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In this paper we deal with the following problem: given an algebraic plane curve C, 
implicitly defined, we determine its “asymptotic family”, that is, the set of algebraic curves 
that have the same asymptotic behavior as C.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The notion of an infinity branch reflects the status of a curve at the points with sufficiently large coordinates. In fact, 
an infinity branch is associated to a projective place centered at an infinity point, and it can be parametrized by means of 
Puiseux series.

An infinity branch B is a very important tool for analyzing the behavior at infinity of an implicit real algebraic plane 
curve. Hence, an infinity branch is applicable by itself to real world problems which are of special interest in the field of 
computer aided geometric design (CAGD). For instance, determining the infinity branches of a curve is an important step 
in sketching its graph as well as in studying its topology and, in general, in a great variety of applications in computer 
aided design (CAD), science and engineering, and in particular some particular problems which can be described by partial 
differential equations (see e.g. Arnold (1989), Arnold (1990), Bazant and Crowdy (2005), Caflisch and Papanicolau (1993), 
Chorin and Marsden (2000), Eggers and Fontelos (2015), Gao and Chen (2012), González-Vega and Necula (2002), Greuel et 
al. (2007), Hong (1996), Landau and Lifshitz (1976) and Zeng (2007)).

If a branch B can be defined by some explicit equation of the form y = f (x) (or x = g(y)), where f (or g) is a continuous 
function on an infinite interval, it is easy to decide whether C has an asymptote at B by analyzing the existence of the limits 
of certain functions when x tends to ∞ (or y tends to ∞) and if these limits can be computed, we may obtain the equation 
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of the asymptote of C at B . We recall that in analytic geometry, an asymptote of a curve is a line such that the distance 
between the curve and the line approaches zero as they tend to infinity. In some contexts, such as algebraic geometry, an 
asymptote is defined as a line which is tangent to a curve at infinity.

If the equation of the branch B cannot be converted into an explicit form, both the decision and the computation of the 
asymptote of C at B require some other tools. More precisely, an algebraic curve may have more general curves than lines 
describing the status of a branch at the points with sufficiently large coordinates. In this sense, we say that a curve C̃ is 
a generalized asymptote (or g-asymptote) of another curve C if the distance between C̃ and C tends to zero as they tend to 
infinity, and C cannot be approached by another curve of lower degree. Some important notions as the concepts of infinity 
branches, approaching curves and perfect curves, asymptotic behavior, etc., are introduced in previous papers (see Blasco 
and Pérez-Díaz (2014a), Blasco and Pérez-Díaz (2014b), Blasco and Pérez-Díaz (2015), Blasco and Pérez-Díaz (2020), Campo 
et al. (2022a) and Campo et al. (2022b)) and, in particular, some methods for computing the g-asymptotes for curves are 
presented.

In this paper, we intend to go further and given an algebraic plane curve C , implicitly defined, we deal with the prob-
lem of determining the set of algebraic curves that have the same asymptotic behavior as C . We refer to this set as the 
“asymptotic family” of the curve C .

The case of a curve with a unique regular infinity branch is addressed in Blasco and Pérez-Díaz (2014a) (see Theorem 3). 
Now we focus on curves with two or more regular infinity branches. More precisely, in this paper, we prove that the 
asymptotic behavior of an implicit “regular curve” (an implicit curve whose infinity points are all regular) is completely 
determined by its homogeneous forms of degree d and d − 1, and viceversa. That is, from fd and fd−1 we can compute 
an asymptote for each infinity branch of the curve. Conversely, given a set of regular asymptotes (that is, regular perfect 
curves), we can derive the set of all the curves that are approached at its different infinity branches by those asymptotes. 
In other words, we can determine the family of curves whose asymptotic behavior is defined by that set of asymptotes.

We have intended this paper to be self-contained. For this reason, we have included Section 2, where we review the 
theory of infinity branches and introduce the notions of convergent branches (that is, branches that get closer as they 
tend to infinity) and approaching curves (see Blasco and Pérez-Díaz (2014b)). In Section 3, we show how the asymptotic 
behavior of a curve can be described and in particular, we study which terms of the implicit equation determine that 
asymptotic behavior. These results will allow us to construct families of curves having the same asymptotic behavior as a 
given one. We generalize in this way Theorem 3 and Corollary 2 for the case of arbitrary non perfect curves. Finally, in 
Section 4, we present the conclusions and future work. The proofs of the main results (Theorems 4 and 5) as well as some 
previous technical lemmas appear in Section 5.

2. Notation and previous results

In this section, we introduce the notions of infinity branch, convergent branches and approaching curves, and we present 
some properties that allow us to compare the behavior of two implicit algebraic plane curves at infinity. For further details 
on these concepts and results, we refer to Blasco and Pérez-Díaz (2014b).

We consider an irreducible algebraic affine plane curve C over C defined by the irreducible polynomial f (x, y) ∈R[x, y]. 
Let C∗ be its corresponding projective curve, defined by the homogeneous polynomial

F (x, y, z) = fd(x, y) + zfd−1(x, y) + z2 fd−2(x, y) + · · · + zd f0 ∈ R[x, y, z],
where d := deg(C). We assume that (0 : 1 : 0) is not an infinity point of C∗ (otherwise, we may consider a linear change of 
coordinates).

In order to get the infinity branches of C, we work in the Y Z−chart, where the infinity points become affine. In this 
chart the curve is defined by the polynomial g(y, z) = F (1 : y : z). The infinity branches are constructed from the Puiseux 
solutions of g(y, z) = 0 around z = 0. There exist exactly degy(g) solutions given by different Puiseux series that can be 
grouped into conjugacy classes. More precisely, if C � z � denotes the field of formal Puiseux series, and

ϕ(z) = m + a1zN1/N + a2zN2/N + a3zN3/N + · · · ∈C � z �, ai �= 0, ∀i ∈N,

where N ∈ N , Ni ∈N, i = 1, . . ., and 0 < N1 < N2 < · · · , is a Puiseux series such that g(ϕ(z), z) = 0, and ν(ϕ) = N (i.e., N
is the ramification index of ϕ), the series

ϕ j(z) = m + a1cN1
j zN1/N + a2cN2

j zN2/N + a3cN3
j zN3/N + · · ·

where cN
j = 1, j = 1, . . . , N , are called the conjugates of ϕ . We easily observe that (1 : m : 0), m ∈C is an infinity point.

The set of all the conjugates of ϕ is called the conjugacy class of ϕ and it contains ν(ϕ) different series.
Since g(ϕ(z), z) = 0 in some neighborhood of z = 0 where ϕ(z) converges, there exists M ∈ R+ such that F (1 : ϕ(t) :

t) = g(ϕ(t), t) = 0 for t ∈C and |t| < M , which implies F (t−1 : t−1ϕ(t) : 1) = f (t−1, t−1ϕ(t)) = 0, for t ∈C and 0 < |t| < M . 
We set t−1 = z, and we obtain that

f (z, r(z)) = 0, z ∈C and |z| > M−1, where
2
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r(z) = zϕ(z−1) = mz + a1z1−N1/N + a2z1−N2/N + a3z1−N3/N + · · · , ai �= 0, ∀i ∈N

N, Ni ∈N, i = 1, . . ., and 0 < N1 < N2 < · · · .
Reasoning similarly with the N different series in the conjugacy class, ϕ1, . . . , ϕN , we get

ri(z) = zϕi(z−1) = mz + a1cN1
i z1−N1/N + a2cN2

i z1−N2/N + a3cN3
i z1−N3/N + · · ·

where c1, . . . , cN are the N complex roots of xN = 1. Under these conditions, we introduce the following definition.

