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• Trend of wetness indices as a potential
early warning signal of forest dieback

• Water content and greenness of health-
ier plots was larger since the drought of
1993–95.

• Land surface phenologymetrics showed
no significant differences among dam-
age levels.

• Dieback was linked to the concurrence
of previous droughts and a recent in-
tense drought.
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Forest dieback processes linked to drought are expected to increase due to climate warming. Remotely sensed
data offer several advantages over common field monitoring methods such as the ability to observe large areas
on a systematic basis and monitoring their changes, making them increasingly used to assess changes in forest
health. Here we aim to use a combined approximation of fieldwork and remote sensing to explore possible
links between forest dieback and land surface phenological and trend variables derived from long Landsat time
series. Forest dieback was evaluated in the field over 31 plots in a Mediterranean, xeric Pinus pinaster forest.
Landsat 31-year time series of three greenness (EVI, NDVI, SAVI) and two wetness spectral indices (NMDI and
TCW) were derived covering the period 1990–2020. Spectral indices from time series were decomposed into
trend and seasonality using a Bayesian estimator while the relationships of the phenological and trend variables
among levels of damagewere assessed using linear and additivemixedmodels.Wehave not found any statistical
pieces of evidence of extension or shortening patterns for the length of the phenological season over the exam-
ined 31-year period. Our results indicate that the dieback process was mainly related to the trend component of
the spectral indices series whereas the phenological metrics were not related to forest dieback. We also found
that plots with more dying or damaged trees displayed lower spectral indices trends after a severe drought
event in the middle of the 1990s, which confirms the Landsat-derived spectral indices as indicators of early-
warning signals. Drops in trends occurred earlier forwetness indices rather than for greenness indiceswhich sug-
gests that the former could be more appropriate for dieback detection, i.e. they could be used as early warning
signals of impending loss of tree vigor.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Climate change and land-use changes are two of the main processes
driving the global change in forest ecosystems (Hansen et al., 2001a,
2001b). Climate change involves an increment of the global air temper-
ature but also more frequent climate extremes such as droughts, while
land-use changes in forests are related to transformations from forested
to non-forests lands (shrublands, crops, grasslands, etc.) and vice versa,
or modifications of forest structure and species composition (Bonfils
et al., 2020; Trumbore et al., 2015).

One of themain consequences of global change on forest ecosystems
is the increment of dieback processes associatedwith extreme droughts
and the alteration or intensification of pests and pathogens impacts on
forests (Allen et al., 2015, 2010; Chen et al., 2018; Seidl et al., 2017;
Simler-Williamson et al., 2019). Hence, many investigations have
pointed out the forest dieback process characterized by canopy defolia-
tion and growth decline resulting from drought events at different bi-
omes (Allen et al., 2015; Camarero et al., 2015a, 2015b; Móricz et al.,
2018; Xulu et al., 2018). When the species cannot adapt and respond
to the new conditions, dieback processes may result in local extinction
phenomena and species shifts (Aitken et al., 2008; Anderegg et al.,
2013) with consequent loss of ecosystem services provision (Zhang
et al., 2013).

One of the first visual symptoms of canopy dieback in affected trees
is crown defoliation and brownness due to shoot and leaf death
(Manion, 1981). Forest dieback and mortality can also be monitored
or even forecasted through tree ringwidth inspection of dendrochrono-
logical records and analyses of early-warning growth signals (Camarero
et al., 2015a, 2015b; Gazol et al., 2020). This technique, however, is usu-
ally limited to the tree or small spatial scales and has been shown not to
apply to all species and situations (Cailleret et al., 2017). On the con-
trary, national forest inventories and monitoring plot networks have
been used to assess forest health status at the continental and landscape
scales via tree defoliation assessment (e.g., International Co-operative
Programme on Assessment and Monitoring of Air Pollution Effects on
Forests, hereafter ICP forests) but they can miss local information on
dieback or mortality hotspots situated in extremely dry sites (de la
Cruz et al., 2014; Moreno-Fernández et al., 2019). One of the drawbacks
of these inventory data is that the interval between resampling cycles
may preclude the detection of dieback hotspots triggered by recent
droughts. Likewise, their limited spatial sampling, 10 km regular grid
in the case of the ICP forest, may not be able to capture the dieback pro-
cess until they are extensive. Remote sensing offers a sound alternative
to field methods for monitoring forest dieback and tree vigor at large
spatial scales by assessing the contribution of climatic variations and bi-
ological agents to changes in forest health based on the spectral changes
associated to decline symptoms (Anderegg et al., 2019, 2015; Bell et al.,
2018; Byer and Jin, 2017; Campbell et al., 2020).

Remote sensing techniques enable regional-to-continental assess-
ments of forest health through temporal series of spectral indices (SIs)
that combine alternative satellite bands related to the spectral charac-
teristics of vegetation (Jiao et al., 2020; Marusig et al., 2020). Some of
the most common SIs used in ecosystem monitoring are vegetation
indices which are based on the estimation of absorbed photosyntheti-
cally active radiation. Another broad group of SIs includes wetness
indices, which are focused on estimating the vegetation water content
(Marusig et al., 2020).

