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a b s t r a c t 

α−spline functions, which are a generalization of conventional B −splines, are defined with several pa- 

rameters which provide more flexibility in terms of the variety of shapes that the functions can adopt. 

Because of this feature, the α−spline functions have shown improvements in the performance of sev- 

eral applications, including the design of digital filters. This article proposes a novel parametrization to 

generate new families of α−spline functions that allows a more efficient control of the shape of these 

functions. Different combinations of parameters are presented, and a detailed analysis of the properties 

of the new functions is carried out. In addition, the new α−spline functions are applied to the design of 

digital filters, providing an appropriate design procedure. The characteristics of the new filters are anal- 

ysed and compared with previous design techniques, demonstrating the remarkable superiority of their 

performance. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

Spline functions are a tool widely used in various fields of sci- 

nce and engineering. They are used in graphic design [1–3] , in the 

reatment and reconstruction of diverse signals [4] , including im- 

ges [5,6] , in the numerical resolution of differential equations [7] , 

o improve the performance of signal processing tools [8,9] , and 

lso in control theory for model inversion, such as the design of 

eedforward actions based on model stable inversion [10–12] . Over 

ime, the fields of application have been expanding and the way to 

btain splines has been adapted to the different requirements of 

he applications. 

One way of constructing different spline bases is by means of 

epetitive convolution processes of the spline base of degree 0, that 

s, a non-zero constant function between two consecutive nodes 

nd zero outside this interval. The constant is chosen so that the 

nclosed area is one, and if the set of nodes are integers, which is 

 common case, then the constant must be exactly one. From this 

erspective, several variants of spline bases in the time domain 

ave been proposed, providing new tools that present, in specific 

pplications, certain advantages over the original B −spline bases. 
∗ Corresponding author. 

E-mail address: miguel.raposo@uah.es (M.Á. Raposo–Sánchez) . 
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xamples of this are the spline bases proposed in time-domain in 

13,14] that are defined by the convolution of two types of rectan- 

ular pulses, one with a fixed width and the other with a width 

ependent on an adjustable parameter, so that a continuous tran- 

ition between two basic or natural spline orders can be achieved. 

hey constitute a set of functions whose shape is adjustable by 

eans of one or several parameters that allow a smooth transition 

etween spline functions of integer orders. 

In this work, we focus our attention on [14] , where a set 

f transitional functions ( α−spline) between linear (first-order) 

 −spline functions and cubic (third-order) B −spline functions, is 

ntroduced. The proposed α−splines are used in interpolation pro- 

esses for the reconstruction of signals. In certain applications, 

−splines outperform the classic B −spline bases, [ 15,16 ]. B −spline 

ernels are constructed from the convolution of unit-width rect- 

ngular pulses. In contrast, the α−spline are the result of con- 

olving rectangular pulses of unit- and α−width. As a result, 

−spline functions result in transition functions between two 

 −spline functions, where the latter are a particular case of the 

ormer. Therefore, the range of possible (real) applications where 

−splines can be applied is too broad, including at least those of 

 −spline functions. 

Digital filter design is a classical area of signal processing that 

till sparks the interest of many researchers [17–21] . The applica- 

ion of spline functions to digital filter design, according to cer- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ain optimization criteria, has been proposed in [22–26] . The use 

f spline bases for designing digital filters allows to generate tran- 

ition bands that continuously connect the passband and the stop- 

and of the filter, eliminating the discontinuities in the limits of 

hese bands. As a result, the frequency response of the designed 

lter presents a quadratic error very close to the optimum value, 

orresponding to the ideal filter. In addition, the use of spline func- 

ions provides explicit control over the transition band and an ap- 

roximation almost as good as the most complicated numerical ap- 

roximations. The resulting FIR filters are easy to design by means 

f previously determined closed expressions. In [22,23] , B −spline 

unctions are employed as window functions to shape the tran- 

ition band of the conventional brick-wall ideal filter. From the 

pline base of degree 0, that is, a rectangular function in the fre- 

uency domain, the base spline of a degree l ≥ 0 is constructed by 

onvolving l + 1 spline bases of degree 0, giving rise to a poten-

ial function in the time domain, which takes the form of sinc l+1 . 

he power of the sinc function is called spline order. In [25] , the

athematical framework to extend the above design methods to 

ositive non-integer order is presented. In [26] , α−spline analog 

lters, and the design of digital filters by a least integral squared 

rror approximation and principally flat α−spline filters are dis- 

ussed. 

This article has a twofold purpose. First, four novel families of 

−spline functions, defined by means of two parameters k 1 and k 2 , 

re introduced.The new formulation allows more precise control to 

et the shape of the function. The formulation is derived in the 

requency domain associated with discrete time, since the second 

bjective of the article is to present as a case study the application 

f these new families to digital filter design. However, it is worth 

oting that the resulting expressions can be interchanged between 

omains using the duality property of the Fourier transform 

1 . To 

he aim of completing the theory presented in our previous works 

25,26] , we use here the new α−spline functions to design dig- 

tal filters. The obtained filters are compared to those previously 

eported in the literature [22,23,25,26] . Specifically, the character- 

stics of the new filters are analyzed and compared with previous 

− and B −spline-based approaches. The simulation results indi- 

ate that with the new α−spline functions, it is possible to obtain 

lters that outperform those designed with previous techniques. 

