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Abstract
We consider a family of holomorphic PDEs whose singular locus is given by the
zero set of an analytic map P with P(0) = 0. Our goal is to establish conditions
for the existence and uniqueness of formal power series solutions and to determine
their divergence rate. In fact, we prove that the solution is Gevrey in P , giving new
information on divergency while compared to the classical Gevrey classes. If P is not
singular at 0, we also provide Poincaré conditions to recover convergent solutions.
Our strategy is to extend the dimension and lift the given PDE to a problem where
results of singular PDEs can be applied. Finally, examples where the Gevrey class in
P is optimal are included.

Mathematics Subject Classification Primary 35G50; Secondary 35C10 · 34M25

1 Introduction

The growth associated to the coefficients of formal solutions to functional equations
has been widely studied in the literature. Results on this direction are known asMaillet
type theorems. They coined their name in honor to the pioneering work of Maillet
[18] where it was shown that any formal power series solution of a nonlinear algebraic
ordinary differential equation is s-Gevrey, for some s ≥ 0, see Section 2 for definitions.
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Further initial results in this context can be found in [19, 21, 25] where optimal bounds
are interpreted as slopes of adequate Newton polygons associated to the given analytic
equation. Recognizing optimal values for the Gevrey class of formal solutions is of
utmost importance in the study of (Borel-, multi-)summability phenomena, a great
tool to construct analytic solutions of the given problem which are asymptotic to the
formal ones.

The increasing interest on these results has provided advances in other frameworks.
For instance, on generalized power series solutions of ordinary differential equations
[11], in singularly perturbed problems [3], integro-differential equations [22], moment
PDEs [2, 16, 26], difference and q-difference equations [9, 14, 29], among others.
We can also mention results in dynamical systems, such as the Gevrey character of
invariant formal curves to analytic local diffeomorphisms [1, 17].

Convergence and divergence (Maillet type) theorems have also been developed for
singular holomorphic partial differential equations (of non-Kowalevski type, Fuchsian,
of totally non-characteristic type, among others). A good account on these results can
be found at Gerard and Tahara’s book [10] and the references therein. Moreover,
optimal Gevrey bounds have been found for many families of PDEs in terms of slopes
of adequate Newton polygons, see, e.g., [12, 13, 23, 24, 27] and the recent work [15].
The topic is an active subject of research where many problems on summability of
solutions remain open.

On the other hand, results on singular PDEs are not directly applicable to other type
of equations, for instance, mixing irregular singularities and singular perturbations.
An interesting example is the family of doubly singular equations

εσ zr+1 ∂ y

∂z
= f (z, ε, y), (1.1)

where σ and r are positive integers and f is analytic at the origin. The equation
exhibits an irregular singularity at z = 0 and a singular behavior as ε → 0. In this
case, the optimal Gevrey type is only revealed when the equation is considered in the
variable t = zrεσ . In fact, the relation between true solutions asymptotic to formal
ones was answered in [4] with the development of monomial summablity. Later on,
the extension of this notion to more variables led naturally to the study of equations
of type

εσ xα1
1 · · · xαn

n

(
λ1x1

∂ y

∂x1
+ · · · + λnxn

∂ y

∂xn

)
= f (x, ε, y), (1.2)

where λ1, . . . , λn > 0. This system is the higher dimension analogue to equation
(1.1). In this case, the optimal Gevrey type is obtained working with the variable
t = εσ xα1

1 . . . xαn
n . Moreover, novel results on the monomial summability of formal

solutions are available in this framework [7], see also [28] for the case α j = 0.
Recently, the foundations of asymptotic expansions and summability with respect

to an arbitrary analytic germ P : (Cd , 0) → C such that P(0) = 0 were established
in [20]. In particular, P-k-Gevrey series were defined and systematized. Roughly
speaking, a formal power series ŷ ∈ C[[x]], x = (x1, . . . , xd) is P-k-Gevrey if it can
be written as
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ŷ =
∞∑
n=0

yn P
n, where sup

x∈D
|yn(x)| ≤ CAnn!k, (1.3)

for some constants C, A > 0, and where the coefficients yn are holomorphic in a
common polydisc D ⊆ C

d centered at the origin. This concept captures the idea of
measuring the divergence of a series using the leading variable t = P(x). Moreover,
it gives more precise information on the divergence rate of ŷ, inaccessible when only
working with x1, . . . , xd separately.

In this setting, we can pose in greater generality the family of problems

P(x)L1(y) = F(x, y), L1 := a1(x)∂x1 + · · · ad(x)∂xd , (1.4)

with analytic coefficients, which include equations (1.1) and (1.2) as particular cases.
The key point to obtain existence and uniqueness of formal solutions of (1.4) is that

P divides L1(P).

Geometrically, this condition means that the local hypersurface ZP := {x ∈ (Cd , 0) :
P(x) = 0} is invariant under the vector field L1. In this case, the solution turns out to
be P-1-Gevrey, as it was proved in [5,Theorem 1]. Surprisingly, this recovered many
cases on the Gevrey class of formal power series solutions of ODEs and PDEs that
have been treated in the literature. Finally, results of this sort are a first step to approach
Borel P-summability which is a difficult phenomenon far from being understood, see
[6, 20].

The aim of this paper is to study a higher order analogue to (1.4), where once
again, known results in the theory of singular PDEs fail to provide optimal bounds
for the Gevrey type of formal solutions. For positive integers d, N , k, and complex
coordinates x = (x1, . . . , xd) ∈ (Cd , 0) and y = (y1, . . . , yN ) ∈ C

N , we pose the
system of PDEs

P(x)k Lk(y)(x) + · · · + P(x)L1(y)(x) = F(x, y). (1.5)

F is a CN -valued holomorphic map defined near (0, 0) ∈ C
d × C

N , and

L j :=
∑
|α|= j

a( j)
α (x)∂α, j = 1, . . . , k, (1.6)

are differential operators of order j with holomorphic coefficients a( j)
α near 0 ∈ C

d ,
see below for notations. Note that if x approaches ZP , the nature of (1.5) changes from
differential to implicit one. Moreover, if the linear part of F at the origin DyF(0, 0)
is an invertible matrix, P cannot be canceled from (1.5), so its zero set is a non-
removable singular part of the equation. We mention that this equation is also inspired
in its simple one-dimensional analogue
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τ kbk(τ )∂kτ (u) + · · · + τb1(τ )∂τ (u) = f (τ, u),

familiar from point of view of Borel summability.
The previous work [5] studied Eq. (1.4) by direct recurrences, based on generalized

Weierstrass division algorithms, and used modified Nagumo norms [3] to establish the
Gevrey type in P of ŷ. However, this approach left several questions opened. First, do
formal solutions of these equations admit a canonical expansion in power series of P?
Second, is it possible to treat the families (1.4) with the standardmethods for nonlinear
singular PDEs and Newton polygons? Here we answer both questions affirmatively
for the more general equation (1.5). The method we explore here consists of adding a
time variable t ∈ (C, 0) to lift (1.5) to a system of PDEs in t and x . The new system
will have a unique solution of the form Ŵ (t, x) = ∑∞

n=0 ynt
n , where the yn are as in

(1.3). This trick produces an equation where known results on singular PDEs can be
effectively used to find the Gevrey order in t of Ŵ , and thus the P-Gevrey order of
ŷ(x) = Ŵ (P(x), x). Since the lifted equation determines the coefficients yn naturally,
this procedure guarantees a canonically decomposition of ŷ as a power series in P .
The idea was suggested in [5] by anonymous referees to whom we thank for their
contribution.

To state our results, we associate to L j and P the holomorphic function

L�
j (P) :=

∑
|α|= j

a( j)
α (x)(∂x1 P)α1 . . . (∂xd P)αd , j = 1, . . . , k. (1.7)

In particular, L�
1(P) is simply L1(P), but for j ≥ 2 these expressions generally differ.

It turns out that these functions contain the key that leads to the existence, uniqueness,
and Gevrey order for formal solutions of (1.5).

Theorem 1.1 Consider the system of partial differential equations (1.5) where
F(0, 0) = 0, and DyF(0, 0) ∈ GLN (C) is an invertible matrix. If Lk �≡ 0 and

P divides L�
j (P), for every j = 1, . . . , k, (1.8)

then equation (1.5) admits a unique formal power series solution ŷ ∈ C[[x]]N with
ŷ(0) = 0. Moreover, ŷ is a P-k-Gevrey series.