Temporal changes in SIs are linked to ecosystem phenology, intra-
and inter-annual climate variations, perturbations or changes in long-
term environmental trends or successional dynamics, among other
drivers (Hamunyela et al., 2016). Temporal SIs series can be decomposed
into abrupt, gradual and seasonal changes. Disturbances affecting forest
ecosystems, such as clear-fellings or windthrows or wildfires, are
reflected as abrupt drops in the time series of SIs while gradual changes
in temporal SIs series are driven by long-term environmental trends,
chronic disturbances or successional dynamics (Verbesselt et al., 2010;
2

Zhao et al., 2019b). From a temporal perspective, drought effects do not
result in dramatic drops in the trend of a given index but are expected
to cause subtle changes (Assal et al., 2016; Zhao et al., 2019b). Therefore,
analysis of SI trends can be used for the identification of drought-prone
vulnerable areas before dieback and massive mortality occur, i.e., early-
warning detection (Anderegg et al., 2019; Rogers et al., 2018; Vicente-
Serrano et al., 2016). Here, it is important to note that the response to
water stress is functional-type dependent. Broadleaves can use the
water stored in the heartwood during prolonged dry periods while
conifers keep their water reserves mainly by real-time absorption
(Goldsmith, 2013; Querejeta et al., 2007). As a consequence of prolonged
dry periods photosynthetic activity and greenness drop. Therefore, wet-
ness indices could be more appropriate to detect forest decline in earlier
stages, especially for conifer species (Liu et al., 2021).

The seasonal and cyclical phenological behavior depends on the
functional group of tree species and environmental conditions
(Aragones et al., 2019; Kobayashi et al., 2018; Ryu et al., 2014). Season-
alitymetrics derived from SIs time series reflect the land surface pheno-
logical cycles and intra- and inter- annual oscillations, i.e., vegetation
activity, at the ecosystem level (Garonna et al., 2014; Stöckli and
Vidale, 2004). Thus, satellite-based phenological variables, so-called
land surface metrics, have many applications within forest research in-
cluding the discrimination of species and typologies (Aragones et al.,
2019; Chakraborty et al., 2018) or the study of the dynamic response
of forest ecosystems to climate change. For instance, the duration of
the phenological season is determined by environmental conditions
such as snow cover or summer drought (Recuero et al., 2019; White
et al., 2009). Hence, because some conifers species growing in temper-
ate and Mediterranean latitudes photosynthesize during the winter
(Aragones et al., 2019), a mild-wet winter period could promote carbo-
hydrate synthesis and storage and enhance stem growth in the follow-
ing spring (Lebourgeois et al., 2010). In contrast, a warm-dry winter
may weaken the tree hydraulic–carbohydrate system and reduce tree
growth the following year (Earles et al., 2018). Furthermore, dry and
warm spring-summer conditions could lead to canopy dieback and
tree mortality in Mediterranean forests (Camarero et al., 2015a,
2015b). Since photosynthesis drives primary production and contrib-
utes to carbon uptake and tree growth it seems necessary to understand
the aboveground phenological responses to environmental conditions
(Ma et al., 2015).

Forests growing alongside the Mediterranean basin are especially
vulnerable to climate change mainly due to summer droughts which
are forecasted to increase in severity, frequency and extent (Gao and
Giorgi, 2008; Giorgi and Lionello, 2008; Turco et al., 2017). This situation
can be aggravated in single-species forests (Lebourgeois et al., 2013;
Pretzsch et al., 2020), which have been widely favored or maintained
during the last century (Valbuena-Carabaña et al., 2010; Varo-
Martínez and Navarro-Cerrillo, 2021). Despite some efforts that have
been done attempting to identify biotic information on the status of de-
clining forests, including biochemical (Varo-Martínez and Navarro-
Cerrillo, 2021) and physiological traits (Marusig et al., 2020), the infor-
mation on the influence of phenological variables (e.g., start of the sea-
son, length of the season or peak greenness) on forest dieback derived
from remote sensing in drought-prone forests, however, is hitherto
lacking. The identification of phenological variables characterizing the
dieback process could contribute to the spatial delineation of damaged
areas aswell as increase the knowledge of the response of forest ecosys-
tems to the upcoming climatic shifts including aridification (Garonna
et al., 2014; van Leeuwen et al., 2010). As regard forest phenology, sum-
mer drought results in low soil moisture and high leaf vapor pressure
constraining the photosynthesis activity and the leaf water content
(Calama et al., 2013; Peñuelas et al., 2004). Furthermore, Camarero
et al. (2016) stated that drought impairs xylemphenology inMediterra-
nean forests. Then, it could be expected that healthier stands, i.e., those
more resilient to drought, depicted longer phenological seasons and
started growing earlier than damaged stands as healthier trees can
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better photosynthesize under adverse climatic conditions during the
growing season.

In this work, we used phenological and trend metrics derived from
time series of five SIs obtained from Landsat images coupledwith forest
data measured in the field to characterize a recent dieback process in-
duced by drought in a Pinus pinasterAit. (commonly known asMaritime
pine) Mediterranean forest. The specific objectives of this work were:
i) to analyze to what extent phenological and trend variables derived
from Landsat series are affected by forest dieback, and ii) to investigate
whether Landsatmetrics (SIs) are capable to identify early warning sig-
nals of forest dieback. We expect that the most affected stands will dis-
play shorter phenological seasons, perhaps because they have less
access to soil water than healthier stands. We also hypothesized that
Fig. 1. Location of the study area and a view of a Pinus pinaster stand severely impacted by drou
lower corner of the image.
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current health status is linked to a cumulative stress or carryover effect
resulting from previous droughts and a recent intense drought acting as
dieback trigger.

