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Abstract: Nanomedicine is a speedily growing area of medical research that is focused on devel-
oping nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with
unique physicochemical properties have recently attracted a lot of attention since they offer a lot of
potential in biomedical research. Novel generations of engineered nanostructures, also known as
designed and functionalized nanomaterials, have opened up new possibilities in the applications
of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug
delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or
chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current
research in nanotechnology, with a focus on nanomaterial functionalization for medical applications.
Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface
functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed.
Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse
fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and
medical implants.

Keywords: functional nanomaterials; nanomedicine; polymers; tissue engineering; cancer therapy;
drug delivery; medical implants

1. Introduction

Nanomaterials with unique physicochemical properties have recently attracted a lot
of attention since they offer a lot of potential in many fields, particularly in biomedical
sciences, including drug and gene delivery systems [1–3], cancer treatment [4,5], moni-
toring systems [6], tissue engineering [7], and so forth. New generations of engineered
nanostructures, also known as designed and functionalized nanomaterials, have opened up
new possibilities in the applications of biomedical approaches such as biomolecular sensing,
drug delivery, biological imaging, and therapy. A wide number of nanomaterials have great
potential to be used in biomedicine, including nanotubes, nanoparticles, nanoplates, and
nanowires, to mention but a few [8–10]. Nonetheless, they must meet specific characteristics
to be used in biomedical applications [11]. In this regard, their potential cytotoxicity, which
can be induced by their structure, chemical content, or features, for example, as well as their
biocompatibility, have to be assessed [12]. Their colloidal stability should also be main-
tained under physiological conditions, ideally across a wide pH range [13]. As a result, it is
critical to consider these criteria to ensure the safety, nontoxicity, and biocompatibility of
the nanomaterials. Specific interactions with polymers, natural biomolecules, and synthetic
ligands of interest are required to modify and functionalize the nanomaterial surface in
order to meet these criteria [14–16].

The methods for creating and manipulating functionalized nanomaterials (FNMs)
open up exciting new opportunities for developing novel multifunctional biological de-
vices [17]. Furthermore, functionalization prevents nanoparticles from agglomeration and
makes them compatible in subsequent phases. As a result, FNMs can transport more
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efficiently after systemic injection and have better pharmacokinetic characteristics in vivo.
FNMs can be deeply driven into tissues through narrow capillaries and epithelial coating,
leading to improved therapeutic agent delivery to the targeted location [18]. Furthermore,
the small size of FNMs enhances exceptional physicochemical features such as solubility,
diffusivity, immunogenicity, and the capacity to target the designated region with minimum
diffusion to its surrounding [19,20].

The nanomaterial interface can be designed and applied in different ways. These
approaches are classified as replacement, noncovalent, and covalent conjugations based on
the primary concept of the type of functionalization interaction [21]. The interface between
nanoparticles (NPs) and the attached molecules is modified via the replacement approach,
which comprises ligand exchange and ligand addition [22]. Noncovalent techniques rely on
many interactions, most of them weak, such as electrostatic, Van der Waals, hydrophobic,
and hydrogen bonds, and it is particularly useful with metallic nanoparticles [23]. They are
straightforward and do not modify the molecular structure nor their interaction with targets.
However, these modifications are strongly dependent on parameters such as ionic strength
and pH. On the other hand, covalent attachment techniques have been proposed to alter
the external functionalization of nanomaterials to bind molecular entities for biomedical
purposes, hence giving the nanoparticles additional functionality [24].

This study aims to provide particular examples to cover the different ways of nanoma-
terial functionalization using polymers, natural biomolecules, and small ligands (Figure 1),
via covalent and noncovalent conjugation. Before highlighting specific examples of each
type of functionalization, the basis of the functionalization will be summarized. Although
some studies on nanoparticle surface modification for medical and nanotechnological
application have been reported [8,10–12,25], most of them are not updated, deal only with
nanoparticles rather than nanomaterials in general, and focus only on either the nanopar-
ticle synthesis or on certain biomedical applications. Thus, the current paper reviews
recent studies on nanomaterial surface engineering, divided by nanomaterial type and
specialized uses. Besides, the cytotoxicity, cost effectiveness, and use of FNMs as a ver-
satile tool in nanomedicine will be discussed. Due to their beneficial characteristics such
as biodegradability and biocompatibility in physiological mechanisms, wide availability,
suitability for chemical treatment, and wide range of potential synthesis process from
different sources, nanomaterials have been extensively explored in the literature. This
article offers novel insights on surface functionalization of nanomaterials, focusing on their
therapeutic, diagnostic, tissue-engineering, and medical-implant applications. Following
a brief overview of the different surface modification strategies and different types of
functionalized nanomaterials, a summary of the most relevant biomedical applications
is presented.
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2. Strategies for Surface Functionalization of Nanomaterials

The exclusive properties of nanomaterials compared to their microsized counterparts,
such as big, specific surface areas and nanometer sizes, have involved huge attention in
the scientific community. Depending on the desired final properties, the composition of
nanomaterials can vary from metals or metal oxides to carbon or polymers (Figure 2).
Metallic nanoparticles (like gold or silver) are beneficial for designing drug delivery and
imaging systems, but their safety has to be investigated in detail to prevent undesirable
side effects in humans [26]. Iron oxide, with outstanding magnetic properties, is the most
common selection as the core of functionalized nanoparticles. Silica NPs are frequently used
in drug delivery applications. Mesoporous silica nanoparticles (MSN), with tunable pore
size, are widely used to load small molecules, including amino acids, nucleic acids, drugs,
and so forth [27]. However, due to reactive surface silanol groups, there are biocompatibility
issues regarding the use of silica nanoparticles for nanomedicine. Concerns regarding
the toxicity of carbon-based nanomaterials such as carbon nanotubes (CNTs), quantum
dots (QDs), and graphene have also been reported [28]. Polymeric nanoparticles are
a widespread option for biomedical applications owed to their tailorable physicochemical
properties, excellent biocompatibility, and capability to liberate molecules in a continued
way [29]. Numerous polymeric micelles such as thiomers, pluronic, polysaccharides,
and polyethylene glycol (PEG) have been investigated [14]. In addition, other colloidal
nanostructures such as dendrimers, liposomes, polysomes, and cyclodextrins have been
designed for targeted applications [30].
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Figure 2. Representation of different types of organic and inorganic nanomaterials used in nanomedicine.

Various types of targeting agents have been implemented to be incorporated on the
surface of nanoparticles, especially peptides [31], aptamers [32], antibodies [33], polyethy-
lene glycol (PEG) [34], cationic molecules, folic acid [35], drugs, and fluorescent probes,
as depicted in Figure 3. It should be noted that biomolecular interactions rely on the
chemical modification of the nanoparticle surface when using NPs for in vitro or in vivo
applications [36]. Through a ligand–receptor interaction, such targeting moieties can allow
nanoparticles to be embodied into cancer cells and tissues. To facilitate active targeting
of NPs to receptors, which are located on the surface of the membrane, the nanoparticle
surface can be tailored with targeting ligands, resulting in increased cellular internalization
and/or selective absorption via receptor-mediated endocytosis [37]. Researchers are par-
ticularly interested in discovering new biomarkers and their relevant ligands in targeted
medication administration. The binding of NPs to analytes, pathogens, and biomarkers
might cause their signal to be amplified, making it easier to detect and image [38]. When
the scaffold surface is decorated with bioactive cues to allow FNPs to interact with cells
and the extracellular matrix (ECM) to elicit tissue-specific phenotypes, this is referred to
as functionalization [39]. Chemists can easily make the suitable functionalities for use in
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clinics thanks to the easiness of such functionalization. For example, cell surface molecules
have been used to identify nanoparticles functionalized with ligands that show a varied
affinity for proteins [34].
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therapeutic compounds, and biomolecules. Adapted from Ref. [40], copyright 2020, with permission
from Impact Journals LLC.

Furthermore, functionalization has been proven to protect NPs against agglomeration
and make them biocompatible materials in other application stages [41]. Functionaliza-
tion improves the NPs’ physical, chemical, and mechanical characteristics, resulting in
synergetic effects [42].

2.1. Functionalization by Covalent Conjugation

The covalent conjugation comprises the reaction of a conjugator (also named linker)
with a certain species or chemical group, in a way that the molecules are attached on
the nanomaterial surface [43]. Carboxylic acids, amines, thiols, disulfides, phosphates,
nitriles, and so forth have been used for covalent conjugation via chemical reactions [44].
Amine groups are the most widely used for functionalization in the biomedical field. The
strategy consists in anchoring small molecules or proteins on the nanoparticles. Further,
amine functionalization can be used with the aid of n-hydroxysuccinimide (NHS) and
different carbodiimides such as EDC. Similarly, carboxylic groups can form ester or amide
bonds with alcohol or amine groups on the NPs’ surface [45], Figure 4. On the other
hand, conjugation on metallic NPs can be effectively carried out via the thiol moiety. The
interaction occurs by reaction of sulfhydryl (RSH) groups on the metallic nanoparticles.
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2.2. Functionalization by Noncovalent Conjugation

The noncovalent bonding comprises the attachment of molecules on the surface of
nanomaterials without chemical bonding via physical adsorption and/or wrapping of
molecules by weak interactions such as hydrophobic (Van der Waals), H-bonding, cation−π,
anion−π, π–π, and H−π, that preserve the intrinsic properties of the nanomaterial [43].
This approach has some benefits over the covalent way: (i) it takes place under moderate
conditions (water solution at room temperature), thus avoiding structural damage of the
nanomaterial; and (ii) enables control of the amount of adsorbed/wrapped molecule.
The versatility of this route enables a large number of substances to be coupled to the
nanomaterials including polymers, solvents, surfactants, aromatic compounds, etc. In
order to offer steric stabilization, nanomaterials have been anchored to biocompatible
polymers such as polyethylene glycol (PEG) [46].