The rest of this paper is organized as follows. In Section 2 , the

ormulation of the α−spline functions is presented. In Section 3 , 

losed expressions of the α−spline functions are derived. Next, 

ection 4 analyses the sizes of the compact supports of the dif- 

erent families of α−spline functions. Section 5 presents the pro- 

ess of designing digital filters and their main features. Afterwards, 

ome design examples are presented and, lastly, the conclusions of 

his paper are presented. 

. A new definition of the generalized α-spline functions 

This section presents an extension of the α-spline functions 

reviously described in [25] . The new functions, defined in the 

requency domain, are generated by the convolution of two kinds 

ectangular pulses of area 2 π (degree 0 spline bases) and form a 

et of transition functions between spline bases of degrees p and 

p + q . These functions gradually transform a spline base of degree 

p ≥ 0 into a spline base of degree p + q , q > 0 . The variation of

he width and height of both pulses will determine the shape and 

ompact support of the new α-spline bases. These two types of 

ectangular pulses are defined by 

[0] 

k 1 , �d 
( ω ) = 

{
2 πk 1 
�d 

, | ω | < 

�d 

2 k 1 
, 

0 , 
�d 

2 k 1 
< | ω | < π, 

(1) 
1 For the time-domain formulation, we refer the reader to [27] 

F

2

nd 

[0] 

k 2 ,α�d 
( ω ) = 

{
2 πk 2 
α�d 

, | ω | < 

α�d 

2 k 2 
, 

0 , 
α�d 

2 k 2 
< | ω | < π, 

(2) 

here ω is the frequency with dimensions of radians per sample, 

d is a parameter with the same units, which governs the sup- 

ort of the α-spline function in the frequency domain, k 1 and k 2 
re two constants from which we will define different families of 

pline bases. Finally, α ∈ (0 , 1) , is dimensionless and controls the 

ransition between two spline bases. 

By convolution of p + 1 rectangular pulses, given by (1) , the 

pline basis function of constant k 1 and p degree, 

(
�[ p] 

k 1 , �d 
( ω ) 

)
, 

s constructed, that is, 

[ p] 

k 1 , �d 
( ω ) = 

(p+1) spline base �[0] 

k 1 , �d ︷ ︸︸ ︷ 
�[0] 

k 1 , �d 
( ω ) ∗ . . . ∗ �[0] 

k 1 , �d 
( ω ) . (3) 

imilarly, the convolution of q rectangular pulses given by (2) , gen- 

rates the spline basis function of constant k 2 and (q − 1) degree, 

�[ q −1] 

k 2 ,α�d 
( ω ) 

)
, that is, 

[ q −1] 

k 2 ,α�d 
( ω ) = 

q spline base �[0] 

k 2 ,α�d ︷ ︸︸ ︷ 
�[0] 

k 2 ,α�d 
( ω ) ∗ . . . ∗ �[0] 

k 2 ,α�d 
( ω ) . (4) 

y the convolution of (3) and (4) the transition functions (new α- 

pline base functions) are constructed. Let �[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) denote the 

ew α-spline base function, then 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) = �[ p] 

k 1 , �d 
( ω ) ∗ �[ q −1] 

k 2 ,α�d 
( ω ) , 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) = 

(p+1) spline base �[0] 

k 1 , �d ︷ ︸︸ ︷ 
�[0] 

k 1 , �d 
( ω ) ∗ . . . ∗ �[0] 

k 1 , �d 
( ω ) 

∗

q spline base �[0] 

k 2 ,α�d ︷ ︸︸ ︷ 
�[0] 

k 2 ,α�d 
( ω ) ∗ . . . ∗ �[0] 

k 2 ,α�d 
( ω ) . (5) 

ereinafter, the frequency range considered for the Fourier trans- 

orms will be −π < ω ≤ π . We proceed first by calculating the in- 

erse DTFT of (1) : 

f k 1 , �d 
[ n ] = F −1 

{ 

�[0] 

k 1 , �d 
( ω ) 

} 

= sinc 

(
�d n 

2 πk 1 

)
= 

k 1 
�d (− jn ) 

[ 
e 

− j 
�d n 

2 k 1 − e 
j 
�d n 

2 k 1 

] 
, (6) 

here the function sinc is defined as sinc (x ) = sin (πx ) / (πx ) . Sim-

larly, the inverse DTFT of (2) is given by 

f k 2 ,α�d 
[ n ] = F −1 

{ 

�[0] 

k 2 ,α�d 
(ω) 