It is worth mentioning that condition (1.8) naturally appears in the problem. Indeed,
if it is not satisfied, then the result is no longer valid, as it can be seen fromExample 6.1.

On the other hand, if 0 is not a singular point for P , i.e., ∂xl P(0) �= 0 for some l,
the problem changes and Poincaré type conditions appear to guarantee existence and
uniqueness of solutions. In fact, we obtain an analytic solution.

Theorem 1.2 Consider (1.5) where F(0, 0) = 0 and DyF(0, 0) ∈ GLN (C). If
L�
k(P)(0) �= 0 and
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⎡
⎣ k∑

j=1

n!
(n − j)! L

�
j (P)(0)

⎤
⎦ IN − DyF(0, 0) ∈ GLN (C), for all n ≥ 0, (1.9)

then (1.5) has a unique analytic solution ŷ ∈ C{x}N with ŷ(0) = 0. Here IN ∈ C
N×N

is the identity matrix.

We stress that the current technique can be applied to concrete equations and it is
an idea worth exploring for future works. For instance, problems involving non-linear
terms in the derivatives of u. In fact, obtaining P-Gevrey estimates for solutions of
these problems is likely to be inaccessible by a direct approach.

The plan for the paper is as follows. Section 2 recalls the basics on Gevrey series
in several variables and P-Gevrey series, including a natural relation between them
(Proposition 2.6). The necessary tools to prove Theorems 1.1 and 1.2 are developed
in Sects. 3 and 4. First, we give a Maillet type theorem for singular PDEs adapted for
our purposes (Theorem 3.1), and then several lemmas of elementary nature. The main
results are proved in Sect. 5. The case k = 1 is particularly simple and we include it
in Corollaries 5.1 and 5.2 hoping that its proof helps to elucidate the ideas. The work
concludes in Sect. 6 with several examples. In particular, we provide examples where
condition (1.8) is necessary and others in which the Gevrey type given by Theorem
1.1 is attained.

1.1 Notation

N denotes the set of non-negative integers and N
∗ := N\{0}. For d ∈ N

∗, α =
(α1, . . . , αd), β = (β1, . . . , βd) ∈ N

d , and s = (s1, . . . , sd) ∈ R
d≥0 we set

α + β = (α1 + β1, . . . , αd + βd), |α| = α1 + · · · + αd , α!s = α1!s1 . . . αd !sd .

We write α ≤ β if α j ≤ β j , for all 1 ≤ j ≤ d, and α < β if α ≤ β and there is
1 ≤ j0 ≤ d such that α j0 < β j0 . If β ≤ α, we put

(
α
β

) = (
α1
β1

) · · · (αd
βd

)
, where

(α j
β j

)
is the binomial coefficient of α j and β j . The symbol 0 stands for a vector with zero
components. For 1 ≤ j ≤ d, e j ∈ N

d is the tuple with all its components being zero,
except the position j which is 1.

We work in (Cd , 0) with local coordinates x = (x1, . . . , xd). If α ∈ N
d , let

xα = xα1
1 · · · xαd

d , ∂x j := ∂e j ,x , and ∂α,x = ∂α = ∂ |α|

∂xα1
1 · · · ∂xαd

d

.

In the former case we omit the x when the variables are identified from the context.
Given a complex Banach space (E, ‖ · ‖), we write E[[x]] and E{x} for the spaces
of formal and convergent power series in x with coefficients in E , respectively. In our
context, E will be CN or an adequate space of functions. If E = C we simply write
Ô = C[[x]] and O = C{x}. O∗ = {U ∈ O : U (0) �= 0} is the corresponding group
of units.
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Given f̂ = ∑
aβxβ ∈ Ô, o( f̂ ) denotes its order: if f̂ = ∑∞

n=0 fn , fn =∑
|β|=n aβxβ , is written as the sum of its homogeneous components, o( f̂ ) is the

least integer k for which fk �= 0. Given a polyradius R = (R1, . . . , Rd) ∈ R
d
>0, we

write

DR := {x ∈ C
d : |x j | < R j , j = 1, . . . d},

for such polydisc. If R = (r , . . . , r), r > 0, we also write DR = Dd
r as the Cartesian

product of one-dimensional discs. For N ∈ N
∗ we set O(
,CN ) (resp. Ob(
,CN ))

for the set ofCN -valued holomorphic (resp. and bounded) functions on an open domain

 ⊆ C

d . We write O(
) := O(
,C) and Ob(
) := Ob(
,C) for short. Note that
Ob(
,CN ) endowed with the supremum norm is a Banach space.

2 Gevrey series

We start by recalling the main facts on Gevrey series in several variables and those
with respect to germs of analytic functions. In particular, we include a relation between
these notions which was first obtained in the proceeding article [5].

Definition 2.1 Let E be a complex Banach space and s = (s1, . . . , sd) ∈ R
d≥0. A

series f̂ = ∑
β∈Nd aβxβ ∈ E[[x]] is s-Gevrey if we can find constants C, A > 0 such

that

‖aβ‖ ≤ CA|β|β!s, for all β ∈ N
d .

Equivalently,
∑

β∈Nd aβxβ/β!s ∈ E{x}. Note that s = 0 means convergence. In the

case p = s1 = · · · = sd ≥ 0, since β! ≤ |β|! ≤ d |β|β!, f̂ is (p, . . . , p)-Gevrey if and
only if there are constants C, A > 0 such that

‖aβ‖ ≤ CA|β||β|!p, β ∈ N
d .

We denote by E[[x]]s the set of s-Gevrey series with coefficients in E . It is straight-
forward to check that this space is closed under sums and partial derivatives, and it
contains E{x}. It is also closed under products when E is a Banach algebra. Moreover,
it is stable under linear changes of variables, in view of the following result.

Lemma 2.2 (Lemma 2.1, [12])Given p ≥ 0, f̂ (x) ∈ E[[x]](p,...,p) if and only if there
exists M ∈ GLd(C) such that f̂ (Mx) ∈ E[[x]](p,...,p).

Consider now a germ P at 0 ∈ C
d of a C-valued holomorphic function, i.e., an

element P ∈ O\{0}, and assume that P(0) = 0. There are equivalent definitions for
Gevrey series with respect to P , with coefficients in E , see [6, 20]. We focus on the
case E = C and follow the simple characterization given in [6,Lemma 4.1].
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Definition 2.3 Given s ≥ 0, f̂ ∈ Ô is said to be a P-s-Gevrey series if there is a
polyradius r , constants C, A > 0 and a sequence { fn}n∈N ∈ Ob(Dr ) such that

f̂ =
∞∑
n=0

fn P
n, where sup

x∈Dr

| fn(x)| ≤ CAnn!s . (2.1)

Wewill use the notation ÔP,s for the set of P-s-Gevrey series. A series ( f̂1, . . . , f̂N ) ∈
ÔN is P-s-Gevrey if every component is so.

Remark 2.4 The expansion (2.1) is not unique. In fact, for each injective linear form
� : Nd → R there is one such decomposition via a generalized Weierstrass division
theorem, see [5, 20]. In general, the fn obtained from f̂ under this process are merely
formal power series. Therefore, in our definition we are implicitly assuming that these
coefficients are convergent in a common polydisc at 0 ∈ C

d . Moreover, the growth
of fn does not dependent on the decomposition used, thus the notion of P-s-Gevrey
series is well-defined, see [6,Lemma 4.1] for details.

We recall some basic properties on P-s-Gevrey series below.

Proposition 2.5 (Corollary 4.2, Lemma 4.3, [6]) Let s ≥ 0 and P, Q ∈ O\{0} be such
that P(0) = Q(0) = 0. The following statements hold:

1. ÔP,s is stable under sums, products and partial derivatives, and O ⊂ ÔP,s .
2. For any k ∈ N

∗, ÔPk ,ks = ÔP,s .
3. If Q divides P, then ÔP,s ⊆ ÔQ,s . In particular, if Q = U · P, U ∈ O∗, then

ÔP,s = ÔQ,s .
4. Let φ : (Cd , 0) → (Cd , 0) be analytic, φ(0) = 0, and assume P ◦ φ is not

identically zero. If f̂ ∈ ÔP,s , then f̂ ◦ φ ∈ ÔP◦φ,s .
5. If P(x) = xα , α ∈ N

d\{0}, then f̂ = ∑
aβxβ ∈ Ôxα,s if and only if there are

constants C, A > 0 satisfying

|aβ | ≤ CA|β| min{β j !s/α j : j = 1, . . . , d, α j �= 0}, β ∈ N
d . (2.2)

Note that the variables x j for whichα j = 0 can be regarded as regular parameters.