2.3. Functionalization by Biomolecules

Biomolecules are outstanding candidates to apply in the surface engineering of
nanoparticles. Biomolecule-coated nanoparticles have features that are troublesome or
inconceivable to attain with synthetic materials, such as excellent bio-macromolecule dis-
tribution with little cytotoxicity. Biomolecules such as proteins, peptides, antibodies, and
oligonucleotides can be very valuable for targeting NPs to cancer cells where particular
receptors are overexpressed. The synthesis of gold–thiol bonds to create oligonucleotide–
AuNP conjugates was one of the first bio-nanotechnology examples reported in the litera-
ture [34]. Proteins or peptides boost the penetration of NPs into cells via receptor-mediated
endocytosis. On the other hand, transferrin is a glycoprotein that can bind to specific
receptors on the cell membrane. A few articles have reported the benefits of using this
protein as a target for Au, MSN, and poly(lactic-co-glycolic acid) (PLGA) nanoparticles [30].

Albumins are a class of naturally occurring proteins that, besides being applied to load
imaging and therapeutic agents, are valuable for modification of numerous types of NPs, as
depicted in Figure 5 [47]. Surface modification of NPs with albumins, such as bovine serum
albumin (BSA), provides higher water solubility, increased biocompatibility and blood



Materials 2022, 15, 3251 6 of 40

circulation time, and improved stability and cellular interactions compared with uncoated
nanoparticles. Different strategies for conjugation of NPs such as AuNPs with albumin
have been reported [48], including: (1) Passive adsorption, so that the charged groups
of the protein are anchored to the NP surface via covalent or noncovalent interactions.
(2) Active adsorption, which involves the use of modified albumin in order to strengthen
the albumin-NP interactions. (3) The use of this protein for NP synthesis, either as a reagent
(i.e., reducing agent), foaming, stabilizer, or building block for NP synthesis, resulting in
NPs with an albumin coating [49]. The use of albumin encapsulation methods provides
some profits, such as the loading of agents with low solubility in order to protect them
from degradation. (4) Desolvation cross-linking (coacervation process), used to produce
core–shell albumin-NPs. This strategy allows chemical agents to become trapped within
albumin capsules, which are very stable and protect from degradation. (5) Emulsification:
an albumin solution and a nonaqueous phase are mixed, giving rise to an emulsion, and
the NP is dissolved in the oil phase. This methodology is used for the encapsulation
of lipophilic drugs and enhances aqueous solubility and biocompatibility. (6) Thermal
gelation: an albumin water solution is heated to induce protein unfolding, which results in
protein–protein interactions by disulfide and hydrogen bonding, as well as hydrophobic
and electrostatic forces. Besides, unfolding induces NP–protein interactions, leading to
a protein coating onto the NP surface.
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2.4. Functionalization by Polymers

A large number of biocompatible, commercially accessible polymers can be used
for functionalization, and are typically chosen based on their specific properties such
as hydrophobicity, melting point, and functional groups. Polymers frequently used as
NP coatings comprise synthetic polymers (i.e., PEG [50] and PLGA [51]) and natural
polymers (such as chitosan [52,53]). Polymers have been used for both covalent and
noncovalent conjugation of a wide range of nanomaterials. The covalent approach involves
the “grafting” (chemical anchoring) of polymeric segments to the NM surface, and can be
implemented via “grafting to”, “grafting from”, “grafing through” and “in situ” tactics
(Figure 6). The former is based on the synthesis of a modified polymer prone to react
with the functional groups on the surface of the nanomaterial [46]. A shortcoming of this
tactic is that the amount of polymer grafted to the nanomaterial is restricted, owed to the
low reactivity and large steric barrier of the polymeric segments. In the “grafting from”
path the polymer is grown from the NM surface via polymerization of monomers [43].
This approach is effective and manageable, owed to the high reactivity of monomers,
allowing a high grafting level. A variation of this strategy is to carry it out via “in situ”
polymerization in the presence of the inorganic precursor. Nonetheless, this method
requests precise monitor of the amounts of each reagent and the polymerization conditions.
In the “grafting through”, a low molecular weight monomer is radically copolymerized
with a polymerizable macromonomer in the presence of an initiator.
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“grafting through” and “in situ” preparation in the presence of an inorganic precursor.

Polymers are suitable for functionalization because they create a physical barrier
around the NPs, preventing the core of the NPs from coming into direct contact with
biological receptors. Polymers can produce a physical barrier but with a reduced hy-
drodynamic radius. As a result, polymer coatings outperform small molecule ligands
when imparting macromolecular system characteristics to the particle surface, similar to
biological proteins. The use of polymers such as PEG to coat nanoparticles improves
passive tumor tissue targeting, increasing permeability, and retention (EPR), as well as
biocompatibility [54]. This PEG and other polymer coatings decrease blood serum protein
adsorption, lengthen circulation duration, and promote particle absorption into tumor
tissues [34]. Using AuNPs synthesized by stacking cationic polyallylamine and anionic poly
(acrylic acid) polyelectrolyte layers, Kleinfeldt and coworkers [55] developed an excessively
hydrophilic and biocompatible coating that enables colloidal stability. Makvandi et al. [56]
investigated the functionalization of various polymers (glyclusters, glydendrimers, gly-
copolymers) and nanomaterials (Ag2O, CuO, ZnO, Fe3O4, MgO, TiO2, Se, Ni, Pd) for water
purification, food containers, fabrics, and medical applications. The benefits and draw-
backs of polymer functionalization were investigated and explored in that study. When
natural or synthetic polymers are used to functionalize NPs, photo/thermo-responsive
properties can be achieved [57]. For instance, chitosan grafted with poly-L-lactide us-
ing thiourea-functionalized, and poly-N-isopropyl acrylamide were used to synthesize
photo/thermo-triggered micelles [58].

2.5. Functionalization by Small Ligands

Small ligands are a common selection for functionalizing nanomaterial since they are
relatively simple to chemically bond to surfaces via functional moieties in their structure.
They are an appropriate choice to adjust the nanomaterial properties such as hydrophilicity
or charge with a view to improve their biological activity and interaction with other
biologically essential ligands, as well as their stability, aqueous solubility, drug loading,
and so forth. For instance, silica NPs can be straightforwardly tailored with organosilane
molecules such as 3-(aminopropyl) triethoxysilane (APTES) through silane chemistry. It
has been reported that APTES-functionalization is an effective method for adjusting drug
loading and discharge from mesoporous silica nanoparticles (MSN) [59]. Besides, it is
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beneficial for many aims, such as the release of low soluble drugs, the targeting of drugs to
a chosen position, or to make multifunctional drug delivery and imaging devices. Other
ligands such as drugs have been used for tailoring NP surfaces. For example, doxorubicin
(DOX, a frequently applied anticancer drug) has been conjugated to Fe3O4 NPs with the
aim to develop dual-functional NPs [60]. These modified NPs can destroy tumor cells via
the conjugated DOX, and concurrently enable magnetic resonance imaging of the tumor,
which is highly valuable. Other small drugs such as methotrexate, that can target the folate
receptor on cancer cells, ciprofloxacin [25,61], and so forth, have been conjugated with
different nanomaterials.

Various nanomaterials functionalized by small ligands can be added as signal reporters
or as carriers for loading more signal reporters in biosensors for analyte detection [62].
Mahmoudpour et al. [63] designed a method for producing aptameric functionalized
materials (AFMs). Optical indicators, conducting transducers, carriers, catalysts, and other
features, were combined to develop advanced AFMs. Drug delivery, bioimaging, and
appropriate sensing have been highlighted as biological uses of improved AFMs. Aptamers
have been identified among the most promising prospects for constructing a broad range
of sensing platforms due to their unique properties, such as outstanding specificity and
sensitivity, easiness of fabrication, and excellent durability in a variety of circumstances. For
the manufacturing of aptamer-based nanoprobes, many signals-transduction approaches
have been developed. Incorporating numerous aptasensing techniques with NPs has
improved biosensor selectivity and sensitivity in recent years [64].