} 

= sinc 

(
α�d n 

2 πk 2 

)
= 

k 2 
α�d (− jn ) 

[ 
e 

− j 
α�d n 

2 k 2 − e 
j 
α�d n 

2 k 2 

] 
. (7) 

rom (6) and (7) and considering the properties of the convolution 

peration, we get the inverse DTFT of �[ p,p+ q,α] 

k 1 ,k 2 , �d 
(ω) 

 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
[ n ] = F −1 

{ 

�[ p,p+ q,α] 

k 1 ,k 2 , �d 
(ω) 

} 

= sinc 
p+1 

(
�d n 

2 πk 1 

)
· sinc 

q 

(
α�d n 

2 πk 2 

)
, (8) 

r, in terms of the complex exponential functions, 

 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
[ n ] = 

k p+1 
1 

k q 
2 

αq �p+1+ q 
d 

(− jn ) p+1+ q 

(
e 

− j 
�d n 

2 k 1 − e 
j 
�d n 

2 k 1 

)p+1 

(
e 

− j 
α�d n 

2 k 2 − e 
j 
α�d n 

2 k 2 

)−q . (9) 
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f d  
e can rewrite the above function by developing the powers of 

he binomials: 

 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
[ n ] = 

k p+1 
1 

k q 
2 

αq �p+1+ q 
d 

(− jn ) (p+1+ q ) 
·

p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl e 
j�[ p,q,α] 

k 1 ,k 2 
(k,l)�d n , 

(10) 

here C kl and �[ p,q,α] 

k 1 ,k 2 
(k, l) are given respectively by 

 kl = (−1) (k + l) 
(

p + 1 

k 

)(
q 
l 

)
, (11) 

nd 

[ p,q,α] 

k 1 ,k 2 
(k, l) = 

[(
k 

k 1 
+ 

αl 

k 2 

)
− 1 

2 

(
p + 1 

k 1 
+ 

αq 

k 2 

)]
, (12) 

hich, for later use, is expressed as 

[ p,q,α] 

k 1 ,k 2 
(k, l) = �1 (k, l) − �2 , 

ith 

1 (k, l) = 

(
k 

k 1 
+ 

αl 

k 2 

)
and �2 = 

1 

2 

(
p + 1 

k 1 
+ 

αq 

k 2 

)
. (13) 

From the discrete time domain representation of the new tran- 

ition functions (8) , we associate to them an intermediate spline 

rder (non-integer order) between the starting spline order (power 

f the first sinc function, p + 1 ) and the maximum spline order

sum of the powers of the sinc functions when α = 1 , p + 1 + q ),

roportional to α and given by the real number ρ = p + 1 + αq . 

. Polynomial form in the frequency domain 

The aim of this section is to express the α-spline functions in 

olynomial form, since in this way it is relatively straightforward 

o obtain and analyse closed expressions without resorting to nu- 

erical approximations. In addition, this polynomial form makes it 

ossible to impose conditions on their continuity and derivability 

hat are useful in certain applications (e.g. filtering). First, the DTFT 

f (10) will be determined. With this goal, the auxiliary function 

 + ,
 (ω) is considered, which is defined by 

 + ,
 (ω) = ω 


 
+ = 

{
ω 


 , 0 ≤ ω < π, 

0 , −π ≤ ω < 0 , 
= ω 


 · u (ω) , −π ≤ ω < π

here 
 ∈ N and u (ω) is the Heaviside step function. Differentiat- 

ng repeatedly yields 

d (
 ) Y + ,
 (ω) 

dω 


 
= 
 ! · u (ω) = F 

{
(− jn ) 
 y 
 [ n ] 

}
, −π ≤ ω < π

d (
 +1) Y + ,
 (ω) 

dω 


 +1 
= 
 ! · δ(ω) = F 

{
(− jn ) 
 +1 y 
 [ n ] 

}
, −π ≤ ω < π

here δ(ω) is the Dirac Delta function and y 
 [ n ] is the inverse

TFT of Y + ,
 (ω) . 

Calculating the inverse DTFT in the last expression yields 

 

−1 { 
 ! δ(ω) } = F −1 
{
F 
{
(− jn ) 
 +1 y 
 [ n ] 

}}
, −π ≤ ω < π

nd as F −1 { δ(ω) } = 1 / (2 π) in −π ≤ ω < π , one can write 


 ! 

2 π
= (− jn ) 
 +1 y 
 [ n ] , 

nd therefore 

 
 [ n ] = 


 ! 

2 π(− jn ) 
 +1 
. (14) 

y replacing 
 = p + q , we get 

1 

(− jn ) p+1+ q = 

2 πy p+ q [ n ] 

(p + q )! 
. (15) 
3 
he factor (− jn ) p+1+ q appears in the time sequence F 
[ p,p+ q,α] 

k 1 ,k 2 , �d 
[ n ] .

ubstituting (15) in (10) yields 

 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
[ n ] = 

2 πk p+1 
1 

k q 
2 

αq �p+1+ q 
d 

(p + q )! 
·

p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl e 
j�[ p,q,α] 

k 1 ,k 2 
(k,l)�d n y p+ q [ n ] . 

