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Abstract

The notion of moment differentiation is extended to the set of generalized multisums of
formal power series via an appropriate integral representation and accurate estimates of the
moment derivatives.

The main result is applied to characterize generalized multisummability of the formal
solution to a family of singularly perturbed moment differential equations in the complex
domain, broadening widely the range of singularly perturbed functional equations to be
considered in practice, such as singularly perturbed differential equations and singularly
perturbed fractional differential equations.

1 Introduction

The main aim of this work is to give a step forward in the theory of summability of formal
solutions to functional equations in the complex domain. More precisely, we deal with the
so-called moment (partial) differential equations, in which the operators known as moment
derivatives act on the unknown function.

The main advances in the present study are twofold: on the one hand, we provide an integral
representation of the moment derivatives of generalized sums of formal power series which can
be extended to an infinite sector satisfying some generalized exponential growth. In addition
to this, we describe the dependence of such moment derivatives with respect to three elements,
namely the moment sequence, the sequence involved in the asymptotic representation of the
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sum, and also the generalized exponential growth at infinity (Theorem 4.2). Consequently, a
novel definition of moment derivatives acting on generalized multisums of formal power series
makes sense, and induces many possible applications in the theory, as the following one. On
the other hand, we apply the previous result to achieve the main result of this research, namely
the multisummability of the formal solutions to certain family of singularly perturbed moment
differential equations (Theorem 5.1). More precisely, we prove that the formal solution to

(1.1)

{
εka(z)∂pm2,zω(z, ε)− ω(z, ε) = f̂(z, ε)

∂jm2,zω(0, ε) = ψ̂j(ε), j = 0, . . . , p− 1,

is multisummable along a certain appropriate multidirection (d1, d2) ∈ R2 with respect to the
perturbation parameter ε if and only if the forcing term f̂(z, ε) ∈ C[[z, ε]] and the initial condi-
tions ψ̂j(ε) ∈ C[[ε]], for 0 ≤ j ≤ p− 1 are multisummable along the same multidirection. Here,
ε stands for a small complex parameter, a(z) is a holomorphic function near the origin, m2 is a
sequence of moments, and k, p are positive integers with k < p. The precise description of the
elements involved in the problem is given in Section 5.

The study of moment differential equations is motivated by the versatility of the moment
derivative operator, whose definition was initially put forward by W. Balser and M. Yoshino
in [4] for formal power series. Let m = (m(p))p≥0 be a sequence of positive real numbers.

Then, the moment derivative ∂m,z : C[[z]] → C[[z]] is defined by ∂m,z(z
p) = m(p)

m(p−1)z
p−1 for

every positive integer p and ∂m,z(1) = 0, defining moment derivatives for elements in C[[z]] by
linearity. It is natural to extend the previous definition to a holomorphic function on some disc
at the origin by identifying the function with its Taylor series at z = 0. In addition to this, the
authors proved that one can extend the definition of moment differentiation to the generalized
sums in a direction of a formal power series, as the sum of the moment derivative of that formal
power series (see Corollary 1 and Definition 10, [18]). In this work, we further extend it to the
generalized multisums of a formal power series (Corollary 4.3 and Definition 4.2).

The most suitable choice for m is to be a moment sequence of certain Laplace-like operator.
It is clear that the sequence m1 = (p!)p≥0 gives rise to the usual derivative when considering the
moment operator ∂m1,z. Apart from that choice for m, many other derivations which appear in
concrete applications can be represented as a moment derivative. For example, for every k > 0,

the sequence m1/k = (Γ(1+p/k))p≥0 is associated with the Caputo fractional derivative ∂
1/k
z via

the relation (∂m1/k,z f̂)(z1/k) = ∂
1/k
z (f̂(z1/k)), valid for every f̂(z) ∈ C[[z]] (see [21], Remark 3,

for further details). Recently, many applications of Caputo derivatives appear in the literature
such as [7, 12], also in the study of the asymptotic periodic solutions of evolution equations [26],
numerical studies, etc. Let q ∈ (0, 1). The sequence mq = ([p]q!)p≥0, with [p]!q = [1]q[2]q · · · [p]q
is known as the sequence of q−factorials, where [`]q =

∑`−1
j=0 q

j . It determines the moment

differentiation which coincides with the q−derivative Dq,z given by Dq,zz
p = [p]qz

p−1 for every
p ∈ N. This moment differentiation is quite related to the dilation operator, appearing in
the study of q−difference equations which is of great interest in the scientific community with
interesting advances in the knowledge of the asymptotic behavior of the solutions of q−difference
equations (see [13, 20] among others, and the references therein).

It is also worth mentioning the increasing interest on the study of parametric Gevrey asymp-
totics of singularly perturbed problems in the complex domain, such as the seminal work [6] in
the domain, and [5] together with [2, 3] regarding the framework of ordinary differential equa-
tions, and also [31, 15] in the study of partial differential equations. The strategy followed in
this work differs from that in [15], where the authors make use of a fixed point argument and
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cohomological techniques in the framework of M-summability. On the other hand, the approach
in [31] is closer and it is applied by means of a Borel transform relatively to the perturbation
parameter.

The interest of moment functional equations has increased in the last decade, and recent
achievements have been reached in this concern. A first step was given in the seminal work [4],
where the authors study the formal solutions and Gevrey estimates of their coefficients of linear
moment partial differential equations with constant coefficients. The development of a more
general theory through the construction of kernels for generalized summability by J. Sanz in [27]
allows to enlarge the class of moment sequences considered, in the framework of strongly regular
sequences. The sequence m1/k above belongs to such a family for every k > 0, whereas mq does
not. The so-called 1+ level, appearing in the asymptotic study of difference equations is also
related to a strongly regular sequence [8, 9].

After the seminal work [4], the second author gave answer to the problem of analyticity
of such problems [21], via splitting of the characteristic equation with respect to one of its
variables. We also refer to [22] for a further study in the homogeneous situation, while dropping
the condition of the convergence of the initial data. Further knowledge on the solutions to
moment partial differential equations with constant coefficients is given in [23] to study the
growth properties and summability of the formal solutions. It is also worth mentioning the
family of partial differential equations studied in [14], where the coefficients of the equation
under study belong to certain functional spaces associated with functions whose derivatives are
uniformly bounded in terms of some strongly regular sequence.

The last advances in the theory of the asymptotic behavior of solutions to moment functional
equations have been obtained recently regarding the summability of certain families of moment
integro-differential equations [17], and also Maillet-type theorems [16, 29]. We mention the
recent works by P. Remy in the study of partial differential equations [24] and integro-differential
equations [25] of a similar nature as those considered in these works.

Recent results on generalized multisummability of formal power series concerning different
(comparable and nonequivalent) levels associated with ultraholomorphic classes achieved in [10]
are applied in the present study to achieve asymptotic properties of the solutions to a singularly
perturbed moment differential equation. That concept of multisummability as long as previous
results achieved by the authors in [18] have been the key points used to describe generalized
multisummability of the formal solution of the main equation (1.1). As mentioned above, novel
integral representations and accurate estimates of the moment derivatives of generalized sums
of formal power series are needed, arriving to the coherent definition of moment derivation of
the generalized multisum of a formal power series. More precisely, the first main result of the
present study, Theorem 4.2, resorts to an appropriate deformation path which is split in order
to provide upper bounds for the moment derivative of a sectorial holomorphic function, quite
related to the multisummability process. As a consequence, Corollary 4.3 and Definition 4.2
encompass the notion of moment derivation of the multisum of a formal power series along some
multidirection. As an application of these results, Section 5 characterizes multisummability of
the formal solution to (1.1) in terms of that of the initial data and the forcing term (Theorem 5.1).
The proof of this last result is based on the properties of formal Borel transform which transform
the problem into an auxiliary moment partial differential equation, which is easier to handle.

The paper is structured as follows. We fix notation in Section 2, followed by Section 3, where
we recall the definition and main results on strongly regular sequences, generalized summability
and multisummability of formal power series. In that section, some technical results needed in
the sequel are also proved. The first main result of the present work is Theorem 4.2, where a
coherent definition of moment derivative of the generalized multisum of a formal power series is
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provided. The second main result of the present work, Theorem 5.1, describes an application of
the previous results in the framework of singularly perturbed moment differential equations.