3. Functionalized Nanomaterials
3.1. Metallic Nanoparticles

Metal-based nanomaterials consist of nanoparticles of raw metal, such as gold (Au)
and silver (Ag). AuNPs are inert in bulk, while become highly reactive in nanoparticle
form [65]. The exciting surface chemistry of AuNPs opens up novel routes for the progress
of unexplored multifunctional instruments for biomedical and nanotechnological appli-
cations [66]. Nanotechnology applications have drawn a great deal of interest since the
late 1980s [67]. The exceptional electrical and optical properties of Au boost their use in
biosensing and bioimaging. The use of organic molecules to functionalize Au NPs aids
the conjugation of drugs for delivery systems. Thus, AuNPs can be used as photothermal
therapeutic agents [56]. For instance, surface-modified AuNPs have been prepared via
a layer-by-layer procedure with alternating polyelectrolyte layers of cationic polyallylamine
and anionic poly(acrylic acid). Subsequently, papain was covalently immobilized on the
modified AuNPs via amide bond between the NH2 groups of papain and the terminal
COOH groups of the modified NPs, using EDC and sulfonated NHS as coupling agents,
as depicted in Figure 7, to produce a heterogeneous biocatalyst that has been applied in
bioanalysis and biopharmaceutical analysis [68].
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Figure 7. Schematic representation of the functionalization process of AuNPs with papain. The
surface modification was achieved by a layer-by-layer (LbL) approach via activation of COOH groups
of the modified AuNPs with EDC and sulfonated NHS as coupling agents, followed by amide
bonding with the NH2 groups of papain. (PAH+, polyallylamine hydrochloride; PAA−, polyacrylic
acid sodium). Adapted from Ref. [68], copyright 2017, with permission from Elsevier.
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The conjugation of gold nanorods (AuNRs) onto micelles, via gold-thiolate complex
formation, brings photosensitivity to the nanoassembly. The size and surface morphology
characterization via TEM (Figure 8) indicated that the mean micellar size was around
15 nm, and the thickness and length of the AuNRs was about 20 and 65 nm, respectively.
The percentage of conjugated AuNRs to the micelles was roughly 12%. The attachment
of chitosan transfers the photosensitivity of functionalized AuNRs to micelles, and the
micelle thermal shrinkage induces the release of paclitaxel, a drug widely used to treat
breast cancer [69].
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Figure 8. (a) TEM image of polymeric micelles, (b) SEM image of AuNRs, and (c) TEM image of
AuNRs coated by polymeric micelles. Adapted from Ref. [69], copyright 2020, with permission
from Elsevier.

Nejati et al. [19] examined functionalized AuNPs in biomedical applications. To attain
this goal, their structure, production, and functionalization were extensively explored
and discussed. Gold NPs have been utilized in biological applications, electrochemical
technology, and radiation oncology. Multifunctionalization, that is, functionalization that
allows for the provision of more than one attribute at a time, provides added value to
these NPs due to synergistic effects. Multifunctionalized gold NPs have been discovered
to be a viable choice in biomedicine for delivering anticancer drugs and antibiotics for
combined photothermal and chemical therapy [70]. AuNPs are suitable for the delivery
of the drugs to cellular destinations due to their ease of synthesis, functionalization, and
biocompatibility. Figure 9 depicts functionalization of AuNPs for gene and drug delivery.
AuNPs functionalized with targeted particular biomolecules can successfully kill tumor
cells or bacteria (Figure 9). Large surface-to-volume ratio of AuNPs can carry a huge
amount of drug molecules. AuNPs have been applied for the codispensation of protein
drugs owed to their skill in penetrating cell membranes, probably because they can interact
with the lipids present on the cell surface [70].
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Figure 9. (a) PEGylated gold nanoparticles for gene delivery. (b) Functionalized gold nanoparticles
for drug delivery. Adapted from Ref. [70], copyright 2011, with permission from MDPI.

Despite the efforts carried out, more studies into intelligent drug delivery based on
nanoparticles, particularly gold NPs, is required. Despite numerous publications, only
a few clinically authorized drug delivery nano systems are currently accessible in the
industry. As a result, an immediate need is found to incorporate animal-model research
into clinical practice [70]. Donoso–Gonzalez et al. [71] used cationic cyclodextrin-based
polymer (CCD/P) to load phenylethylamine (PhEA) and piperine (PIP) onto gold nanos-
tars (AuNSs). They evaluated the product potential for simultaneous drug loading and
SERS-based detection. In addition to PhEA and PIP, the polymer contained AuNSs that had
been functionalized with PhEA and PIP, resulting in a unique AuNS-CCD/P-PHEA-PIP
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nanosystem with an optimum size and Z potential for biomedical applications. Hybrid
materials incorporating carbon nanomaterials and AuNPs have also been synthesized.
For instance, Shon et al. [72] reported the synthesis of soluble fullerene-linked AuNPs
using a modified Brust reaction and subsequent ligand exchange reaction of hexanethiolate-
protected Au NPs with 4-aminothiophenol. Amination of C60 with 4-aminothiophenoxide
ligands produced the C60-linked AuNPs. This approach enables the control of the optical
and photochemical properties of the nanoparticles. Sudeep and coworkers [73] developed
a self-assembled photoactive system comprising AuNPs as the central core and fullerene
moieties as the photoreceptive hydrophobic shell via functionalization of the NPs with a thi-
olated fullerene derivative. Yaseen et al. [74] used C60-terminated alkanethiol to synthesize
novel fullerenethiol-functionalized gold nanoparticles (C60−AuNPs) of 2 nm diameter
with an extremely narrow size distribution. The fullerene-thiol moiety was inserted into the
fullerene by the ligand exchange method. Liz–Marzán et al. [75] developed Au core/SiO2
shell nanocomposites with tailorable thickness and good dimensional stability. Citrate-
capped AuNPs were first synthesized and then reacted with aminopropyl trimethoxysilane,
a widely used coupling agent, which anchored onto the NPs via silanol groups. Active silica
was subsequently added, leading to the formation of a fine, dense, and fairly homogeneous
silica layer wrapping the NPs.

On the other hand, AgNPs are antibacterial and anti-inflammatory, and possess
excellent biocompatibility [76]. The AgNPs can be straightforwardly synthesized via simple,
fast, nontoxic, and environmentally friendly means so that they can produce NPs with
perfectly defined morphology and size. They were applied as a coating for cardiovascular
implants to improve their biocompatibility. Additionally, their antimicrobial, antifungal,
antiviral antiangiogenic, and anticancer properties make them suitable in a large number of
biomedical and health care areas including device coatings, drug delivery systems, wound
dressings, the textile industry, photothermal therapy, and so forth. The biological activity
of AgNPs is influenced by many parameters such as the NP shape, size, morphology, state
of dispersion, solution rate, reactivity, and ion discharge efficiency, amongst others, which
condition their cytotoxicity. The design of AgNPs with uniform functionality, size, and
morphology is crucial from a practical viewpoint. Other metallic NPs such as ruthenium
and selenium have been applied in nanomedicine [77], in particular for drug delivery.

3.2. Metal Oxide-Based Nanomaterials

A wide number of variations of metal oxide NPs have been used in nanomedicine,
such as iron oxide (Fe2O3, Fe3O4), CeO2, titania (TiO2), ZnO, NiO, silica (SiO2), and so
forth [78–80]. Iron oxide NPs are a fascinating family of nanostructures that have attracted
much interest in the medical area because of their negligible toxicity, high biocompatibility,
and inherent magnetic properties, which make them perfect candidates for therapeutic and
diagnostic goals, particle imaging, and as contrast agents in magnetic resonance imaging
(MRI) and ultrasonic techniques [81]. The incorporation of Fe3O4 NPs also enhances the
antimicrobial properties [82].

The five most popular strategies to generate hollow iron oxide NPs are the Kirkendall
effect, galvanic substitution, chemical etching, nano-template-mediated, and hydrother-
mal/solvothermal routes [83]. Cheah et al. [84] synthesized iron oxide NPs in diethylene
glycol (DEG) by thermal decomposition of iron (III) acetylacetonate (Fe(acac)3), and sub-
sequently changed the surface of the NPs by adding surface ligands (Figure 10). Using
this easy production process, surface modification of iron oxide NPs with various cov-
ering substances such as dopamine (DOPA), polyethylene glycol with thiol end group
(thiol-PEG), and poly(acrylic acid) (PAA) is achievable. The size of these NPs can be pre-
cisely controlled at the nanometer scale by continuous growth. TEM images confirmed
that the morphology did not change upon functionalization (Figure 10). Besides, NPs
with PAA coating can be used as contrast agents. The surface change of oleic-acid-coated
iron oxide NPs (Fe3O4-OA) (made by coprecipitation method) with tetraethylorthosilicate
was studied by Nayeem et al. [85] using an inverse microemulsion approach (TEOS). To
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obtain thermally sensitive magnetic nanocomposites (MNCs), Fe3O4/SiO2/P(NIPAm-co-
AMPTMA), the surface of iron oxide nanoparticles was tailored using a multistep approach
with poly [N-isopropylacrylamide-co-(3-acrylamidopropyl) trimethylammonium chloride],
P(NIPAm-co-AMPTMA). Magnetic nanoparticles (MNPs) have been extensively studied as
MRI contrast agents to aid in the detection, diagnosis, and treatment of solid cancers. The
absorption of superparamagnetic iron oxide NPs (SPIONs) in the endothelial reticulum
system (RES) can be used in medical imaging to detect liver neoplasms and metastases.
It can also currently differentiate tiny lesions of 2–3 mm. Furthermore, ultrasmall super-
paramagnetic iron oxide NPs (USPIONs) show promising utility in MRI exams for the
identification of lymph node metastases that are 5–10 mm wide [86]. By utilizing the
distinct molecular fingerprints of these disorders, the future iteration of active targeting
MNPs, which has recently been explored, has the capacity to enhance tumor detection
and characterization [86].
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Figure 10. (Top) Synthesis of Fe3O4 NPs in diethylene glycol (DEG) by thermal decomposition
of acetylacetonate (Fe(acac)3), and surface modification by adding surface ligands. (Bottom) TEM
images of Fe3O4 NPs (a), Fe3O4 NPs functionalized with dopamine (b), Fe3O4 NPs surface modi-
fied with polyethylene glycol with thiol end group (thiol-PEG) (c), and Fe3O4 NPs modified with
poly(acrylic acid) (PAA) (d). Adapted from Ref. [84], copyright 2021, with permission from the
American Chemical Society.