The previous proposition characterizes P-s-Gevrey series when P is a monomial,
directly from the growth of the coefficients of the series. Although it is not yet known
whether a similar property is true for an arbitrary P , we have the following result from
[5,Proposition 3] that we include for the sake of completeness.

Proposition 2.6 Consider P ∈ O with o(P) = k ≥ 1. Then, a P-s-Gevrey series is a
(s/k, . . . , s/k)-Gevrey series.

Proof Writing P = ∑∞
j=k Pj as the sumof homogeneous polynomials,where Pk �= 0,

take a ∈ C
d such that Pk(a) �= 0, and choose A ∈ GLd(C) having a as its first column.

If we set Q(x) = P(Ax) and we write it as sum of its homogeneous components
Q = ∑

Q j , then Q j (x) = Pj (Ax), and Qk(x) = Pk(a)xk1 + · · · , i.e., o(Q) = k and
Qk(1, 0, . . . , 0) �= 0.
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Given a P-s-Gevrey series f̂ , the series f̂0(x) = f̂ (Ax) = ∑
bβxβ is a Q-s-

Gevrey series, thanks to Proposition 2.5, 4. above.We consider the change of variables

x1 = z1, x2 = z1z2, . . . , xd = z1zd . (2.3)

If R(z) = Q(x) and f̂1(z) = f̂0(x), we see that f̂1 is a R-s-Gevrey series. Now,

R(z) = Q(z1, z1z2, . . . , z1zd) =
∞∑
j=k

z j1Q j (1, z2, . . . , zd) = zk1U (z),

where U is a unit, because U (0) = Qk(1, 0, . . . , 0) �= 0. Using this equation and
Proposition 2.5, 2. above, we find that f̂1 is zk1-s-Gevrey, or equivalently, a z1-s/k-
Gevrey series. Let us write z′ = (z2, . . . , zd). Since

f̂1(z) =
∑
β∈Nd

bβ z
|β|
1 zβ22 · · · zβdd

=
∑

(n,γ )∈N×Nd−1

n≥|γ |

bn−|γ |,γ zn1z′γ ,

we can find constants C, A > 0 such that |bn−|γ |,γ | ≤ CAn+|γ |n!s/k . Therefore,

|bβ | ≤ CAβ1+2β2+···+2βd |β|!s/k, β ∈ N
d ,

i.e., f̂0 is (s/k, . . . , s/k)-Gevrey. The same is true for f̂ due to Lemma 2.2. ��

3 A preliminary Maillet-type theorem for singular PDEs

The aim of this section is to establish the existence, uniqueness, and Gevrey class (in
the time variable t) of formal solutions of a family of singular PDEs. These include
the equations that will be obtained by lifting (1.5). The results presented here will be
the key to prove Theorems 1.1 and 1.2.

More precisely, fixing m, d, N ∈ N
∗, p, k ∈ N and local coordinates (t, x) ∈

(C × C
d , 0), we consider the system of equations

[cp(x)(t∂t )p + · · · + c1(x)(t∂t ) + c0(x)]u = B(x)tk + G(x)(t, Dmu). (3.1)

for an unknown u = u(t, x) ∈ C
N . The coefficients in (3.1) are assumed to be

holomorphic and bounded near the origin, say c0, . . . , cp ∈ Ob(Dd
r ,CN×N ) and

B ∈ Ob(Dd
r ,CN ) for a fixed r > 0. Moreover, G(x)(t, Dmu) is the operator

u(t, x) �→ G(x)(t, Dmu) := G0(t, x, u) +
∑

(b,α)∈Im
Gb,α(t, x)tb∂bt ∂α,xu,
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acting on C[[t, x]]N , where:
• Im := {(b, α) ∈ N × N

d : b + |α| ≤ m} is a finite set of indices.
• G0 ∈ Ob(Dr × Dd

r × DN
r ,CN ) and Gb,α ∈ Ob(Dr × Dd

r ), for all (b, α) ∈ Im .
• The previous maps have the convergent Taylor expansions

G0(t, x, u) =
∞∑
j=0

F0, j (x, u)t j , and Gb,α(t, x) =
∞∑
j=1

gb,α, j (x)t
j ,

respectively. We assume that

F0, j (x, u) =
∑

γ∈NN ,|γ |≥2

F0, j,γ (x)uγ ,

has only non-linear terms in u, where F0, j,γ ∈ Ob(Dd
r ,CN ) and gb,α, j ∈ Ob(Dd

r ).
Thus, the non-linear terms in u of G are collected in G0 whereas the remaining
terms are linear in u and its derivatives.

Equation (3.1) is part of a family of scalar equations (N = 1) treated in [10,Chapter
6] for k = 1. In that case, the Gevrey class is given by the maximum of

sp(t
j+b∂bt ∂α) := max

{
0,

b + |α| − p

j

}
, (3.2)

and taken over the terms appearing on the right-hand side of (3.1). Our adaptation
below will be obtained from this statement which is Theorem 6.3.1 and Corollary
6.3.3 (1) for p = 0 in [10] (and d = 1 in their notation).

Theorem 3.1 (Gerard–Tahara) A sufficient condition to guarantee the existence and
uniqueness of a solution of Eq. (3.1) of the form

û(t, x) =
∞∑
n=k

un(x)t
n ∈ Ob(D

d
ρ ,CN )[[t]], for some ρ > 0, (3.3)

is that

cp(0) and cp(0)n
p + · · · + c1(0)n + c0(0) are invertible for all n ≥ 0. (3.4)

In this case, û is s-Gevrey in t , where

s := sup
( j,b,α)∈J

sp(t
j+b∂bt ∂α), (3.5)

and J = {( j, b, α) ∈ N
∗ × N × N

d : gb,α, j (x) �≡ 0}.
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Proof If we substitute û(t, x) = ∑∞
n=0 un(x)t

n into (3.1) and equate coefficients in
corresponding powers of t , we find that

c0(x)u0(x) = F0,0(x, u0(x)). (3.6)

Moreover, for n ≥ 1 we have the recurrence

[cp(x)n p + · · · + c1(x)n + c0(x)]un(x)

= δn,k B(x) +
n−1∑
l=0

∑
(b,α)∈Im

(
l

b

)
b!gb,α,n−l(x)∂α(ul) + l.o.t, (3.7)

where l.o.t. are the non-linear terms inu0, u1, . . . , un−1 coming fromG0(t, x, û(t, x)),
and δn,k is the Kronecker delta.

Condition (3.4) allows to determine uniquely the coefficients un(x), n ≥ 1, from
(3.7) thanks to the following lemma. We postpone the proof to the end of the section.

Lemma 3.2 Consider c0, . . . , cp ∈ Ob(Dd
r ,CN×N ) such that (3.4) holds. Then there

is 0 < ρ ≤ r such that cp(x)n p + · · · + c1(x)n + c0(x) is invertible, for all x ∈ Dd
ρ

and n ≥ 0. Moreover, there is a constant M > 0 such that

sup
x∈Dd

ρ

∥∥∥(cp(x)n
p + · · · + c1(x)n + c0(x))

−1
∥∥∥ ≤ M

np
, for all n ≥ 1. (3.8)

Here ‖B‖ = max1≤i≤N
∑N

j=1 |Bi, j |, for B = (Bi j ) ∈ C
N×N .

We have seen that un ∈ Ob(Dd
ρ,CN ) can be found recursively from u0. Now, to

determine u0(x) we apply the implicit function theorem to (3.6): since F0,0 has only
nonlinear terms in u, the linear part of this equation in u at x = 0 is c0(0), which
is invertible due to (3.4) for n = 0. Therefore, (3.6) has a unique analytic solution
u0(x) ∈ C{x}N such that u0(0) = 0. Since u0 = 0 also solves this equation, the initial
term of û is u0(x) ≡ 0. Moreover, (3.7) shows that u0 = u1 = · · · = uk−1 = 0 while
uk(x) = (cp(x)k p +· · ·+c1(x)k+c0(x))−1B(x). In this way, we see that the system
(3.1) has a unique formal power series solution of the form (3.3).