2. Material and methods

2.1. Study area and data gathering

The study area is located in a natural forest dominated by P. pinaster
(“Sistema Ibérico Central” provenance), which represents some of the
dry-continental edges of the natural distribution of the species. The for-
est is placed in inner north-eastern Spain (Miedes de Aragón, 41° 16′
13″ N, 1° 26′ 9″ W) at an altitude of c.a. 1050 m a.s.l. on acid soils
ght-induced dieback. Note the undamaged Holm oak (Quercus ilex) individual in the right,
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(Fig. 1). In this area, the total annual rainfall is 404mm, and the average
annual temperature is 12.9 °C (calculated from the nine nearest climatic
stations). Despite P. pinaster is the dominant species, Quercus ilex L. oc-
curs in the midstory although it rarely exceeds a diameter at breast
height (dbh, measured at 1.3 m) larger than 10 cm. Shrub species,
such as Cistus spp., Calluna vulgaris (L.) Hull and Arctostaphylos uva-
ursi (L.) Spreng., also grow in the understory. Both P. pinaster and the
understory species are evergreen species.

Forest managers detected forest dieback in P. pinaster trees in 2017,
but they did not identify any pathogen or insect defoliator driving this
process so that it was assumed that it was related to the severe 2017
drought, which was the strongest over the last 60 years (Fig. 2A). The
dieback was more intense in south-facing slopes, i.e., in those areas
that receivemore sunlight and arewarmer and xeric. Thedieback sever-
ity, however, is not uniform across the whole south-facing slopes but it
occurs in patcheswith different degrees of crowndamage and treemor-
tality. Previous studies have reported similar processes for this species
in other areas in Central Spain subjected to similar climatic conditions
but with different soil properties (Férriz et al., 2021; Prieto-Recio
et al., 2015). Although there has been a lack of silvicultural operations
over the last three decades, some fellings have been carried out from
2020 to remove dead trees and to reduce competition. We focused on
non felled stands to avoid biases related to stand structure.

To achieve our goals, we installed 31 17-m-radius circular plots,
equivalent to the area of a Landsat pixel, fromOctober 2020 to February
2021 aiming at covering a wide range of degrees of dieback. The plots
were randomly located within stands with abundant dead or defoliated
Fig. 2. Three months Standardized Precipitation Evapotranspiration Ind
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trees delineated by local forestmanagers. The center of the plot was po-
sitioned with a handheld GPS device (spatial uncertainty ca 5 m). In
each plot, we identified the species and measured the dbh of all the
treeswith dbh ≥ 7.5 cm. In these trees, we also evaluated the canopy de-
foliation as a proxy of forest dieback in classes of 5% following themeth-
odology described in the ICP Forest Manual (ICP Forest, 2016).
Defoliation was visually assessed independently by at least two ob-
servers to avoid bias. We surveyed crown condition for a total of 2127
trees.

We calculated themean plot defoliation (DEFOL) weighting the tree
defoliation by the dbh, i.e., we used the dbh as a proxy of crown size
(Porté et al., 2000). We classified each plot in damage level according
to their DEFOL: low (DEFOL < 20%), moderate (20% ≤ DEFOL < 50%)
and high (DEFOL ≥ 50%) The mean forest attributes (basal area, tree
density and mean plot diameter) by dieback level are shown in Table 1.

We also used the 3-month Standardized Precipitation Evapotranspi-
ration Index (SPEI; https://monitordesequia. csic.es/) at a 1 km2 resolu-
tion to relate forest decay with drought severity over the study period
(Vicente-Serrano et al., 2017). Negative values of SPEI indicate a nega-
tivewater cumulative balance as a function of precipitation and temper-
ature at different time scales (Vicente-Serrano et al., 2010). The weekly
and mean annual trends of SPEI are shown in Fig. 2.

2.2. Landsat data processing and vegetation indices estimation

Open accessmultispectral images from the Landsat archive provided
by the United States Geological Survey, accessed through Google Earth
ex (SPEI) from 1962 to 2020. A: Weekly values. B: annual values.

https://monitordesequia


Table 1
Number of plots sampled and characteristics: density, mean diameter at breast height
(Dbh), basal area (BA), mean plot defoliation (DEFOL) and percentage of dead trees
(Dead). All the values are referred to the trees with Dbh ≥ 7.5 cm. Between brackets the
standard deviation.

Variable (units) Low Intermediate High

No. plots 10 17 8
Density (No. trees ha−1) 542 (135) 695 (139) 776 (238)
Dbh (cm) 24.1 (6.1) 22.8 (2.7) 20.4 (1.8)
BA (m2 ha−1) 25.7 (7.7) 30.0 (6.9) 28.3 (10.8)
DEFOL (%) 13.1 (6.2) 38.4 (7.9) 57.8 (4.9)
Dead (%) 2.4 (4.4) 7.8 (5.3) 11.1 (7.3)

D. Moreno-Fernández, A. Viana-Soto, J.J. Camarero et al. Science of the Total Environment 793 (2021) 148578
Engine (GEE), were selected to meet the objectives of this study. To
match the field observations with the field plots, we selected those
Landsat pixels that included the center of a field plot. We defined the
base period for this study to include monthly and cloud-free observa-
tions from January 1990 through December 2020. We used GEE to
build Landsat time-series, and then applied the topographic correction
and inter-sensor harmonization and SIs estimation. Firstly, Tier 1
Surface Reflectance images from Landsat 5 TM, Landsat 7 ETM+
datasets were normalized to Landsat 8 OLI datasets from a multilinear
regression approach due to differences between spectral characteristics
among sensors (Roy et al., 2016). To remove the effect of the terrain
slope we applied the topographic correction SCS + C developed by
Soenen et al. (2005), which is based on the Sun-Canopy- Sensor correc-
tion (Gu and Gillespie, 1998).