Cerium oxide (CeO2) NPs, named as nanoceria, have the unique property of anti-
inflammation. They have better redox as well as potential antioxidant properties with
therapeutic characteristics. TiO2 has the unique properties of high chemical stability, cyto-
compatibility, and optical properties [87]. The biocompatible properties of TiO2 NPs have
increased their usage in drug delivery, bone substitute materials, bone regeneration, cell
and tissue behavior modulation, vascular stents, scaffolds, bioimaging, and biosensors [78].
MSN also have great potential for nanomedicine. In fact, upon functionalization, they can
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be efficiently targeted to cancer cells [59] and be used for encapsulation and controlled
release of drugs [27]. For biomedical applications, ZnO possesses the properties of low
toxicity and biodegradability. It can be used for the purpose of drug delivery, gene delivery,
biosensing, bioimaging, etc. [88]. CuO NPs have also been used for targeted drug delivery
in breast cancer therapy [35].

3.3. Ceramic-Based Nanomaterials

A wide range of ceramics, including Ca3(PO4)2, bioactive glass, Al2O3, ZrO2, CaCO3
and so forth, are getting countless interest in the biomedical field, particularly in the tissue
engineering arena. Thus, their outstanding osteoconductivity, resorbability, biocompat-
ibility, biodegradability, and hydrophilicity make them appropriate for numerous hard
tissue applications [89,90]. They can be divided into three types: bioinert, bioactive, and
resorbable. Resorbable ceramics are progressively adsorbed and substituted by endoge-
nous tissue. They can be synthesized in the forms of nanocrystals, NPs, nanopowders,
or nanocoatings. The most popular is Ca3(PO4)2, which is widely applied in the form
of NPs and nanocements for orthopaedic and dental uses. The optimal surface charge
density, functionality, and solution characteristics of this ceramic account for its fittingness
in drug delivery and growth factor uses. Bioactive ceramics such as hydroxyapatite (HDA)
NPs are a type of calcium phosphates that have been comprehensively investigated in
bone regeneration and antibacterial applications [91,92]. They are osteoconductive and
can link to bone tissues via chemical bonding, following the rule of bonding osteogenesis.
Furthermore, for bone tissue engineering, bioactive glass is crucial, owed to its outstanding
osteoconductivity, osteoinductivity, and biocompatibility [93]. Bioinert bioceramics such
as ZrO2 have great chemical stability and in vivo mechanical strength. This oxide is re-
garded as a nontoxic material and has strong resistance to acids; hence, it is widely used in
coatings for metallic load-bearing implants and dentistry. Another widely used oxide is
Al2O3, which possesses high hardness and superior heat resistance, and has been applied
in arthroplasty, dentistry, and as an antimicrobial coating [94].

3.4. Carbon-Based Nanomaterials

Within carbon-based nanomaterials, carbon nanotubes (CNTs), graphene oxide (GO),
and graphene quantum dots (GQDs) have been broadly explored in biomedical applica-
tions [13,95,96]. Purification, separation, dispersion, stability, alignment, functionalization,
and arrangement of CNTs are critical parameters to be controlled prior to their appli-
cations [97]. Since the discovery of CNTs, numerous physical and chemical techniques
have been developed to attain these goals [98,99]. Polysaccharides with a broad range of
characteristics, large-scale production, and low prices have shown to be highly suitable for
CNT functionalization. The use of chitosan for CNT purification and functionalization has
been proven to be a strategy to make drug release easier and more effective. Dou et al. [100]
described a one-pot tactic for the development of chitosan-coated CNTs via a combination
of Diels–Alder reaction and mercaptoacetic acid locking imine (MALI) reaction (Figure 11).
Taking into account the broad use of Diels–Alder chemistry and MALI reaction, several
carbon nanomaterials with different functional groups might be synthesized and applied
to biomedicine.

Graphene and graphene oxide (GO) are 2D carbon-based nanostructures, in the form
of nanosheets, that show an optimal combination of biocompatibility, strength, flexibility,
and optical transparency, which made them suitable for the design of selective and sensitive
sensors of biomolecules, which is crucial for medical sciences and the healthcare industry
in order to assess physiological and metabolic parameters [101]. Besides, they show
antibacterial and antiviral properties [96,102,103]. Graphene-based systems have proven to
be effective via direct interaction with viruses and through photo-induced mechanisms, as
well as platforms for other particles or molecules with antiviral properties. GO inactivates
the virus by physical disruption: it can adhere to the structure of virus spikes and destroy
them with the sharp edges of the GO layers. Its antiviral activity is effective on both
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DNA and RNA viruses, and depends on the concentration and incubation time. Reduced
graphene oxide (rGO) and GO show similar antiviral activity, pointing towards a minor
influence of the surface functional groups. The physical interaction of the viruses with
their sharp edges seems to be the leading cause for the antiviral activity. Besides, they
are negatively charged, which enables electrostatic interaction with the positively charged
viruses. The higher interactions result in the destruction and inactivation of the virus. The
viruses captured by GO have shown a loss of structural integrity: an RNA is released.
The virus can then be identified using the recovered RNA [104]. Another method to
inhibit the virus activity is using the GO photocatalytic activity. This approach has been
developed by Hu et al. [105] to synthesize GO-aptamer nanosheets that were used to
capture MS2 bacteriophage viruses, a small icosahedral nonenveloped RNA virus, which
infects E. coli bacteria. This was used as a model for testing the antiviral properties of
GO upon illumination with UV light. In this case, the leakage of the virus protein capsid
predominates over the physical disruption produced by the sharp edges of the GO sheets.
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Carbon quantum dots (CQDs), 0D carbon-based nanomaterials with fluorescence
characteristics, also exhibit antimicrobial and antiviral properties [106]. These include
amorphous carbon nanoparticles, graphene quantum dots (GQDs), partially graphitized
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core–shell carbon NPs, and amorphous fluorescent polymeric NPs. Their activity is at-
tributed to the functional groups on their surface. CQDs functionalized with boronic acid
demonstrated antiviral efficacy against HCoV-229E Human Coronavirus. HCoV-229E is
an enveloped, single-stranded RNA coronavirus. It is one of the viruses that produce the
common cold (Coronaviridae family, Human coronavirus 229E species), with a diameter
in the range of 120–160 nm. Figure 12 shows two pathways for antiviral activity: (1) the
attachment of CQDs (with a mean diameter of about 7 nm to the S-protein of viruses) to
prevent infectious contacts between host cells and viruses; and (2) the capacity of CQDs
to disrupt RNA genomic replication. Boronic acid functions were crucial in determining
antiviral efficacy [107].
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Figure 12. Scheme of the antiviral action of functionalized graphene quantum dots (GQDs). (a) Viral
illnesses are caused by binding between the coronavirus (HCoV-229E) S-protein and the host cell
receptor. (b) The presence of GQDs can prevent such binding. (c) This mechanism can inhibit the
viral genome replication. Adapted from Ref. [107], copyright 2021, with permission from Elsevier.

Bai et al. [108] developed a molecularly imprinted fluorescent sensor for selective
identification of a model drug: paclitaxel. A molecularly imprinted polymer (MIP) shell
was grafted on the surface of silane-functionalized Mn:ZnS QDs using a free radical
polymerization procedure (Figure 13). Methacryl polyhedral oligomeric silsesquioxane
(M-POSS) was utilized to provide a porous structure.

Van Tam et al. [106] used microwave-assisted pyrolysis of fructose to synthesize aniline-
functionalized graphene quantum dots (a-GQDs). Then, phenyl boric acid (PBA) was used
to modify the a-GQDs, leading to a fluorescence-quenching effect. The a-GQDs/PBA
nanomaterial was tested as a fluorescence turn-on sensor for glucose detection, based on
the specific interaction between PBA and glucose.

QDs also have great potential for cancer treatment. The selective attachment of FR-
positive tumor cells with folic acid/folate (FA) was reported as a fast and easy technique
for determining folate receptor (FR) expression in cancer cells. MKN 45, HT 29, and MCF
7 cancer cells were selectively marked using graphene quantum dots with folate coating
and nitrogen doping (N-GQDs) [109]. DNA-functionalized QDs have drawn considerable
attention in sensing and imaging, as well as cancer therapy [110]. Covalent conjugation,
electrostatic interaction, direct dative interactions, and other ways for conjugating DNA
to QDs have been documented in the literature [111]. In vitro photothermal imaging was
described by Wang et al. [112] as AuNPs-QD complexes combined with DNA as a template.
Horo et al. [52] developed DOX-loaded chitosan-AuNPs and beads, both of which were
implanted with functionalized silk fibroin. Chitosan was used as a reduction and stabilizing
agent to synthesize NPs with dimensions in the range of 3-8 nm. Compared to uncoated
materials, coated materials demonstrated a delay in drug release. As a result, drug delivery
strategies based on functionalized silk-coated substances may be useful for producing



Materials 2022, 15, 3251 16 of 40

localized and protracted drug release. Figure 13 depicts the synthesis process and the
potential detection mechanism of the drug.
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3.5. Polymeric Nanomaterials

Polymeric NPs are colloidal particles in the range of 10 nm–1 µm made up of polymers
that can be straightforwardly synthesized through chemical reactions in order to tailor
the loading and release of drugs and genes. The benefits of these NPs are their easiness
to synthesize, high stability, biodegradability, nontoxicity, lengthy blood circulation time,
and sustained and targeted delivery. Furthermore, they can be tailored according to their
shape, size, surface functional groups, degree of porosity, as well as their mechanical
characteristics [113]. They are divided into three main groups: natural, biosynthesized, and
chemically synthesized. They can be fabricated into different shapes, including liposomes,
dendrimers, nanospheres, nanocapsules, nanogels, and micelles (Figure 2). They are used
in wound dressings, pharmaceutical excipients, medical devices, dental materials, and
scaffolds [114]. Biodegradable polymers frequently used for the development of polymeric
NPs are poly(lactide) (PLA), poly(E-caprolactone) (PCL), PLGA and polycarbohydrates
such as alginate, chitosan, and gelatin.