We proceed with the Gevrey type. The result holds for k = 1 since the majorant
argument in [10] can be modified for vector equations in a straightforward way, see
also Remark 3.3 below. It is worth remarking that the reason the term −p appears in
(3.2) is due to the inequality (3.8) —in [10,p.180] it is used in the equivalent form
‖Lnun‖r ≥ (σ0/2)pn p‖un‖r—.

The case k > 1 is done using the change of variables

u(t, x) = tk−1v(t, x).

We can check that û in (3.3) solves (3.1) if and only if v̂ = t−(k−1)û solves an equation
of the same type but with k = 1. In fact, a direct calculation using Leibniz rule to
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compute (t∂t )b(tk−1v) and tb∂bt (tk−1v) shows that u satisfies (3.1) if and only if v

satisfies

[̃cp(x)(t∂t )p + · · · + c̃1(x)(t∂t ) + c̃0(x)]v = B(x)t + G̃(x)(t, Dmv).

The new coefficients are c̃l = ∑p
j=l

( j
l

)
(k − 1) j−l c j , l = 0, 1, . . . , p,

G̃(x)(t, Dmv) = G̃0(t, x, v) +
∑

(b,α)∈Im

b∑
l=0

(
b

l

)(
k − 1

b − l

)
(b − l)!Gb,α(t, x)t l∂ lt ∂α(v),

where G0(t, x, tk−1v) = tk−1G̃0(t, x, v) and

G̃0(t, x, v) =
∞∑
j=0

F̃0, j (t, x, v)t j , F̃0, j,γ (t, x, v) :=
∑

γ∈NN

|γ |≥2

F0, j,γ (x)t (k−1)(|γ |−1)vγ .

They remain holomorphic and bounded near the origin. Moreover, the condition (3.4)
holds in this case since c̃p(x) = cp(x) and

p∑
l=0

nl c̃l(x) =
p∑

j=0

(k − 1 + n) j c j (x).

Thus these matrices are invertible at x = 0, for all n ≥ 0. By the case k = 1, v̂ is
of s-Gevrey, where s is the maximum of sp(t j+l∂ lt ∂α) over the indexed ( j, l, α) such
that 0 ≤ l ≤ b, b + |α| ≤ m, and gb,α, j (x) �= 0. But (3.2) shows that

max
0≤l≤b

sp(t
j+l∂ lt ∂α) = sp(t

j+b∂bt ∂α).

Therefore, s is given by (3.5). Sincemultiplication by tk−1 does not change the Gevrey
order of a series, û is also s-Gevrey as we wanted to prove. ��
Remark 3.3 The invertibility of cp(0)n p + · · · + c1(0)n + c0(0) means that

C(λ) := det(cp(0)λ
p + · · · + c1(0)λ + c0(0)) �= 0, for λ = n ∈ N.

Since cp(0) is also invertible, the function C(λ) is a polynomial in λ of degree exactly
Np. If we denote its roots by λ1, . . . , λNp ∈ C, we are requiring that λ j �= n, for all
possible j and n. This is equivalent to the existence of a constant σ > 0 such that

∣∣n − λ j
∣∣ > σn, for all j = 1, . . . , Np, n ∈ N,

which is the classical Poincaré condition, c.f., [10,Theorem 6.3.1].
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Remark 3.4 An equivalent form of equation (3.1) is

[c′
p(x)t

p∂
p
t + · · · + c′

1(x)t∂t + c′
0(x)]u = B(x)tk + G(x)(t, Dmu). (3.9)

In this case, the hypothesis on the matrices is that

c′
p(0) and

p∑
j=0

n(n − 1) · · · (n − 1 + j)c′
j (0) are invertible for all n ≥ 0.

This can be checked recalling the Stirling numbers of the first kind s( j, l) ∈ Z,
1 ≤ l ≤ j , which are defined by the expansion

λ(λ − 1) · · · (λ − 1 + j) =
j∑

l=1

s( j, l)λl , and satisfying t j∂ j
t =

j∑
l=1

s( j, l)(t∂t )
l .

Writing the left-hand side of (3.9) in terms of the operators (t∂t ) j , it takes the form of
(3.1) with

cp(x) = c′
p(x), cl(x) =

p∑
j=l

s( j, l)c′
j (x), l = 0, 1 . . . , p − 1.

Thus
∑p

l=0 cl(x)n
l = ∑p

j=0 n(n − 1) · · · (n − 1 + j)c′
j (x) as required.

We conclude this section with the proof of the lemma.

Proof of Lemma 3.2 Since c0(0), cp(0) are invertible we can choose ρ > 0 such that
c0(x), cp(x) are invertible and c0(x)−1, cp(x)−1 ∈ Ob(Dd

ρ ,CN×N ).
We recall that if B = (Bi j ) ∈ C

N×N is such that ‖B‖ < 1 for a matrix norm ‖ · ‖,
then IN − B is invertible with inverse given by the Neumann series (IN − B)−1 =∑∞

n=0 B
n . Moreover ‖(IN − B)−1‖ ≤ 1/(1 − ‖B‖). In particular, this holds for

B ∈ Ob(Dd
ρ ,CN×N ) and the supremum norm ‖B‖ρ := supx∈Dd

ρ
‖B(x)‖, where ‖ · ‖

is as in the statement of the lemma.
Consider an integer n > L = ‖c−1

p ‖ρ

∑p−1
j=1 ‖c j‖ρ . If x ∈ Dd

ρ , then

∥∥∥∥
(
c0(x)

n p
+ c1(x)

n p−1 + · · · + cp−1(x)

n

)
c−1
p (x)

∥∥∥∥ ≤
p−1∑
j=0

‖c j‖ρ

n
‖c−1

p ‖ρ < 1.

By the previous paragraph, we find that

cp(x)n
p + · · · + c1(x)n + c0(x) =

(
IN +

(
c0(x)

n p
+ · · · + cp−1(x)

n

)
c−1
p (x)

)
n pcp(x),
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is invertible, for all x ∈ Dd
ρ . Moreover, we have the bound

‖(cp(x)n p + · · · + c1(x)n + c0(x))
−1‖ ≤ ‖c−1

p ‖ρ/n p

1 −
∥∥∥(

c0(x)
n p + · · · + cp−1(x)

n

)
c−1
p (x)

∥∥∥
≤ ‖c−1

p ‖ρ/n p

1 − ‖c−1
p ‖ρ

( ‖c0‖ρ

n p + · · · + ‖cp−1‖ρ

n

) ≤ 1

an p − (‖c0‖ρ + · · · + ‖cp−1‖ρn p−1
) ,

where a = 1/‖c−1
p ‖ρ . This shows that (3.8) holds for a large M . Note also that

the denominator is indeed positive since, by hypothesis, ‖c−1
p ‖ρ

∑p−1
j=1 ‖c j‖ρn j ≤

n p−1 ∑p−1
j=1 ‖c j‖ρ/a < n p. For the remaining integers 1 ≤ n ≤ L , by (3.4) we can

shrink ρ and enlarge M if necessary to assure that cp(x)n p + · · · + c1(x)n + c0(x) is
invertible, for all x ∈ Dd

ρ and that (3.8) still holds as it was required. ��

4 Some technical results

The proof of Theorems 1.1 and 1.2 requires some technical lemmas that we collect
here. They contain elementary properties on the derivatives of powers of a function
and on suitable changes of variables.