(16) 

alculating the DTFT of (16) and using the properties of lin- 

arity and displacement in frequency, the functions α-spline, 
[ p,p+ q,α] 

k 1 ,k 2 , �d 
(ω) = F 

{ 

F 
[ p,p+ q ] ,α

k 1 ,k 2 , �d 
[ n ] 

} 

, can be expressed in polynomial 

orm as 

[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) = 

2 πk p+1 
1 

k q 
2 

αq �p+1+ q 
d 

(p + q )! 
(17) 

·
p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl Y + , p+ q [ ω − �[ p,q,α] 

k 1 ,k 2 
(k, l)�d ] 

= 

2 πk p+1 
1 

k q 
2 

αq �d (p + q )! 
·

p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl 

{ 

ω 

�d 

−�[ p,q,α] 

k 1 ,k 2 
(k, l) 

} p+ q 

+ 
, 

(17) 

hich are valid for any value −π ≤ ω < π . These functions 
[ p,p+ q,α] 

k 1 ,k 2 , �d 
(ω) are periodic, of period 2 π , and have a finite com- 

act support. This means they are different from zero in a spectral 

nterval given by 

�2 �d < ω < �2 �d , (18) 

hich depends on the number of pulses involved in the convolu- 

ion. 

Fig. 1 shows a set of α-spline functions that perform a contin- 

ous transition between a spline base of class k 1 = 2 and degree 

p = 1 to another spline base of class k 2 = 1 . 5 and degree p + q = 2 ,

or �d = 0 . 1 π as the parameter value. In this figure, notice that 

he curves for α = 0 and α = 1 correspond to B-spline bases of de- 

ree 1 and 2, respectively. 

. Properties of the α-spline functions 

Different values of k 1 and k 2 in the definition of the initial rect- 

ngular pulses (1) and (2) determine several families of bases α- 

pline. To illustrate the properties of the new α-spline function, 

rom the wide range of possible combinations of parameters k 1 
nd k 2 , four possibilities have been selected, which are reflected 

n Table 1 . 

The functions of the first family, characterized by k 1 = k 2 = p +
 + αq , have a compact support that only depends on �d , being

ndependent from the rest of the parameters that are involved in 

ts definition. This support, according to (13) and (18) , is given by 

�d 

2 

< ω < 

�d 

2 

. 

In Fig. 2 are represented some α-spline functions belonging to 

he first family. All of them, regardless of their order or the value 

f the parameter α, have the same compact support size, that 

atches the value assigned to �d = 0 . 2 π . 

The functions of the second family, characterized by k 1 = p + 1 

nd k 2 = q , have a compact support that depends on the parameter 

, in addition to �d , and increases with them and, according to 

13) and (18) , is given by 

( 1 + α) 
�d 

2 

< ω < ( 1 + α) 
�d 

2 

. 

Fig. 3 depicts some α-spline functions belonging to the second 

amily. It can be seen that setting the value of � = 0 . 25 π , the
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Fig. 1. Transitional α-spline bases 

(
�[1 , 2 ,α] 

2 , 1 . 5 , 0 . 1 π (ω) 
)

for different values of α. B-spline bases of degree 1 and 2 correspond to α = 0 and α = 1 , respectively.. 

Table 1 

Different families of α-spline functions defined on the frequency domain. 

Parameters α-spline base Family 1 α-spline base Family 2 α-spline base Family 3 α-spline base Family 4 

k 1 p + 1 + αq p + 1 1 q 

k 2 p + 1 + αq q αq p + 1 

Fig. 2. α-spline bases 

(
�[ p,p+ q,α] 

(p+1+ αq ) , (p+1+ αq ) , �d 
(ω) 

)
of Family 1. 

c

i

p

k

p  

w

p

−

c  

s

p

k  

r  

Fig. 3. α-spline bases 

(
�[ p,p+ q,α] 

(p+1) ,q, �d 
(ω) 

)
of Family 2. 

s

−

s  

c

p

f

w

f  

p

l

ompact support of all the functions only depends on α, increas- 

ng with this parameter, and being independent of the numbers of 

ulses, (p + 1) and q , that shape the α-spline base. 

The functions of the third family, characterized by k 1 = 1 and 

 2 = αq , have a compact support that depends on the number of 

ulses p + 1 defined by (1) , in addition to �d , being increasing

ith both parameters. According to (13) and (18) , the compact sup- 

ort is given by 

( p + 2 ) 
�d 

2 

< ω < ( p + 2 ) 
�d 

2 

. 

Fig. 4 shows some α-spline bases belonging to this family. It 

an be observed that, for a fixed value of �d = 0 . 2 π , the compact

upport only depends on the value of p, being increasing with this 

arameter. 

