broader relevance to the scientific community with its contribution to 

advancing the analysis of the recovery from three perspectives using both open 

and free available data and software.  

In this thesis we developed remote sensing-based methods for estimating post-

fire recovery rates. This baseline enables to assess the evolution of post-fire 

recovery and can be used to highlight areas where recovery may be slower or 

faster than expected. This information is crucial for an efficient planning of post-

fire interventions, considering that areas undergoing slower recovery are likely to 

be more vulnerable (Keeley and Pausas, 2022; Nolan et al., 2021) in the face of 

fire recurrence and the outbreak of other disturbances (Doblas-Miranda et al., 

2017). 

Post-fire restoration strategies mainly focus on immediate management actions, 

e.g. mulching, salvage logging, erosion barriers, and planting (Castro, 2021). Yet 

these actions might also undermine natural regeneration by negatively affecting 

seedlings and sprout processes and nutrient cycling (Fernández et al., 2019; 

Leverkus et al., 2020). There is no simple solution to decide on the best post-fire 

management option (Coll et al., 2021), but restoration should focus on enhancing 

the ecosystem elements that accelerate forest recovery, considering not only 
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costs and benefits, but also socio-ecological implications in the context of 

ecosystem services. 

Expected changes in environmental conditions (IPCC, 2018) would have serious 

impacts upon Mediterranean ecosystems (Pausas and Fernández-Muñoz, 2012; 

Turco et al., 2018) and their resilience capacity (Keeley and Pausas, 2022; Nolan 

et al., 2021). Measurable definitions of recovery should be provided for adapting 

forest management to better cope with climate change and facilitate decision-

makers the selection of management alternatives (Vallejo et al., 2012). 

Nevertheless, to date there is no common agreement on how resilience should 

be defined (Nikinmaa et al., 2020) or applied in the context of forestry and remote 

sensing, which is an important gap for defining policy interventions. Further, 

accurate and spatially explicit information on past post-fire management across 

burned areas is either lacking or constrained to research sites. Nonetheless, the 

possibility to systematically assess post-fire recovery over large areas, as 

illustrated in this thesis, constitutes a first step toward designing mitigation and 

adaptation strategies to enhance forest recovery.
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Appendix 1. Supplementary materials paper I  

Table S3.1. Modelling results for Tasseled Cap Angle (TCA) recovery categories at each stage. 

Category Variable 

Stage 1 Stage 2 Stage 3 Stage 4 

Coefficient 
Std. 
Error 

Coefficient 
Std. 
Error 

Coefficient 
Std. 
Error 

Coefficient 
Std. 
Error 

CR 

Intercept 0.662 0.145             

Pre-fire 
conditions 

0.012 0.005             

Fire severity 0.061 0.005             

Elevation -0.018 0.017             

Slope 0.003 0.005             

Aspect -0,010 0,004             

Drought Index 0,279 0,492             

  
R2: 0.77; Adj. R2:0.76; 

AICc: 955.89 
      

CRSC 

Intercept 0.651 0.142 0.384 0.351 -0,847 1,421 -0,565 0,341 

Pre-fire 
conditions 

0.075 0.043 0.055 0.068 0,058 0,277 0,081 0,066 

Fire severity 0.553 0.046 0.265 0.332 0,064 0,362 0,122 0,327 

Elevation -0.261 0.069 -0.135 0.143 -0,162 0,586 -0,068 0,140 

Slope -0.046 0.040 0.025 0.058 0,157 0,238 0,043 0,057 

Aspect 0.034 0.034 0.008 0.048 -0,008 0,197 -0,015 0,047 

Drought Index 0.758 0.154 1.143 0.058 2,525 0,130 0,788 0,047 

  
R2: 0.77; Adj. R2:0.76; 

AICc: 1656.55 
R2: 0.81; Adj. R2: 

0.80; AICc: 4031.20 
R2: 0.75; Adj. R2: 

0.74; AICc: 11055.78 
R2: 0.73; Adj. R2: 

0.72; AICc: 4238.93 

CRS 

Intercept -0.495 0.068 0.196 0,053         

Pre-fire 
conditions 

0.093 0.025 0.024 0,009         

Fire severity 0.260 0.032 0.040 0,055         

Elevation -0.132 0.064 -0.001 0,032         

Slope -0.006 0.026 -0.004 0,012         

Aspect -0.024 0.022 -0.002 0,008         

Drought Index 1.849 0.065 0.075 0,086         

  
R2: 0.88; Adj. R2: 

0.88; AICc: 1746.11 
R2: 0.61; Adj. R2: 

0.58; AICc: 12831.31 
    

NCR 

Intercept -0.052 0.101 0.344 0,349 -0,540 0,294     

Pre-fire 
conditions 

0.079 0.032 0.033 0,064 0,048 0,054     

Fire severity 0.449 0.039 -0.826 0,353 0,582 0,300     

Elevation -0.234 0.063 0.213 0,165 -0,201 0,141     

Slope -0.018 0.036 0.051 0,070 -0,001 0,059     

Aspect -0.041 0.029 0.021 0,051 -0,032 0,044     

Drought Index 1.613 0.110 1.065 0,060 0,845 0,231     

  
R2: 0.83; Adj. R2: 

0.82; AICc: 1527.51 
R2: 0.78; Adj. R2: 

0.77; AICc: 7082.34 
R2: 0.74; Adj. R2: 

0.72; AICc: 6085.56  
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Table S3.2. Modelling results for Tasseled Cap Wetness (TCW) recovery categories at each stage. 