Definition 1. An infinity branch of an affine plane curve C associated to the infinity point P = (1 : m : 0), m ∈ C, is a set 

B =
N⋃

j=1

L j , where L j = {(z, r j(z)) ∈C2 : z ∈C, |z| > M}, M ∈R+ , and

r j(z) = zϕ j(z−1) = mz + a1cN1
j z1−N1/N + a2cN2

j z1−N2/N + a3cN3
j z1−N3/N + · · ·

where N, Ni ∈N, i = 1, . . ., 0 < N1 < N2 < · · · , and cN
j = 1, j = 1, . . . , N . The subsets L1, . . . , LN are called the leaves of the 

infinity branch B .

Remark 1. An infinity branch is uniquely determined from one leaf, up to conjugation. That is, if B =
N⋃

i=1

Li , where Li =

{(z, ri(z)) ∈C2 : z ∈C, |z| > Mi}, and

ri(z) = zϕi(z−1) = mz + a1z1−N1/N + a2z1−N2/N + a3z1−N3/N + · · ·
then r j = ri, j = 1, . . . , N , up to conjugation; i.e.

r j(z) = zϕ j(z−1) = mz + a1cN1
j z1−N1/N + a2cN2

j z1−N2/N + a3cN3
j z1−N3/N + · · ·

where N, Ni ∈N , and cN
j = 1, j = 1, . . . , N .

By abuse of notation, we say that B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} (where M := max{M1, . . . , MN}). Moreover, we 
say that N is the ramification index of the branch B and we write ν(B) = N . Note that B has ν(B) leaves.

Remark 2. There exists a one-to-one relation between infinity places and infinity branches. In addition, each infinity branch 
is associated to a unique infinity point given by the center of the corresponding infinity place. More precisely, as we stated 
above, there exists M ∈R+ such that F (1 : ϕ(t) : t) = g(ϕ(t), t) = 0 for |t| < M , where

ϕ(z) = m + a1zN1/N + a2zN2/N + a3zN3/N + · · · ∈C � z � .

Thus, for t = 0 we get the infinity point P = (1 : ϕ(0) : 0) = (1 : m : 0) ∈ C∗ .
Reciprocally, given an infinity point P = (1 : m : 0), there must be, at least, one Puiseux solution ϕ such that ϕ(0) = m; 

this solution provides an infinity branch associated to P . Hence, we conclude that every algebraic plane curve has, at least, 
one infinity branch.

Remark 3. The procedure introduced above allows us to obtain the infinity branches of a curve C , under the assumption 
that (0 : 1 : 0) is not an infinity point of C∗ . However, a curve may have infinity branches, associated to the infinity point 
(0 : 1 : 0), which cannot be constructed in this way. We call them Type II infinity branches and they have the form {(r(z), z) ∈
C2 : z ∈ C, |z| > M}. A Type II infinity branch may be obtained by interchanging the variables x and y. See Blasco and 
Pérez-Díaz (2014b) for further details.

In the following, we introduce the notions of convergent branches and approaching curves. Intuitively speaking, two 
infinity branches converge if they get closer as they tend to infinity. This concept will allow us to analyze whether two 
curves approach each other.

Definition 2. Two infinity branches, B and B , are convergent if there exist two leaves L = {(z, r(z)) ∈C2 : z ∈C, |z| > M} ⊂
B and L = {(z, r(z)) ∈C2 : z ∈C, |z| > M} ⊂ B such that limz→∞(r(z) − r(z)) = 0. In this case, we say that the leaves L and 
L converge.

The following theorem provides a characterization for the convergence of two infinity branches.
3
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Theorem 1. The following statements hold:

1. Two leaves L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} and L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} are convergent if and only if the 
terms with non negative exponent in the series r(z) and r(z) are the same.

2. Two infinity branches B and B are convergent if and only if for each leaf L ⊂ B there exists a leaf L ⊂ B convergent with L, and 
reciprocally.

3. Two convergent infinity branches must be associated to the same infinity point.

For the following definition, we recall that given an algebraic plane curve C over C and a point p ∈C2, the distance from 
p to C is defined as d(p, C) = min{d(p, q) : q ∈ C}. Observe that this minimum exists because C is a closed set (see Blasco 
and Pérez-Díaz (2014b)).

Definition 3. Let C be an algebraic plane curve with an infinity branch B . We say that a curve C approaches C at its infinity 
branch B if there exists one leaf L = {(z, r(z)) ∈C2 : z ∈C, |z| > M} ⊂ B such that limz→∞ d((z, r(z)), C) = 0.

Theorem 2. Let C be a plane algebraic curve with an infinity branch B. A plane algebraic curve C approaches C at B if and only if C
has an infinity branch, B, such that B and B are convergent.

Corollary 1. Let C be an algebraic plane curve with an infinity branch B. Let C1 and C2 be two different curves that approach C at B. 
Then C1 and C2 approach each other.

Obviously, “approaching” is a symmetric concept, that is, C1 approaches C2 (at some infinity branch) if and only if C2
approaches C1. When this happens we say that C1 and C2 are approaching curves or that they approach each other.

Definition 4. We say that two curves have the same asymptotic behavior if each of them approaches the other one at all its 
infinity branches (see Blasco and Pérez-Díaz (2014b)).

Now, suppose that a curve C is approached, at one of its infinity branches, by a second curve C such that deg(C) <
deg(C). Then one may say that C degenerates, since it behaves at infinity as a curve of smaller degree. For instance, a 
hyperbola is a curve of degree 2 that has two real asymptotes, which implies that the hyperbola degenerates, at infinity, 
in two lines. Similarly, one can check that every ellipse has two asymptotes, although they are complex lines in this case. 
However, the asymptotic behavior of a parabola is different, since it cannot be approached at infinity by any line. This 
motivates the following definition:

Definition 5. An algebraic curve of degree d is a perfect curve if it cannot be approached by any curve of degree less than d.

A curve that is not perfect can be approached by other curves of smaller degree. If these curves are perfect, we call them 
g-asymptotes. More precisely, we have the following definition.

Definition 6. Let C be a curve with an infinity branch B . A g-asymptote (generalized asymptote) of C at B is a perfect curve 
that approaches C at B .

The notion of g-asymptote is similar to the classical concept of asymptote. The difference is that a g-asymptote is not 
necessarily a line, but rather a perfect curve. Actually, it is a generalization, since every line is a perfect curve (this fact 
follows from Definition 5). Throughout this paper we refer to g-asymptote simply as asymptote.

Remark 4. The degree of an asymptote is less or equal than the degree of the curve it approaches. In fact, an asymptote of 
a curve C at a branch B has minimal degree among all the curves that approach C at B .