The functions of the fourth family, characterized by k 1 = q and 

 2 = p + 1 , have a compact support that depends on all the pa-

ameters � , α, p and q . According to (13) and (18) , the compact
d 

4 
upport is given by (
p + 1 

q 
+ 

αq 

p + 1 

)
�d 

2 

< ω < 

(
p + 1 

q 
+ 

αq 

p + 1 

)
�d 

2 

. 

Fig. 5 plots some α-spline bases belonging to this family. It 

hows how, for a fixed value of �d = 0 . 25 π , the compact support

hanges, depending both on the parameter α and the number of 

ulses of the two types used to generate the different α-spline 

unctions. 

Lastly, with the aim of showing the different profiles obtained 

ith k 1 and k 2 , Fig. 6 depicts normalized functions defined as 

�[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) 

�[ p,p+ q,α] 

k 1 ,k 2 , �d 
( 0 ) 

or both the same α-spline order { (p + 1) , q, α} and compact sup-

ort �e f = 0.2 π . These functions belong to each one of the fami- 

ies defined in Table 1 . 
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Fig. 4. α-spline bases 

(
�[ p,p+ q,α] 

1 ,αq, �d 
(ω) 

)
of Family 3. 

Fig. 5. α-spline bases 

(
�[ p,p+ q,α] 

q,p+1 , �d 
(ω) 

)
of Family 4. 
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. Application to digital filter design 

.1. Modeling of transition bands with α-spline bases 

Consider a digital filter with impulse response h α[ n ] and fre- 

uency response 

 α(ω) = 

∞ ∑ 

n = −∞ 

h α[ n ] e − jωn . 

Let us consider an ideal low-pass filter, with a cut-off frequency 

f ω c and whose frequency response is represented by H d (ω) . The 

roposed design procedure is based on the convolution in the fre- 

uency domain between the frequency response of the ideal brick- 

all filter and an α−spline function (window) of the set given by 

17) , �[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) , that is, 

 α(ω) = �[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ω ) ∗ H d (ω) 

= 

1 

2 π

∫ π

−π
�[ p,p+ q,α] 

k 1 ,k 2 , �d 
( ξ ) H d (ω − ξ ) dξ . (19) 

s can be seen in [25] , (19) is composed of polynomial functions, 

nd the resulting frequency response is given by 

 α(ω) = 1 − k p+1 
1 

k q 
2 

αq (p + q + 1)! 
·

p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl 

{ | ω | − ω c 

�d 

− �[ p,q,α] 

k 1 ,k 2 
(k, l) 

}p+ q +1 

+ 
, 

(20) 
5 
here −π ≤ ω < π , 0 < α < 1 , p ≥ 0 and q > 0 . The shape of the 

requency response of the filter (20) is determined by the sym- 

etry properties and compact support of the �[ p,p+ q,α] 

k 1 ,k 2 , �d 
(ω) , but in 

eneral, it takes the following forms: 

 α(ω) = 

{ 

1 , 0 < | ω| < ( ω c − �2 �d ) , 
∈ (0 , 1) , (ω c − �2 �d ) < | ω| < (ω c + �2 �d ) , 
0 , (ω c + �2 �d ) < | ω| < π, 

(21) 

here the shape and width of the transition band depends on the 

-spline function used. 

.1.1. Continuity and differentiability 

This section highlights some of the general properties of the α- 

pline functions such as their smoothness and their ability to ap- 

roximate a step function with different shapes and velocities. This 

ill provide us with some information about the transition band 

f the resulting filters. To begin with, it is important to note that 

he results are independent of the parameters that define the filter, 

hus a variable change is proposed to normalize the width of the 

ransition band so as to lie within the [0,1] interval. In addition, in- 

tead of using the frequency response of the low-pass filter given 

y (20) , the analysis of the properties is carried out on the as- 

ociated high-pass function G α(ω) = 1 − H α(ω) . Because the func- 

ion is symmetrical with respect to the frequency, we will focus 

n the positive interval of the frequency, i.e. 0 ≤ ω ≤ π . In terms 

f �1 (k, l) and �2 , Eq. (20) is expressed as 

 α(ω) = 

k p+1 
1 

k q 
2 

αq (p + q + 1)! 
·

p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl 

{ 

ω − ω c 

�d 

− �1 ( k, l) + �2 

} p+ q +1 

+ 
, 

(22) 

hose transition band occupies the interval ω c − �2 �d ≤ ω ≤ ω c + 

2 �d . 

We can rewrite the above expression in the form 

 α(ω) = 

k p+1 
1 

k q 
2 

αq (p + q + 1)! 

