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Abstract—A high-order input-reflectionless quasi-elliptic-type 
wideband bandpass filter (BPF) that exploits a complementary-
diplexer-based topology is reported. Firstly, a fourth-order 
wideband microstrip-to-microstrip vertical transition employing 
a dual-mode slotline resonator as the reflective-type BPF channel 
is designed. It features a sharp-rejection BPF response with two 
close-to-passband transmission zeros (TZs). To attain broadband 
input-reflectionless behavior, a shunt resistively-terminated 
microstrip π-shape network is used as the absorptive bandstop-
filter (BSF) channel. The RF theoretical operational principle of 
the conceived broadband BPF is detailed. Compared to prior-art 
high-order input-/two-port-reflectionless wideband BPFs, the 
proposed BPF features not only improved passband flatness at 
the passband edges, but also relatively-high stopband power-
attenuation levels and power-absorption ratios. For 
experimental-validation purposes, a two-layer fourth-order BPF 
microstrip prototype centered at 1 GHz is developed and tested. 

Index Terms — Absorptive filter, bandpass filter (BPF), two-

layer structure, reflectionles filter, wideband filter. 

I.  INTRODUCTION 

To suppress the unwanted stopband-RF-signal-power echoes 

so as to guarantee the robust operation of preceding active 

circuits in RF front-end chains, absorptive/reflectionless 

bandpass filters (BPFs) need to be incorporated within the RF 

transceiver [1]. Unlike conventional solutions that use bulky 

RF isolators or attenuators, more-compact RF front-end chains 

can be realized with absorptive BPFs. In these BPF devices, 

the stopband non-transmitted RF-input-signal power 

reflections are expected to be fully dissipated by the resistive 

elements inside their lossy circuits [2]. Until now, input-/two-

port-absorptive BPFs are mostly realized with three different 

design methods. These include symmetrical lossy circuits with 

equal-amplitude but out-of-phase even-/odd-mode sub-

networks [3], [4], back-to-back-cascaded quadrature-coupler-

based networks [5], and complementary-diplexer-based BPF 

and lossy bandstop-filter (BSF) channels [6]–[8]. However, 

most of these BPFs are designed with narrow or moderate 

bandwidths [3]–[6], and only a few of them feature wideband 

BPF responses as in [7], [8]. In [7], two-layer two-port-

reflectionless wideband BPFs with shunt/in-series resistively-

terminated microstrip lines were reported. However, their 

passband flatness and power-absorption-ratio profiles are poor 

throughout the stopband-to-passband transitions. Alternative 

input-reflectionless quasi-elliptic-type wideband BPF schemes  

 
Fig. 1. Layout of the proposed input-reflectionless quasi-elliptic-
type wideband BPF using a dual-mode slotline resonator. 

were explored in [8] to improve the passband flatness and the 

sharpness of the power-absorption-ratio profile within the 

stopband-to-passband transitions. Although a higher-order 

BPF was engineered in [8] to augment the stopband power-

attenuation levels (PALs), it still suffers from some critical 

drawbacks (e.g., relatively-rounded passband at its edges, high 

in-band power-insertion-loss levels, and large circuit size). 

Thus, compact input-reflectionless wideband BPFs with 

further-improved passband flatness and enhanced stopband 

PALs are still needed.  

In this paper, a compact high-order input-reflectionless 

wideband BPF is presented. Its BPF channel is realized with a 

fourth-order quasi-elliptic-type vertical transition built on a 

dual-mode slotline resonator. Its dissipative BSF channel is 

shaped by a shunt resistively-terminated fifth-order lowpass-

filter-(LPF)-based π-shape network. The proposed BPF 

exhibits further-improved passband flatness at the band edges 

and relatively-high stopband power-absorption-ratio profile. 

Its theoretical foundations and design procedure are detailed. 

Finally, a demonstrative 1-GHz two-layer input-reflectionless 

BPF microstrip prototype is manufactured and tested. 

II. THEORETICAL FOUNDATIONS 

The layout of the proposed input-reflectionless wideband 

BPF in a complementary diplexer-based structure is shown in 

Fig. 1. Here, its reflective-type BPF channel is built by a 

fourth-order microstrip-to-microstrip vertical transition.  



 
Fig. 2. TL equivalent circuit of the proposed BPF in Fig. 1 with

2
m m mZ N Z ¢= ´ ,

2
s s sZ N Z ¢= ´ ,

2
1 1 1m m mZ N Z ¢= ´ , and 

2
1 2 1mZ N Z ¢= ´ . 

Compared with the three-pole vertical transition using a half-

wavelength resonator, a dual-mode slotline resonator etched 

on the ground plane is exploited to obtain one more 

transmission pole. Unlike the in-series open-circuit-ended 

microstrip resonator, a short-circuit-ended two-section 

microstrip line is printed on the bottom layer to shape a quasi-

elliptic-type response with two close-to-passband transmission 

zeros (TZs). For the shunt lossy BSF channel, a resistively-

terminated microstrip π-shape network is employed to realize 

a broadband input-reflectionless behavior.  