In Blasco and Pérez-Díaz (2014a), we show that every infinity branch of a given algebraic plane curve implicitly defined 
has, at least, one asymptote and we show how to compute it. For this purpose, we rewrite the equation defining a branch 
B (see Definition 1) as

r(z) = mz + a1z1−n1/n + · · · + akz1−nk/n + ak+1z1−Nk+1/N + · · · (2.1)

where 0 < N1 < · · · < Nk ≤ N < Nk+1 < · · · and gcd(N, N1, . . . , Nk) = b, N = n b, N j = n j b, j = 1, . . . , k. That is, we have 
simplified the non negative exponents such that gcd(n, n1, . . . , nk) = 1. Note that 0 < n1 < n2 < · · · , nk ≤ n, and N < Nk+1, 
i.e. the terms a j z1−N j/N with j ≥ k + 1 are those which have negative exponent. We denote these terms as
4
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A(z) :=
∞∑

�=k+1

a�z−q� , q� = 1 − N�/N ∈ Q+, � ≥ k + 1.

Under these conditions, we introduce the definition of degree of a branch B:

Definition 7. Let B = {(z, r(z)) ∈C2 : z ∈C, |z| > M} (r(z) is defined in (2.1)) be an infinity branch associated to an infinity 
point P = (1 : m : 0), m ∈C. We say that n is the degree of B , and we denote it by deg(B).

Taking into account Theorems 1 and 2, we have that any curve C approaching C at B should have an infinity branch 
B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} such that the terms with non negative exponent in r(z) and r(z) are the same. In the 
simplest case, if A = 0 (i.e. there are no terms with negative exponent; see equation (2.1)), we obtain

r̃(z) = mz + a1z1−n1/n + a2z1−n2/n + · · · + akz1−nk/n, (2.2)

where a1, a2, . . . ∈ C \ {0}, m ∈ C, n, n1, n2 . . . ∈ N , gcd(n, n1, . . . , nk) = 1, and 0 < n1 < n2 < · · · . Note that r̃ has the same 
terms with non negative exponent as r, and r̃ does not have terms with negative exponent.

Let C̃ be the plane curve containing the branch B̃ = {(z, ̃r(z)) ∈ C2 : z ∈ C, |z| > M̃} (note that C̃ is unique since two 
different algebraic curves have finitely many common points). Observe that

Q̃(t) = (tn,mtn + a1tn−n1 + · · · + aktn−nk ) ∈C[t]2,

where n, n1, . . . , nk ∈ N , gcd(n, n1, . . . , nk) = 1, and 0 < n1 < · · · < nk , is a polynomial parametrization of C̃ . In Blasco and 
Pérez-Díaz (2014a), we prove that Q̃(t) is proper and that C̃ is an asymptote of C at B (see Lemma 3 and Theorem 2).
Next, we illustrate the above notions and results with an example.

Example 1. Let C and D be two plane curves implicitly defined by the irreducible polynomials

f (x, y) = 2y3x − y4 + 2y2x − y3 − 2x3 + x2 y + 3 ∈R[x, y], and

f (x, y) = y3x + y4 + y2x + y3 − x3 − x2 y + 2 ∈ R[x, y].
We first note that both curves have P = (1 : 0 : 0) as a common infinity point. We will see that C approaches D (and 
reciprocally) at the infinity branch associated to P (see Fig. 1).

First, we compute the infinity branch of C associated to P . For this purpose, we consider the corresponding projective 
curve C∗ which is defined by the homogeneous polynomial

F (x, y, z) = 2y3x − y4 + 2y2xz − y3z − 2x3z + x2 yz + 3z4 ∈R[x, y, z].
Now, we consider the curve defined by the polynomial g(y, z) = F (1 : y : z) and we note that g(p) = 0, where p = (0, 0). 
We compute the series expansion for the solutions of g(y, z) = 0. For this purpose, we use for instance the algcurves
package included in the computer algebra system Maple. We get that:

ϕ(t) = t1/3 − t/3 + t5/3/9 − 2t7/3/81 − t10/3/2 + · · · ∈C � t � .

That is, g(ϕ(t), t) = 0. Since ν(ϕ) = 3, we have the following three conjugate Puiseux series in the conjugacy class of ϕ . 
Thus, the infinity branch of C associated to P is given by B = L1 ∪ L2 ∪ L3, where Li = {(z, ri(z)) ∈C2 : z ∈C, |z| > M},

ri(z) = zϕi(z−1) = c2
i z2/3 − 1/3 + 1/9c2

i z−2/3 − 2/81c4
i z−4/3 − 1/2c7

i z−7/3 + · · · , ci = 1,2,3,

ci are the complex roots of x3 = 1.
On the other side, reasoning similarly with the curve D, we get that the infinity branch of D associated to P is given by 

B = L1 ∪ L2 ∪ L3, where Li = {(z, ri(z)) ∈C2 : z ∈C, |z| > M},

ri(z) = c2
i z2/3 − 1/3 + 1/9c2

i z−2/3 − 2/81c4
i z−4/3 − 2/3c7

i z−7/3 + · · · , ci = 1,2,3,

ci are the complex roots of x3 = 1.
We get that both branches are convergent since the terms with non-negative exponents in both series, ri y ri , are the 

same.
Now, we compute the asymptotes of C . Note that since f4(x, y) = −y4 + 2y3x, the infinity points are P1 = (1 : 2 : 0) y 

P2 = (1 : 0 : 0).
For P1 = (1 : 2 : 0), we have only one infinity branch, B1 associated to P1, where

r1(z) = 2z + 3z−3

− 9z−4

+ 27z−5

− 81z−6

+ · · ·

8 64 512 4096
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Fig. 1. Curve C approaching D at the infinity branch associated to P .

Fig. 2. Asymptotes C̃1 and C̃2 of the curve C.

(see the first part of this example). Then, ̃r1(z) = 2z, which implies that P̃1(t) = (t, 2t) parametrically defines the asymptote 
C̃1.

For P2 = (1 : 0 : 0), we have only one infinity branch, B2 associated to P2, where

r2(z) = z2/3 − 1

3
+ z−2/3

9
− 2z−4/3

81
+ · · · .

Then, ̃r2(z) = z2/3 − 1/3, which implies that P̃2(t) = (t3, t2 − 1/3) parametrically defines the asymptote C̃2.
In Fig. 2, we plot the given curve C and the asymptotes C̃1 and C̃2.

We complete this summary by introducing the notion of a regular perfect curve and some results concerning the asymp-
totic behavior of these curves.

Definition 8. A regular perfect curve is a curve having a unique infinity point, which is regular.

Theorem 3. Let C be a regular perfect curve defined by an irreducible polynomial f ∈R[x, y] of degree d. The asymptotic behavior of 
C is completely determined by fd and fd−1 .
6
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Corollary 2. Two regular perfect curves approach each other if and only if their terms of degree d and d − 1 are the same.

Therefore, given a regular perfect curve C , we can obtain the whole family of curves with the same asymptotic behavior 
as C , by just changing the terms of degree less than d − 1 in the implicit equation. The set of curves obtained in this way is 
called the “proximity class” of C and has the structure of a vector space.

Proposition 1. Let C be a regular perfect curve of degree d. The proximity class of C is isomorphic to R
(d−1)d

2 .

In order to illustrate the above notions, let us consider a plane curve C of degree d = 3 defined by the polynomial

f (x, y) = y3 + x3 + 3xy2 + 3x2 y + 5x2 + 3y − 1 ∈R[x, y].
Note that the homogeneous form of maximum degree is given by

f3(x, y) = y3 + x3 + 3xy2 + 3x2 y = (x + y)3.