Category Variable 

Stage 1 Stage 2 Stage 3 Stage 4 

Coefficient 
Std. 
Error 

Coefficient 
Std. 
Error 

Coefficient 
Std. 
Error 

Coefficient 
Std. 
Error 

CR 

Intercept 0.416 0.040             

Pre-fire 
conditions 

-0.008 0.002             

Fire severity 0.023 0.002             

Elevation -0.002 0.005             

Slope -0.005 0.002             

Aspect 0.013 0.002             

Drought Index 0.121 0.446             

  
R2: 0.71; Adj. R2:0.69; 

AICc: 955.23 
      

CR2 

Intercept 0.025 0.101 -0.076 0.046         

Pre-fire 
conditions 

-0.312 0.046 0.049 0.020         

Fire severity 0.106 0.046 0.006 0.019         

Elevation -0.158 0.065 0.027 0.036         

Slope 0.072 0.036 0.004 0.015         

Aspect -0.171 0.039 0.025 0.016         

Drought Index 0.734 0.156 -0.609 0.170         

  
R2: 0.80; Adj. R2: 

0.79; AICc: 7870.95 
R2: 0.92; Adj. R2: 

0.92; AICc: 1227.11 
    

CRSC 

Intercept -0.322 0.120 0.612 0.214 0.358 0.229 -0.119 0.167 

Pre-fire 
conditions 

-0.116 0.051 -0.091 0.116 -0.008 0.126 0.024 0.092 

Fire severity 0.094 0.044 0.206 0.099 0.140 0.108 0.053 0.079 

Elevation -0.040 0.072 -0.098 0.248 -0.005 0.270 -0.059 0.198 

Slope 0.041 0.038 0.004 0.091 0.021 0.099 0.014 0.073 

Aspect -0.148 0.031 0.103 0.070 0.106 0.077 0.050 0.056 

Drought Index 0.122 0.126 0.437 0.088 0.737 0.058 0.640 0.052 

  
R2:0.88; Adj. R2:0.87; 

AICc: 1959.93 
R2: 0.67; Adj. R2: 

0.65; AICc: 15831.16 
R2: 0.62; Adj. R2: 

0.60; AICc: 17032.23 
R2: 0.56; Adj. R2: 

0.54; AICc: 13009.93 

CRSC2 

Intercept 0.765 0.065 0.324 0.198 0.099 0.047     

Pre-fire 
conditions 

-0.061 0.041 0.085 0.113 -0.008 0.026     

Fire severity 0.045 0.039 0.139 0.106 0.018 0.025     

Elevation -0.127 0.062 -0.166 0.247 -0.017 0.057     

Slope 0.014 0.030 0.030 0.087 -0.009 0.020     

Aspect -0.046 0.027 0.195 0.070 0.025 0.016     

Drought Index 0.730 0.039 0.735 0.077 -0.150 0.075     

  
R2: 0.81; Adj. R2: 

0.80; AICc: 1064.20 
R2: 0.69; Adj. R2: 

0.67; AICc: 11669.50 
R2: 0,70; Adj. R2: 

0,69; AICc: 1451.47 
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Table 
S3.2. 

continue 
       

CRS 

Intercept 0.146 0.061 -0.030 0.074     

Pre-fire 
conditions 

-0.047 0.028 -0.002 0.031     

Fire severity 0.014 0.028 0.045 0.031     

Elevation -0.030 0.058 -0.005 0.093     

Slope 0.018 0.022 -0.007 0.026     

Aspect -0.021 0.019 0.034 0.021     

Drought Index 0.244 0.095 0.012 0.121     

  
R2:0.94; Adj. R2: 0.93; 

AICc: 2685.86 
R2:0.78; Adj. R2: 0.77; 

AICc: 1967.95 
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Appendix 2. Supplementary materials paper III 

 

Figure S5.1. Clear sky observations per year (on average) for the study sites. 

 

Figure S5.2. Examples of temporally stable pixels of pure tree and shrub cover types as well as 

pure or mixed background cover types based on visual interpretation of orthophotos (above) and 

stable time series (dashed line indicates the trajectory and colour lines annual NDVI time series). 
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Figure S5.3. Examples of validation pixels with estimated cover fractions. 

 

  

Table S5.1. Number of pixels per cover class included in the library. 

   Nº pixels Yeste Requena 

Vegetation 

Tree Quercus  5 2 3 

Pinus 19 10 9 

Shrub Shrub 14 7 7 

Background 

Soil Bare soil 8 4 4 

Rock 2 1 1 

Herbaceous Unirrigated 

grasslands 

4 2 2 

 Total = 52   
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Appendix 3. Scientific production on forest remote sensing 

The achievements of this thesis have been presented at the following 

conferences and symposiums:  

• ForestSAT 2022, 29 August – 3 September 2022, Berlin (Germany). Contribution: 

Shifts in post-fire forest cover composition from Landsat fraction images using 

machine learning regression-based unmixing. 

• 19th Congress of the Spanish Association of Remote Sensing, 29 June – 1 July 

2022, Pamplona (Spain). Contribution: Combinando datos LiDAR e imágenes 

Landsat para la evaluación de la recuperación de la estructura post-incendio en 

pinares mediterráneos. 

• SPIE Remote Sensing, 13 - 17 September 2021, Madrid (Spain). Contribution: 

Extrapolating forest canopy cover by combining airborne LiDAR and Landsat 

data: The case of the Yeste Fire (Spain). 

• 8th Conference of Young Researchers of the University of Alcalá, 9 – 11 

December 2020, Alcalá de Henares (Spain). Contribution: Evolución de la 

recuperación post-incendio de pinares mediterráneos a partir de series 

temporales de imágenes Landsat y datos Lidar. 
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