2 Notation

By N we shall denote the set of all positive integers, i.e., {1, 2, . . . } and N0 = N ∪ {0}.
R stands for the Riemann surface of the logarithm.
For all r > 0 and z0 ∈ C, D(z0, r) stands for the open disc in the complex plane centered at

z0 and with radius r. For any fixed θ > 0 and d ∈ R a subset of R defined as

Sd(θ) =

{
z ∈ R : | arg z − d| < θ

2

}
is an open infinite sector with vertex at the origin, bisecting direction d and opening θ. In cases
where the opening is not specified, we simply write Sd. For every r > 0, we write Sd(θ; r) :=
Sd(θ) ∩D(0, r). A sectorial region Gd(θ) is a subset of R such that there exists r > 0 for which
Gd(θ) ⊂ Sd(θ; r) and for any 0 < θ′ < θ there exists 0 < r′ < r such that Sd(θ

′; r′) ⊂ Gd(θ).
We put Ŝd(θ; r) := Sd(θ) ∪ D(0, r). Analogously, we write Ŝd(θ) (resp. Ŝd) whenever the

radius r > 0 (resp. the radius and the opening r, θ > 0) can be omitted. We write S ≺ Sd(θ)
if S is an infinite sector with vertex at the origin such that S̄ ⊂ Sd(θ), where the closure is
considered with respect to R. Similarly, for two sectorial regions Gd(θ) and Gd′(θ

′) we write
Gd(θ) ≺ Gd′(θ′) whenever Gd(θ) ⊂ Gd′(θ′) and relation ≺ holds for the sectors appearing in the
definitions of both sectorial regions.

If (E, ‖ · ‖E) is a complex Banach space, by O(U,E) we denote the set of all functions
holomorphic on the open set U ⊂ C with values from E. For E = C we simply write O(U). The
set of all formal power series in t with coefficients in E is denoted by E[[z]].

3 Preliminary results and definitions

The purpose of this section is to recall the main facts on the theory of generalized summability
and also one of the equivalent notions of generalized multisummability of a formal power series
along certain multidirection, developed in [10]. We first remind the main elements regarding the
theory of strongly regular sequences and related properties together with the theory of general-
ized summability, for the sake of completeness. These definitions and the detailed constructions
can be found in [28] and the references therein.

3.1 Strongly regular sequences

The concept of strongly regular sequences was put forward by V. Thilliez in [30].

Definition 3.1. Let M = (Mp)p≥0 be a sequence of positive real numbers with M0 = 1. M is a
strongly regular sequence if the following statements hold:

(lc) M2
p ≤Mp−1Mp+1, p ≥ 1 (M is logarithmically convex ).

(mg) there exists A1 > 0 such that Mp+q ≤ Ap+q1 MpMq, for all p, q ≥ 0 (M is of moderate
growth).

(snq) there exists A2 > 0 such that
∑

q≥p
Mq

(q+1)Mq+1
≤ A2

Mp

Mp+1
, for all p ≥ 0 (M satisfies the

strong non-quasianalyticity condition).
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The previous notion generalizes that of Gevrey sequences of order α > 0, (p!α)p≥0, which
widely appear in the theory of summability of formal solutions to functional equations. In
association with a strongly regular sequence M, one can define the function

(3.1) M(t) :=


sup
p≥0

log

(
tp

Mp

)
for t > 0

0 for t = 0

It turns out that M is a non-decreasing and continuous function in [0,∞), with limt→∞M(t) =
+∞. We also consider the positive real number

ω(M) :=

(
lim sup

r→∞
max

{
0,

log(M(r))

log(r)

})−1

,

which determines the limit opening for a sector to admit nontrivial flat ultraholomorphic func-
tions defined on them. We refer to [11] for a deeper study in this direction.

Following [27, 28, 30], one has the next results.

Lemma 3.1 ((17), [27]). For every H > 0, there exist C,D > 0 such that for all p ≥ 0 one has∫ ∞
0

tp−1 exp(−M(t/H))dt ≤ CDpMp.

Lemma 3.2. Let M be a strongly regular sequence, and let s ≥ 1. There exists ρ(s) ≥ 1 (only
depending on M and s) such that

exp(−M(t)) ≤ exp(−sM(t/ρ(s))), t ≥ 0.

Lemma 3.3. Let M = (Mp)p≥0 be a strongly regular sequence. The sequence Ms := (M s
p )p≥0

defines a strongly regular sequence for every s > 0. Moreover, ω(Ms) = sω(M).

Lemma 3.4. Let M be a sequence satisfying (lc) property. Then

� (M
1/p
p )p≥0 is nondecreasing.

� MpMq ≤Mp+q for all p, q ∈ N0.

3.2 Generalized summability

In this subsection, (E, ‖·‖E) stands for a complex Banach space.
The classical summability theory of formal power series related to Gevrey sequences (see for

example [1, 19]) has recently been adapted to the more general settings involving strongly regular
sequences (see [27, 28]). This notion leans on the approximation of holomorphic functions in
sectors of the complex plane by formal power series whenever the approximation is given in
terms of a given strongly regular sequence.

Definition 3.2. Let M = (Mp)p≥0 be a sequence of positive real numbers, and let Gd(θ) ⊆ R
be a sectorial region, for some θ > 0 and d ∈ R. A function f ∈ O(Gd(θ),E) admits the formal
power series f̂(z) =

∑
p≥0 fpz

p ∈ E[[z]] as its M-asymptotic expansion in Gd(θ) if for every
0 < θ′ < θ and r > 0 with Sd(θ

′; r) ⊆ Gd(θ) and all integer N ≥ 1, there exist C,A > 0 with∥∥∥∥∥∥f(z)−
N−1∑
p=0

fpz
p

∥∥∥∥∥∥
E

≤ CANMN |z|N ,

for all z ∈ Sd(θ′; r).
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Further details on the following result can be found in Section 3 [28].

Lemma 3.5. In the situation of the previous definition, there exist C̃, Ã > 0 such that

‖fp‖E ≤ C̃Ã
pMp

for every p ≥ 0.

The exponential growth in sectors of the complex plane is extended in terms of the function
M(·) as follows.

Definition 3.3. Let θ > 0 and d ∈ R, and suppose that M is a fixed sequence of positive real
numbers. We define the set OM(Sd(θ),E) as consisting of all functions f ∈ O(Sd(θ),E) such
that for every 0 < θ′ < θ there exist constants C,K > 0 satisfying

(3.2) ‖f(z)‖E ≤ C exp

(
M

(
|z|
K

))
for every z ∈ Sd(θ′).

The construction of operators involved in the summability process leans on the existence of
kernel functions for generalized summability, related to a given strongly regular sequence.

Definition 3.4. Let M be a strongly regular sequence with ω(M) < 2 and with function M(·)
defined as in (3.1). Two complex functions e, E are strong kernel functions for M-summability
if the following properties hold:

� e ∈ O(S0(ω(M)π)). There exists α > 0 such that for all bounded proper subsectors T of
S0(ω(Mπ)), there exists C > 0 with

(3.3) |e(z)| ≤ C|z|α, z ∈ T.

Furthermore, e is a flat function in every infinite subsector of S0(ω(M)). More precisely,
for every ε > 0 there exist C,K > 0 such that

(3.4) |e(z)| ≤ C exp

(
−M

(
|z|
K

))
for every z ∈ S0(ω(M)π − ε).

We also assume that e(x) ∈ R for every real x > 0.

� E ∈ O(C) with generalized exponential growth at infinity

(3.5) |E(z)| ≤ c̃ exp

(
M

(
|z|
k̃

))
for every z ∈ C,

for some c̃, k̃ > 0. There also exists β > 0 such that for all 0 < θ̃ < 2π − ω(M)π and
ME > 0, there exists c̃2 > 0 with

(3.6) |E(z)| ≤ c̃2

|z|β
, z ∈ Sπ(θ̃) \D(0,ME).

� Functions e and E are connected by the moment function associated with e defined by

(3.7) me(z) :=

∫ ∞
0

tz−1e(t)dt.

me is a holomorphic function on {z ∈ C : Re(z) > 0}, continuous up to its boundary.
Indeed, E is determined from e via the sequence of moments associated with e, (me(p))p≥0,
by

(3.8) E(z) =
∑
p≥0

zp

me(p)
, z ∈ C.
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Lemma 3.6 (Proposition 5.7, [27]). Given a kernel function e for M-summability, associated
with some strongly regular sequence M, the sequence of moments (me(p))p≥0 and M are equiva-
lent, i.e., there exist C,D, C̃, D̃ > 0 such that

CDpme(p) ≤Mp ≤ C̃D̃pme(p), p ≥ 0.

As a matter of fact, the classical kernels for summability involved in the Gevrey theory
satisfy weaker properties (see [1]). These more restrictive conditions are justified (see Section
4.2, [10]) regarding their applicability and adaptability to practical situations. Indeed, given a
strongly regular sequence, the existence of a pair of kernels for M-summability is guaranteed
whenever M admits a nonzero proximate order. We refer to Section 2.3 [10] for a brief review
on sequences admitting a nonzero proximate order. This property will turn into an assumption
for every strongly regular sequence under consideration hereinafter.