Thus C has only one infinity point, P = (1 : −1 : 0), and one may easily check that P is regular. Thus, C is a regular perfect 
curve.
The curves within the proximity class of the given curve C are implicitly defined by the polynomials

f3(x, y) + f2(x, y) + a1x + a2 y + a3 =
y3 + x3 + 3xy2 + 3x2 y + 5x2 + a1x + a2 y + a3, ai ∈ R, i = 1,2,3.

We observe that any curve that belongs to this proximity class can be associated uniquely to the vector (a1, a2, a3) ∈R3.
Further details on this subject can be found in Blasco and Pérez-Díaz (2014a).

3. Asymptotic behavior of an implicit curve

In this section we show how the asymptotic behavior of a curve can be described and we study which terms of the 
implicit equation determine that asymptotic behavior. These results will allow us to construct families of curves having the 
same asymptotic behavior as a given one. We generalize in this way Theorem 3 and Corollary 2, above, for the case of 
arbitrary non perfect curves.

The proofs of the main results (Theorems 4 and 5) as well as some previous technical lemmas (Lemma 1) appear in 
Section 5.

Let C be a curve with k infinity branches B1, . . . , Bk , and suppose that we compute an asymptote Ai for each Bi, i =
1 . . . , k. Let A := {A1, . . . , Ak} be the set of asymptotes obtained in this way. The following two conditions are satisfied:

a) Every infinity branch of C is approached by some asymptote of A.
b) Every asymptote of A approaches some infinity branch of C .

From Definition 4 and Corollary 1, any other curve having the same asymptotic behavior as C must also satisfy these two 
conditions. For this reason, we say that the set A completely describes the asymptotic behavior of C .

Note that A might contain two or more asymptotes that are convergent among themselves. These asymptotes give us 
redundant information, so we just need one of them for describing the asymptotic behavior of the curve. This motivates the 
following definition.

Definition 9. An asymptotic system of an algebraic curve is a minimal set of asymptotes that completely describes its 
asymptotic behavior.

Note that we may consider different asymptotic systems for the same curve. However, all of them will have the same 
cardinality. Furthermore, if A1 and A2 are two different asymptotic systems of a curve C , then, for each Ai ∈ A1 there 
exists A j ∈ A2 such that Ai and A j are convergent, and viceversa. That is, there is a bijective correspondence between the 
elements of A1 and the elements of A2.

Remark 5. From the above considerations, given two algebraic curves C and D, the following statements are equivalent:

a) C and D have the same asymptotic behavior.
b) There exists an asymptotic system valid for both curves.
c) Any asymptotic system valid for one of the curves is also valid for the other.
7
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In Blasco and Pérez-Díaz (2014a), we provide an algorithm that allows us to obtain an asymptote for each infinity branch 
of a given curve, getting in this way an asymptotic system of the curve. Now we are interested in the inverse problem: we 
want to determine the set of curves whose asymptotic behavior is described by a given asymptotic system.

Definition 10. We define the asymptotic family of a curve C as the set of all curves having the same degree and the same 
asymptotic behavior as C (including C itself).

Note that having the same asymptotic behavior is an equivalence relation and the asymptotic families are the corre-
sponding equivalence classes. From Remark 5, any asymptotic system defines an asymptotic family of curves. In this paper 
we develop a method for obtaining the asymptotic family associated to a given asymptotic system. However, we need the 
infinity points involved to be regular, which motivates the following definition.

Definition 11. We say that an infinity branch is regular if it is associated to a regular infinity point. In addition, we say that 
a curve is asymptotically regular if all its infinity branches are regular.

Remark 6. Note that two infinity branches of an asymptotically regular curve will always diverge, in fact, they will be 
associated to different infinity points (see Theorem 1). Otherwise, the curve would have two infinity places centered at the 
same infinity point and this point would be singular. Thus, an asymptotic system of an asymptotically regular curve will 
contain exactly one asymptote for each infinity branch.

In the following lemma, given C an asymptotically regular curve with k infinity branches, we compute the homogeneous 
form fd(x, y) of the maximum degree of C .

Lemma 1. Let C be an asymptotically regular curve with k infinity branches B1, B2, . . . , Bk. For each i = 1, . . . , k, the branch Bi is 
associated to the infinity point pi = (1 : mi : 0) and it has ramification index Ni . Then, the homogeneous form of maximum degree of 
C is

fd(x, y) =
k∏

i=1

(y − mix)
Ni .

As a consequence, the degree of the curve is d = N1 + · · · + Nk.

From the previous lemma, we easily get the following results.

Corollary 3. The following statements hold:

1. Let C and D be two curves with the same asymptotic behavior and let C be asymptotically regular. Then, D is asymptotically 
regular if and only if it has the same degree as C .

2. The asymptotic family of an asymptotically regular curve C is composed of all the asymptotically regular curves with the same 
asymptotic behavior as C .

3. Let C be an asymptotically regular curve and let B be an infinity branch of C . Then, ν(B) = deg(B).

We want to find out which terms of the implicit equation determine the asymptotic behavior of a curve. Theorem 3
asserts that the asymptotic behavior is determined by the terms of degree d and d − 1, in the case of a regular perfect 
curve. Note that a regular perfect curve is just an asymptotically regular curve with a single infinity branch. Theorem 4, 
below, generalizes this result for the case of an asymptotically regular curve with an arbitrary number of infinity branches.

Theorem 4. Let C be an asymptotically regular curve defined by an irreducible polynomial f ∈ R[x, y] of degree d. The asymptotic 
behavior of C is completely determined by fd and fd−1 .

We have shown that the asymptotic behavior of an asymptotically regular curve can be determined from its homoge-
neous forms of degree d and d −1 (where d = deg( f )). At this point, an interesting question arises: is the opposite also true? 
That is, can we determine the homogeneous forms fd and fd−1 from the relevant terms of the Puiseux series corresponding 
to the different infinity branches? The answer to this question is provided by the following theorem.

Theorem 5. Two asymptotically regular curves have the same asymptotic behavior if and only if their terms of degree d and d − 1 are 
the same.

The following remark explains how Theorem 5 can be used to obtain the asymptotic family of an arbitrary asymptotically 
regular curve.
8
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Remark 7.

a) From Theorem 5, given an asymptotically regular curve C , implicitly defined, one can get the whole family of asymp-
totically regular curves with the same asymptotic behavior as C , by just changing the terms of degree less than d − 1
in the implicit equation. We will call these terms “irrelevant terms”.

b) Hence, given a set of regular perfect curves associated to different infinity points, we can obtain the asymptotic family 
defined by such set, that is, the family of curves which have exactly one infinity branch convergent with each of those 
curves (asymptotes). We do not need to compute the corresponding Puiseux expressions nor solve system (5.10). If the 
asymptotes are given implicitly, we can multiply their implicit polynomials and we obtain a (reducible) curve of the 
family. Hence we get fd and fd−1, which gives us the whole family (see Examples 2 and 3).

c) The idea just presented can be used to facilitate the computation of asymptotes. Given an implicitly defined curve we 
can, first of all, remove all irrelevant terms and then apply the algorithm. In fact, by doing this it is possible that the 
new implicit factor will be able to extract some asymptotes directly, or reduce the calculation to several curves of 
smaller degree.

From the proof of Theorem 5 (see Section 5), and Remark 7 (statement 1), one gets the following corollary.