Based on the layout of the proposed wideband BPF, its 

transmission-line (TL) equivalent circuit are derived as shown 

in Fig. 2. Here, the impedances of the open-circuit-ended stub, 

the short-circuit-ended stubs, the cascaded TL section, and the 

short-circuit-ended two-stage TL sections of the reflective-

type BPF channel are Zm, Zs, Zs1, Z1, and Z2. Whilst, the 

impedances of the in-series cascaded TL sections and the 

shunt open-ended stubs of the lossy BSF channel are Zm1, Zm2, 

Zm3, Zm4, and Zm5. All the stubs and TL sections are set with 

the same electrical length θ = π/2 at the center frequency f0. R 

is the resistance of the loaded 50-Ω resistor, and Zin, Zina, and 

Zinb are the input impedances of the relevant TL sub-networks. 

In addition, to quantitatively model the impedance variations 

of the coupled microstrip and slotline resonators in Fig. 1 

during the electromagnetic (EM) simulation, four transformers 

with different turns ratios of Nm, Ns, Nm1, and Nm2 are used. 

Following the detailed design method in [8], the operational 

principles of the proposed BPF are described. It is initially set 

as an ideal lossless network, which owns Nm = Ns = Nm1 = Nm2 

= 1. With the derived ABCD matrix of the BPF in Fig. 1, the 

characteristic function FBPF in a composite expression is firstly 

obtained. By imposing the in-band frequency response of this 

lossy BPF to meet a specific fourth-order reflective-type 

Chebyshev equal-ripple response, the pure imaginary part of 

FBPF (as well as of Zin or Zina) is considered. As design 

example, an impedance ratio Z1/Z2 = 0.5015 is chosen, which 

leads to two close-to-passband TZs at 0.392f0 and 1.608f0. The 

desired four-pole reflective-type Chebyshev equal-ripple BPF 

response is specified with passband ripple LA1 = 0.04308 dB 

and electrical length θc1 = 56.7° at the lower cut-off frequency 

fc1 = 0.579 GHz (or return-loss level of 20.06 dB at f0 = 1 

GHz). Hence, the initial set of the normalized impedance  

values for the proposed BPF are attained as zm = 0.5578, zs = 

0.8328, zs1 = 1.1048, z1 = 0.97, z2 = 1.934, zm1 = 1.789, zm2 = 
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Fig. 3. Theoretical frequency responses of the proposed fourth-
order input-reflectionless wideband BPF. (a) Power transmission 
(|S21|) and input-reflection (|S11|) responses of the proposed BPF with 
zm = 0.9527, zs = 0.6217, zs1 = 1.1048, z1 = 0.97, z2 = 1.934, zm1 = 
1.7885, zm2 = 0.893, zm3 = 1.613, zm4 = 1.7938, and zm5 = 1.0706. Its 
relevant reflective-type fourth-order |S11| associated to the pure 
imaginary FBPF (so that to meet the specified Chebyshev-type equal-
ripple BPF response with LA1 = 0.04308 and θc1 = 56.7° at fc1 = 0.579 
GHz) and the reflective-type |S11| of the reshaped input-reflectionless 
LPF resulting from the pure imaginary FLPF (so that to feature the 
pre-defined Chebyshev-type seventh-order equal-ripple response) are 
also depicted. (b) Comparison of the |S21| and |S11| responses of the 
proposed BPF with those of the following BPFs that were reported in 
[8]: (i) third-order wideband BPF using a resistively-ended π-shaped 
structure (Case I) and (ii) high-order wideband BPF with two in-
series cascaded replicas of third-order wideband BPFs using a 
resistively-terminated T-junction (Case II). 

0.891, zm3 = 1.613, zm4 = 1.7938, and zm5 = 1.0706.  