After corrections, monthly composites were generated using a
medoid selection process choosing the pixel closest to the median of
the corresponding pixels among images (Bright et al., 2019; Flood,
2013). We calculated three greenness vegetation indices: Enhanced
Vegetation Index (EVI) (Huete et al., 2002), Normalized Difference
Vegetation Index (NDVI) (Tucker, 1979), Soil Adjusted Vegetation
Index (SAVI) (Huete, 1988), and two wetness indices: Normalized-
Multiband Drought Index (NMDI) (Wilson and Sader, 2002) and
Tasseled CapWetness (TCW; the coefficients shown below are referred
to Landsat 8) (Baig et al., 2014; Hansen et al., 2001a, 2001b) as follows:

EVI ¼ G ∙
NIR−REDð Þ

NIRþ C1 ∙ RED−C2 ∙ Blueþ Lð Þ ð1Þ

NDVI ¼ NIR−REDð Þ
NIRþ REDð Þ ð2Þ

SAVI ¼ NIR−REDð Þ
NIRþ REDþ 0:5ð Þ 1þ 0:5ð Þ ð3Þ

NDMI ¼ NIR−SWIR1ð Þ
NIRþ SWIR1ð Þ ð4Þ

TCW ¼ 0:1511 ∙ Blueþ 0:1973 ∙ Greenþ 0:3283 ∙ Redþ 0:3407 ∙ NIR

−0:7117 ∙ SWIR1−0:4559 ∙ SWIR2

ð5Þ

Whereas EVI, NDVI, SAVI and NDMI are normalized indices ranging
between −1 to +1, TCW is a linear combination of six spectral bands.
Therefore, the scale for the normalized indices differs from that of
TCW. Thus, we multiplied by 1000 normalized indices to obtain similar
and comparable values for normalized indices and TCW.

2.3. Decomposition of spectral indices time series and estimation of the
phenological metrics

We used the BEAST (Bayesian Estimator of Abrupt change, Seasonal
change, and Trend) routine proposed by Zhao et al. (2019b) to decom-
pose plot SIs series into seasonality, trend signal (Trend) and noise. This
routine consists of an ensemble algorithm that quantifies the relative
5

importance of individual models and uses a Bayesian framework to aver-
age these individual models instead of selecting a single best model.
BEAST disentangles SI series components and fits linear and nonlinear
trends by applying flexible basis functions whereas other algorithms de-
rive only linear or piecewise linear trends (Wang et al., 2011). From an
ecological point of view, this algorithm formulation is sound as the under-
lying environmental processes do not follow purely linear or piecewise-
linear patterns over time but rather complex and nonlinear patterns.
We refer to Zhao et al. (2019b) for further statistical details of BEAST.

Once plot SIs series were decomposed into their three components,
we derived the following phenological metrics from the seasonality
component using the approach proposed by White et al. (1997): SOSij,
start of the phenological season (in days of the year, DOY); EOSij, end
of the phenological season (in DOY), LOSij = EOSij - SOSij, length of the
phenological season (in days), Peakij, maximum value of the phenolog-
ical season (in SI units); Troughij, minimum value of the phenological
season (in SI units), AMPij = Peakij - Troughij, peak-to-peak amplitude
of the phenological season (in SI units). Subindices i and j refer to the
i-th plot (from 1 to 31) and j-th month of the time series (from Junuary
1990 to December 2020), respectively. Averaged values per damage
level of the metrics for the whole study period are shown in Table 2.

2.4. Statistical analyses

First, we used linear mixed-effects models to determine whether
there are any statistically significant differences between the means of
six phenological metrics among the three dieback levels. We also
aimed to test whether the six phenological metrics followed a temporal
pattern over the study period (1990–2020). Then, we fitted 30 models
(6 variables × 5 Sis) with the following model formulation:

yilk ¼ Diebackk þ Yearl þ Ploti þ εilk ð6Þ

where y is the value taken by each one of the six variables considered in
the year l (l = 1990 to 2020), Dieback is a factor referred to the damage
level (k= low, moderate and high) at the gathering data time, Year is a
covariate, Plot is a random effect to account for the intra-plot variability
(i=1,…, 31), and εilk is the error term (Zuur et al., 2009). The selection
of theDieback and Year fixed effects was done following a forward step-
wise procedure via the likelihood ratio test.

To facilitate the interpretation of the six phenological variables we
calculated the z-scores as follows:

z ¼
Phenologyyear−Phenologybase

� �

σbase
ð7Þ

where Phenologybase andσbase are themean and standarddeviation of the
phenological variables for the study period while Phenologyyear refers to
the phenological variables for a given year. Then, we addressed the asso-
ciationbetween time-laggedof SPEI and the z-scores of the yearly average
of the six phenological variables for the five SIs using cross-correlations.