Corollary 4. Any curve having the same asymptotic behavior as C is asymptotically regular if and only if it has the same degree as C . 
As a consequence, the family obtained by changing the irrelevant terms of C is precisely its asymptotic family.

The following result is a generalization of Proposition 1 for the case of asymptotically regular curves.

Proposition 2. The asymptotic family of a curve of degree d constitutes a vector space isomorphic to Rk, where k = (d − 1)d/2.

Proof. The result follows from Remark 7, by taking into account that the number of terms of degree less than d − 1 in a 
generic polynomial of degree d is (d−1)d

2 , and that any curve of the asymptotic family can be associated uniquely to a vector 
in R

(d−1)d
2 . �

Example 2. Let C be the algebraic plane curve defined by the implicit polynomial

f (x, y) = −x3 − 4x2 y − 5xy2 − 2y3 + y2.

One has that

f3(x, y) = −(x + 2y)(y + x)2, f2(x, y) = y2

and the infinity points (1 : −1 : 0), (−2 : 1 : 0) are regular. Therefore, C is an asymptotically regular curve and the whole 
family of asymptotically regular curves with the same asymptotic behavior as C is defined by the implicit polynomial

f3(x, y) + f2(x, y) + a1x + a2 y + a3, ai ∈R.

Fig. 3. Curve C (left) and asymptotes (right).
9
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Fig. 4. Curve C (left) and asymptotes (right).

By applying Blasco and Pérez-Díaz (2014a), one gets that the asymptotes to this family are two plane curves defined by the 
proper parametrizations

Q1(t) = (t,−t/2 + 1/2), Q2(t) = (−t2, t2 − t).

In Fig. 3, we plot the curve C (left), and the asymptotes C̃1 and C̃2 with the curve (right).

Example 3. Let C be the algebraic plane curve defined by the implicit polynomial

f (x, y) = −x4 y − 6x3 y2 − 13x2 y3 − 12xy4 − 3y5 − x4 − 8x3 y − 24x2 y2 − 32xy3 − 14y4 + y3.

One has that

f5(x, y) = −y(x2 + 3xy + y2)(x2 + 3xy + 3y2),

f4(x, y) = −x4 − 8x3 y − 24x2 y2 − 32xy3 − 14y4

and the infinity points are regular. Therefore, C is an asymptotically regular curve and the whole family of asymptotically 
regular curves with the same asymptotic behavior as C is defined by the implicit polynomial

f5(x, y) + f4(x, y) + a1x3 + a2 yx2 + a3 y2x + a4 y3 + a5x2 + a6 y2 + a7xy + a8x + a9 y + a10, ai ∈R.

We apply the algorithm Blasco and Pérez-Díaz (2014a) to the curve defined by the irreducible polynomial f5(x, y) + f4(x, y), 
and one gets that the asymptotes to the family of curves are the plane curves defined by the proper parametrizations

Q1(t) = (t,−1),

Q2(t) = (t, t(
√

5/2 − 3/2) + 3
√

5/5 − 3/2), Q3(t) = (t, t(−√
5/2 − 3/2) − 3

√
5/5 − 3/2),

Q4(t) = (t, ((t I − I)
√

3)/6 − t/2 − 1/3), Q5(t) = (t, ((−t I + I)
√

3)/6 − t/2 − 1/3).

In Fig. 4, we plot the curve C (left), and the asymptotes C̃1, C̃2 and C̃3 with the curve (right). Note that the asymptotes C̃4
and C̃5 are complex lines.

We observe that the implicit equations of the polynomials defining the asymptotes are given by

g1(x, y) = y + 1,

g2(x, y) = 10y
√

5 − 3
√

5 + 20x + 30y + 15, g3(x, y) = 10y
√

5 − 3
√

5 − 20x − 30y − 15

g4(x, y) = 6I y
√

3 + 5I
√

3 + 12x + 18y + 3, g5(x, y) = 6I y
√

3 + 5I
√

3 − 12x − 18y − 3.

If we consider the polynomial of degree 5 defined by 
∏5

i=1 gi(x, y), we obtain that the homogeneous forms of degree 5 and 
4 are f5(x, y) and f4(x, y).
10



E. Campo-Montalvo, M. Fernández de Sevilla, R. Magdalena Benedicto et al. Computer Aided Geometric Design 98 (2022) 102146
4. Conclusions and future work

In this paper, given an algebraic plane curve C , implicitly defined, we determine its “asymptotic family”, that is, the set 
of algebraic curves that have the same asymptotic behavior as C .

More precisely, given an asymptotically regular curve C , implicitly defined, one can get the whole family of asymptotically 
regular curves with the same asymptotic behavior as C , by just changing the terms of degree less than d − 1 in the implicit 
equation. We call these terms “irrelevant terms”.

Hence, given a set of regular perfect curves associated to different infinity points, we can obtain the asymptotic family 
defined by such set, that is, the family of curves that have exactly one infinity branch convergent with each of those curves 
(asymptotes). We do not need to compute the corresponding Puiseux expressions. If the asymptotes are given implicitly, we 
can multiply their implicit polynomials and we obtain a (reducible) curve of the family. Hence we get fd and fd−1, which 
gives us the whole family.

The idea just presented can be used to facilitate the computation of asymptotes. Given an implicitly defined curve we 
can, first of all, remove all irrelevant terms and then apply the algorithm. In fact, by doing this it is possible that from 
the new implicit factor we will be able to extract some asymptotes directly, or reduce the calculation to several curves of 
smaller degree.

As a future work, we intend to deal with the input curves parametrically defined and additionally, we will try to deal 
with the case that the infinity points are not regular. In this sense, and in particular, we are wondering what is the form of 
maximum degree, fd .

5. Proofs of the main theorems

This section is devoted to proving the main results of this paper, Theorems 4 and 5 in Section 3. For this purpose, we 
first prove the following lemma.

Lemma 1. Let C be an asymptotically regular curve with k infinity branches B1, B2, . . . , Bk. For each i = 1, . . . , k, the branch Bi is 
associated to the infinity point pi = (1 : mi : 0) and has ramification index Ni . Then, the homogeneous form of maximum degree of C
is

fd(x, y) =
k∏

i=1

(y − mix)
Ni .

As a consequence, the degree of the curve is d = N1 + · · · + Nk.

Proof. Let C be defined by the polynomial

f (x, y) = fd(x, y) + fd−1(x, y) + · · · + f1(x, y) + f0.

Then,

F (x, y, z) = fd(x, y) + fd−1(x, y)z + · · · + f1(x, y)zd−1 + f0zd

and

g(y, z) := F (1, y, z) = fd(1, y) + fd−1(1, y)z + · · · + f1(1, y)zd−1 + f0zd.

From Lemma 2 in Blasco and Pérez-Díaz (2014a), the term (y − mi x)Ni divides fd(x, y) for each i = 1, . . . , k. In addition, 
there cannot be any other factor (y − mx)N with m �= mi since this would imply the existence of a new infinity point 
(1 : m : 0) and, hence, a new infinity branch different of B1, B2, . . . , Bk . Thus, we have that

fd(x, y) =
k∏

i=1

(y − mix)
ϑi , (5.1)

with ϑi ≥ Ni for i = 1, . . . , k. In the following we prove that ϑ j > N j implies that p j = (1 : m j : 0) is a singular infinity point, 
which contradicts the assumption that the curve is asymptotically regular.