Overall, because of their excellent chemical, physical, and mechanical properties and
their versatility of synthesis, functionalized nanomaterials can be employed in a variety
of ways. Although functionalized nanoparticles are hardly used in the industrial field up
to date, they can aid in developing novel concepts in a variety of industries. Functional-
ized nanomaterials promise to produce better and cost-effective consumer products and
industrial operations. An inappropriate use can have a detrimental effect on surroundings,
public health, and safety in various ways [115–117].

4. Cytotoxicity: The Role of Functionalization

Chemical composition, crystalline structure, size, and density are parameters that
strongly influence nanomaterial toxicity and cytotoxicity [28,118]. Nanomaterial absorption
and intracellular localization can be linked to some health hazards due to the nature
of nanomaterials and their chemical interactions with cells. Chemical composition, for
example, might cause oxidative stress in cells [119]. CNTs are believed to be more poisonous
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than carbon black or silica nanoparticles and can induce severe lung damage [120]. Asbestos
is less hazardous than TiO2, Fe3O4, and ZrO [121]. Another indicator of cytotoxicity based
on membrane integrity damage is lactate dehydrogenase (LDH) leakage. Additionally,
DNA damage in primary mouse embryofibroblasts (PMEF) treated in vitro with different
amounts (5, 10, 20, 50, and 100 µg mL−1) of manufactured nanoparticles (Figure 14) revealed
that CNTs and ZnO caused more DNA damage than carbon black (CB) and SiO2 NPs [121].
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Figure 14. DNA damage determined by comet assay in PMEF cells exposed to NPs. Cells were
respectively treated with 5 µg mL−1 of CB, CNT, SiO2, and ZnO for one day. Damage was evaluated
by (A) tail length, (B) tail DNA, (C) tail moment, (D) Olive tail moment. Values shown are the mean
from 50 images. * p < 0.05; ** p < 0.01 in comparison to blank. Adapted from Ref. [121], copyright
2009, with permission from Wiley & Sons, Inc.

The crystalline structure also has a strong effect on NPs’ toxicity [122]. For instance,
TiO2 NPs, which can naturally appear in three different crystalline forms, i.e., anatase,
rutile, and brookite, are reported to have cytotoxic and genotoxic effects. Rutile titania
is slightly more lethal than anatase TiO2 NPs. This might be elucidated considering the
different reactivity of the two forms: rutile TiO2 NPs are more photocatalytic than anatase
and therefore, are capable of producing larger quantities of oxygenated free radicals on their
surface. On the other hand, other allotropes have a significant influence on cell viability
and, as a result, on human health. Sato et al. [123] discovered that TiO2 allotrope toxicity is
affected by the NPs’ environment’s ambient conditions. In the absence of UV radiation,
rutile TiO2 NPs (200 nm) caused oxidative DNA injury, whereas TiO2 NPs (10–20 nm)
caused oxygen-reactive species (ROS) generation.

Another key component in minimizing nanomaterial toxicity is particle size [124].
Nanoparticles with a smaller size are more prone to pass through biological barriers.
Phagocytosis or other pathways can facilitate the entrance of small NPs to cells. NPs can
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discriminate between adhesive connections because of their ability to infiltrate cells. It can
produce forces such as Van der Waals, steric interactions, and electrostatic charges [125].
Furthermore, unlike big nanoparticles, NPs in the size range of 1 to 100 nm are not phago-
cytized but instead taken up via RME routes. In the lack of specific cell surface receptors,
NPs can be absorbed. Most cells can effectively assimilate NPs with size of 50 nm or smaller
(causing cytotoxicity). NPs smaller than 20 nm can easily pass through blood arteries and
concentrate in organs [126]. NPs with a large surface area, such as NiO (diameter < 25 nm),
clump together in liquids, and engage and induce oxidation and DNA damage by interact-
ing with molecules including proteins and DNA [127]. The mechanisms of cell damage by
NPs are depicted in Figure 15 [124].
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Figure 15. Mechanisms of cell damage by nanoparticles. (1) Physical damage of membranes. (2) Struc-
tural changes in cytoskeleton components. (3) Disturbance of transcription and oxidative damage
of DNA. (4) Damage of mitochondria. (5) Disturbance of lysosome functioning. (6) Generation
of reactive oxygen species. (7) Disturbance of membrane protein functions. (8) Synthesis of in-
flammatory factors and mediators. Adapted from Ref. [124], copyright 2018, with permission from
Springer Nature.

5. Cost-Effective Functionalization

The functionalization of AuNPs using a mixture of DNA and PEG polymers is the most
cost-effective and satisfactory method available for nanomaterial cofunctionalization [128,129].
To obtain a comparable level of gold NP binding effectiveness with DNA origami nanostruc-
tures, Wang et al. [130] used a significantly smaller amount of thiol-DNA in their technique
than pure DNA functionalization. Because of the decreased DNA consumption and lower
costs, the use of DNA–NP conjugates in nanotechnology can be scaled up. Figure 16 shows
the functionalization process of AuNPs with DNA/PEG polymers [130].
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Figure 16. AuNPs are functionalized in two stages: first with DNA/PEG polymers comprising
variable amounts of DNA, and then with rectangular DNA origami. Adapted from Ref. [130],
copyright 2017, with permission from The Royal Society of Chemistry.

6. Applications of Functionalized Nanomaterials in Biomedicine

Medical diagnosis [131], immunization [132], treatment [133], and even healthcare
services have been transformed and influenced by nanotechnology [134]. Chemical func-
tionalization, physical functionalization, and surface synthesis link biological agents with
various NPs. It is possible to classify the biomedical applications of nanotechnology into
different areas, as summarized in Figure 17 [135]. Additionally, some relevant examples
have been provided for each category in Table 1.
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Table 1. Applications of functionalized nanomaterials in nanomedicine.

Application Example Ref.

Diagnostic Imaging

X Ray
Tomography

Magnetic resonance imaging
Photothermal imaging

[136]
[137]
[138]
[112]

Therapy
Drug delivery

Gene and stem cell therapy
Hair growth

[139]
[140]
[141]

Medical implants

Orthopaedic
Cardiovascular
Neurological

Dental

[142]
[143]
[144]
[145]

Tissue Engineering Bone
Cartilage

[54]
[146]

Anticancer

Paclitaxel
DOX

Docetaxel
Gambogic acid

[108]
[60]
[30]
[147]

Sensing
Glucose
Insulin

Metabolic biomarkers

[106]
[148]
[38]

Antimicrobial and Antiviral

Streptomycin, penicillin
Coronavirus

E. coli
Airborne viruses

[149]
[107]
[104]
[150]

6.1. Diagnostic Implications of Functionalized Nanomaterials

Nanomaterials are extensively employed in imaging modes, such as optical coherence
tomography and MRI. QDs are semiconductor nanocrystals commonly employed in optical
imaging [151]. Imamura et al. [152] used PbS QDs for noninvasive scanning of septic
encephalopathy in mice, suggesting that these nanomaterials can be used to image a variety
of vascular systems. NIR fluorescence imaging of the mouse brain during therapy with
Pbs QDs is shown in Figure 18 [152]. Before administration of QDs, only low-intensity NIR
fluorescence signals were distinguished (Figure 18b, middle), due to the extremely low
background fluorescence in this spectral zone. When QDs were intravascularly inserted
into the mouse, the fluorescence signals arising from the mouse head augmented, and the
vascular structure of cerebral blood vessels became visible (Figure 18b, right)

The development of nanoparticles with fluorescence characteristics for in vivo imaging
is currently in progress. Because silicon nanocrystals are cell-safe, abundant, and more
appealing than QDs [153], they do not necessitate a dense surface coating to protect the
nanocrystal center from oxidation and the environment.
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Figure 18. (a) Setup for NIR fluorescence imaging of cerebral arteries. (b) Imaging of a mouse
head. Bright field micrograph (left), NIR fluorescence image without (middle), and with QDs (right).
(c) NIR fluorescence pictures of cerebral blood vessels. The upper image shows the fluorescence after
the scalp has been removed, whereas the lower micrograph shows the fluorescence after separation—
with one-millimeter scale bars. Taken from Ref. [152], copyright 2016, with permission from MDPI.