Finally, we used the following additive mixed model (Wood, 2017)
to describe the trends of each SI (Trend) for the whole period of study
of the plots subjected to the three levels of dieback:

Trendijk ¼ Diebackk þ f k Timej
� �þ Ploti þ εijk ð8Þ

where fk(Timej) is a damage level smoother via thin plate regression
splines (Wood, 2003) where the smoothing variable is the Time in
months. This model formulation allows each damage level to be
differently shaped with 95% confidence intervals without restriction,
i.e., a measure of the significance of the possible differences of Trend
among levels of dieback over the study period (Pedersen et al., 2019).
The rest of the terms have been defined above. Spatial and temporal auto-
correlation of linear and additivemixedmodels residualswas checked via
semivariograms with envelopes after 999 permutations under the



Table 2
Mean values of the metrics derived from the Landsat series by the level of forest dieback
and spectral index. Means are calculated for the whole study period (1990–2020). Be-
tween brackets the standard deviation. Note that EVI, NDVI, SAVI and NDMI values were
multiplied by 1000.

Dieback SOS EOS LOS Peak Trough Ampl Trend

EVI
High 267.9

(6.00)
76.9
(7.6)

174.0
(3.1)

58.6
(9.7)

−53.0
(8.2)

111.6
(17.9)

502.2
(59.0)

Moderate 271.8
(4.0)

81.1
(6.4)

173.6
(3.6)

60.7
(12.5)

−54.5
(11.3)

115.2
(23.7)

514.0
(62.1)

Low 272.8
(6.0)

83.7
(10.1)

176.0
(4.9)

57.6
(12.5)

−53.9
(21.5)

111.5
(41.5)

549.5
(66.4)

NDVI
High 262.3

(3.1)
68.6
(3.6)

171.1
(3.0)

49.1
(7.6)

−42.9
(7.4)

92.0
(15.0)

580.6
(55.6)

Moderate 263.0
(4.6)

71.2
(5.5)

173.0
(4.2)

52.3
(8.9)

−46.0
(7.2)

98.2
(15.8)

595.1
(57.4)

Low 264.6
(9.9)

73.7
(9.9)

173.8
(4.9)

45.6
(13.8)

−40.6
(12.0)

86.2
(25.6)

625.6
(62.2)

SAVI
High 261.9

(2.3)
68.2
(3.0)

171.1
(2.7)

74.2
(11.8)

−64.6
(10.8)

138.8
(22.4)

871.1
(83.4)

Moderate 263.1
(4.6)

71.3
(5.4)

173.0
(4.2)

78.4
(13.6)

−68.9
(11.3)

147.3
(24.5)

892.4
(86.0)

Low 264.4
(10.0)

73.6
(10.8)

173.6
(5.3)

68.9
(20.4)

−61.2
(18.3)

130.1
(38.4)

938.5
(92.6)

NDMI
High 258.4

(4.5)
57.7
(3.0)

164.0
(4.0)

94.4
(21.1)

−71.7
(19.7)

166.2
(40.6)

260.0
(89.0)

Moderate 256.7
(4.8)

60.3
(2.8)

168.2
(5.5)

105.6
(22.8)

−84.9
(19.7)

190.5
(42)

286.1
(74.0)

Low 253.4
(7.7)

61.6
(7.0)

172.7
(5.2)

99.8
(14.5)

−86.7
(16.5)

186.5
(30.5)

328.2
(79.6)

TCW
High 253.3

(5.2)
61.2
(1.1)

172.3
(4.7)

245.7
(26.3)

−213.1
(29.7)

458.8
(53.2)

−602.7
(201.4)

Moderate 251.3
(4.8)

63.0
(2.4)

176.7
(5.2)

255.6
(42.0)

−234.6
(41.5)

490.2
(81.6)

−550.0
(166.6)

Low 248.5
(5.5)

63.5
(4.7)

179.1
(2.7)

215.4
(29.4)

−204.7
(27.0)

420.0
(56.0)

−450.8
(163.8)

SOS: start of the phenological season; EOS: end of the phenological season, LOS: length of
the phenological season; Peak: maximum value of the phenological season; Trough: min-
imum value of the phenological season; Ampl: amplitude of the phenological season;
Trend: mean value of the trend.
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assumption of no spatial correlation (Augustin et al., 2009) and partial au-
tocorrelation plots, respectively.

For this study, we used the following packages implemented in R
4.0.2. environment (RCore Team, 2021): “meteoland” for the data extrap-
olation from the surrounding climatic stations to the study area (De
Cáceres et al., 2018), “Rbeast” for SIs series decomposition (Zhao et al.,
2019a), “greenbrown” for the estimation of the seasonal phenological
metrics (Forkel et al., 2015), “nlme” for the linear mixed models fitting
Table 3
Results of the likelihood test (Pr(>Chisq)) for theDieback fixed effect and Year covariate
α ≤ 0.05.

Period SOS EOS LOS

Dieback
EVI 0.3152 0.9685 0.504
NDVI 0.2200 0.7549 0.363
SAVI 0.2358 0.7322 0.327
NDMI 0.8139 0.8848 0.959
TCW 0.0917 0.9870 0.654

Year
EVI 0.3385 0.0997 0.995
NDVI 0.0176 (+) 0.0856 0.331
SAVI 0.0206 (+) 0.0499 (+) 0.402
NDMI <0.0001 (−) <0.0001 (−) 0.075
TCW 0.1273 0.0825 0.740

SOS: start of the phenological season; EOS: end of the phenological season, LOS: length of
minimum value of the phenological season; Ampl: amplitude of the phenological seaso
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(Pinheiro et al., 2020) and “mgcv” for the additive mixed models fitting
(Wood, 2017).