For this purpose, let us first remark on one essential question. We are assuming that ϑ j > N j ≥ 1. Then, using Equality 
(5.1), we have that

∂ F

∂x
(1,m j,0) = ∂ fd

∂x
(1,m j) = 0 (5.2)

∂ F
(1,m j,0) = ∂ fd

(1,m j) = 0 (5.3)

∂ y ∂ y

11
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and

∂ F

∂z
(1,m j,0) = fd−1(1,m j), (5.4)

so the infinity point p j = (1 : m j : 0) is singular if and only if fd−1(1, m j) = 0.
Now, let B j be defined by the following Puiseux series:

r j(z) = m j z + α1z1−1/N j + α2z1−2/N j + · · · + αN j + A j(z)

where αi ∈ C, i = 1, . . . , N j and A j(z) is an infinite series whose terms are powers of z with negative exponents. As we 
explain in Section 2, these terms do not affect the asymptotic behavior of the infinity branch.

We recall that the infinity branches are obtained from the Puiseux solutions of g(y, z) = 0 around z = 0 (see Section 2). 
More precisely, there is a solution given by

φ j(z) = m j + α1z1/N j + α2z2/N j + · · · + αN j z + z A j(1/z),

and r j is obtained from φ j as r j(z) = zφ j(1/z). Hence, there must exist M j > 0 such that g(φ j(z), z) = 0 for |z| < M j .
Finally, let us take a look to the different terms of g(y, z). From (5.1), we have that

fd(1, y) =
k∏

i=1

(y − mi)
ϑi .

We define the remaining terms in a generic way; in particular,

fd−1(1, y) = b0 + b1 y + · · · + bd−1 yd−1

and

fd−2(1, y) = c0 + c1 y + · · · + cd−2 yd−2

where b0, . . . , bd−1, c0, . . . , cd−2 ∈R.
Summarizing, we have that:

g(y, z) =
k∏

i=1

(y − mi)
ϑi + (b0 + b1 y + · · · + bd−1 yd−1)z + (c0 + c1 y + · · · + cd−2 yd−2)z2 + · · ·

and there exist M j > 0 such that g(φ j(z), z) = 0 if |z| < M j . By substituting y = φ j(z) in g , we get

g(φ j(z), z) =
k∏

i=1

(m j − mi + α1z1/N j + α2z2/N j + · · · )ϑi +

+(b0 + b1(m j + α1z1/N j + α2z2/N j + · · · ) + · · · )z+
+(c0 + c1(m j + α1z1/N j + α2z2/N j + · · · ) + · · · )z2 + · · ·

which can be expressed in the form

g(φ j(z), z) = C0z + C1z1+1/N j + C2z1+2/N j + · · · CN j z
2 + · · ·

Since g(φ j(z), z) = 0 in a continuous set, the coefficients C0, C1, C2, . . . must be null. The result follows by noting that

C0 = b0 + b1m j + · · · + bd−1md−1
j = fd−1(1,m j). �

Theorem 4. Let C be an asymptotically regular curve defined by an irreducible polynomial f ∈ R[x, y] of degree d. The asymptotic 
behavior of C is completely determined by fd and fd−1 .

Proof. As in the proof of Lemma 1, we start by considering a curve with two infinity branches; afterwards, we will show 
that one may reason similarly if the curve has three or more infinity branches. Thus, let C be an asymptotically regular 
curve with two infinity branches B1 and B2:

• B1 has ramification index N1 and is centered at an infinity point p1 = (1 : m1 : 0).
• B2 has ramification index N2 and is centered at an infinity point p2 = (1 : m2 : 0).
12
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Since the curve is asymptotically regular, p1 and p2 are regular points. Then, necessarily, m1 �= m2; otherwise, we have two 
places centered at the same point and the point is singular (see the construction of infinity branches in Section 2).

In the following we assume that p1 = (1 : 0 : 0) (we can get this point by applying a simple change of variables), so we 
have that m1 = 0 and m2 �= 0. Then B1 and B2 are defined by two Puiseux series of the form:

r1(z) = α1z1−1/N1 + α2z1−2/N1 + · · · + αN1 + A1(z) (5.5)

r2(z) = m2z + β1z1−1/N2 + β2z1−2/N2 + · · · + βN2 + A2(z)

where αi, β j ∈ C, i = 1, . . . , N1, j = 1, . . . , N2, and A1(z) and A2(z) are infinite series whose terms are powers of z with 
negative exponents. As we explain in Section 2, these terms do not affect the asymptotic behavior of the infinity branches.

We recall that r1 and r2 are built from the following series that allow us to trace the infinity branches on the Y Z -chart:

φ1(z) = α1z1/N1 + α2z2/N1 + · · · + αN1 z + z A1(1/z)

φ2(z) = m2 + β1z1/N2 + β2z2/N2 + · · · + βN2 z + z A2(1/z)

More precisely, we have that ri(z) = zφi(1/z). In the following, we show how the coefficients of φ1 and φ2 may be computed 
from the polynomial f which implicitly defines the curve. Let:

f (x, y) = fd(x, y) + fd−1(x, y) + · · · + f1(x, y) + f0

F (x, y, z) = fd(x, y) + fd−1(x, y)z + · · · + f1(x, y)zd−1 + f0zd

In order to study the different infinity points of the curve, we will consider the Y Z − chart , where they become affine 
points. For this purpose we define the polynomial

g(y, z) := F (1, y, z) = fd(1, y) + fd−1(1, y)z + · · · + f1(1, y)zd−1 + f0zd.

As one can see, for constructing this polynomial we need the different homogeneous forms of f to be evaluated in x = 1. 
From Lemma 1, we know that

fd(1, y) = yN1(y − m2)
N2

where N1 + N2 = d. The remaining homogeneous forms are defined in a generic way. In particular,

fd−1(1, y) = b0 + b1 y + · · · + bd−1 yd−1

and

fd−2(1, y) = c0 + c1 y + · · · + cd−2 yd−2

where b0, . . . , bd−1, c0, . . . , cd−2 ∈R.
At this point, let us remark that the infinity point p1 = (1 : 0 : 0) is regular if and only if b0 �= 0. Indeed, from Equalities 

(5.2), (5.3) and (5.4),

∂ F

∂x
(p1) = 0 ,

∂ F

∂ y
(p1) = 0 ,

∂ F

∂z
(p1) = fd−1(1,0) = b0. (5.6)

We will take this fact into account throughout this proof.
Once we have defined the different homogeneous forms, we have that:

g(y, z) = yN1(y − m2)
N2 + (b0 + b1 y + · · · + bd−1 yd−1)z + (c0 + c1 y + · · · + cd−2 yd−2)z2 + · · ·

From Section 2, we know that there exists two positive numbers M1 and M2 such that g(φi(z), z) = 0 for |z| < Mi, i = 1, 2. 
By substituting y = φ1(z) in g , we get

g(φ1(z), z) = (α1z1/N1 + α2z2/N1 + · · · )N1(−m2 + α1z1/N1 + α2z2/N1 + · · · )N2

+(b0 + b1(α1z1/N1 + α2z2/N1 + · · · ) + · · · )z + (c0 + c1(α1z1/N1 + α2z2/N1 + · · · ) + · · · )z2 + · · ·
which can be expressed in the form

g(φ1(z), z) = C0z + C1z1+1/N1 + C2z1+2/N1 + · · · CN1 z2 + · · ·
Since g(φ1(z), z) = 0 in a continuous set, the coefficients C0, C1, C2, . . . must be null:
13
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• The coefficient associated to z is

C0 := α1
N1(−m2)

N2 + b0. (5.7)

Since C0 = 0 we can compute α1 from b0. Furthermore, from (5.6) we know that b0 �= 0; then α1, m2 �= 0.
At this point, let us remark that, indeed, ϑ1 = N1 (see (5.1)). Otherwise C0 = b0 = 0, which implies that the infinity 
point p1 is singular (see (5.6)). Obviously, this same reasoning may be used to show that ϑ2 = N2.