The classical formal Borel transform can also be adapted to this framework.

Definition 3.5. Let (me(p))p≥0 be a sequence of moments. Then the formal me-Borel moment
transform B̂me,z : E[[z]]→ E[[z]] is given by

B̂me,t

∑
p≥0

upz
p

 =
∑
p≥0

up
me(p)

zp.

An M-analog of Laplace transform is also available (see Section 6, [28]).

Proposition 3.1. Let d ∈ R. Given a strongly regular sequence M which admits a nonzero
proximate order, and a pair of kernel functions for M-summability associated, say e and E, we
define for every f ∈ OM(Sd,E) the e-Laplace transform of f along direction τ ∈ arg(Sd) by

(Te,τf)(z) =

∫ ∞(τ)

0
e(u/z)f(u)

du

u
,

for all |arg(z)− τ | < ω(M)π/2, and small enough |z|. The variation of τ among the arguments
of Sd determines a holomorphic function, denoted Te,df , defined in a sectorial region of bisecting
direction d and opening larger than ω(M)π.

As a matter of fact, there exists a generalization to the classical Borel-Laplace procedure for
the effective summation of a given formal power series.

Definition 3.6. Let M be a strongly regular sequence which admits a nonzero proximate order
and let me denote a sequence of moments associated with M. The series û ∈ E[[z]] is M-
summable along direction d ∈ R if B̂me,z(û(z)) is a series with a positive radius of convergence,
and the analytic function defining such series, say u(z), can be extended to an infinite sector of
bisecting direction d, say Ŝd, with u(z) ∈ OM(Ŝd,E).

Proposition 3.2. In the situation of the previous definition, the function v(z) = (Te,du)(z) is
holomorphic on a bounded sector of bisecting direction d and opening larger than ω(M)π.

Definition 3.6 does not depend on the kernel functions for M-summability (and therefore on
the moment sequence) considered. In addition to this, the procedure described there provides us
with the only function (due to Watson’s Lemma, see Corollary 3.16, [11]) admitting the initial
formal power series as its M-asymptotic expansion in a wide enough sector of bisecting direction
d, known as the M-sum of the formal power series along direction d.
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Definition 3.7. The function v in Proposition 3.2 is known as the M-sum of û along direction
d ∈ R, and is denoted by SM,d(û). The set of formal power series with coefficients in E which
are M-summable along direction d is denoted by E{z}M,d.

Lemma 3.7. Let f̂(z) be a formal power series, and let k ∈ N0. We define the formal power
series ĝ(z) := zkf̂(z).

Let M be a strongly regular sequence admitting a nonzero proximate order. Let d ∈ R. Then,
the following statements are equivalent:

� The formal power series f̂ is M-summable in the direction d.

� The formal power series ĝ is M-summable in the direction d.

If one of the previous equivalent statements holds, then

(3.9) SM,d(ĝ) = zkSM,d(f̂).

Proof. It is straightforward that f̂ being M-summable in the direction d yields ĝ being M-
summable in the same direction, as the set of M summable functions in a direction is an algebra.
The second part of the equivalence can be proved following an analogous argument as that for
Exercise 3, Section 4.5, in [1]. More precisely, an iterative argument allows us to assume that
k = 1. Let ĝ(z) =

∑
p≥1 gpz

p. Then, there exists a bounded sector with bisecting direction d
and opening larger than ω(M)π such that for any subsector T there exist C,A > 0 with∥∥∥∥∥∥SM,d(ĝ)(z)−

n−1∑
p=1

gpz
p

∥∥∥∥∥∥ ≤ CAnMn|z|n,

valid for every z ∈ T and n ≥ 2. Therefore, one has that∥∥∥∥∥∥z−1SM,d(ĝ)(z)−
n−2∑
p=0

gp+1z
p

∥∥∥∥∥∥ ≤ CAnMn|z|n−1 ≤ CAA1M1(AA1)n−1Mn−1|z|n−1,

regarding property (mg) of M. Observe that f̂(z) =
∑

p≥0 gp+1z
p, which concludes the proof.

3.3 Generalized multisummability

As in the classical theory, the procedure of Borel-Laplace summation does not succeed when
dealing with the formal solutions to some functional equations. As a matter of fact, a more
general approach called multisummability is needed in the study of formal solutions to ordi-
nary differential equations. A generalized theory of multisummability can be considered in this
framework from different points of view.

The theory of generalized multisummability deals with summability processes with respect
to sequences obtained by algebraic actions on the initial strongly regular sequences handled.
More precisely, given two sequences of positive real numbers M = (Mp)p≥0 and L = (Lp)p≥0,
we denote M/L := (Mp/Lp)p≥0. The comparison of sequences and their properties is studied
in Sections 3.1 and 3.2 [10] in a more general framework. In the present work, we focus on the
case where both M and L are powers of some strongly regular sequence admitting a nonzero
proximate order, the sequence of quotients being a positive power of the initial sequence, which
turns out to be a strongly regular sequence (see Lemma 3.3) admitting a nonzero proximate
order (see Remark 4.8 (i), [27]).

The iterated procedure approach to multisummability in the more general context of strongly
regular sequences reads as follows.
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Definition 3.8 (Definition 4.22, [10]). Let Mj , where j = 1, 2, be two strongly regular sequences
admitting nonzero proximate orders. We assume that ω(M1) < ω(M2) < 2. For j = 1, 2, we
consider a strong kernel ej of Mj-summability and its associated sequence of moments mj .

The formal power series f̂ =
∑

p≥0 apz
p ∈ E[[z]] is (M1,M2)-summable in the multidirection

(d1, d2) ∈ R2 with |d1 − d2| < π(ω(M2)− ω(M1))/2 if:

(i) ĝ = B̂m1,z(f̂(z)) is M2/M1-summable along direction d2. Let g denote such M2/M1-sum.

(ii) g admits analytic continuation g1 in an infinite sector Sd1 of bisecting direction d1 with
g1 ∈ OM1(Sd1 ,E).

The (M1,M2)-sum of f̂ in the multidirection (d1, d2) is given by Te1,d1g1, which determines a
holomorphic function on a bounded sector of bisecting direction d and opening slightly larger
than ω(M1)π (see Proposition 3.2). We denote the (M1,M2)-sum of f̂ in the multidirection
(d1, d2) by S(M1,M2),(d1,d2)(f̂), and E{z}(M1,M2),(d1,d2) stands for the set of all formal power series

f̂(z) ∈ E[[z]] which are (M1,M2)-multisummable along the multidirection (d1, d2).

It is worth remarking that M-summability along a direction is stated in [10] in terms of
weight sequences satisfying less restrictive conditions than strongly regular sequences. However,
any weight sequence admitting a nonzero proximate order is indeed a strongly regular sequence.
According to Theorem 4.23 [10], we recall that the previous construction does not depend on the
kernels for Mj-summability considered in the process, j = 1, 2. Indeed, an equivalent definition
of multisummability is the following.

Proposition 3.3 (Definition 4.1, [10]). In the situation of Definition 3.8, the formal power
series f̂ is (M1,M2)-summable in the multidirection (d1, d2) if there exist a formal power series
f̂1 which is M1-summable in d1 and a formal power series f̂2 which is M2-summable in d2 such
that f̂ = f̂1 + f̂2. Moreover, the (M1,M2)-sum of f̂ in the multidirection (d1, d2) is given by
SM1,d1(f̂1) + SM2,d2(f̂2).

The splitting of f̂ into a sum in Proposition 3.3 is essentially unique (see Proposition 4.2, [10]).
This equivalent definition of multisummability allows to give a direct proof of the following result.

Lemma 3.8. Let f̂(z) be a formal power series, and let k ∈ N0. We define the formal power
series ĝ(z) := zkf̂(z).

Let Mj, where j = 1, 2, be two strongly regular sequences admitting nonzero proximate orders.
We assume that ω(M1) < ω(M2) < 2. We choose (d1, d2) ∈ R2 with |d1 − d2| < π(ω(M2) −
ω(M1))/2. Then, the following statements are equivalent:

� The formal power series f̂ is (M1,M2)-summable in the multidirection (d1, d2).

� The formal power series ĝ is (M1,M2)-summable in the multidirection (d1, d2).

If one of the previous equivalent statements hold, then one has that

(3.10) S(M1,M2),(d1,d2)(ĝ) = zkS(M1,M2),(d1,d2)(f̂).