3. Results

3.1. Relationship between forest attributes and dieback

We found that the plotswith different damage levels did not present
statistically significant differences (p > 0.05) in terms of basal area and
mean diameter but plots with high defoliation levels presented higher
tree density than the two other levels (p=0.014). Stand basal area ag-
gregates information on both stand density and tree size, and its effect
was not statistically significant, suggesting that competition due to
higher stand density was not the main defoliation driver during the
field survey (2020−2021).

3.2. Land surface phenological metrics over the study period

The visual inspection of the seasonal trajectories revealed unimodal
patterns of the phenological season for the three levels of damage re-
gardless of the SI considered (Supplementary material 1). The start of
the phenological season took place around the DOY 250–270 (late sum-
mer and early autumn) while the phenological season ended around
the DOY 60–80 (late winter and early spring) depending on the SI and
the damage level (Table 2). The inspection of the Table 2 reveals that
both SOS and EOS occurred somedays earlierwhen considering thewet-
ness indices (NMDI and TCW) thanwhen considering the greenness in-
dices (EVI, NDVI and SAVI). LOS spanned ca. 170 days being longer in
healthier than in damaged plots. However, from a statistical point of
view, the inspection of themodels indicates none of the six land surface
phenological variables was related to damage level over the study pe-
riod (Pr(>Chisq) > 0.05; Table 3). As regards the temporal pattern of
the six land surface phenological variables, we found that the SOS was
significantly delayed from 1990 to 2020 when using NDVI and SAVI
(positive relationship between SOS and Year in Table 3) whereas the
timing of SOS and EOS advanced over the study period when using
TCW. However, we did not find any statistical evidence of shortening
or lengthening of LOS over the last 31 years. According to NDVI, SAVI
and TCW, Ampl extended over the study period because of the elonga-
tion of Peak and Trough. Note that Trough takes negative values, there-
fore, a negative relationship of this variable with Year indicates larger
values of Trough in absolute terms.

The inspection of the z-scores of the six phenological variables indi-
cates that they depicted oscillation over thewhole study periodwithout
a defined pattern (Supplementary material 2). The cross-correlations
between SPEI and the z-scores of the six phenological variables revealed
lagged associations. We found negative and 5–7 years lagged relation-
ships between SPEI and LOS for NDVI, SAVI and TCW, that may be the
(resulting from Eq. (6)). Between brackets the sign of the significant relationship at

Peak Trough Ampl

3 0.7286 0.5990 0.9187
6 0.1897 0.7723 0.4645
9 0.1778 0.8193 0.4630
1 0.8474 0.9730 0.9364
8 0.2236 0.6861 0.2444

7 0.4099 0.2751 0.3324
5 0.0078 (+) 0.0278 (−) 0.0125 (+)
2 0.0076 (+) 0.0283 (−) 0.0125 (+)
1 0.2696 0.9133 0.4909
9 0.0189 (+) 0.0717 0.0306 (+)

the phenological season; Peak: maximumvalue of the phenological season; Trough:
n.



Table 4
Summary of the cross-correlations between SPEI and the six phenological metrics for
the five spectral indices. The number indicates the lags (in years) that each SPEI ̶ metric
correlation applies to. Negative lagged correlations (phenological event preceded SPEI
event) are not shown. Between brackets the sign of the significant relationship at
α ≤ 0.05. n.s. = non-significant relationships.

Index SOS EOS LOS Peak Trougha Ampl

EVI 2 (+) n.s. n.s. n.s. n.s. n.s.
NDVI n.s. n.s. 5 (−) n.s. 3 (−) 3 (+)
SAVI n.s. n.s. 5 (−) n.s. 3 (−) 3 (+)
NDMI 1 (−) n.s. n.s. n.s. n.s. n.s.
TCW n.s. n.s. 7 (−) 3 (+) 3 (−) 3 (+)

a Note that Trough takes negative values and negative correlations between Trough and
SPEI indicate positive relationships in absolute values. SOS: start of the phenological sea-
son; EOS: end of the phenological season, LOS: length of the phenological season; Peak:
maximum value of the phenological season; Trough: minimum value of the phenological
season; Ampl: amplitude of the phenological season.
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result of chance rather than causality (Table 4). The cross-correlations
also suggest a positive and 3-year lagged association between SPEI
and Peak and Trough for all the SI except for EVI and TCW, which re-
sulted in similar relationships between SPEI and Ampl.

3.3. Spectral indices trends over the study period

We found a significant effect (p < 0.05) of the Dieback factor and fk

(Timej) on the five SI trends studied here. The smoothing representation
Fig. 3. Smoothed representation (resulting from Eq. (8)) for the five spectral indices over the m
areas indicate the 95% confidence intervals. Note that EVI, NDVI, SAVI and NDMI values were m
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of the trends over the study period revealed that the SI trends decreased
from 1990 to 1993–1995, regardless of the SI analyzed (Fig. 3). The
trends of the three levels of dieback during these years were close and
the confidence intervals overlapped, which indicates the lack of signifi-
cant differences among dieback levels. This drop in the SIs coincides
with a period (1993–1995) with the highest number of consecutive
years with negative annual SPEI, i.e., dry andwarm years, over themon-
itoring period (Fig. 2B). From this dry period, the smoothed trends for
the three levels of dieback increased but, unlike the previous years,
the curves separated, displaying the low damage plots the highest SI
values while the highest damage level presented the lowest values for
the five SIs. High and moderate smoothed trends were relatively close
whereas the low curve was distant from the two other curves irrespec-
tive of the SI used. Hence, the main statistical differences, i.e., non-
overlapping confidence intervals, occurred between the low and high
dieback levels.