·
p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl 

{ 

�2 

(
ω − ω c 

�2 �d 

+ 1 

)
− �1 (k, l) 

} p+ q +1 

+ 
. (23) 

y making the change of variable 

ω − ω c 

�2 �
+ 1 = 2 x, 
d 
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Fig. 7. High-Pass Filters ( P(x ) ). 
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e obtain a function that depends on the variable x , which we will

all P (x ) , and that acquires the form 

 (x ) = 

k p+1 
1 

k q 
2 

αq (p + q + 1)! 

p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl { 2�2 x − �1 (k, l) } p+ q +1 
+ , (24) 

here both the ends of the transition band and the cutoff fre- 

uency are determined by the value of the variable x : 

 = 

{ 

0 , ω = ω c − �2 �d , 
1 
2 
, ω = ω c , 

1 , ω = ω c + �2 �d . 

t can be shown that P (x ) is continuous on [0,1] and positive defi-

ite on (0,1); furthermore, it satisfies 

 (x ) = 

{ 

0 , x ≤ 0 , 

∈ (0 , 1) , x ∈ (0 , 1) , 
1 , x ≥ 1 . 

s a result, P (x ) can be interpreted as a smoothed step function

hat is continuous and differentiable. Taking into account its poly- 

omial form, its derivative is 

 

′ (x ) = 

k (p+1) 
1 

k q 
2 

(p + q )! αq 
( 2�2 ) 

(p+1+ q ) 
p+1 ∑ 

k =0 

q ∑ 

l=0 

C kl { x − N kl } p+ q 
+ , (25) 

here 

 kl = 

�1 (k, l) 

2�2 

= 

(
k 2 k + k 1 αl 

k 2 (p + 1) + k 1 αq 

)
. 

This derived function maintains the functional structure of P (x ) 

nd is another continuous function on [0,1] and positive definite on 

0,1). Therefore, P (x ) is a positive and strictly increasing function 

n that interval. Iteratively, it can be shown that P (x ) has (p + q )

erivatives in (0,1). Fig. 7 shows the functions given by (24) for 

ll the previously defined families and considering the same or- 

er, p = 2 , q = 2 and α = 0 . 25 . As can be seen, both the range and

he domain of the functions are located in the [0,1] interval, be- 

ng continuous, differentiable, and monotone-increasing. In Fig. 8 , 

hich depicts the derivatives of the previous functions, different 

rowth rates in the high-pass functions can be observed. 

.2. Impulse response of the digital filter 

Given the impulse response of the ideal brick-wall filter 

 d [ n ] = 

ω c 

π
sinc 

(
ω c n 

π

)
, (26) 
6 
he impulse response of the α-spline filter is 

 α[ n ] = h d [ n ] · F [ p,p+ q,α] 

k 1 ,k 2 , �d 
[ n ] 

= 

ω c 

π
sinc 

(
ω c n 

π

)
sinc 

p+1 

(
�d n 

2 πk 1 

)
sinc 

q 

(
α�d n 

2 πk 2 

)
. (27) 

he interpretation in the frequency domain is that the α-spline 

unctions are used to model the transition band of (21) , defined 

etween the pass-band and the stop-band. In the time domain, it 

urns out that h α[ n ] can be written as h α[ n ] = h d [ n ] · w [ n ] , where

he α-spline represent the window function w [ n ] : 

 [ n ] = sinc 
p+1 

(
�d n 

2 πk 1 

)
sinc 

q 

(
α�d n 

2 πk 2 

)
. (28) 

It is important to note that the impulse responses, given by 

27) , are infinite in length and generate non-causal filters. In ad- 

ition, they are symmetrical around n = 0 , since they are obtained 

s the product of two symmetrical functions. 

.3. FIR filters derived from α-spline functions 

Finite impulse response filters can be obtained by truncating 

he impulse response. The resulting N = 2 M + 1 coefficients are 

iven by 

 [ n ] = 

{
h α[ n ] , | n | ≤ M, 

0 , | n | > M. 

or simplicity, real valued and symmetric h α[ n ] = h α[ −n ] digital

lters with length ( 2 M + 1 ) will be discussed in this paper. 

However, this operation generates a problem, because depend- 

ng on where the truncation occurs and the order of the spline 

unctions used, the spectral behavior changes noticeably. These 

roblems have been analysed in [ 22,23,25 ] and [26] , using differ- 

nt spline functions and providing different solutions depending 

n the pursued objective. 

Once the FIR filter is obtained, a causal response can be con- 

tructed by introducing an M-sample delay, so that the impulse re- 

ponse becomes h c [ n ] = h α[ n − M] , with 0 ≤ n ≤ 2 M. In these con-

itions, the resulting filter has linear phase. 

.4. Examples: design and discussion 

In this subsection, several digital filters are designed with the 

oal of highlighting the properties of the new α-spline functions. 

or the sake of comparison, we focus our attention on some of 

he examples presented in previous publications [ 23,25,26 ]. In the 
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bove, the design of principally flat filters is considered and the re- 

ulting filters are compared either with B -spline or with α-spline 

unctions belonging to the family 1 (see Table 1 ). 