Proof. If f̂ is (M1,M2)-summable in the multidirection (d1, d2), then f̂ = f̂1 + f̂2, with f̂1 being
M1-summable in d1 and f̂2 being M2-summable in d2. Then, zkf̂1 is M1-summable in d1 and zkf̂2

is M2-summable in d2. Then, ĝ = zkf̂ = zkf̂1 +zkf̂2, which entails that ĝ is (M1,M2)-summable
in the multidirection (d1, d2).
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On the other hand, if ĝ is (M1,M2)-summable in the multidirection (d1, d2), then ĝ = ĝ1 + ĝ2,
with ĝ1 being M1-summable in d1 and ĝ2 being M2-summable in d2. As the splitting is essentially
unique, and ĝ(z) := zkĥ(z), one can choose a splitting in which ĝj = zkĥj , for j = 1, 2.

Lemma 3.7 guarantees that the formal power series ĝj is Mj-summable along direction dj iff ĥj
is Mj-summable along direction dj . Then, f̂ can be written in the form f̂ = ĥ1 + ĥ2, where ĥj
is Mj-summable along direction dj , for j = 1, 2, leading to multisummability of f̂ .

Regarding the construction of the sums above, one also arrives at (3.10).

4 On moment differentiation

In this section, we focus our attention on the concept of a moment derivative and recall some
properties associated with this notion. We also state some new results to be applied in the work.

The notion of a generalized derivative operator allows to consider functional problems under
greater generality. More precisely, we deal with the following formal operator.

Definition 4.1. Let (E, ‖·‖E) be a complex Banach space. For any fixed sequence of moments
(me(p))p≥0 we define the m-differential operator ∂me,t : E[[t]]→ E[[t]] by the formula:

∂me,z

∑
p≥0

ap
me(p)

zp

 :=
∑
p≥0

ap+1

me(p)
zp.

Usual derivatives are recovered when considering the moment sequence (p!)p≥0, which is
associated with the kernel function e(z) = z exp(−z). In addition to this, moment derivatives
can be read in terms of Caputo α-fractional derivatives ∂αz as follows. Let α be a positive rational
number. The moment sequence mα := (Γ(1 + αp))p≥0 is associated with the kernel function

e(z) = 1
αz

1
α exp(−z

1
α ) and the fractional derivative of order α is defined on formal power series

in zα by

∂αz

∑
p≥0

ap
Γ(1 + αp)

zαp

 =
∑
p≥0

ap+1

Γ(1 + αp)
zαp.

Therefore, one has
(∂mα f̂)(zα) = ∂αz (f̂(zα)),

for every f̂ ∈ E[[z]].
We may also observe that q−derivatives defined by

Dq,zf(z) =
f(qz)− f(z)

qz − z

for some fixed q ∈ (0, 1) can be interpreted in terms of the moment derivatives associated with
the moment sequence ([p]q!)p≥0, with [p]q! = [1]q[2]q · · · [p]q and [j]q =

∑j−1
h=0 q

h.
We also have the following result.

Lemma 4.1 (Lemma 3, [18]). Let mj = (mj(p))p≥0 for j = 1, 2 be two sequences of moments.
Then,

- The sequence m1m2 = (m1(p)m2(p))p≥0 is a sequence of moments.

- Bm1,z ◦ ∂m2,z ≡ ∂m1m2,z ◦ B̂m1,z as operators defined in E[[z]].



11

Moment differentiation can be naturally extended to holomorphic functions on some neigh-
borhood of the origin by identifying the function with its Taylor series at the origin. However,
this formal differentiation does not preserve convergence unless some regularity property is as-
sumed for the sequence of moments. However, if one departs from a strongly regular sequence
M which admits a nonzero proximate order, and considers a pair of kernel functions associated
with it and then constructs the corresponding sequence of moments m, then it holds that M and
m generate the same ultraholomorphic space of functions (i.e., they are equivalent sequences)
and m is indeed a strongly regular sequence (see Remark 3.8, [14]). In [18], the definition of
moment differentiation was also extended to the generalized sum along a direction of a formal
power series as the generalized sum along that same direction of the formal moment derivative
of the initial formal power series. For that purpose, the moment derivative was also provided
for any function defined on some neighborhood of the origin with holomorphic extension to
an infinite sector and with certain generalized exponential growth at infinity (as described in
Definition 3.3). Indeed, the first part of Theorem 3 [18] reads as follows.

Theorem 4.1. Let me = (me(p))p≥0 be a sequence of moments. We also fix d, θ, r ∈ R with
θ, r > 0 and ϕ ∈ O(Ŝd(θ; r),E). Then, there exists 0 < r̃ < r such that for all 0 < θ1 < θ, all
z ∈ Ŝd(θ1; r̃) and all n ∈ N0, one has that

(4.1) ∂nme,zϕ(z) =
1

2πi

∮
Γz

ϕ(ω)

∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξdω,

with τ = τ(ω) ∈ (− arg(ω)− ω(me)π
2 ,− arg(ω)+ ω(me)π

2 ). The integration path Γz is a deformation
of the circle {|ω| = r1}, for any choice of 0 < r1 < r, which depends on z. More precisely, such
deformation consists of substituting some arc of the circle contained in Ŝd(θ; r) by a simple path
which attains an adequate sufficient distance to the origin while it remains inside Sd(θ).

At this point, we give a step forward in order to define the moment derivatives on func-
tions defined on some sectorial region, and which can be extended under certain generalized
exponential growth to infinity.

Theorem 4.2. Let me = (me(p))p≥0 be a sequence of moments, and M = (Mp)p≥0 be a strongly
regular sequence admitting a nonzero proximate order. Let d1, d2 ∈ R satisfying |d1 − d2| <
aω(M)π

2 for some a > 0. We choose û ∈ E{z}Ma,d2 and write u = SMa,d2(û) ∈ O(G,E), for some
sectorial region G = Gd2(θ) with θ > aπω(M), as seen in Figure 1. Assume moreover that u
can be extended (the extension is also denoted by u) to an infinite sector of bisecting direction

d1, with u ∈ OMb
(Sd1 ,E). Then, the following statements hold:

(a) There exists r̃ > 0 such that for every S′ ≺ Sd1 and G′ ≺ G∩D(0, r̃) and all z ∈ S̃ := S′∪G′
and n ∈ N0

∂nme,zu(z) =
1

2πi

∮
Λz

u(w)

∫ ∞(τ)

0
ξnE(zξ)

e(wξ)

wξ
dξdw,

where τ = τ(ω) ∈ (− arg(w)− ω(me)π
2 ,− arg(w) + ω(me)π

2 ). The path Λz depends on z.

(b) There exist C4, C5, C6 > 0 such that

(4.2) ‖∂nme,zu(z)‖E ≤ C4C
n
5me(n)Ma

n exp
(
M b(C6|z|)

)
for all n ∈ N0 and z ∈ S̃,

where M b(t) is the function defined in (3.1), corresponding to the strongly regular sequence
Mb.
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Figure 1: Example of configuration of the sets Sd1 and G

Proof. The proof of the previous result is based on that of Theorem 3 and Proposition 2, [18].
We provide a complete proof for the sake of completeness and focus on distinctive points with
respect to the results in that previous work.

Let S′ ≺ Sd1 and G′′ ≺ G. Let r1 > 0 and θ > θ′ > 0 such that Sd2(θ; 2r1) ⊆ G and

S′ ∪ G′′ ⊂ Sd2(θ′). We take r̃ := k̃r1
Kρ(2) , where k̃ is given in (3.5), K is defined in (3.4), and

ρ(·) is as in Lemma 3.2. Let G′ := G′′ ∩ D(0, r̃) and S̃ := S′ ∪ G′. Choose z ∈ S̃. The path
Λz is constructed as follows. Let r1e

iθ1 , r1e
iθ2 be the points in {z ∈ C : |z| = r1} ∩ Sd and let

P̃ = r1e
iθ̃1 , Q̃ = r1e

iθ̃2 be the points in {z ∈ C : |z| = r1} ∩ S′. We assume θ1 < θ̃1 < θ̃2 < θ2.
We define Λ1 := [0, r1]ei(d2−θ/2), Λ2 is the arc of the circle of radius r1 from r1e

i(d2−θ/2) to

r1e
i(θ1+θ̃1)/2. We also put Λ3 := [r1e

i(θ1+θ̃1)/2, Rei(θ1+θ̃1)/2], with R = R(z) > 0 to be determined.