Although we are mainly interested in holomorphic coefficients, we state the fol-
lowing two results for arbitrary formal power series. We recall that according to the
notation in (1.7) we have that

∂�
α(P) := (∂x1 P)α1 · · · (∂xd P)αd , α = (α1, . . . , αd) ∈ N

d\{0}. (4.1)

Lemma 4.1 Consider P ∈ C[[x]], α ∈ N
d\{0} and an integer n ≥ 1. Then,

∂α(Pn) =
n∑
j=1

n!
(n − j)! P

n− j · Aα, j , (4.2)

where each Aα, j is a polynomial in derivatives of P, and it does not depend on n. In
particular, Aα,1 = ∂α(P), Aα, j = 0 if j > |α| and

Aα,|α| = ∂�
α(P). (4.3)

Proof We apply induction on |α|. The result is valid for |α| = 1 and

Ael ,1 := ∂el (P), l = 1, . . . , d, (4.4)
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since ∂el (P
n) = nPn−1∂el (P). If we assume the result is valid up to some |α|, the

induction argument shows that

∂α+el (P
n) =

n∑
j=1

n!
(n − j)!∂el (P

n− j Aα, j )

=
n−1∑
j=1

n!
(n − j − 1)! P

n− j−1∂el (P)Aα, j +
n∑
j=1

n!
(n − j)! P

n− j∂el (Aα, j ),

for l = 1, . . . , d. A rearrangement of the terms in the previous expression leads to
(4.2) for α + el where

Aα+el ,1 = ∂el (Aα,1), (4.5)

Aα+el , j = ∂el (Aα, j ) + ∂el (P) · Aα, j−1, j = 2, , . . . , n. (4.6)

Then (4.2) holds for |α| + 1. The formula follows from the principle of induction.
On the other hand, it is clear from (4.4) and (4.5) that Aα,1 = ∂α(P) is valid. In

addition to this, if j > |α|, the recurrence (4.6) implies that Aα, j = 0. Finally, if
j = |α|, (4.6) takes the form

Ael ,1 = ∂el (P), Aα+el ,|α|+1 = ∂el (P) · Aα,|α|,

from which (4.3) follows. ��
Remark 4.2 Equation (4.6) describes a recursion leading to each Aα, j . We can give
closed formulas for them using the multivariate Faà di Bruno formula [8,p. 505].
Indeed, consider h(x) = f (g(1)(x), . . . , g(n)(x)), where

f (y1, . . . , yn) = y1 · · · yn, g(1)(x) ≡ . . . ≡ g(n)(x) ≡ P(x).

We observe that, given any multiindex λ ∈ N
n with all its components being 0 or 1,

i.e., λ ∈ {0, 1}n, and such that |λ| = j , then one has that ∂λ( f )(P, . . . , P) = Pn− j .
Otherwise, ∂λ( f ) = 0. Then, for every α ∈ N

d\{0} one has

∂α(Pn) =
|α|∑
j=1

Pn− j
∑

λ∈{0,1}n
|λ|= j

⎡
⎣ |α|∑

s=1

∑
ps (α,λ)

α!
s∏

r=1

(∂�r P)|kr |

kr !(�r !)|kr |

⎤
⎦ , (4.7)

where

ps(α, λ) = {(k1, . . . , ks; �1, . . . , �s) ∈ (Nn)s × (Nd)s : |ki | > 0,

0 < �1 < · · · < �s,

s∑
i=1

ki = λ,

s∑
i=1

|ki |�i = α}.
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Note there are
(n
j

)
n-tuplesλ ∈ {0, 1}n such that |λ| = j and eachof them is obtained

from e1+e2+· · ·+e j by permuting the corresponding variables. Fixing one such λ, if
(k1, . . . , ks; �1, . . . , �s) ∈ ps(α, λ), we see that s ≤ ∑s

i=1 |ki | = |λ| = j . Moreover,
the term in brackets in (4.7) is independent of λ. Indeed, the previous permutation
gives a bijective correspondence between ps, j (α) := ps(α, e1 + e2 + · · · + e j ) and
ps(α, λ). Therefore, (4.7) simplifies to

∂α(Pn) =
|α|∑
j=1

(
n

j

)
Pn− j

⎡
⎣ j∑

s=1

∑
ps, j (α)

α!
s∏

r=1

(∂�r P)|kr |

kr !(�r !)|kr |

⎤
⎦ , (4.8)

giving explicit formulas for Aα, j .

Lemma 4.3 Fix m ≥ 1 and h, P ∈ C[[x]]. Consider the differential operators L j

in (1.6) and the associated functions L�
j (P) in (1.7). If P divides L�

j (P), for all

j = 1, . . . ,m, then Pm divides
∑m

j=1 P
j−1L j (hPm).

Proof Using the multivariate Leibniz rule,

∂α(hPm) =
∑

0≤β≤α

(
α

β

)
∂α−β(h)∂β(Pm), (4.9)

we see that

P j−1L j (hP
m) = P j−1

∑
|α|= j

a( j)
α

∑
0≤β≤α

(
α

β

)
∂α−β(h)∂β(Pm).

By Lemma 4.1 we can write

∂β(Pm) =
|β|∑
l=1

m!
(m − l)! P

m−l · Aβ,l ,

since |β| ≤ |α| = j ≤ m and Aβ,l = 0 for l > |β|. To prove the statement, we
analyze each one of the terms

a( j)
α

(
α

β

)
∂α−β(h)

m!
(m − l)! Aβ,l P

j−1+m−l , (4.10)

whose sum gives P j−1L j (hPm). We distinguish two cases:

• If |β| ≤ j −1, then Pm divides (4.10) since j −1+m− l ≥ j −1+m−|β| ≥ m.
• If |β| = j , it holds thatβ = α. On the one hand, if l < j , then j−1+m−l > m−1
and we are done. Otherwise, l = j and we are left with the term
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P j−1
∑
|α|= j

a( j)
α hAα,|α|Pm− j = hL�

j (P)Pm−1,

which, by hypothesis, is also divisible by Pm .

��

The final lemma computes the derivatives of functions after a change of variables
having P as a holomorphic local coordinate.

Lemma 4.4 Let P ∈ C{x} such that P(0) = 0 and ∂x1 P(0) �= 0, and consider the
change of variables ξ : (Cd , 0) → (Cd , 0) given by

ξ1 = P(x), ξ j = x j , j = 2, . . . , d. (4.11)

If f (ξ(x)) = f (P(x), x2, . . . , xd) is holomorphic and α ∈ N
d\{0}, then

∂α,x ( f ) = ∂�
α(P)∂

|α|
ξ1

( f ) +
|α|−1∑
j=1

[∑
∗

Bα
j,β · ∂

j
ξ1

∂β,ξ ( f )

]
+ δα∂α,ξ ( f ),

where the inner sum is taken over all β ∈ N
d−1 such that (0, β) ≤ α and |β| ≤ |α|− j .

The Bα
j,β are polynomials in the derivatives of P and δα := (δ1,1)

α1 · · · (δ1,d)αd , where
δi, j := 1 − δi, j and 00 = 1.

Proof Note that ξ is indeed a holomorphic change of variables since ξ(0) = 0 and its
Jacobian determinant is precisely ∂x1(P)(0) �= 0. To prove the lemma we proceed by
induction on |α|. In the case |α| = 1, the chain rule shows that

∂xl ( f ) = ∂xl (P)∂ξ1( f ) + δ1,l∂ξl ( f ), l = 1, . . . , d, (4.12)

proving this case. If we assume the result is valid up to some |α|, taking l = 1, . . . , d,
using the induction hypothesis and formula (4.12) we find that

∂α+el ,x ( f ) = ∂xl (∂α,x ( f ))

= ∂xl (∂
�
α(P)∂

|α|
ξ1

( f )) +
|α|−1∑
j=1

⎡
⎢⎢⎢⎣

∑
(0,β)≤α

|β|≤|α|− j

∂xl (B
α
j,β · ∂

j
ξ1

∂β,ξ ( f ))

⎤
⎥⎥⎥⎦ + δα∂xl (∂α,ξ ( f )),
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which is equal to

∂xl (P)∂�
α,x (P)∂

|α|+1
ξ1

( f ) + δ1,l∂
�
α(P)∂ξl ∂

|α|
ξ1

( f ) + ∂xl (∂
�
α(P))∂

|α|
ξ1

( f )+
|α|−1∑
j=1

∑
(0,β)≤α

|β|≤|α|− j

∂xl (B
α
j,β)∂

j
ξ1

∂β,ξ ( f ) + Bα
j,β

(
∂xl (P)∂

j+1
ξ1

∂β,ξ ( f ) + δ1,l∂
j
ξ1

∂β+el ,ξ ( f )
)

+ δα∂xl (P)∂ξ1∂α,ξ ( f ) + δαδ1,l∂ξl ∂α,ξ ( f ). (4.13)

Note that the external terms are ∂�
α+el ,x (P)∂

|α|+1
ξ1

( f ) and δα+el ∂α+el ,ξ ( f ) as

required. On the other hand, the remaining terms have the form Bα+el
k,γ ∂kξ1∂γ,ξ ( f )

with 1 ≤ k ≤ |α| and (0, γ ) ≤ α + el , where the Bα+el
k,γ can be found recursively. By

the nature of the terms in the sum (4.13) it is clear that each Bα+el
k,γ is a polynomial in

the derivatives of P . The principle of induction allows to conclude the proof. ��
Remark 4.5 Another way to prove Lemma 4.4 is applying Faà di Bruno formula [8,p.
505] to f (P(x), x2, . . . , xd). On the other hand, for our purposes it is not necessary
to specify the recurrences to determine the coefficients Bα

j,β . However, for α = ne1
and l = 1, we have that β = 0 for all j and (4.13) takes the form

∂n+1
x1 ( f ) =∂x1(P)n+1∂n+1

ξ1
( f ) + ∂x1((∂x1(P)n))∂nx1( f )

+
n−1∑
j=1

[
∂x1(B

ne1
j,0 )∂

j
ξ1

( f ) + Bne1
j,0 ∂x1(P)∂

j+1
ξ1

( f )
]
.