6.2. Therapeutic Applications of Functionalized Nanomaterials

Magnetic nanoparticles, AuNPs, and CNTs have been utilized in the field of biomedicine.
The application of NPs in postoperative treatment has attracted the attention of many
researchers [153]. The use of superparamagnetic Fe3O4, GO, and doxorubicin-incorporated
nanofibers has been claimed to reduce the localized regression of breast cancer and develop
tissue regeneration [60]. A functionalized peptide that provides specific drug delivery
possibilities with improved drug permeability, noteworthy aggregation in the desired
target, and high therapeutic efficacy can help with the liposomal formulation in cancer
treatment [20]. Docetaxel is a widely used anticancer chemotherapy drug, and transferrin is
a blood–plasma glycoprotein that plays a key role in iron metabolism. Fernandes et al. [30]
synthesized docetaxel-loaded liposomes functionalized with transferrin (LIP-DTX-TF),
and their effects on prostate neoplasms were studied. TEM images demonstrated that the
systems were spherical and nanometric in size (Figure 19a) and that the presence of DTX
aided in vesicle size reduction, resulting in improved liposome stability (Figure 19b).
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Figure 19. (a) Transmission Electron Microscopy of liposomes: (A) empty liposomes (LIP); (B) docetaxel-
loaded liposomes (LIP-DTX); (C) empty transferrin functionalized liposomes (LIP-TF); and (D) docetaxel-
loaded liposomes functionalized with transferrin (LIP-DTX-TF). (b) In vitro release profile of free DTX
and encapsulated in liposomes in PBS buffer pH 7.4. Adapted from Ref. [30], copyright 2021, with
permission from Elsevier.

7. Functionalized Nanomaterials: Drug/Gene Delivery

Nanomaterials can be functionalized for different purposes, including drug delivery
carriers or therapeutic agents for cure and treatment, diagnostic applications in biological
imaging, cell labeling, biosensors, and the use of moieties for medical devices such as stents
or lenses [154–156]. Functionalization can improve biocompatibility and uptake efficiency
and simultaneously minimize immune system activation, increasing the material’s bioavail-
ability inside the body. These modifications are beneficial for some drug delivery strategies
to ensure that the appropriate doses of the drug are released to the correct area while
limiting the detrimental effects of drug molecules on other organs [157]. Drug delivery
systems are necessary to improve the efficacy of drug biodistribution. Nanomaterials have
been used to carry drugs and genes in passive, active, and direct methods [49,158,159]. Due
to the small size of nanoparticles, they can pass across cellular membranes and boundaries.
Moreover, the increased surface-to-volume ratio of nanoparticles leads to improved drug
loading [160]. Figure 20 displays biological ligands used for active targeting of NP drug
carriers [161], and Table 2 summarizes different functionalized nanomaterials applied in
drug/gene delivery.

Table 2. Functionalized nanomaterials used for drug/gene delivery.

Nanomaterial Function Size (nm) Drug/Gene Target Organ &
Indication Ref.

Porous CaCO3
Intranasal drug

carrier 2000–3200 Insulin Postprandial
hyperglycemia in diabetes [162]

CaCO3 NPs Drug/gene delivery 116 Ciprofloxacin HCl S. Aureus [163]

CaCO3 Drug delivery 40–200
Hydrophilic drugs and

bioactive proteins
(validamycin)

Inflamed region [164]

Cationic NPs Gene delivery 50–100 Raf gene, ATPµ-Raf Angiogenic blood vessels
(tumor-bearing mice) [165]

Fe3O4@GO Drug release and
antitumor therapy 200–1000 Hybrid microcapsule Tumor cells targeting [166]



Materials 2022, 15, 3251 23 of 40

Table 2. Cont.

Nanomaterial Function Size (nm) Drug/Gene Target Organ &
Indication Ref.

GO flakes Drug release 1000–2000 DOX
microcapsules - [167]

AuNPs Drug delivery 100 –
Nasopharyngeal

carcinoma
cells

[168]

FA-Au-FITC 1 Drug delivery for
cancer therapy 4–7 DOX Cytoplasm [169]

HLA 2-Si/Fe3O4 NPs
Drug delivery for

cancer therapy 40–110 DOX Tumor tissues [170]

Fe3O4-SA-PVA-BSA 3 Drug delivery 240–460 DOX Cancer cells [171]

CS-HYL-5-FU-PEG-G 4 Drug delivery 300–580 COLO-205 and
HT-29 colon Cancer cells [172]

SA/PVA/Ca 5 Drug delivery
system 500–1000 Diclofenac sodium - [173]

PLGA 6-Fe3O4
Drug delivery

system 67 5-Fluorouracil Prostate carcinoma cell [113]

HLA-Nanoemulsion Drug delivery
system – Ciprofloxacin - [174]

Fe3O4
Drug delivery

system 20 Gambogic acid Capan-1 pancreatic cancer
cells [147]

PLGA-Fe3O4 NPs Intratumoral drug
delivery 200–300 DOX Murine Lewis lung

carcinoma cells [175]

Fe3O4 conjugate
oleate/oleylamine Drug release 12 Chromone HeLa cells [176]

Fe3O4/DPA-PEG-
COOH 7 Drug delivery 9 Dextran, PEG Macrophage Cells [177]

Thiolated
starch-coated Fe3O4

Drug delivery 40–50 Isoniazid Human body cells [178]

Zn-doped Fe3O4
nano-octahedral core Drug delivery 10–20 DOX and

HSP70/HSP90 siRNAs Tumor cells [138]

Arginine-NCQDs 8 Gene delivery 6–11 EGFP gene Mammalian cells [179]
1 Folic acid-coated gold nanoparticles conjugated with a fluorophore; 2 Hyaluronic acid-modified mesoporous
silica-coated Fe3O4 NPs; 3 Fe3O4 nanoparticles coated with a mixture of sodium alginate (SA), polyvinyl alcohol
(PVA), and bovine serum albumin (BSA); 4 Polyethylene glycol-gelatin-chitosan-hyaluronidase-5-fluorouracil;
5 Sodium alginate/polyethylene glycol (vinyl alcohol); 6 Poly(lactic-co-glycolic acid); 7 Dopamine-polyethylene
glycol-carboxylic acid; 8 Nitrogen-doped carbon quantum dots.
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8. Functionalized Nanomaterials: Regenerative Medicine

Reparative and restorative medicine and nanotechnology have gained popularity
in recent years, resulting in significant improvements in medical research and clinical
practice [180]. Tissue engineering, cell therapy, diagnostics, medication, and gene deliv-
ery are examples of regenerative medicine applications that use various functionalized
nanoscale materials [24,181,182]. Restorative medicine is a vast field of nanotechnology that
strives to regenerate cells and tissues similar enough to their original design and function.
Three main types of therapeutic techniques can be found in regenerative medicine: tissue-
engineering treatments based on cells; biomaterials; and a combination of the two. Stem
cell biology, nanotechnology, and bioengineering have progressed significantly, potentially
paving the way for real regenerative medicine for various diseases [183]. Stem cells are
known for their capacity to maintain their differentiating potential while intersecting to
generate numerous daughter cells. Such daughter cells lack “stem-ness” and use controlled
proliferation to produce adult cells of all origins throughout the body (self-renewal) [184].
Using tissue-specific or therapeutic genes, as well as primary cells that overexpress these
genes, genetically engineered cell treatment can manufacture proteins with a therapeutic
intent, to be used at regeneration platforms or discriminate new cells into the appropriate
cellular lineage, assisting in tissue restoration [185].

When bone is formed, it comprises mostly collagen fibers and calcium phosphate,
which is converted into hydroxyapatite (HDA). Bone tissue also contains several cellu-
lar structures, such as osteoblasts, osteocytes, and osteoclasts, which contribute to its
calcification [186]. For bone repair, nanoscaffolds with adequate biophysical characteris-
tics, such as stiffness and cell proliferation, have been employed. A variety of nanofiber
matrices have been synthesized in recent years. The vast majority of nanoscaffolds are
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developed to match genuine bone’s structural, compositional, and biological features [187].
Zhang et al. [188] prepared a chitosan/HDA biomimetic nanocomposite scaffold for assess-
ing the effect of bone marrow MSC mesenchymal stem cells (BMSCs) growth, and explored
the molecular mechanism both in vivo and in vitro. It was reported that this hybrid scaffold
could encourage the proliferation of BMSCs and trigger the integrin-BMP/Smad signal
pathway of BMSCs. In addition, HAD can also be used combined with other polymeric
materials such as PEG, PCL, and PLGA, which have displayed improved effects in bone
regeneration/repair (Figure 21) [189,190].
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Figure 21. Illustration of hydroxyapatite-based scaffold-induced regeneration of bone. Reprinted
from Ref. [189], copyright 2018, with permission from the American Chemical Society.

Besides nano-HDA, collagen, electrospun silk, anodized titanium, and nanostructured
titanium surfaces are some of the primary constituents of materials that mimic the bone
extracellular matrix [191]. In primary osteoblasts, nanofibers have improved osteogenesis
and biomineralization. Main osteoblasts are limited in their application due to (i) restricted
accessibility and intrinsic donor site malady; (ii) limited scaling capability; (iii) age-related
behavior; or (iv) possibility of dedifferentiation occurring during in vitro cultivation [94].

Transient gene delivery [192], cell therapy without the need for genetic modifica-
tion [193], and genetically modified cells [194] are currently three of the most exciting new
procedures in the field of tissue engineering. Gene delivery is a therapeutic approach to in-
troducing foreign genetic material directly into host cells in vivo. These genes immediately
affect the host tissue, causing it to remodel [195].