The trends of the three greenness indices peaked during 2014–2016
whereas the smoothing curves for the two wetness indices reached
their maximum in 2006 and then continuously decreased until
2017–2018, reaching similar values or even lower to those of the
drought period of 1993–1995. It is worth noting that 2005–2006 was
another dry period (Fig. 2B) and that the endof 2017 presented the low-
est weekly values of SPEI (Fig. 2A). The Trend smoothed patterns also
displayed a local minimum in 2009–2011 which also coincides with a
dry period according. Despite these minima coincided for the five SIs
trends used, the Trend of EVI depicted a rougher pattern than the
onitoring period (January 1990 – December 2020) grouped by dieback level. The shaded
ultiplied by 1000.
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other two greenness indices, i.e., the drops in the EVI Trend during the
dry years were larger than those of NDVI or SAVI. Similarly, the Trend
of NDWI followed a rough pattern whereas the TCW pattern was
more linear.

4. Discussion

4.1. Influence of forest dieback and climate on phenological metrics

Despite being pivotal indicators of climate-vegetation interactions,
few studies have addressed the relationship between forest dieback
and phenological metrics (SIs) derived from satellite products.

In agreement with previous findings carried out in the Mediterra-
nean region, the satellite-based phenological season for pines starts in
winter due to the mild temperatures, high soil moisture and low leaf
vapor pressure and reaches the minimum in summer when drought
peaks (Aragones et al., 2019; Atzberger et al., 2013; Maseyk et al.,
2008; Peñuelas et al., 2004). Accordingly, Calama et al. (2013) found
that the minimum values of net photosynthetic assimilation rates for
another Mediterranean pine (Pinus pinea L.) were reached during the
summer as a response to the drought. Under these conditions, the phe-
nological season is not coincident with the canopy and stem growing
season, which typically takes place during the spring and the autumn
(see Camarero et al. (2010) and Aldea et al. (2017) for Pinus halepensis
Mill. and P. pinaster stem increment patterns, respectively). The mini-
mum values for the SIs found in summer also coincide with the maxi-
mum litterfall rates for this species (Espinosa et al., 2018; Roig et al.,
2005). The shedding of needles during the summer season has been
suggested to be a strategy to copewith drought stress and elevated tem-
peratures (Manzoni et al., 2015). Moreover, the satellite-based pheno-
logical season depicts different patterns in other latitudes and groups
of tree species where the low winter temperatures (Jin et al., 2013),
snow (Kobayashi et al., 2016) aswell as the leafing-out and leaves shed-
ding (Muraoka et al., 2013; Polgar and Primack, 2011) reduce or even
inhibit the phenological activity. Then, this explains the maximum of
the SI plateaus during the spring, summer and autumn for deciduous
broadleaves (Ryu et al., 2014) and boreal conifer forests (Kobayashi
et al., 2018).

Our results point out that the six phenological metrics have not
been impacted by forest dieback although the cross-correlations
identified lagged relationships between SPEI and LOS, Peak, Trough
and Ampl. These correlations must be considered with caution. In
the study area, LOS should be constrained by harsh periods (low
rainfall and high temperature) rather than by low temperatures
and snowpack during the winter (Recuero et al., 2019; White
et al., 2009). Similarly, Ma et al. (2015) found increments in LOS
during wet years in Southeastern Australia. Several authors point to-
wards a lengthening of the phenological season of the Northern
Hemisphere as well as an advance in SOS as a consequence of climate
change (Jeong et al., 2011; Karkauskaite et al., 2017) although some
regions in France, Italy and around the Caspian Sea displayed short-
ening of the phenological season while the Iberian and Anatolian
peninsulas do not show clear patterns (Garonna et al., 2014).
Accordingly, our results do not provide any evidence of elongation
or shortening patterns of LOS over the last 31 years.

Contrary to EOS, SOS and LOS, the amplitude of the cycles is not
widely studied (but see (Aragones et al., 2019; Recuero et al., 2019;
van Leeuwen et al., 2010)). With this regard, Recuero et al. (2019) ar-
gued that the lowest amplitudes of the seasonality are linked to the low-
est yearly NDVI values when analyzing land surface phenological
metrics at the global scale. On the other hand, pines from xeric sites dis-
play larger amplitudes values than pines species growing in more
humid conditions within the Mediterranean regions (Aragones et al.,
2019). However, our results have not revealed any statistical evidence
of the influence of the dieback on the peak-to-peak amplitude of the
seasonality.
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4.2. Trend of the spectral indices as early-warning indicators of forest
dieback

As expected, our findings indicated that plots with high damage
level displayed lower values of the Trend of the SIs than healthier
plots. Similarly, several authors reported decreases in canopy greenness
associated with changes in climatic conditions (Barbosa and Asner,
2017; Zhao et al., 2017) and with insect outbreaks (Sangüesa-Barreda
et al., 2014). Hence, our findings revealed that drops in Trend tended
to occurwith harsher years, specifically very dry periods. Thiswas espe-
cially evident for the period 1993–1995, which was preceded by some
dry years during the 1980s. The period 1993–1995 is recognized to be
one of the major droughts periods of the last decades which most neg-
atively impacted tree growth and forest productivity in Spain (Gazol
et al., 2018). Since this harsh period, Trend for the five SIs followed sep-
arated patternswhich indicates that the recovery capacity after drought
presented spatial heterogeneity. Similarly, Liu et al. (2021) found that
the stands with higher canopy recovery capacity after the initial decline
depicted higher resilience to climate change in the taiga. The above
mentioned spatial heterogeneity could be linked among other factors
to soil conditions (soil depth, water holding capacity), stand structure
and competition (Marqués et al., 2021) and, probably, to solar radiation
exposure although further research is required (see Pérez-Luque et al.
(2020)).