Setting Bne1
n,0 = (∂x1 P)n, we find that

B(n+1e1)
1,0 = ∂x1(B

ne1
1,0 ), B(n+1)e1

j,0 = ∂x1(B
ne1
j,0 ) + ∂x1(P)Bne1

j−1,0, j = 2, . . . , n.

This is recurrence (4.6) in Lemma 4.1. Thus Bne1
1,0 = Ane1,1 = ∂nx1(P), Bne1

j,0 = Ane1, j ,
j = 2, . . . , n − 1, and

∂nx1( f ) = (∂x1 P)n∂nξ1( f ) +
n∑
j=1

Ane1, j∂
j
ξ1

( f ), for all n ≥ 1.

5 The proof of Theorems 1.1 and 1.2

The idea behind the proofs is simple. For Theorem 1.1 we add a variable t and working
in (t, x) ∈ (C×C

d , 0)we search for a PDE satisfied by the series ŵ = ∑
yntn , where

ŷ = ∑
yn Pn is the solution to the initial equation (1.5). For Theorem 1.2, we can take

P = ξ1 as one of the variables, andwrite (1.5) as an equation in the new coordinates. In
both cases the existence, uniqueness and Gevrey type will be obtained from Theorem
3.1.
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Proof of Theorem 1.1 We point out that if F(x, 0) ≡ 0, then the the unique formal
power solution is zero. Thus we assume f (x) := F(x, 0) �≡ 0. We will write

F(x, y) = f (x) + A(x)y + H(x, y), H(x, y) =
∑

I∈NN ,|I |≥2

AI (x)y
I , (5.1)

where f ∈ Ob(Dd
r ,CN ) with f (0) = 0, A ∈ Ob(Dd

r ,CN×N ), and H ∈ Ob(Dd
r ×

DN
r ,CN ) has no constant nor linear terms in its Taylor expansion with respect to y

at the origin, and where r > 0 is small. Since A(0) = DyF(0, 0) is invertible, by
continuity we can assume A(x) is also invertible for all x ∈ Dd

r .
We search for a formal P-series solution of (1.5) in the form

ŷ(x) =
∞∑
n=0

yn(x)P(x)n, (5.2)

with the yn(x) ∈ Ob(Dd
ρ ,CN ), for all n ≥ 0, for a common ρ > 0. The rest of the

proof is divided in several steps.
Step 1: We determine the terms y0(x), . . . , yk−1(x) inductively solving adequate

implicit equations. For the coefficient y0, setting x = 0 in (1.5) and recalling that
F(0, 0) = 0, we require that y0(0) = 0. Now we search for a holomorphic solution
of

f (x) + A(x)y0(x) + H(x, y0(x)) = 0. (5.3)

Since A(0) is invertible, shrinking r > 0 if necessary, the implicit function theorem
leads to the existence of such solution y0(x) ∈ Ob(Dd

r ,CN ) with y0(0) = 0. Then,
considering the change of variables y = y0 +w0 in (1.5), we find that w0 satisfies the
system

k∑
j=1

P j L j (w0) = F0(x, w0) = g0(x) + B0(x)w0 + H0(x, w0), (5.4)

with F0(0, 0) = 0, the matrix B0(0) is invertible, and the Taylor expansion of H0 ∈
Ob(Dd

ρ ×DN
ρ ,CN )with respect tow0 has no constant nor linear terms. Here, we have

written

g0 := −
k∑
j=1

P j L j (y0), B0 := A + A0,

where A0 ∈ Ob(Dd
ρ ,CN×N ) satisfies A0(0) = 0. These maps are obtained from

H(x, y0(x) + w0) − H(x, y0(x)) = A0(x)w0 + H0(x, w0),

A0(x) = Dw0(H(x, y0(x) + w0))
∣∣
w0=0 = DyH(x, y0(x)).
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We now proceed recursively, by means of the change of variables

wm−1 = wm + ym Pm, m = 1, . . . , k − 1,

and determining functions gm , Am, Bm and Hm defined by

Amwm + Hm(x, wm) = Hm−1(x, wm + ym Pm) − Hm−1(x, ym Pm)

gm = −
k∑
j=1

P j L j (ym Pm), Bm = Bm−1 + Am = A + (A0 + · · · + Am). (5.5)

Note that Hm has no constant or linear terms in its Taylor expansion in wm near the
origin and that Bm(0) = A(0) is an invertible matrix. Indeed, we see from (5.5) that
Am = Dwm (Hm−1(x, wm + ym Pm))

∣∣
wm=0 = Dwm−1Hm−1(x, ym Pm), so Am(0) =

0 as required.
To proceed we need to define ym in a consistent way. If ym−1, gm−1, Bm−1 and

Hm−1 have been found, we set ym as the unique holomorphic solution near the origin
of the system

P−mgm−1 + Bm−1ym + P−mHm−1(x, ym Pm) = 0.

This equation has holomorphic coefficients on some neighborhood of the origin.
Indeed, the function gm−1 is divisible by Pm thanks to Lemma 4.3 since gm−1 =
−P · ∑m−1

j=1 P j−1L j (ym−1Pm−1) − ∑k
j=m P j L j (ym−1Pm−1). Also, if we write

Hm(x, wm) =
∑
|I |≥2

AI ,m(x)w I
m,

then

P−mHm−1(x, ym Pm) =
∑
|I |≥2

AI ,m−1(x)P
m(|I |−1)y Im,

which also has holomorphic coefficients in x that vanish at x = 0. Therefore, ym is
determined by means of the implicit function theorem.

At this point it follows from a direct recursive argument that wm satisfies

k∑
j=1

P j L j (wm) = Fm(x, wm) := gm(x) + Bm(x)wm + Hm(x, wm), (5.6)

where Fm(0, 0) = 0, Bm(0) is invertible, and Hm(x, wm) has no constant nor linear
terms in its Taylor expansion in wm in a neighborhood of the origin. In conclusion,
after collecting all the previous changes of variables we find that w = wk defined by

123



S. A. Carrillo, A. Lastra

w = y − (y0 + y1P + · · · + yk−1Pk−1) satisfies

k∑
j=1

P j L j (w) = g(x) + B(x)w + H ′(x, w), (5.7)

where g := gk−1 ∈ Ob(Dd
r ,CN ) is divisible by Pk , B := Bk−1 ∈ Ob(Dd

r ,CN×N )

with B(0) invertible, and H ′ = Hk−1 ∈ Ob(Dd
r ×DN

r ,CN ) has no constant nor linear
terms in its Taylor expansion with respect to w, and where r > 0 has been reduced
when required. Therefore, we can restrict the problem to find a solution of (5.7) having
the form

ŵ(x) =
∞∑
n=k

yn(x)P(x)n .

Step 2: We study the action of the operator P j L j on ŵ(x) for each j = 1, . . . , k.
By the multivariate Leibniz rule (4.9) and Lemma 4.1 we see that

L j (ŵ) =
∑
|α|= j

a( j)
α

∞∑
n=k

∂α(yn P
n)

=
∞∑
n=k

L j (yn)P
n +

∞∑
n=k

∑
|α|= j

a( j)
α

∑
0<β≤α

(
α

β

)
∂α−β(yn)

|β|∑
l=1

n!
(n − l)! P

n−l Aβ,l ,

=
∞∑
n=k

L j (yn)P
n + S j ,

where the first sum corresponds to β = 0. Note that the last inner sum is taken over
1 ≤ l ≤ |β| since Aβ,l = 0 if l > |β|, and |β| ≤ |α| = j ≤ k ≤ n. Let us write
S j = S j,1 + S j,2, where S j,2 retains the terms corresponding to β = α. Then

S j,2 = S j,3 +
∞∑
n=k

yn
n!