Achieving better cell adhesion, motility, and differentiation through nanomedicine
is possible thanks to the development of interfaces, components, and substances that
mimic the cells’ natural environment. Scientists have developed complex tissue/organ
constructions by combining stem cells with scaffolds and stimulating factors as the ba-
sis of their tissue-engineering experiments [145,196]. Some of these are currently being
utilized therapeutically as part of the standard treatment for various disorders. Scaffolds
are transformed into three-dimensional structures that have the appropriate shape, size,
architecture, and physical properties for different applications and environments. For this
reason, tissue-engineering products are designed to look and behave like natural tissues. In
addition to biocompatibility and controllable porosity and permeability, important scaffold
characteristics include mechanical and degradation kinetics comparable to those of the
desired tissue and support for cell adhesion and proliferation by adding nanotopographies
to the biomaterial surface [197].

Biodegradability is a critical property that nanoparticles must possess to be employed
safely inside the body. This is a crucial aspect to consider when building scaffolds for
tissue engineering and reparative and restorative medicine [198]. Table 3 summarizes
functionalized nanomaterials that have been utilized in tissue engineering.
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Table 3. Functionalized nanomaterials utilized in tissue engineering.

Nanomaterial Function Size (nm) Tissue Purpose & Outcomes Ref.

PEG-GO Tissue
engineering 50 Bone

Improved thermal stability,
hydrophilicity, water absorption,

biodegradation, mechanical,
viscoelastic, and

antibacterial properties

[54]

Oxidized alginate/
gelatin hydrogel

Tissue
regeneration 100–200

Cartilage regeneration
for the treatment
of osteoarthritis

Usefulness of the hydrogel in
encouraging cellular migration

and proliferation
[146]

OCMC 1 Tissue
engineering 2000–4000 BALB/c3T3 cells

in rates
Biocompatibility, spinnability of

hydrogel through electrospinning [199]

Pd/PPy/rGO NC 2 Tissue
engineering 2–4 Bone Biocompatibility, osteoproliferation,

and bacterial infection prevention [200]

3D macro-rGO/PPY Bone tissue
engineering 100–400 Backbone

Casein phosphopeptide as bioactive
for bone engineering,

osteoblastic performance,
biological properties

[201]

Chitosan-ZnO Soft tissue
engineering 180

Improved hydrophilicity,
porosity, water absorption,

oxygen permeability,
biodegradability, antibacterial and

wound healing

[202]

Biphasic Calcium
Phosphate

Bone tissue
engineering 1–2 MG63 cells

Micropores and collagen coating
influence cellular function,

in vitro cellular
behavior, scaffold–

osteoblast interactions

[203]

AuNPs/glass-ceramic
matrix

Bone tissue
engineering 5–10 Bone

In vitro hydroxyapatite synthesis,
controlled release of gold species,
biocompatibility, and antibacterial

activity of AuNPs

[91]

AuNPs Tissue
engineering 20 Rat brain AuNP biochemical effects on the rat

brain, biomarkers of AuNP toxicity [204]

AuNPs Tissue
Engineering 10–50 Cardiac tissue

Effects of AuNPs on the histological
deformities of rat heart tissue,

toxicity, therapeutic and diagnostic
potential of NPs, and their

interaction with proteins and
other cells

[205]

AuNPs Tissue
engineering 30 nm Subsets of cells

in human organs

NP toxicity in human blood,
hemolysis, development of ROS 3,

platelet condensation in cell subsets
[206]

AuNPs/polymeric
coatings

Tissue
engineering 18, 35, 65 Endothelial cells from

human dermis
NP toxicity, uptake behavior, and

uptake quantification [207]

Bioactive glass
scaffolds

Tissue
engineering 50–100 Bone repair Osteoblastic cells for bone

reconstruction [208]

Na2Ca2Si3O9
Bone tissue
engineering 500 Bone Bioactive and biodegradable scaffold

effects, mechanical support [209]

Bioactive glass-
ceramics/apatite

Bone tissue
engineering 8–20 Bone

Crystallization rate of bioactive
glasses on the kinetics of

HAD formation
[90]

Ca10(PO4)6(OH)2
Bone tissue
engineering 1000–2000 Trabecular bone Extent and nature of carbonate

substitution on HDA [93]
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Table 3. Cont.

Nanomaterial Function Size (nm) Tissue Purpose & Outcomes Ref.

GO/Chitosan
Scaffold Cardiac tissue —- Cardiac tissue

Investigate cell survival, cell
adhesion, development of

intercellular networks, genes, and
proteins expression

[210]

GO/Chitosan
Scaffold Cartilage repair 35–60 Cartilage tissue Nanocomposite effect on human

tissue, effects of GO [211]

GO-coated collagen
scaffolds

Tissue
engineering —- Mouse osteoblastic

MC3T3-E1 cells

Influence of the GO coating on cell
growth and differentiation,

biocompatibility and
biodegradability of collagen
scaffolds, bioactivity studies

[212]

Nanocrystalline
apatite/AuNPs

Tissue
engineering 2–25 Bone tissue

reconstruction
Toxicity of NPS in simulated

physiological fluid [66]

1 Gelatin − oxidized carboxymethyl cellulose. 2 Nanocrystalline cellulose. 3 Reactive oxygen species.

9. Functionalized Nanomaterials: Cancer Therapy

Theranostic nanoprobes for tumors and malignancies have become a prominent focus
of research since NP functionalization has been able to be used simultaneously in diagnos-
tic and therapeutic purposes. Surface modification of NPs has been proven to generate
targeted accumulation in tumor tissue due to the enhanced permeability and retention
(EPR) effect [29,213]. Tumors have more permeable vasculature, a poorly defined lymphatic
system, and various substances that aid in increased targeting, as contrasted to normal
tissue, such as VEGF and basic fibroblast growth factor [214]. In cancer immunother-
apies, NPs can keep track of critical immune cells during metastasis. Different tumor
ablation therapies with magnetic NPs such as Fe3O4 have been reported [215] (Figure 22):
(a) Magnetic hyperthermia, in which an alternating magnetic field induces NPs to produce
heat, boosting tumor necrosis. (b) Photothermal ablation, in which the light absorbed by
the NPs is transformed into thermal energy, producing cell death in the neighborhood.
(c) Photodynamic therapy, in which photosensitizing agents anchored to NPs are activated
via an external light source to make singlet oxygen species that are cytotoxic to cells. As
a result, NPs have a high level of target-cell selectivity [216]. Table 4 displays functionalized
nanomaterials that have been utilized for cancer treatment.
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Table 4. Functionalized nanomaterials used for cancer therapy.

Nanomaterial Functionalization Agent Size (nm) Drug Purpose & Outcomes Ref.

ZnO NPs PBA 40 Curcumin
High drug-loading and release

rates, in vitro and in vivo
antitumor efficacy

[88]

AuNPs
Beta-cyclodextrin with

PEG, biotin, PTX,
rhodamine B

30–50 PTX
Cytocompatibility,

stability, and biomolecule
binding ease

[217]

SPION 5TR1 Aptamer 57 Epirubicin

Magnetic resonance (MR)
traceability, nontoxicity,
increased permeability,

retention effect

[82]

Fe3O4 NPS Glycerol monooleate 144 PTX, rapamycin,
alone or combined

Intravenous administration of
hydrophobic drugs [218]

rGO 1 Fe3O4 NPs 54.8 Camptothecin
pH-responsive drug release

profile, good biocompatibility,
excellent photodynamic

[219]

Fe3O4 MNPs+ PLGA citric acid 130–140 DOX, verapamil Loading hydrophilic and
hydrophobic drugs [220]

MSN 2
β-cyclodextrin with

hydroxyl, amino, and thiol
groups

75.5 DOX Higher mucoadhesive on
the urothelium [221]

rGO
HA-PEG-g-

poly(dimethylaminoethyl
methacrylate)

120−190 -
Biocompatibility, in vitro

cellular uptake sensitive to
cancer cells

[222]

MSN Galactose 277 Camptothecin MSN targeting to cancer cells [59]

rPEI- Cdots 3 FA 143 - Biocompatible, good siRNA
gene delivery carrier [223]

PLGA NPs bis(sulfosuccinimidyl)
suberate (BS3) 184 Curcumin

Promote the loading of
low-soluble drugs and aid in

sustained released
[114]

ZnO NPs PBA 414 Curcumin
Curcumin distribution to the
sialic acid is much easier by

PBA conjugation
[88]

Se NPs
(Arg–Gly–Asp–d-Phe–

Cys [RGDfC])
cyclic peptide

18 DOX Antitumor efficacy in vivo,
effective cellular uptake A549 [224]

CuO NPs FA, starch 108.83 Cytochrome C Antioxidants, anticancer,
antimicrobial, drug-carrier [35]

MoS2 FA, BSA 133 DOX Excellent photothermal
conversion ability [225]

1 Reduced graphene oxide. 2 Mesoporous silica nanoparticles. 3 Reducible polyethyleneimine passivated
carbon dots.

10. Functionalized Nanomaterials: Medical Implants

Recently, the influence of nanotechnology on the implant field has increased strongly.
Nanomaterials with biological-inspired structures are motivating scientists to investigate
their potential for enhancing the performance of conventional implants [91,142]. Nan-
otechnology has the skill to economically substitute many traditional implants and offer
numerous novel applications. It can result in more efficient and longer-lasting implants,
with reduced infection rates and enhanced bone or tendon healing. In orthopedics, the
goal of biomaterials is to substitute injured bone. Improved mechanical properties (e.g.,
strength, flexibility, hardness, elastic modulus), wear, hydrolysis and corrosion resistance,
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biocompatibility, osseointegration, bioinertness, and ease of surgical application are re-
quired properties to be used in orthopedics [226,227]. Nanomaterials offer an enlarged
surface area, a superior stiffness, and a high roughness that can improve the adhesion and
proliferation of bone-related proteins and the deposition minerals incorporating Ca [228].
Besides, FMNs can mimic the amounts of the components of natural bones and can aid in
sustaining biologically active growth factors and exploit the potential of BMSCs. Numerous
studies [229] have been developed to examine the optimal surface properties of FMNs
that may support or assist specific protein adsorption, improved osteoblast anchoring,
osteoblast differentiation, and new bone formation (Figure 23) [142].