The difference among Trend smoothed patterns shows the capability
of the Trend metric as an early warning indicator of forest dieback.
Therefore, it seems reasonable to implement remote sensing-based
monitoring systems to carry outmanagementmeasures capable to alle-
viate the consequences of harsh periods. The Trend-related results are in
agreementwith similar signals obtained through retrospective quantifi-
cations of tree-ringwidth (Camarero et al., 2015a, 2015b) orwood anat-
omy (Pellizzari et al., 2016)which allow forecastingdieback in declining
trees 2–5 decades before the growth decline occurred and the dieback
started. Férriz et al. (2021) studied the dieback process in a P. pinaster
forest located in Central Spain. In concordance with our results, they
found that declining trees displayed lower tree-ring growth than
healthier trees since the drought of 1995. Such patterns agree with
a long-term deterioration of the hydraulic and photosynthetic sys-
tems or the inability to uptake soil water in the most affected trees
(Körner, 2019). Since the Landsat images and dendrochronology
provide information on different growth traits (primary and second-
ary growth, respectively) at different scales (landscape and tree, re-
spectively), further efforts should be oriented towards combining
information on ring-width chronologies with remote sensing time
series to study the links of forest dieback with primary and second-
ary growth at different spatial and temporal scales (Pérez-Luque
et al., 2020).

Our findings indicate that the length of the phenological season did
not present significant differences between dieback levels and the
Trend component of the SIs was larger for healthier plots since the dry
period 1993–1995. All together points out that the duration of the pho-
tosynthetic period does not change between declining and healthier
stands but healthier stands depict larger photosynthetic capacity.

Several authors highlighted the role of the understory on the whole
system phenological season, especially when the overstory is composed
of deciduous species (Ahl et al., 2006; Ryu et al., 2014), although other
researchers have not considered the understory stratum (Aragones
et al., 2019). In this work, we have not discriminated the signals of
understory from those of the overstory because (i) overstory was
dominated by evergreen species, consequently, the influence of the un-
derstory is expected to be secondary, and (ii) we are not interested in
studying the satellite-based phenological seasonality of the P. pinaster
but seasonal dynamics of the complete forest system suffering different
degrees of damage. In this work, we have not discriminated the signals
of understory from those of the overstory. Nevertheless, we were inter-
ested in the seasonal dynamics of the complete forest system suffering
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different degrees of damage rather than the seasonal dynamics of
P. pinaster alone. Therefore, the influence of understory on the time-
series signal, as a result of successional shifts, can also help discriminat-
ing the level of damage.

4.3. Spectral indices comparison

Our results point out differences between wetness (NDMI, TCW)
and greenness indices (EVI, NDVI, SAVI), particularly, in regards to the
metrics related to the phenological season (start, end and length).
Wetness-related indices showed an earlier beginning and end of the
season aswell as shorter LOS as compared to greenness indices. Further-
more, the maximum of Trend and, therefore, the last drop in Trend took
place earlier for wetness than for greenness. The water use strategies of
conifers also allow explaining the more pronounced decreasing trends
in water wetness (Liu et al., 2021). In contrast to broad-leaved species,
which can use the heartwood water, conifers keep their water reserves
mainly by real-time absorption (Goldsmith, 2013; Querejeta et al.,
2007). Therefore, drought periods result in drops in canopy water con-
tent while sustained water deficit may reduce the photosynthetic activ-
ity, and, consequently the canopy greenness (Liu et al., 2021). This
suggests that the amount of water is an earlier indicator of forest die-
back than pigment concentration and, consequently, that wetness indi-
ces react earlier to vegetation decline,making themmore suitable early-
warning signals. Indeed, recent investigations recommend using wet-
ness indices tomonitor forest decline as this type of indices aremore re-
lated to physiological variables (e.g., water potential, hydraulic
conductivity and capacitance) than greenness indices (Marusig et al.,
2020).

5. Conclusions

The potential of metrics derived from long time series of Landsat-
based spectral indices to characterize forest dieback has been demon-
strated. The dieback process in the study P. pinaster forest is mainly
reflected in the Trend component of the spectral indices series, whereas
our results revealed no significant relationship between the dieback and
the land surface phenological metrics (that is, the seasonal component
of the spectral indices). Wetness indices showed an earlier response to
drought than greenness indices making them suitable to forecast
drought-triggered dieback.

The Trend component dropped in 1993–1995, about 25 years before
the dieback started in 2017. After this initial drop, trajectories of SIs for
different levels of dieback showed a distinct evolution, making them
distinguishable from each other, particularly between low and high die-
back levels. The Trend component of wetness indices also showed
higher sensitivity to subsequent droughts in 2004–2005. Therefore, in
concordance with our results, we recommend using this metric derived
from wetness indices as a potential early warning signal of forest
dieback as well as a useful tool to detect areas prone to suffer dieback
and to implement management measures (e.g., reduction of competi-
tion through thinning) capable to buffer the negative impacts of
drought.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.148578.
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