(n − j)! P
n− j L�

j (P),

where S j,3 contains the terms in which l < j and S j,2−S j,3 in the previous expression
corresponds to l = j , according to the definition of L�

j . Therefore,

S j,3 =
∞∑
n=k

j−1∑
l=1

⎡
⎣ ∑

|α|= j

a( j)
α Aα,l

⎤
⎦ yn

n!
(n − l)! P

n−l .

123



Formal Gevrey solutions...

On the other hand, we can organize the terms in S j,1 to write

S j,1 =
∞∑
n=k

j−1∑
m=1

m∑
l=1

⎡
⎣∑

|α|= j,
|β|=m,β<α

(
α

β

)
a( j)
α ∂α−β(yn)Aβ,l

⎤
⎦ n!

(n − l)! P
n−l

=
∞∑
n=k

j−1∑
l=1

⎡
⎢⎢⎢⎣

j−1∑
m=l

∑
|α|= j,

|β|=m,β<α

(
α

β

)
a( j)
α ∂α−β(yn)Aβ,l

⎤
⎥⎥⎥⎦

n!
(n − l)! P

n−l ,

by grouping those indices β with the same norm.
Step 3: We search for a partial differential equation satisfied by

Ŵ (t, x) :=
∞∑
n=k

yn(x)t
n, (5.8)

from the system (5.7) satisfied by ŵ(x) = Ŵ (P(x), x). Indeed, recalling (1.8) we can
write L�

j (P) = φ j · P , for some holomorphic function φ j near the origin. Therefore,

noticing that n!
(n−l)! P

n−l = ∂ lt (t
n)|t=P , for l ≤ n, we find

P j
∞∑
n=k

yn
n!

(n − j)! P
n− j L�

j (P) = φ j t
j+1∂

j
t (Ŵ )

∣∣∣
t=P

.

Let us consider the differential operator

K (x)(t, DkW ) := −H ′(x,W ) +
k∑
j=1

[
t j L j (W ) + φ j t

j+1∂
j
t (W )

+
j−1∑
l=1

( ∑
|α|= j

a( j)
α Aα,l t

j∂ lt (W ) +
j−1∑
m=l

∑
|α|= j,

|β|=m,β<α

(
α

β

)
a( j)
α Aβ,l∂α−β t

j∂ lt (W )

)]
.

Then ŵ(x) = ∑∞
n=k yn P

n satisfies (5.7) if and only if Ŵ in (5.8) satisfies

B(x)W = −h(x)tk + K (x)(t, DkW ),

where g = h ·Pk . Theorem 3.1 for p = 0 proves that this equation has a unique formal
power series solution Ŵ (t, x) of the form (5.8). Therefore, we have the existence and
uniqueness of the solution w of equation (5.7) and therefore of the main equation
(1.5).

Finally, Theorem 3.1 also asserts that Ŵ (t, x) is s-Gevrey in t where s in (3.2) is
computed using the derivatives appearing in K . In this case, s0(t j∂α) = |α|/ j = 1,
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for the terms in t j L j ,

s0(t
j+1∂

j
t ) = j, s0(t

j∂ lt ) = l

j − l
, and s0(t

j∂ lt ∂α−β) = l + |α| − |β|
j − l

,

where 1 ≤ j ≤ k, l ≤ j − 1, |α| = j , 0 < β ≤ α, and l ≤ |β| ≤ j − 1. Thus

s0(t
j∂ lt ) ≤ j − 1

j − l
≤ j − 1, and s0(t

j∂ lt ∂α−β) ≤ |α|
j − l

≤ j .

Therefore, the maximum s of these values is k and it attained at the term φk tk+1∂kt ,
when φk �= 0. If φk = 0, we still have that s = k as it is also attained at the terms
a(k)
α Aβ,|β|∂α−β tk∂

k−1
t , where |α| = k and β < α with |β| = k − 1. But Lk �= 0, so

there is α0 ∈ N
d with |α0| = k and a(k)

α0 �= 0. Recalling formula (4.2) we see that
at least one of these terms appears in K , thus s = k. In conclusion, Ŵ is a k-Gevrey
series in t , i.e, ŵ is a P-k-Gevrey series as we wanted to show. ��

It is worth remarking that the proof of Theorem 1.1 simplifies considerably when
k = 1. To highlight the main ideas used we reproduce the argument again.

Corollary 5.1 Consider the partial differential equation

P(x)L1(y) = F(x, y), (5.9)

where L1 = a1∂x1 + · · · + ad∂xd has holomorphic coefficients at the origin, F is
holomorphic near the origin, F(0, 0) = 0, and DyF(0, 0) is an invertible matrix. If P
divides L1(P), equation (5.9) has a unique formal power series solution ŷ ∈ C[[x]]N
with ŷ(0) = 0, which is a P-1-Gevrey series.

Proof Writing F as in equation (5.1) and setting y = y0 + w in the equation (5.9),
where y0 solves the implicit equation (5.3), we find that w satisfies

P · L1(w) = g0(x) + B0(x)w + H0(x, w), (5.10)

where g0 = −P · L1(y0), B0(x) is invertible at x = 0, and the Taylor expansion of
H0(x, w) in w has no constant nor linear terms. This reduces the problem to find a
formal solution ŵ(x) = Ŵ (x, P(x)), where Ŵ (x, t) = ∑∞

n=1 yn(x)t
n . Note that

P · L1(ŵ) =
∞∑
n=1

L1(yn)P
n+1 + φ · nyn Pn+1 =

(
t L1 + φt2∂t

)
(Ŵ )

∣∣∣
t=P

,

where L1(P) = φ · P . Therefore, ŵ solves (5.10) if and only if Ŵ solves

B0(x)W = −L1(y0)t +
(
t L1 + φ(x)t2∂t

)
W − H0(x,W ). (5.11)

123



Formal Gevrey solutions...

Theorem 3.1 for p = 0 shows that (5.11) has a unique formal power series solution
Ŵ (x, t)where the yn are holomorphic functions in a commonneighborhoodof 0 ∈ C

d .
Moreover, Ŵ is s-Gevrey, where s is the maximum of s0(φt2∂t ) = 1 and s0(t∂x j ) = 1,
for j = 1, . . . , d such that a j �= 0. Since L1 �≡ 0, it follows that s = 1 as required. ��

We move now to Theorem 1.2. Although we can apply the same technique as in
Theorem 1.1, it is easier to take P directly as one of the coordinates.

Proof of Theorem 1.2 By hypothesis L∗
k(P)(0) = ∑

|α|=k a
(k)
α (0)∂�

α(P)(0) �= 0. Thus
at least one of these terms is non-zero, so necessarily ∂xl (P)(0) �= 0 for some l =
1, . . . , d –recall (4.1)–. Up to permuting the coordinates we can assume that l = 1.
We make the change of variables (4.11) and write equation (1.5) in the coordinates
ξ = (ξ1, ξ

′), ξ ′ := (ξ2, . . . , ξd). In fact, setting u(ξ) = y(x), Lemma 4.4 shows that

k∑
j=1

P j L j (y) =
k∑
j=1

L�
j (P)ξ

j
1 ∂

j
ξ1

(u) + ξ
j
1C j (ξ, u, D ju),

C j (ξ, u, D ju) :=
∑
|α|= j

a j
α(ξ)

⎡
⎣δα∂α,ξ (u) +

j−1∑
l=1

∑
∗

Bα
l,β · ∂ lξ1∂β,ξ (u)

⎤
⎦ ,

where a j
α(ξ) = a( j)

α (x) and the inner sum is taken over all β ∈ N
d−1 such that

(0, β) ≤ α and |β| ≤ |α| − l. Therefore, y(x) = ∑
β∈Nd yβxβ ∈ C[[x]]N is a

solution of (1.5) if and only if u(ξ) = y(x(ξ)) = ∑∞
n=0 un(ξ

′)ξn1 ∈ C[[ξ ]]N satisfies

k∑
j=1

L�
j (P)ξ

j
1 ∂

j
ξ1

(u) = F(ξ, u) −
k∑
j=1

ξ
j
1C j (ξ, u, D ju), (5.12)

where F(ξ, u) = F(x, y). Write F as in equation (5.1), and expand A(x) = A(ξ) =
A0(ξ

′) + ∑∞
m=1 Am(ξ ′)ξm1 in powers of ξ1, where A0(0) = A0. Then we conclude

that (5.12) has the form of equation (3.1) with p = k, and

c0(ξ
′) = A0(ξ

′), c j = L�
j (P)IN , j = 1, . . . , k.