Λ4 is the arc of circle from Rei(θ1+θ̃1)/2 to Rei(θ2+θ̃2)/2, Λ5 := [r1e
i(θ2+θ̃2)/2, Rei(θ2+θ̃2)/2], Λ6 is

the arc of the circle of radius r1 from r1e
i(θ2+θ̃2)/2 to r1e

i(d2+θ/2) and Λ7 := [0, r1]ei(d2+θ/2). We
finally define the integration path

Λz := Λ1 + Λ2 + Λ3 + Λ4 − Λ5 + Λ6 − Λ7,

see Figure 2. In case that |z| < r̃ = k̃r1
Kρ(2) , where k̃ is given in (3.5), K is defined in (3.4),

and ρ(·) is as in Lemma 3.2, then one can choose P̃ = Q̃ and remove Λ3, Λ4 and Λ5 from the

concatenation. Otherwise, R := ρ(2)K

k̃
|z|.

For the first part of the proof, we observe from (35) in [28] that∫ ∞(τ)

0
E(zξ)

e(wξ)

wξ
dξ =

1

w − z
,

for every pair of complex numbers (z, w) in which both sides of the previous expression are
defined. Hence, if u ∈ O(G ∪ Sd1) then one may replace the contour Γz in (4.1) by Λz.



13

Figure 2: Integration path Λz

We now provide the estimates in (4.2). We first observe (see (17) in [18]) that

(4.3)

∣∣∣∣∣
∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξ

∣∣∣∣∣ ≤ A0B
n
0me(n), n ≥ 0,

valid for all z ∈ C with |z| ≤ r̃ and τ ∈
(
− arg(ω)− ω(me)π

2 ,− arg(ω) + ω(me)π
2

)
, for ω ∈ C with

|ω| = r1. This entails there exist A11, B11 > 0 such that∥∥∥∥∥ 1

2πi

∫
Λj

u(ω)

∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξdω

∥∥∥∥∥
E

≤

(
sup

|ω|=r1,ω∈Sd2 (θ;2r1)
‖u(ω)‖

)
A11B

n
11me(n),

for j = 2, 6, valid for every n ∈ N0. We recall that in this case Λ3,Λ4 and Λ5 do not appear
in the integration path. It only remains to give upper bounds regarding the paths Λ1 and Λ7,
which are postponed.

If |z| > r̃, for every ω ∈ Λ2 ∪ Λ6 one can choose τ with

τ ∈
(
− arg(ω)− ω(me)π

2
,− arg(ω) +

ω(me)π

2

)
∩
(
− arg(z) +

ω(me)π

2
,− arg(z) + 2π − ω(me)π

2

)
.

This entails (see (22)–(26) in the proof of Theorem 3 [18]) the existence of A12, B12 > 0 with∥∥∥∥∥ 1

2πi

∫
Λj

u(ω)

∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξdω

∥∥∥∥∥
E

≤

(
sup

|ω|=r1,ω∈Sd2 (θ;2r1)
‖u(ω)‖

)
A12B

n
12me(n),

for j = 2, 6, and all n ∈ N0. The previous expression can be bounded from above by

A12B
n
12me(n) exp(M b(C12|z|))
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for some C12 > 0 taking into account the growth at infinity determined by v and the choice of
the integration paths. On the other hand, parametrizing the integration path Λ3 and analogous
estimates as in the previous expression yield∥∥∥∥∥ 1

2πi

∫
Λ3

u(ω)

∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξdω

∥∥∥∥∥
E

≤ A13B
n
13me(n) exp(M b(C13|z|)),

for some A13, B13, C13 > 0 (see (28) in [18]). These same upper bounds hold for the integration
along Λ5. Again, the parametrization of Λ4 and usual estimates yield∥∥∥∥∥ 1

2πi

∫
Λ4

u(ω)

∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξdω

∥∥∥∥∥
E

≤ A14B
n
14me(n) exp(M b(C14|z|)),

for some A14, B14, C14 > 0 (see (31) in [18]).
At this point, it only remains to provide upper bounds for

(4.4)

∥∥∥∥∥ 1

2πi

∫
Λj

u(ω)

∫ ∞(τ)

0
ξnE(zξ)

e(ωξ)

ωξ
dξdω

∥∥∥∥∥
E

for j = 1, 7 for all z ∈ S̃. Let n ∈ N0. We write û(z) =
∑

p≥0 upz
p and define

v(z) :=
1

zn

u(z)−
n−1∑
p=0

upz
p

 .

Lemma 4.2. The function v belongs to OMb
(Sd1 ,E). In addition to this, for every S′ ≺ Sd1

there exist C̃, B̃, Ã > 0, which do not depend on n, such that

‖v(z)‖E ≤ C̃Ã
nMa

n exp

(
M b

(
|z|
B̃

))
,

for all z ∈ S′.

Proof. It is clear that v ∈ OMb
(Sd1 ,E). We have that for all S′ ≺ Sd1 one has that (3.2) holds

for some C,K > 0.
Bearing in mind that u admits û as its asymptotic expansion, there exist K1, C̃1, Ã1 > 0

such that

(4.5) ‖v(z)‖E ≤ C̃1Ã
n
1M

a
n ,

for all z ∈ S′ with |z| ≤ K1, provided that the opening of Sd1 is small enough. On the other
hand, for every z ∈ S′ with |z| ≥ K1 and all 0 ≤ p ≤ n− 1, one can apply Lemma 3.5 and usual
estimates to arrive at ∥∥upzp−n∥∥E ≤ 1

Kn−p
1

C̃1Ã
p
1M

a
p ≤ C̃2Ã

n
2M

a
n .

Also,

(4.6)
‖u(z)‖E
|z|n

≤ 1

Kn
1

C exp(M b(|z|/K))

for all z ∈ S′ with |z| ≥ K1. The result follows from here.
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Observe that for every n ∈ N0 one has that

(4.7) ∂nme,zu(z) = ∂nme,z

u(z)−
n−1∑
p=0

upz
p

 = ∂nme,z(z
nv(z)).

In view of (4.7) one may substitute the study of upper estimates of (4.4) by those of

(4.8) Ij :=

∥∥∥∥∥ 1

2πi

∫
Λj

v(ω)

∫ ∞(τ)

0
ξnωnE(zξ)

e(ωξ)

ωξ
dξdω

∥∥∥∥∥
E

.

We provide upper bounds for (4.8) for j = 1, which remain valid for the case j = 7.
In view of Lemma 4.2, one derives

(4.9) ‖v(ω)‖E ≤ C̃1Ã
n
1M

a
n exp

(
M b

(
|ω|
B̃

))
≤ C̃1 exp

(
M b

(
r1

B̃

))
Ãn1M

a
n .

By Proposition 2, [18] there exists ε > 0, such that the estimation (4.2) holds for z ∈
S̃ ∩ D(0, ε). Hence, we may assume that |z| ≥ ε. Let ME be a positive constant given in
Definition 3.4.

We split the path of integration in the inner integral in (4.8) into the segment [0, eiτME/|z|]
and the ray [eiτME/|z|,∞(τ)], and we interchange the order of integration in (4.8). Next, we

observe that arg(ω) = d2 − θ/2 and arg(ξ) = τ ∈ (−arg(ω)− πω(me)
2 ,−arg(ω) + πω(me)

2 ). Hence

(4.10) I1 ≤
1

2π
sup
ω∈Λ1

‖v(ω)‖E
(∫ ME/|z|

0
|E(zseiτ )|

∫ r1

0
snwn|e(wseiθ̃)|dw

w

ds

s

+

∫ ∞
ME/|z|

|E(zseiτ )|
∫ r1

0
snwn|e(wseiθ̃)|dw

w

ds

s

)
=:

1

2π
sup
ω∈Λ1

‖v(ω)‖E(I11 + I12),

for θ̃ := d2 − θ/2 + τ ∈ (−πω(me)/2, πω(me)/2).
Observe that

(4.11)

∫ r1

0
snwn|e(wseiθ̃)|dw

w
≤
∫ sr1

0
tn−1|e(teiθ̃)|dt.