On the other hand, by loading a 50-Ω resistor at the output 

port (Port 2) of the reflective-type BPF channel and removing 

the terminating resistor at the output port (Port 3) of the 

absorptive BSF channel, the proposed BPF is reshaped as a 

lossy seventh-order input-absorptive LPF. Similarly, the 

calculated characteristic function FLPF of this reshaped input-

reflectionless LPF and Zinb are assumed as pure imaginary. Its 

in-band frequency response is also expected to feature a 

specific reflective-type seventh-order Chebyshev equal-ripple 

LPF response, for which the values for the passband ripple LA2 

= 0.00041 dB and the electrical length θc2 = 53.406° at the 

lower cut-off frequency fc2 = 0.5934 GHz are imposed. Based 

on the initially-determined impedance values that are 

associated to the specified reflective-type four-pole 

Chebyshev BPF response, the normalized impedances of the 

reshaped LPF for the defined seventh-order Chebyshev LPF 

response are obtained. They are zm = 0.9527, zs = 0.6217, zs1 = 

1.1048, z1 = 0.97, z2 = 1.934, zm1 = 1.8318, zm2 = 0.8797, zm3 = 

1.613, zm4 = 1.7938, and zm5 = 1.0706. In this context, as 

shown in Fig. 3(a) and in order to simultaneously fulfil the 

specified reflective-type Chebyshev equal-ripple four-pole 

BPF and seven-pole LPF responses under the discussed 

assumptions, the normalized impedances of the proposed BPF 

are quantitatively selected with zm = 0.9527, zs = 0.6217, zs1 = 

1.1048, z1 = 0.97, z2 = 1.934, zm1 = 1.7885, zm2 = 0.893, zm3 = 

1.613, zm4 = 1.7938, and zm5 = 1.0706. Here, only the values of 

zm1 and zm2 are slightly adjusted. Fig. 3(b) depicts the 

theoretical frequency responses of the proposed BPF. They are 

compared with those of the third-order wideband BPF using a 
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Fig. 4. Frequency responses of the designed fourth-order input-
reflectionless wideband BPF prototype with Lin = 45, Lout = 95, LA = 
28.35, LB = 29.7, LC = 28.15, LD = 29.35, LE = 29.16, LF = 28.17, LG 
= 27.44, LH = 31.28, LI = 27.66, LJ = 6.5, LK = 23.39, WA = 1.19, WB 
= 0.23, WC = 1.4, WD = 0.28, WE = 0.34, WF = 0.81, WG = 0.12, WH = 
0.91, WI = 1.26, WJ = WK = 0.16, Win = Wout = 1.1 (unit: mm), θ1 = 
75°, and θ2 = 60°. (a) Theoretical, EM-simulated, circuit model, and 
measured power transmission (|S21|) and input-reflection (|S11|) 
responses. (b) Theoretical, EM-simulated, and measured power-
absorption ratios [i.e., 100×(1-|S21|2-|S11|2) (%)]. (c) Top/bottom-view 
photographs of the assembled BPF prototype. 

resistively-terminated π-shaped structure (Case I) and the 

high-order wideband BPF with two cascaded three-order units 

employing a resistively-loaded T-junction (Case II) that were 

reported in [8]. As shown, the proposed BPF features 

improved passband flatness at the band edges and relatively-

high PALs with regard to the metrics of Cases I and II.  

III. EXPERIMENTAL RESULTS 

To verify the viability of the proposed wideband BPF in 

Fig. 1, a two-layer microstrip prototype is manufactured and 

tested. A substrate with relative dielectric constant εr = 10.2, 

dielectric thickness h = 1.27 mm, and dielectric loss tangent 

tan(δD) = 0.0023 is utilized. To make the EM-simulated results 

fairly close to the theoretical ones, the proposed BPF is 

simulated with mZ ¢ = 47.92 Ω, sZ ¢ = 49.28 Ω, Zs1 = 79.97 Ω, 

1Z ¢  = 46.64 Ω, Z2 = 93.19 Ω, m1Z ¢ = 85.34 Ω, Zm2 = 44.29 Ω, 

Zm3 = 80.99 Ω, Zm4 = 76.62 Ω, and Zm5 = 56.72 Ω. Thus, 

compared with the selected values of the normalized-

impedance parameters for the theoretical responses, the turns 

ratios of the used transformers are extracted as Nm = 0.997, Ns 

= 0.794, Nm1 = 1.024, and Nm2 = 1.02. The resistance of the 

soldered surface-mounted-device resistor is measured as R = 

50.1 Ω. Fig. 4(a) plots the theoretical, EM-simulated, circuit 

model, and measured results. Good agreement among them is 

observed. The main performance metrics of the measured 

wideband BPF are as follows: center frequency of 1.035 GHz 

with minimum in-band power-insertion-loss level of 0.45 dB, 

1-dB fractional bandwidth (FBW) of 64.26% and 3-dB FBW 

of 72.29%, stopband PAL of 26.15 dB, and input power-

matching levels above 12.35 dB from DC to 2.5 GHz (i.e., 2.5 

f0). Fig. 4(b) reveals that a measured minimum stopband-

power-absorption ratio above 94.05% from DC to 2.56 GHz is 

attained, whereas the measured minimum in-band power 

absorption ratio is equal to 11.28% at 0.988 GHz. The 

photographs of the BPF prototype are shown in Fig. 4(c). 

IV. CONCLUSION 

A two-layer fourth-order input-reflectionless wideband BPF 

using a dual-mode slotline resonator is reported. Its theoretical 

foundations and RF operational principle have been presented 

through the detailed description of its design procedure. For 

validation, a microstrip prototype of a fourth-order input-

reflectionless BPF unit has been manufactured and tested.  
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