Now, Remark 3.4 and the hypothesis (1.9) guarantee that we can apply Theorem 3.1
to (5.12) to conclude the existence and uniqueness of the solution u(ξ) ∈ C[[ξ ]]N
which is s-Gevrey, with s as in (3.5). The terms that appear in (5.12) satisfy

sk(ξ
j
1 ∂α,ξ ) = max

{
0,

|α| − k

j

}
= 0, sk(ξ

j
1 ∂ lξ1∂β,ξ ) = max

{
0,

|β| + l − k

j − l

}
= 0,

because |β|+l−k ≤ |α|−k = j−k ≤ 0. Therefore, s = 0 and u(ξ) = y(x) ∈ C{x}N
is convergent as we wanted to show. ��

For the case k = 1 Corollary 5.1 takes the following form, c.f. [5,Theorem 2].
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Corollary 5.2 Assume the conditions ofCorollary5.1, but nowsuppose that L1(P)(0) �=
0. If nL1(P)(0)IN −DyF(0, 0) ∈ GLN (C), for all n ∈ N, equation (5.9) has a unique
analytic solution at the origin ŷ ∈ C{x}N with ŷ(0) = 0.

6 Examples

We conclude the paper with some examples. First, Example 6.1 shows that condition
(1.8) is needed in order to apply Theorem 1.1. Moreover, Example 6.3 illustrates that
the Gevrey type provided by Theorem 1.1 is attained, thus, in general it cannot be
improved. For more examples in the case k = 1 we refer to [5], including the use of
ramifications and punctual blow-ups (2.3) to bring other differential equations into a
form where Theorem 1.1 can be applied.

Example 6.1 Consider the scalar equation

xk1 x
k
2∂

k
x1(y) = μy − xk1

1 − x1
,

where μ �= 0 is a constant and k ≥ 1 is an integer. The problem has a unique formal
power series solution that can be found setting ŷ = ∑∞

n=0 yn(x2)x
n
1 and replacing into

the equation. In this way, we find that

ŷ =
∞∑
n=k

xn1
μ − n!

(n−k)! x
k
2

=
∑

n≥k,m≥0

an,kmx
n
1 x

km
2 , an,km = n!m

μm+1(n − k)!m .

Using that n!/(n − k)! ≤ nk and τm/m! < eτ for τ > 0, we see that

|an,km | ≤ nmk

|μ|m+1 ≤ enk

|μ|m+1m!k ≤ enk

|μ|m+1 (km)!,

i.e., ŷ is exactly x2-1-Gevrey. We can apply Theorem 1.1 choosing P = x2, L1 =
· · · = Lk−1 = 0, and Lk = xk1∂

k
x1 (L�

j (P) = 0 for j = 1, . . . , k) to find that ŷ is
x2-k-Gevrey, which is not optimal unless k = 1. On the other hand, neither P = x1,
Lk = xk2∂

k
x1 nor P = x1x2, Lk = ∂kx1 are valid choices since L�

k(P) is not divisible
by P . In fact, ŷ is neither x1-s-Gevrey nor x1x2-s-Gevrey for any s, since there is no
common neighborhood of the origin where all the yn(x2) are defined.

Example 6.2 Fix integers m, k ≥ 1 and consider the scalar equation

x (m+1)k∂kx y = y − 1 − xk

k! . (6.1)
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It has a unique formal solution ŷ(x) = ∑∞
n=0 ynx

n given by

y0 = 1, yk = 1

k! , ymk+k = 1, y jmk+k =
j−1∏
l=1

(lmk + k)!
(lmk)! , j ≥ 2,

and yn = 0 in other cases. But (lmk + k)!/(lmk)! = (lmk + 1) · · · (lmk + k) ≤
(lmk + k)k ≤ (( j − 1)mk + k)k = kk(( j − 1)m + 1)k ≤ (2km)k( j − 1)k . Thus

a j := y jmk+k ≤ (2km)k( j−1)( j − 1)k( j−1),

and

ŷ(x) = 1 + xk ·
∞∑
j=0

a j (x
mk) j is xmk − k -Gevrey, i.e., it is x − 1/m -Gevrey.

(6.2)

On the other hand, for k ≥ 2 we can apply Theorem 1.1 to P(x) = xm+1 and Lk = ∂kx
to conclude that ŷ is xm+1-k-Gevrey, i.e., x- k

m+1 -Gevrey. In fact,

L�
k(P) = ((m + 1)xm)k is divisible by P,

sincem+1 ≤ mk. Ifm+1 < mk, (6.2) gives a better bound. However, ifm+1 = mk,
then m = 1, k = 2, and Theorem 1.1 gives an optimal bound. Indeed,

ŷ(x) = 1 + x2

2

∞∑
j=0

(2 j)!x2 j

which is exactly x2-2-Gevrey, i.e., x-1-Gevrey.

Example 6.3 Consider the scalar equation

x21 x
2
2 (x

2
1∂

2
x1u + x22∂

2
x2u + 2∂x1∂x2u) − 2u = −2x1x2,

having as unique formal power series solution û(x1, x2) = ∑∞
n=0 anx

n
1 x

n
2 . In fact, this

equation corresponds to the ODE

t4∂2t w + t(t∂t )
2w − w = −t,

where t = x1x2 and u(x1, x2) = w(t). Theorem 3.1 proves that ŵ(t) = û(x1, x2) is
t-2-Gevrey. Theorem 1.1 applied to k = 2, P = x1x2, L1 = 0, and

L2 = x21∂
2
x1 + x22∂

2
x2 + 2∂x1∂x2 ,

shows û is x1x2-2-Gevrey since L�
1(P) = 0 and L�

2(P) = 2P2 + 2P = 2P(1 + P).
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We can also find the Gevrey order by direct means. First, the an are given by a0 = 0,
a1 = a2 = 1, and

an = (n − 1)2an−1 + (n − 2)(n − 3)an−2, for n ≥ 3.

If we set αn = an/(n − 1)!2, n ≥ 1, this sequence satisfies

αn = αn−1 + n − 3

(n − 1)2(n − 2)
αn−2.

It follows by induction that 1 ≤ αn ≤ ϕn , where ϕ = (1+ √
5)/2 solves ϕ2 = ϕ + 1.

In conclusion, (n − 1)!2 ≤ an ≤ ϕn(n − 1)!2, so û is exactly x1x2-2-Gevrey. Thus,
the Gevrey type provided by Theorem 1.1 cannot be improved in general.

Example 6.4 Returning to the framework of singular perturbations, we consider sys-
tems

εk xk+1∂kx y +
k−1∑
j=1

ε j x j+1a j (x, ε)∂
j
x y = F(x, ε, y),

where C � ε → 0, x ∈ C, the a j are holomorphic near (0, 0) ∈ C
2, and y and F are

as in Theorem 1.1. The main result can be applied to P(x, ε) = xε, Lk = x∂kx and

L j = a j x∂
j
x since

L�
k(P) = x(∂x P)k = xεk, and L�

j (P) = a j x(∂x P) j = a j xε
j ,

are divisible by P . Therefore, this system has a unique formal power series solution
in x and ε which is xε-k-Gevrey. The case k = 1 was first established in [3].

Example 6.5 Fix α ∈ N
d\{0} and consider the equation

(xα)k Lk(y)(x) + · · · + xαL1(y)(x) = F(x, y),

with differential operators of the form L j = ∑
|β|= j bβ(x)xβ∂β,where bβ ∈ Ob(Dd

r ),
for a common r > 0. Assuming that DyF(0, 0) is invertible, since

L�
j (x

α) = x jα ·
∑
|β|= j

αβbβ(x),

is divisible by xα for all j = 1, . . . , d, Theorem 1.1 proves that this equation has a
unique xα-k-Gevrey series solution. Note that equation (1.2) is a particular case for
k = 1, where this Gevrey bound is optimal due to the xα-1-summability of the solution
and Tauberian theorems for these methods, [6, 7].
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