• The coefficient associated to z1+1/N1 is:

C1 := N1α
N1−1
1 α2(−m2)

N2 + αN1
1 N2(−m2)

N2−1α1 + b1α1

Note that two new elements arise in this equation: α2 and b1. Since the rest of parameters are known and C1 = 0, we 
can compute α2 from b1 (note that N1, α1, m2 �= 0).

• The coefficient associated to z1+2/N1 is:

C2 :=
(

N1α
N1−1
1 α3 +

(
N1

2

)
αN1−2

1 α2
2

)
(−m2)

N2 + N1α
N1−1
1 α2N2(−m2)

N2−1α1

+αN1
1

(
N2(−m2)

N2−1α2 +
(

N2

2

)
(−m2)

N2−2α2
1

)
+ b1α2 + b2α

2
1 .

Again, all the elements in this equation are known but α3 and b2. Since C2 = 0, we can compute α3 from b2.

Reasoning in this way, we can compute α1, α2, . . . , αN1 from the parameters b0, b1, . . . , bN1−1, which belong to the 
homogeneous form fd−1. In order to compute αN1+1, we should have to consider the coefficient CN1 , associated to z2, but 
this coefficient involves the parameter c0, which belongs to the homogeneous form fd−2. In general, for computing the 
remaining terms of φ1 we need to use parameters of fd−2, fd−3, . . .. However, we are not interested in these terms since 
they are associated to negative powers of z in r1 and they do not affect the asymptotic behavior of the branch. In fact, an 
asymptote can be obtained from α1, α2, . . . , αN1 .

In the following, we will compute the coefficients of the series φ2, which defines the second infinity branch, but first we 
make the following observations.

• We are assuming the infinity points of the curve to be regular; otherwise the above development could not be carried 
out. Indeed, if p1 is singular we have that b0 = 0 (see (5.6)); then, from (5.7), we deduce that α1 = 0 or m2 = 0. As a 
consequence, the term of C2 which contains α2 vanishes and we cannot compute the coefficients of the series φ2 as 
above.

• We have just shown how to compute α1, α2, . . . , αN1 from b0, b1, . . . , bN1−1. Note that we could also do the opposite, 
that is, to compute b0, b1, . . . , bN1−1 from α1, α2, . . . , αN1 . Indeed, by considering C0 (see (5.7)) we can get b0 from α1, 
by considering C1 we can get b1 from α2 and so on. Thus, the implicit equation of the curve can be partially determined 
by one of its asymptotes. Theorem 5, below, goes further into this question.

Now we carry on computing the coefficients of φ2. We have that

g(φ2(z), z) = (m2 + β1z1/N2 + β2z2/N2 + · · · )N1(β1z1/N2 + β2z2/N2 + · · · )N2

+(b0 + b1(m2 + β1z1/N2 + β2z2/N2 + · · · ) + b2(m2 + β1z1/N2 + β2z2/N2 + · · · )2 + · · · )z

+(c0 + c1(m2 + β1z1/N2 + β2z2/N2 + · · · ) + · · · )z2 + · · ·
which can be expressed as:

g(φ2(z), z) = D0z + D1z1+1/N2 + D2z1+2/N2 + · · · D N2 z2 + · · ·
Now we recall that g(φ2(z), z) = 0 for every |z| < M2 and we reason as above:

• The coefficient associated to z is

D0 := mN1
2 β1

N2 + (b0 + b1m2 + b2m2
2 + · · · + bd−1md−1

2 ). (5.8)

Since D0 = 0 we may obtain β1 from b0, b1, b2, . . . , bd−1. Note that b0 +b1m2 +b2m2
2 +· · ·+bd−1md−1

2 = fd−1(1, m2) �= 0
since the point p2 = (1 : m2 : 0) is regular (see (5.6)). Thus, we deduce that β1 �= 0.

• The coefficient associated to z1+1/N2 is:

D1 := N1mN1−1
2 β1β

N2
1 + mN1

2 N2β
N2−1
1 β2

+
(

b1β1 + b22m2β1 + b3

(
3

2

)
m2

2β1 + · · · + bd−1

(
d − 1

d − 2

)
md−2

2 β1

)
All the coefficients in this expression are known but β2. Since D1 = 0 and m2, N2, β1 �= 0, we can compute β2.
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• The coefficient associated to z1+2/N2 is:

D2 := mN1
2

(
N2β

N2−1
1 β3 +

(
N2

2

)
β

N2−2
1 β2

2

)
+ N1mN1−1

2 β1N2β
N2−1
1 β2

+
(

N1mN1−1
2 β2 +

(
N1

2

)
mN1−2

2 β2
1

)
β

N2
1 + b1β2 + b2(β

2
1 + 2m2β2) + · · ·

+bd−1

(
(d − 1)md−2

2 β3 +
(

d − 1

2

)
md−3

2 β2
1

)
.

Again, all the elements in this expression are known but β3, so we can compute β2 by taking into account that D2 = 0.

We can compute in this way β1, β2, . . . , βN2 from the parameters b0, b1, . . . , bd−1, which belong to the homogeneous 
form fd−1. However, in order to compute the next term of the series φ2 (that is, βN2+1), we should have to consider the 
coefficient D N2 , associated to z2, which involves the parameter c0 of the homogeneous form fd−2. In general, for computing 
the remaining terms of φ2 we need to use parameters of fd−2, fd−3, . . ., but we are not interested in these terms since 
they are associated to negative powers of z in r2 and they do not affect the asymptotic behavior of the branch. In fact, an 
asymptote can be obtained from β1, β2, . . . , βN2 .

Thus, we have proved that the asymptotic behavior of the curve is determined by the homogeneous forms fd and fd−1. 
Finally, note that the above reasoning may be easily generalized for the case of a curve with three or more regular infinity 
branches. Let those branches be B1, B2, . . . , Bk , with ramification indexes N1, N2, . . . , Nk , and let them be centered at the 
infinity points p1 = (1 : 0 : 0), p2 = (1 : m2 : 0), . . . , pk = (1 : mk : 0). Now we have that

fd(1, y) = yN1(y − m2)
N2 · · · (y − mk)

Nk

and we can proceed similarly as in the case of two branches. �
Theorem 5. Two asymptotically regular curves have the same asymptotic behavior if and only if their terms of degree d and d − 1 are 
the same.

Proof. From Theorem 4 we know that two curves whose terms of degree d and d −1 are the same have the same asymptotic 
behavior. Now we prove that two curves with the same asymptotic behavior have the same terms of degree d and d − 1.