If s < ME/|z| then using (3.3) we continue the estimation (4.11) by

(4.12)

∫ r1s

0
tn−1|e(teiθ̃)|dt ≤ C

∫ r1s

0
tn−1tαdt ≤ Crn+α

1

n+ α
sn+α ≤ C̃2Ã

n
2s
n+α,

for some C̃2, Ã2 > 0 and α > 0.
By (4.12) we get

(4.13) I11 ≤ sup
|ζ|≤ME

|E(ζ)|
∫ ME/ε

0
C̃2Ã

n
2s
n+α−1ds ≤ C̃3Ã

n
3 ,

for some C̃3, Ã3 > 0.
On the opposite case s ≥ ME/|z|, using Lemma 3.1 and Lemma 3.6 and (3.4) we estimate

(4.11) by

(4.14)

∫ r1s

0
tn−1|e(teiθ̃)|dt ≤ C̃4Ã

n
4me(n),
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for some constants C̃4, Ã4 > 0.
Since θ′ < θ and arg(z) ∈ (d2 − θ′/2, d2 + θ′/2), there exists δ > 0 such that for every

z ∈ S̃ there exists τ ∈ (−d2 + θ/2 − πω(me)/2,−d2 + θ/2 + πω(me)/2) satisfying arg(z) + τ 6∈
(−πω(me)/2− δ, πω(me)/2 + δ). Hence, using (3.6) and (4.14) we estimate

(4.15) I12 ≤ C̃4Ã
n
4me(n)

c̃2

|z|β

∫ ∞
Me/|z|

1

sβ+1
ds ≤ C̃5Ã

n
5me(n),

for some C̃5, Ã5 > 0 and β > 0.
Taking into account (4.9), (4.10), (4.13) and (4.15), upper estimates as above yield

I1 ≤ C̃6C̃
n
7me(n)Ma

n exp
(
M b(C̃8|z|)

)
,

for some C̃j > 0, 6 ≤ j ≤ 8.
This concludes the proof of (4.2).

In the last part of this section, we describe compatibility conditions regarding asymptotic
expansions and moment derivation, which allows to provide a differential structure to the set of
multisummable formal power series.

Lemma 4.3. In the situation of Theorem 4.2, one has that ∂me,zu(z) is the Ma-sum of ∂me,zû(z)
in G.

Proof. Observe that Eme(zξ) =
∑

n≥0
(zξ)n

me(n) . Therefore, for every p ≥ 0 one has

lim
z→0

∂pme,zEme(zξ) =
ξp

me(0)
.

Analogously,

lim
z→0

∂pzEme(zξ) =
p!

me(p)
ξp,

which yields

lim
z→0

∂pme,zEme(zξ) =
me(p)

me(0)p!
lim
z→0

∂pzEme(zξ).

In view of (4.1), this means that given u which admits û(z) =
∑

n≥0 unz
n as its asymptotic

expansion at the origin in G, then

lim
z→0,z∈G

∂pme,zu(z) =
me(p)

me(0)p!
lim

z→0,z∈G
∂pzu(z)

=
me(p)

me(0)p!
∂pz û(z) |z=0 =

me(p)

me(0)p!
p!up =

me(p)

me(0)
up.

On the other hand,

∂pme,zû(z) =
∑
n≥0

un+pme(n+ p)

me(n)
zn,

which entails that

∂pme,zû(z) |z=0 = up
me(p)

me(0)
.

We conclude that
lim

z→0,z∈G
∂pme,zu(z) = ∂pme,zû(z) |z=0 .

This is an equivalent condition for ∂me,zu(z) to admit ∂me,zû(z) as its asymptotic expansion in
G.
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Corollary 4.3. Let me = (me(p))p≥0 be a sequence of moments, and let M be a strongly regular
sequence which admits a nonzero proximate order. We also choose positive numbers a, b such
that ω(M) < 2/(a+ b). Given any multidirection (d1, d2) ∈ R2 such that |d1− d2| < aω(M)π

2 , the
space E{z}(Mb,Ma+b),(d1,d2) is closed under me-differentiation.

Proof. In view of Lemma 3.3, we have that Mb is a strongly regular sequence which admits a
nonzero proximate order (see Remark 4.8 (i), [27]). This guarantees the existence of a moment
sequence meb := (me(p))p≥0 associated with some kernel function eb for Mb-summability.

Let û ∈ E{z}(Mb,Ma+b),(d1,d2). It holds that B̂m
eb
û is Ma-summable in direction d2. Equiva-

lently, there exists U ∈ O(G,E), for some sectorial region G of bisecting direction d2 and opening
larger than aπω(M) such that U admits B̂m

eb
û as its Ma-asymptotic expansion in G. Lemma 4.3

guarantees that ∂me·meb ,zU(z) is the Ma-sum of ∂me·meb ,z(B̂meb û) in G.
We recall from Lemma 4.1 that

∂me·meb ,z(B̂meb û) = B̂m
eb

(∂me,zû(z)) .

This entails that the formal power series B̂m
eb

(∂me,zû(z)) is Ma-summable along direction d2.
Moreover, its sum can be extended to an infinite sector Sd1 of bisecting direction d1, which

belongs to OMb
(Sd1 ,E) due to the fact that assumptions in Theorem 4.2 hold, and regarding

(4.2). This allows to conclude that ∂me,zû(z) ∈ E{z}(Mb,Ma+b),(d1,d2).

As a consequence, a definition of moment derivative for multisums of formal power series
can be stated.

Definition 4.2. Let me = (me(p))p≥0 be a sequence of moments, and let M be a strongly
regular sequence which admits a nonzero proximate order. We also choose positive numbers a, b
such that ω(M) < 2/(a+b). Given any multidirection (d1, d2) ∈ R2 such that |d1−d2| < aω(M)π

2 .

For every f̂ ∈ E{z}(Mb,Ma+b),(d1,d2) we define

∂me,z(S(Mb,Ma+b),(d1,d2)(f̂)) := S(Mb,Ma+b),(d1,d2)(∂me,z f̂).

We conclude with some properties of multisummable series which will appear in the next
section.

Lemma 4.4. Let E be the Banach space of holomorphic functions on some nonempty closed
neighborhood of the origin, D, endowed with the supremum norm. Let Mj for j = 1, 2 be two
strongly regular sequences admitting nonzero proximate orders, with ω(M1) < ω(M2) < 2. Let
(d1, d2) ∈ R2 such that |d1 − d2| < π(ω(M2)− ω(M1)). We also consider a moment sequence m
and a(z) ∈ O(D).

For every f̂(t, z) ∈ E[[t]] with f̂ ∈ E{t}(M1,M2),(d1,d2), one has:

� a(z)f̂(t, z) ∈ E{t}(M1,M2),(d1,d2).

� ∂m,z f̂ ∈ E′{t}(M1,M2),(d1,d2), where E′ is the Banach space of holomorphic functions on

some D
′ ⊆ D endowed with the supremum norm.

Proof. We write Mj := (Mj,p)p≥0 for j = 1, 2. Regarding Proposition 3.3, one can write f̂ = f̂1+

f̂2, with f̂j being Mj-summable along direction dj , j = 1, 2. We write f̂j(t, z) =
∑

p≥0 aj,p(z)t
p ∈

E[[t]] for j = 1, 2. We observe that

a(z)f̂(t, z) = a(z)f̂1(t, z) + a(z)f̂2(t, z).
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For j = 1, 2, there exists a sectorial region Gj of bisecting direction dj and opening larger than
ω(Mj)π, a holomorphic function fj ∈ O(G ×D), and positive constants C,A such that for all
t ∈ G′ ≺ G and all n ∈ N one has

(4.16)

∥∥∥∥∥∥fj(t, z)−
n−1∑
p=0

aj,p(z)t
p

∥∥∥∥∥∥
E

≤ CAnMj,n|t|n,

for all (t, z) ∈ G′ ×D. Therefore, the series a(z)f̂j(t, z) ∈ E[[t]] is such that∥∥∥∥∥∥a(z)fj(t, z)−
n−1∑
p=0

a(z)aj,p(z)t
p

∥∥∥∥∥∥
E

≤ C

(
sup
z∈D
|a(z)|

)
AnMj,n|t|n,

for all (t, z) ∈ G′ × D. This entails that afj is the Mj-sum of af̂j along direction dj . This

concludes that a(z)f̂(t, z) ∈ E{t}(M1,M2),(d1,d2) again in view of Proposition 3.3.
For the second part of the proof, it only remains to check that for all j = 1, 2 the formal

power series ∂m,z f̂j(t, z) ∈ E′[[t]] is Mj-summable along direction dj , for j = 1, 2. We first

observe that the coefficients of ∂m,z f̂j(t, z) as a formal power series in t are holomorphic and
bounded functions on some common neighborhood of the origin D′, due to the properties of m.
Let

gn(t, z) = t−n

fj(t, z)− n−1∑
p=0

aj,p(z)t
p


and define E′′ as the Banach space of holomorphic and bounded functions in G′ with the sup.
norm. We observe from (4.16), which is valid for all z ∈ D′, that∥∥∥∥∥∥t−n

fj(t, z)− n−1∑
p=0

aj,p(z)t
p

∥∥∥∥∥∥
E′

≤ CAnMj,n,

for all n ∈ N. We have obtained that

(4.17) ‖gn(t, z)‖E′′ ≤ CAnMj,n.