Materials 2022, 15, x FOR PEER REVIEW 31 of 42 
 

 

Figure 23. Comparison of bone regeneration using nanomaterials and traditional materials. Nano-

materials show improved protein adsorption, osteoblast anchoring, and differentiation compared 

to traditional materials. Reproduced from ref. [143], copyright 2020, with permission from Elsevier. 

Surface adjustment of nanomaterials is a prospective method to expand the perfor-

mance and durability as well as to reduce the hazardous side effects that might take place 

during implant degradation. Surface characteristics have a key role on modulating bio-

logical interactions. Specifically, engineered nanomaterials can have a significant impact 

on molecular and cellular actions; this issue aids in conditioning the comprehensive bio-

logical response of an implant (i.e., protein adsorption, cell adhesion, and proliferation). 

Therefore, several approaches have been settled to modify nanomaterials for orthopedic 

implants such as anodic oxidation [232], plasma electrolytic oxidation [233], electrochem-

ical plating [234], chemical conversion coating [235], physical vapor deposition, laser sur-

face alloying [236], thermal spraying [237], organic coating [238], and so forth. These meth-

ods provide new implant surfaces with tailorable characteristics at the nanoscale. The par-

ticular procedure can be chosen based on different factors/goals, including to attain com-

plex geometries and to be suitable for large-scale processing. Metal oxide NPs such as 

TiO2, ZrO2, and Al2O3 have been used as nanocoatings to enhance the mechanical and 

biochemical properties of conventional metallic implants [239]. 

11. Conclusions 

Nanotechnology has opened up vast techniques to manipulate and transform the 

current medical devices or materials utilized for therapy in biomedical sciences and engi-

neering. Numerous nanomaterials can be used in biomedical applications, both organic, 

such as CNTs, GO, GQDs, and polymeric NPs, and inorganic, such as metallic NPs (Au, 

Ag), metal oxide NPs (TiO2, Fe3O4, mesoporous SiO2), and ceramic (HAD, CaCO3). Over 

the last years, numerous approaches have been developed to synthesize surface-engi-

neered nanomaterials, in particular NPs, for drug/gene delivery, diagnostics, cancer ther-

apy, tissue engineering, and medical implants, and the structure–function relationship of 

these functionalized nanoparticles has been widely explored. The NPs’ surface modifica-

tion is a potent strategy to improve biocompatibility and uptake, as corroborated by the 

huge quantity of scientific documents published on this subject. Investigations prove that 

the conjugation of polymers, biomolecules, and small ligands on the NP surface can suc-

cessfully increase biocompatibility both in vivo and in vitro, due to the alteration of sur-

face charge and to the inactivation of sensitive functional groups that can influence the 

Figure 23. Comparison of bone regeneration using nanomaterials and traditional materials. Nano-
materials show improved protein adsorption, osteoblast anchoring, and differentiation compared to
traditional materials. Reproduced from Ref. [142], copyright 2020, with permission from Elsevier.

Surface adjustment of nanomaterials is a prospective method to expand the perfor-
mance and durability as well as to reduce the hazardous side effects that might take place
during implant degradation. Surface characteristics have a key role on modulating biologi-
cal interactions. Specifically, engineered nanomaterials can have a significant impact on
molecular and cellular actions; this issue aids in conditioning the comprehensive biological
response of an implant (i.e., protein adsorption, cell adhesion, and proliferation). Therefore,
several approaches have been settled to modify nanomaterials for orthopedic implants such
as anodic oxidation [230], plasma electrolytic oxidation [231], electrochemical plating [232],
chemical conversion coating [233], physical vapor deposition, laser surface alloying [234],
thermal spraying [235], organic coating [236], and so forth. These methods provide new
implant surfaces with tailorable characteristics at the nanoscale. The particular procedure
can be chosen based on different factors/goals, including to attain complex geometries and
to be suitable for large-scale processing. Metal oxide NPs such as TiO2, ZrO2, and Al2O3
have been used as nanocoatings to enhance the mechanical and biochemical properties of
conventional metallic implants [237].

11. Conclusions

Nanotechnology has opened up vast techniques to manipulate and transform the
current medical devices or materials utilized for therapy in biomedical sciences and engi-
neering. Numerous nanomaterials can be used in biomedical applications, both organic,
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such as CNTs, GO, GQDs, and polymeric NPs, and inorganic, such as metallic NPs (Au,
Ag), metal oxide NPs (TiO2, Fe3O4, mesoporous SiO2), and ceramic (HAD, CaCO3). Over
the last years, numerous approaches have been developed to synthesize surface-engineered
nanomaterials, in particular NPs, for drug/gene delivery, diagnostics, cancer therapy, tis-
sue engineering, and medical implants, and the structure–function relationship of these
functionalized nanoparticles has been widely explored. The NPs’ surface modification is
a potent strategy to improve biocompatibility and uptake, as corroborated by the huge
quantity of scientific documents published on this subject. Investigations prove that the
conjugation of polymers, biomolecules, and small ligands on the NP surface can success-
fully increase biocompatibility both in vivo and in vitro, due to the alteration of surface
charge and to the inactivation of sensitive functional groups that can influence the stability
of the cell membrane. Besides, the incorporation of certain molecules can improve NPs’
passive and active uptake, reducing systemic toxicity in vivo and enabling high precision
therapy and/or diagnosis. The binding of functionalization agents on the NP surface
can be achieved via covalent and noncovalent tactics. The first is broadly used to link
proteins, antibodies, aptamers, and peptides utilized to boost uptake and to achieve ac-
tive targeting, whereas the second is frequently used for the loading of drugs and other
molecules that need to be liberated into the cells. The promise of tissue and organ-specific
regeneration therapy has become a reality due to major advances in regenerative medicine
and nanomedicine over the previous decade. Preliminary clinical results have shown that
functionalization of NPs with specific recognition surface moieties results in improved
efficacy and reduced side effects, due to properties such as directed localization in tumors
and active cellular uptake. Even though remarkable improvements have been attained,
this research arena is still in its early stages, and significant efforts are needed in order
to be able to scale up the functionalization approaches developed at the laboratory level
and make them reproducible. A prerequisite for progressing in this research area is the
development of novel chemical methods to conjugate chemical moieties onto NPs in a safe
and consistent manner. In addition, smart and innovative nano-based technologies can
offer particular physicochemical properties that could aid in fixing crucial issues associated
with the treatments of viral infections such as SARS-CoV-2. Researchers may find this study
valuable in analyzing past studies on the topic matter to attain commercial success.
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Abbreviations

aniline functionalized graphene quantum dots a-GQDs
aptameric functionalized materials AFMs
carbon nanotubes CNTs
carbon quantum dots CQDs
cationic β-cyclodextrin-based polymer CCD/P
docetaxel-loaded liposomes functionalized with transferrin LIP-DTX-TF
dopamine DOPA
dopamine-polyethylene glycol-carboxylic acid DPA-PEG-COOH
enhanced permeability and retention EPR
extra-cellular matrix ECM
folate receptor FR
folic acid FA
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folic acid-coated gold nanoparticles conjugated with fluorophore FA-Au-FITC
functionalized nanoparticles FNPs
gold nanoparticles AuNPs
graphene oxide GO
hyaluronic acid HLA
hydroxyapatite HDA
lactate dehydrogenase LDH
poly(lactic-co-glycolic acid) PLGA
magnetic nanoparticles MNPs
magnetic resonance imaging MRI
mesoporous silica nanoparticles MSN
methacryl polyhedral oligomeric silsesquioxane M-POSS
nanoparticles NPs
near-infrared NIR
nitrogen-doped carbon quantum dots NCQDs
nitrogen-doped graphene quantum dots N-GQDs
oleic acid-coated iron oxide NPs Fe3O4-OA
phenyl boronic acid PBA
phenylethylamine PhEA
photodynamic therapy PDT
photothermal PT
piperine PIP
poly(acrylic acid) PAA
polyethylene glycol PEG
polyethylene glycol with thiol end group thiol-PEG
polyethylene glycol-gelatin-chitosan-hyaluronidase-5-fluorouracil CS-HYL-5-FU-PEG-G
positron emission tomography PET
quantum dots QDs
receptor-mediated endocytosis RME
reticulum endothelial system RES
sodium alginate (SA)–polyvinyl alcohol (PVA)–bovin serum albumin SA-PVA-BSA
sodium alginate/polyethylene glycol (vinyl alcohol) SA/PVA/Ca
superparamagnetic iron oxide NPs SPIONs
tetraethylorthosilicate TEOS
ultra-small superparamagnetic iron oxide NP USPIONs
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