The compact support of the α-spline functions depends on both 

d and k 1 and k 2 . Therefore, in order to obtain a given transition 

andwidth, denoted by �r , the width of the compact support of 

he α-spline functions must be normalized, making 2�2 �d = �r . 

ccording to this, (27) turns out to be 

 

′ 
α[ n ] = 

ω c 

π
sinc 

(
ω c n 

π

)
sinc 

p+1 

(
�r n 

2 π�k 1 

)
sinc 

q 

(
α�r n 

2 π�k 2 

)
, (29) 

here � = 2�2 . From the considerations outlined in [23] and [25] , 

amples are taken within the interval between the first zero cross- 

ngs, located to the right and left of the spline origin. Due to the 

easons brought out in those publications about the decrease of 

he average quadratic error, and particularizing for the case of the 

-spline functions described there, in which k 1 = k 2 = p + 1 + αq

nd � = 1 , one obtains 

�r 

2 π(p + 1 + αq ) 
= 

1 

M + 1 

. (30) 

s a result, the impulse response is given by 

 

(1) 
PF,α[ n ] = 

ω c 

π
sinc 

(
ω c n 

π

)
sinc 

p+1 
(

n 

M + 1 

)
× sinc 

q 
(

αn 

M + 1 

)
, −M ≤ n ≤ M, (31) 

here the superscript (1) stands for the family 1 ( Table 1 ). 

In our example of designs, the different behaviors in the fre- 

uency response will be shown using α-spline functions of the 

ame order, but characterized by different values of k 1 and k 2 . 

rom (29) , for any combination of k 1 and k 2 and with the con-

traint imposed by (30) , the impulse response turns out to be 

 

′ 
PF,α[ n ] = 

ω c 

π
sinc 

(
ω c n 

π

)
sinc 

p+1 

(
(p + 1 + αq ) n 

�k 1 (M + 1) 

)

× sinc 
q 

(
α(p + 1 + αq ) n 

�k 2 (M + 1) 

)
, −M ≤ n ≤ M. (32) 

To compare the characteristics of the designed filters, we em- 

loy the following quality parameters: 

• The average integral squared approximation error, ε aisae , defined 

as 

ε aisae = 

M ∑ 

n = −M 

∣∣h d [ n ] − h 

′ 
PF,α[ n ] 

∣∣2 + 2 

∞ ∑ 

n = M 

| h d [ n ] | 2 . 

• The passband error, ε pbe , given by 

ε pbe = 

1 

π

∫ ω p 

0 

∣∣H 

′ 
PF,α ( ω ) − H d ( ω ) 

∣∣2 
dω , 

where H 

′ 
PF,α ( ω ) is the frequency response associated with the 

impulse response given by (32) . 
• The stopband error, ε sbe , given by 

ε sbe = 

1 

π

∫ π

ω s 

∣∣H 

′ 
PF,α ( ω ) 

∣∣2 
dω . 

• The maximum passband deviation, ε de v , given by 

δ = max 
| ω | <ω p 

∣∣H 

′ 
PF,α ( ω ) − H d ( ω ) 

∣∣. 
• The minimum stopband attenuation, A s (dB). 

The first example is the filter proposed in Section 4 of [26] , 

hose desired specifications are 
7 
• Minimum stopband attenuation A s = 80 dB, 
• Cutoff frequency ω c = 0 . 5 π , 
• Transition bandwidth �r = 0 . 25 π , 

Considering the procedures to obtain M and ρ = p + 1 + αq , de-

cribed in [23, Table 1] or [25, Tables 1 and 2] , we obtain the val-

es M = 25 and ρ = p + 1 + αq = 3 . 537 . 

To compare the performance of the resulting filters, we gen- 

rate α-spline functions of the same order { (p + 1) = 3 , q = 1 , α =
 . 537 } belonging to the different families of Table 1 . They are char-

cterized by different combinations of k 1 and k 2 . 

The first combination of parameters, C 1 = { k 1 = p + 1 +
q, k 2 = p + 1 + αq } , is the one used in Section 4 of [26] .

ext, three new filters are designed with the following parameter 

ombinations: C 2 = { k 1 = p + 1 , k 2 = q } , C 3 = { k 1 = 1 , k 2 = αq }
nd C 4 = { k 1 = q, k 2 = p + 1 } . 

Fig. 9 depicts the magnitude response of the resulting filters, 

nd Table 2 shows the values of the quality parameters measured 

n each of them, as well as the effective transition bandwidth, 

r (×π) . This table also includes the filter designed with non- 

nteger order B -spline functions obtained in [26] . As can be seen, 

he filter designed with the α-spline function of the C 3 family has 

ignificantly higher performance than the rest of the filters. 

The second example design is given by the specifications of the 

ow-pass filter described in Section 5 of [25] : 

• Minimum stopband attenuation A s = 60 dB, 
• Cutoff frequency ω c = 0 . 25 π , 
• Transition bandwidth �r = 0 . 05 π , 

In this example, taken into account [23, Table 1] or [25, Tables 1 

nd 2] , the semi-order of the filter is M = 90 and the spline order

s ρ = p + 1 + αq = 2 . 339 . 