We write∥∥∥∥∥∥t−n
∂m,zfj(t, z)− n−1∑

p=0

(∂m,zaj,p(z))t
p

∥∥∥∥∥∥
E′

=

∥∥∥∥∥∥∂m,z
t−n

fj(t, z)− n−1∑
p=0

aj,p(z)t
p

∥∥∥∥∥∥
E′

.

An analogous argument as that of Theorem 4.2 yields

∂m,zgn(t, z) =
1

2πi

∫
|ω|=r̃j

gn(t, ω)

∫ ∞(τ)

0
E(zξ)

e(ωξ)

ω
dξdω,

for some r̃j < r, which can be bounded from above taking into account (4.3) and (4.17). This
way one arrives at

‖∂m,zgn(t, z)‖E′′ ≤ CA0B0r̃jm(1)AnMj,n,
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or equivalently ∣∣∣∣∣∣∂m,zfj(t, z)−
n−1∑
p=0

(∂m,zaj,p(z))t
p

∣∣∣∣∣∣ ≤ CA0B0r̃jm(1)AnMj,n|t|n,

valid for all (t, z) ∈ G′ ×D′. This yields that ∂m,zfj(t, z) is the Mj-sum of
∑

p≥0(∂m,zaj,p(z))t
p

along direction dj .

5 Application. Multisummability of formal solutions to singu-
larly perturbed moment differential equations

In this section, we state the main result of the present work, namely the multisummability
properties of the formal solutions to certain families of singularly perturbed moment differential
equations.

Let M = (Mp)p≥0 be a strongly regular sequence which admits a nonzero proximate order.
Let k, p ∈ N with 1 ≤ k < p. Let m1 = (m1(p))p≥0 and m2 = (m2(p))p≥0 be two sequences

of moments associated with two strongly regular sequences admitting nonzero proximate order,
and assume that m1 = (m1(p))p≥0 is the moment sequence associated with Ms1 for some s1 > 0.
Moreover, we assume that m2 = (m2(p))p≥0 is an M-sequence of order s2 > 0, i.e., there exist
positive constants c̃1, c̃2 such that

c̃p1(Mp)
s2 ≤ m2(p) ≤ c̃p2(Mp)

s2 , p ≥ 0.

We also assume that s2p > s1k, and that ω(M) s2pk < 2.
Let a(z) be a holomorphic function on some closed disc centered at the origin, say D, such

that a(z)−1 ∈ O(D). Moreover, f̂(z, ε) ∈ C[[z, ε]] and ψ̂j(ε) ∈ C[[ε]] are formal power series.
We consider a singularly perturbed moment differential equation of the form

(5.1)

{
εka(z)∂pm2,zω(z, ε)− ω(z, ε) = f̂(z, ε)

∂jm2,zω(0, ε) = ψ̂j(ε), j = 0, . . . , p− 1,

where ε is a small complex parameter.
The main result of the present work reads as follows.

Theorem 5.1. (i) There exists a unique formal solution ω̂(z, ε) ∈ C[[z, ε]] of (5.1), which
belongs to O(D)[[ε]] if f̂ ∈ O(D)[[ε]].

(ii) Let s1 ∈ (0, s2pk ) and choose (d1, d2) ∈ R2 with

|d1 − d2| <
πω(M)

2

(s2p

k
− s1

)
.

The following statements are equivalent:

(ii.1) ω̂(z, ε) is (Ms1 ,M
s2p
k )-summable in the multidirection (d1, d2) ∈ R2.

(ii.2) f̂(z, ε) and ∂jm2,zω̂(0, ε), j = 0, 1, . . . , p − 1, are (Ms1 ,M
s2p
k )-summable in the multi-

direction (d1, d2).
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The proof of the main result is left to the end of the work, and is preceded by some aux-
iliary results modifying the shape of the main problem or stating asymptotic results of related
problems.

Let û = εkŵ. Then equation (5.1) can be rewritten in the form

(5.2) a(z)∂pm2,zû(z, ε)− ε−kû(z, ε) = f̂(z, ε).

Let us write û(z, ε) =
∑

n≥k un(z) εn

m1(n) . Then the following lemma holds for the formal operator

B̂m1,ε:

Lemma 5.1. If û ∈ εkC[[z, ε]] then B̂m1,ε(ε
−kû) = ∂km1,εB̂m1,εû.

Proof. Notice that

B̂m1,ε(ε
−kû(z, ε)) =

∑
n≥0

un+k(z)
εn

m1(n)m1(n+ k)

= ∂km1,ε

∑
n≥0

un+k(z)
εn+k

(m1(n+ k))2
= ∂km1,εB̂m1,εû(z, ε).

After applying the formal Borel transform B̂m1,ε to both sides of (5.2), from Lemma 5.1 we
receive

(5.3) a(z)∂pm2,zÛ(z, ε)− ∂km1,εÛ(z, ε) = F̂ (z, ε),

where Û(z, ε) = B̂m1,εû(z, ε) and F̂ (z, ε) = B̂m1,εf̂(z, ε).
We fix s1, s2 > 0 such that s2p > s1k. Let M = (Mp)p≥0 be a strongly regular sequence

which admits nonzero proximate order.
The following result is a direct consequence of Lemma 3.8

Lemma 5.2. The formal power series ω̂(z, ε) is (Ms1 ,M
s2p
k )-multisummable (with respect to ε)

in the multidirection (d1, d2) if and only if û(z, ε) is (Ms1 ,M
s2p
k )-multisummable (with respect

to ε) in the multidirection (d1, d2). Let ω and u be the corresponding (Ms1 ,M
s2p
k )-sums. Then,

it holds that u = εkω.

The next result is a direct consequence of Lemma 5.2 and Definition 3.8.

Proposition 5.1. The formal power series ŵ(z, ε) is (Ms1 ,M
s2p
k )-multisummable in the admis-

sible multidirection (d1, d2) if and only if the following conditions are met

1. Û is M
s2p
k
−s1-summable in the direction d2,

2. the sum of Û , denoted by U , is analytically continued to Sd1 and U ∈ OMs1 (Sd1 ,E).

By Theorem 4 from [18] the formal power series Û(z, ε) is M
s2p
k
−s1-summable in the direction

d2 if and only if F̂ (z, ε) and ∂jm2,zŵ(0, ε), j = 0, 1, . . . , k− 1, are M
s2p
k
−s1-summable in the same

direction d2.
The next result extends Lemma 4 and Theorem 4, [18].
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Theorem 5.2 (Compare Lemma 4 and Theorem 4, [18]). Let us consider the Cauchy problem

(5.4)

{
(∂km1,t − a(z)∂pm2,z)u(t, z) = f̂(t, z) ∈ C[[t, z]]

∂jm1,t
u(0, z) = ϕj ∈ O(D),

with D being a fixed neighborhood of the origin.

1. There exists a unique formal solution û(t, z) ∈ C[[t, z]] of (5.4), which belongs to O(D)[[t]]
if f̂ ∈ O(D)[[t]].

2. Let E denote the Banach space of holomorphic functions in D with the norm of the supre-
mum. Assume that f̂ ∈ O(D)[[t]]. The following statements are equivalent:

2.1. û(t, z) is M
s2p
k
−s1-summable in direction d2 (seen as a formal power series in t with

coefficients in E) with sum u(t, z) being an analytic solution of (5.4), and moreover
u(t, z) ∈ OMs1 (Sd1 ,E′), where E′ stands for the Banach space of holomorphic and
bounded functions defined on D(0, r′) for some 0 < r′ < r, endowed with the supre-
mum norm.

2.2. f̂(t, z) and ∂jm2,zû(t, 0) are M
s2p
k
−s1-summable in direction d2 with sums f(t, z) and

∂jm2,zu(t, 0), respectively. Moreover, f(t, z) ∈ OMs1 (Sd1 ,E) and ∂jm2,zu(t, 0) ∈ OMs1 (Sd1).

Proof. The proof heavily rests on that of Lemma 4 and Theorem 4, [18]. We only give details
at the points in which it differs from the proof of those previous results.

The existence of a unique formal solution û(t, z) follows from the recursion satisfied by
their coefficients, written as a formal power series in t. Holomorphy of the coefficients is also
guaranteed from that recursion formula.

For the second statement, we first observe that the implication (2.1.⇒ 2.2.) follows from the
fact that Ms2p/k−s1-summable formal power series along any fixed direction are compatible with
respect to sums, product, and also moment derivation (see Corollary 1, [18]), we obtain that
f̂(t, z) and ∂jm2,zû(t, 0) are Ms2p/k−s1-summable along the same direction. In addition to this,
f(t, z) ∈ OMs1 (Sd1 ,E) due to Theorem 4.2. It is easy to check that ∂jm2,zu(t, 0) ∈ OMs1 (Sd1).