As in the proof of Theorem 4, we start by considering an asymptotically regular curve C with two infinity branches, B1

and B2, defined by two Puiseux series of the form:

r1(z) = α1z1−1/N1 + α2z1−2/N1 + · · · + αN1 + A1(z) (5.9)

r2(z) = m2z + β1z1−1/N2 + β2z1−2/N2 + · · · + βN2 + A2(z)

where αi, β j ∈C, i = 1, . . . , N1, j = 1, . . . , N2. A1(z) and A2(z) are infinite series whose terms are powers of z with negative 
exponents. We show above, that these branches are associated to the infinity points p1 = (1 : 0 : 0) and p2 = (1 : m2 : 0)

(m2 �= 0) and that the homogeneous form of maximum degree of C is fd(1, y) = yN1(y − m2)
N2 , where N1 + N2 = d.

Now, let C̃ be another asymptotically regular curve having the same asymptotic behavior as C . This means that C̃ has an 
infinity branch convergent to each infinity branch of C and viceversa. Consequently, both curves must have the same infinity 
points and the homogeneous form of maximum degree of C̃ must be

f̃d(x, y) = yϑ1(y − m2x)ϑ2 .

Now, let us return to the proof of Lemma 1. There we showed that ϑ1 = N1 and ϑ2 = N2 must hold for C̃ to be 
asymptotically regular. Thus, evaluating in x = 1, we have

f̃d(1, y) = yN1(y − m2)
N2 .

We define the rest of homogeneous forms in a generic way. In particular,

f̃d−1(1, y) = b0 + b1 y + · · · + bd−1 yd−1

and

f̃d−2(1, y) = c0 + c1 y + · · · + cd−2 yd−2

where b0, . . . , bd−1, c0, . . . , cd−2 ∈R.
We keep on reviewing the proof of Theorem 4. Note that, from (5.7) and the subsequent equations, one can directly 

compute the coefficients b0, b1, . . . , bN1−1 from α1, α2, . . . , αN1 . That is, some coefficients of fd−1 are determined by the 
15
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relevant terms of the infinity branch B1. However, if we want to compute the rest of coefficients, bN1 , bN1+1, . . . , bN1+N2−1, 
we need to solve a linear system that involves β1, β2, . . . , βN2 . From (5.8), D0 = 0 can be expressed as

b0 + b1m2 + b2m2
2 + · · · + bd−1md−1

2 = −mN1
2 β1

N2

Analogously, the equalities Di = 0, i = 0, 1, . . . , N2 − 1 are also linear equations in the variables b0, b1, . . . , bd−1. Since 
b0, . . . , bN1−1 are known, we have a linear system with N2 equations and N2 variables: bN1 , . . . , bN1+N2−1 (recall that 
N1 + N2 = d).

Now we have to prove that this linear system has a solution and that the solution is unique. We apply the change of 
variables y = Y + m2x and we obtain a new curve (for the sake of simplicity, we will denote it also by C̃). Thus, we have

g̃(Y , z) = (Y + m2)
N1 Y N2 + (b0 + b1(Y + m2) + · · · + bd−1(Y + m2)

d−1)z

+(c0 + c1(Y + m2) + · · · + cd−2(Y + m2)
d−2)z2 + · · ·

which can also be expressed as follows:

g̃(Y , z) = (Y + m2)
N1 Y N2 + (̃b0 + b̃1Y + · · · + b̃d−1Y d−1)z + (̃c0 + c̃1Y + · · · + c̃d−2Y d−2)z2 + · · ·

We observe that the new curve has an infinity branch defined by the Puiseux series

φ̃2(z) = φ2(z) − m2 = β1z1/N2 + β2z2/N2 + · · · + βN2 z + z A2(1/z),

which is associated to the infinity point p̃2 = (1 : 0 : 0).
Reasoning as above, we can directly obtain the first N2 coefficients of f̃d−1, that is, ̃b0, ̃b1, . . . , ̃bN2−1, by taking into ac-

count that ̃g(φ̃2(z), z) = 0 for every value of z in a continuous set. Let us show that these values determine in a unique way 
the N2 coefficients bN1 , . . . , bN1+N2−1. Indeed, we recall that b0, b1, . . . , bd−1 are the coefficients of fd−1(1, y) := hd−1(y)

and b̃0, ̃b1, . . . , ̃bd−1 are the coefficients of f̃d−1(1, y) := h̃d−1(y). In addition, we have that h̃d−1(y) = hd−1(y + m2). From 
the Taylor expansion of ̃hd−1(y), it follows that:

b̃k = 1

k!
dkh̃d−1

dyk
(0) = 1

k!
dkhd−1

dyk
(m2)

for k = 0, 1, 2, . . . , d − 1. In particular, this is true for k = 0, 1, 2, . . . , N2 − 1, which leads us to a linear system of the form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b0 + m2b1 + m2
2b2 +· · ·+ md−1

2 bd−1 = b̃0

b1 + 2m2b2 +· · ·+ (d − 1)md−2
2 bd−1 = b̃1

b2 +· · ·+ (d − 1)(d − 2)/2md−3
2 bd−1 = b̃2

...

This system has N2 equations which can also be expressed as follows (recall that the coefficients b0, b1, . . . , bN1−1 are 
known):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

md−1
2 bd−1 +md−2

2 bd−2 +· · · = B0

(d − 1)md−2
2 bd−1 +(d − 2)md−3

2 bd−2 +· · · = B1

(d − 1)(d − 2)md−3
2 bd−1 +(d − 2)(d − 3)md−4

2 bd−2 +· · · = 2B2
...

...

(5.10)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B0 = b̃0 − b0 − m2b1 − m2
2b2 · · · −mN1−1

2 bN1−1

B1 = b̃1 − b1 − 2m2b2 · · · −(N1 − 1)mN1−2
2 bN1−1

B2 = b̃2 − b2 · · · −(N1 − 1)(N1 − 2)/2mN1−3
2 bN1−1

...

Finally, we need to prove that the system (5.10) has a solution and that this solution is unique, which holds if and only 
if the following determinant is not null:
16



E. Campo-Montalvo, M. Fernández de Sevilla, R. Magdalena Benedicto et al. Computer Aided Geometric Design 98 (2022) 102146
∣∣∣∣∣∣∣∣∣∣∣∣

rd−1 rd−2 · · · rd−N2

(d − 1)rd−2 (d − 2)rd−3 · · · (d − N2)rd−N2−1

(d − 1)(d − 2)rd−3 (d − 2)(d − 3)rd−4 · · · (d − N2)(d − N2 − 1)rd−N2−2

...
...

. . .
...∏N2−1

i=1 (d − i)rd−N2
∏N2

i=2(d − i)rd−N2−1 · · · ∏2N2−2
i=N2

(d − i)rd−2N2+1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Indeed: note that this determinant is the Wronskian of the functions x1(r) = rd−1, x2(r) = rd−2, . . . , xN2 (r) = rd−N2 , which 
are well-known to be linearly independent (note that d − N2 ≥ 0); thus, the Wronskian is not null and the result is proved.

Note that this proof can be directly generalized for the case of a curve with three or more infinity branches. Let those 
branches be B1, B2, . . . , Bk and let them be defined by the series φ1, φ2, . . . , φk , with center at the infinity points p1 = (1 :
0 : 0), p2 = (1 : m2 : 0), . . . , pk = (1 : mk : 0). Then, for i = 2, . . . , k, we have to apply the change y = Y + mi and we obtain 
a linear system by canceling the coefficients of g(φi(z), z). Each of these systems has a unique solution, as happens with 
(5.10). �
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