In [25] , the frequency response of an α-spline filter with values 

p + 1 = 1 , q = 2 and α = 0 . 6695 ( ρ = p + 1 + αq = 2 . 339 ), belong-

ng to the family C ∗
1 

= { k 1 = p + 1 + αq, k 2 = p + 1 + αq } was de-

ermined. Now, we proceed to design digital filters with impulse 

esponses given by (32) and satisfying C ∗2 = { k 1 = p + 1 , k 2 = q } ,
 

∗
3 

= { k 1 = 1 , k 2 = αq } and C ∗
4 

= { k 1 = q, k 2 = p + 1 } . 
Fig. 10 plots the resulting magnitude responses, and Table 3 

hows the obtained results of the quality parameters of these new 

lters. As can be seen, in addition to the filter designed from the 

-spline function of the C ∗
1 

family, the one generated from the C ∗
4 

amily has a higher performance than those achieved by the fil- 

ers designed using either the B -spline function and the rest of the 

-spline functions. 
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Table 2 

Simulation results for different low-pass PF filters ( A s = 80 dB, ω c = 0 . 5 π , �r = 0 . 25 π ). 

Function ε aisae ε pbe ε sbe ε de v A s (dB) �r (×π) 

B -spline 1 . 009 · 10 −2 1 . 457 · 10 −10 1 . 457 · 10 −10 1 . 009 · 10 −4 79 . 9 2 . 485 · 10 −1 

α-spline (C 1 ) 9 . 732 · 10 −3 1 . 142 · 10 −10 1 . 142 · 10 −10 8 . 546 · 10 −5 81 . 4 2 . 394 · 10 −1 

α-spline (C 2 ) 9 . 802 · 10 −3 6 . 038 · 10 −10 6 . 038 · 10 −10 9 . 453 · 10 −5 80 . 5 2 . 493 · 10 −1 

α-spline (C 3 ) 9 . 447 · 10 −3 2 . 052 · 10 −11 2 . 052 · 10 −11 4 . 068 · 10 −5 87 . 8 2 . 417 · 10 −1 

α-spline (C 4 ) 1 . 045 · 10 −2 1 . 123 · 10 −9 1 . 123 · 10 −9 2 . 570 · 10 −4 71 . 8 2 . 452 · 10 −1 

Table 3 

Simulation results for different low-pass PF filters ( A s = 60 dB, ω c = 0 . 25 π , �r = 0 . 05 π ). 

Function ε aisae ε pbe ε sbe ε de v A s (dB) �r (×π) 

B -spline 2 . 387 · 10 −3 4 . 696 · 10 −9 4 . 696 · 10 −9 9 . 984 · 10 −4 60 . 01 4 . 951 · 10 −2 

α-spline (C ∗1 ) 2 . 146 · 10 −3 3 . 195 · 10 −9 3 . 095 · 10 −9 6 . 076 · 10 −4 64 . 38 4 . 478 · 10 −2 

α-spline (C ∗2 ) 2 . 588 · 10 −3 2 . 127 · 10 −7 3 . 477 · 10 −7 4 . 708 · 10 −3 46 . 15 1 . 009 · 10 −1 

α-spline (C ∗3 ) 2 . 281 · 10 −3 4 . 240 · 10 −8 6 . 276 · 10 −8 2 . 123 · 10 −3 53 . 12 5 . 820 · 10 −2 

α-spline (C ∗4 ) 2 . 108 · 10 −3 1 . 303 · 10 −9 3 . 196 · 10 −9 2 . 110 · 10 −4 72 . 79 4 . 584 · 10 −2 

Fig. 10. Example design 2. Magnitude responses for PF low-pass α−spline filters. 
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. Conclusion 

This article has presented a new parametrization of the α- 

pline functions on the frequency domain. Closed expressions have 

een derived for them, both in the frequency and time domains, 

nd their use for digital filter design has been analysed. The con- 

inuity and differentiability properties of the frequency response 

ave been discussed; they are inherited from the α-spline func- 

ions, and allow us to obtain both general- and special-purpose fil- 

ers, the last one with special characteristics such as mainly flat 

lters. A method has been presented for the selection of the pa- 

ameters that adjust the desired specifications and generate filters 

hat outperform those existing in the literature. Examples of the 

esign of mainly flat filters have been presented, and their qual- 

ty has been analysed using standard metrics and compared with 

thers obtained with different techniques. From the proposed ex- 

mples, it can be inferred that it is possible to design filters with 

otably higher performance since the new parametrization leads 

o digital filters with an improvement in the stopband attenuation 

ompared to classical methods based on B-spline. Furthermore, the 

ew formulation also can enhance all the considered quality met- 

ics of the resulting digital filters. 
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