We proceed to prove the implication (2.2.⇒ 2.1.). Let D := D(0, r). We denote by (E, ‖·‖E)
the Banach space of holomorphic and bounded functions on D, where ‖·‖E is the norm defined
by

‖f(z)‖r :=
∑
p≥0

|fp|rp,

for f ∈ O(D), with f(z) =
∑

p≥0 fpz
p for z ∈ D. Denoting ω̂(t, z) := ∂pm2,zû(t, z), one has that

ω̂(t, z) is a formal solution of(
1− 1

a(z)
∂km1,t∂

−p
m2,z

)
ω̂(t, z) = ĝ(t, z),

where ĝ(t, z) = a(z)−1∂km1,t(ψ̂0(t)+zψ̂1(t)+ . . .+zp−1ψ̂p−1(t))−a(z)−1f̂(t, z), and with ψ̂0(t) =

û(t, 0), ψ̂j(t) = m2(0)
m2(j)∂

j
m2,zû(t, 0). We also define

ω̂(t, z) =
∑
q≥0

ω̂q(t, z),

with ω̂0(t, z) = ĝ(t, z) and ω̂q(t, z) = a(z)−1∂km1,t∂
−p
m2,zω̂q−1(t, z) for q ≥ 1. From the hypotheses

made one has that ω̂0(t, z) ∈ E[[t]] is Ms2p/k−s1-summable in direction d2, with sum ω0(t, z) ∈
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O(G×D), for some sectorial region G of opening larger than π(s2p/k − s1)ω(M) and bisecting
direction d2. By Theorem 4, [18] and by Theorem 4.2 we obtain that for every G′ ≺ G and
every S′ ≺ S there exist positive constants C4, C5, C6 such that∥∥∂nm1,tω0(t, z)

∥∥
r
≤ C4C

n
5m1(n)M

s2p
k
−s1

n exp (M s1(C6|t|)) ≤ C̃1C̃
n
2M

s2p
k

n exp (M s1(C6|t|)) ,

for all t ∈ G′∪S′ and n ∈ N0, and some C̃1, C̃2 > 0. An induction argument and the application
of Lemma 5 [18] (see the proof of Theorem 4, [18]) yield that ω̂q(t, z) ∈ E[[t]] is Ms2p/k−s1-
summable in direction d2, and∥∥∂nm1,tωq(t, z)

∥∥
r̃
≤ C̃1C

qC̃qk+n
2 Cn5M

s2p
k

qk+n

|z|pq

m2(pq)
exp (M s1(C6|t|)) ,

for all t ∈ G′ ∪ S′, z ∈ D with r̃ = |z| and with C =
∥∥a(z)−1

∥∥
r
. It is direct to check that∑

q≥0

∥∥∂nm1,tωq(t, z)
∥∥
r̃
≤ C̃1C̃

n
3M

s2p
k

n exp (M s1(C6|t|)) ,

valid for some C̃3 > 0 and all t ∈ G′ ≺ G, all z ∈ D(0, r′), for some r′ > 0. This entails that

ω(t, z) :=
∑

q≥0 ωq(t, z) is a holomorphic function on (G∪Sd1)×D(0, r′) which is the M
s2p
k -sum

of ω̂(t, z) =
∑

q≥0 ω̂q(t, z) ∈ E[[t]] along direction d2. A direct application of Watson’s lemma
(Corollary 4.12, [27]) allows us to conclude that the sum of û(t, z) ∈ E[[t]], denoted by u(t, z) is
an analytic solution of (5.4) with u(t, z) ∈ OMs1 (Sd1 ,E′), where E′ stands for the Banach space
of holomorphic and bounded functions defined on D(0, r′).

All the previous arguments allow us to conclude with the proof of the main result of the
present work.

Proof of Theorem 5.1. It is straightforward to check that (5.1) admits a unique formal solution
which is obtained from the unique solution Û(t, z) of (5.4) obtained in Theorem 5.2 by reversing
the relations û = εkω̂ and Û(z, ε) = B̂m1,εû(z, ε).

If ω̂(z, ε) ∈ E[[ε]] is (Ms1 ,M
s2p
k )-summable in (d1, d2), it is clear that a(z)∂pm2,zω̂(z, ε) ∈

E[[ε]] is also (Ms1 ,M
s2p
k )-summable in (d1, d2), and from Lemma 3.8 and Lemma 4.4 we have

that εka(z)∂pm2,zω̂(z, ε) also belongs to E{ε}
(Ms1 ,M

s2p
k ),(d1,d2)

. The sum of two elements in

E{ε}
(Ms1 ,M

s2p
k ),(d1,d2)

remains in that space, which in view of (5.1) entails that

f̂(z, ε) ∈ E{ε}
(Ms1 ,M

s2p
k ),(d1,d2)

.

It is clear that ω̂ ∈ E{ε}
(Ms1 ,M

s2p
k ),(d1,d2)

implies ∂jm2,zω̂(0, ε) ∈ C{ε}
(Ms1 ,M

s2p
k ),(d1,d2)

.

We proceed to give a proof for the implication (ii.2) ⇒ (ii.1). In view of Proposition 5.1

one only has to check that Û ∈ E[[ε]] is M
s2p
k
−s1-summable in direction d2 and its sum can be

extended to an infinite sector of bisecting direction d1, say Sd1 , being that extension in the space
OMs1 (Sd1 ,E). Û turns out to be a formal solution of (5.3).

We observe that F̂ (z, ε) ∈ E[[ε]] and ∂jm1,εÛ(z, 0) are both M
s2p
k
−s1-summable in direction

d2. On the one hand, F̂ (z, ε) = B̂f̂(z, ε) and f̂ ∈ E[[ε]] is (Ms1 ,M
s2p
k )-multisummable in (d1, d2).

On the other hand, we have

B̂m1,ε(∂
j
m2,zω̂(0, ε)) = ∂jm2,z(B̂m1,εω̂(0, ε)) = ∂jm2,z(∂

k
m1,εÛ)(0, ε),
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which is M
s2p
k
−s1-summable in d2.

We are now in conditions to apply Theorem 5.2 to arrive at û(z, ε) ∈ E[[ε]] being (Ms1 ,M
s2p
k )-

multisummable in (d1, d2). We conclude after applying Lemma 3.8 that ω̂(z, ε) ∈ E[[ε]] is

(Ms1 ,M
s2p
k )-multisummable in (d1, d2).

According to our best knowledge, the main result of the paper is new even in the case
of singularly perturbed differential equations and classical multisummability (for the classical
approach to multisummability see Section 10 [1] or Section 7 [19]). Namely, putting M = m2 =
(p!)p≥0 and s2 = 1 in Theorem 5.1 we conclude that

Corollary 5.3. (i) Let a(z) ∈ O(D) be such that also a(z)−1 ∈ O(D). Moreover, f̂(z, ε) ∈
C[[z, ε]] and ψ̂j(ε) ∈ C[[ε]] are formal power series. Then there exists a unique formal
solution ω̂(z, ε) ∈ C[[z, ε]] of the singularly perturbed differential equation of the form{

εka(z)∂pzω(z, ε)− ω(z, ε) = f̂(z, ε)

∂jzω(0, ε) = ψ̂j(ε), j = 0, . . . , p− 1,

where ε is a small complex parameter. If additionally f̂ ∈ O(D)[[ε]] then also ω̂(z, ε) ∈
O(D)[[ε]].

(ii) Let s ∈ (0, pk ) and choose (d1, d2) ∈ R2 with |d1−d2| < π
2 ( pk −s). The following statements

are equivalent:

(ii.1) ω̂(z, ε) is (kp ,
1
s )-summable in the multidirection (d1, d2).

(ii.2) f̂(z, ε) and ∂jz ω̂(0, ε), j = 0, 1, . . . , p − 1, are (kp ,
1
s )-summable in the multidirection

(d1, d2).

Remark: Since mα = (Γ(1 + pα))p≥0 is the moment sequence associated with (p!α)p≥0 for
every α > 0, the main results of the paper (Theorems 4.2 and 5.1) hold in particular for the
operator ∂mα,z connected with the Caputo fractional derivative ∂αz . On the other hand ([p]q!)p≥0

is not the sequence of moments in the sense of Definition 3.4. Hence the main results do not
concern the q-difference operator Dq,z. We refer to the introduction of the present work for the
notation used for these derivation operators.
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[16] A. Lastra, S. Michalik, M. Suwińska, Estimates of formal solutions for some generalized
moment partial differential equations, J. Math. Anal. Appl. 500 (2021), no. 1, Paper No.
125094, 18 pp. doi:10.1016/j.jmaa.2021.125094
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