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Abstract: In this paper, we introduce the notion of infinity branches and approaching surfaces. We
obtain an algorithm that compares the behavior at the infinity of two given algebraic surfaces that
are defined by an irreducible polynomial. Furthermore, we show that if two surfaces have the same
asymptotic behavior, the Hausdorff distance between them is finite. All these concepts are new and
represent a great advance for the study of surfaces and their applications.
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1. Introduction

Algebraic curves and surfaces are essential entities for practical applications (see, for
example [1,2]). In fact, one may find a lot of literature dealing with different problems
related to curves defined by irreducible polynomials (see, e.g., [3,4]). In this paper, we
introduce the concept of infinity branches for surfaces. Intuitively speaking, an infinity
branch represents the behavior of an algebraic surface at the points with “sufficiently
large coordinates”. Informally speaking and generalizing the situation of algebraic curves,
an infinity branch is associated with a projective “place” centered at an “infinity point”,
and it can be “parametrized” by means of “Puiseux series” (the formal definition of these
notions can be seen in Sections 2 and 3).

Infinity branches are necessary and essential for the study of surfaces since they reveal
the behavior at a point at infinity of a real algebraic surface. For instance, the infinity
branches of an implicit algebraic plane curve are an important tool to sketch its graph as
well as to analyze its topology (see e.g., [5–9]). It should be mentioned that for the case
of curves, in [10], the notion of a g-asymptote is introduced. A g-asymptote generalizes
the well-known notion of linear asymptotes, and these asymptotes can be computed from
the infinity branches. More precisely, we say that a curve C is a generalized asymptote (or
g-asymptote) of an input curve C if C approaches C at some infinity branch. Furthermore,
the input curve C cannot be approached by a new curve having a lower degree. In this
paper, we generalize some of these notions introduced previously for curves in [5] to the
case of surfaces.

The notion of an infinity branch allows us to define convergent branches and approach-
ing surfaces (see Section 4). More precisely, we say that two infinity branches converge if
they get closer as they tend to infinity. Furthermore, an algebraic surface V approaches V at
its infinity branch B if V has another infinity branch B such that B is convergent with B. We
obtain important results that characterize whether two algebraic surfaces are approaching.

Using these results, we obtain an algorithm that compares the the behavior of two
surfaces at infinity (see Section 5). Finally, it is shown that if two algebraic surfaces defined
implicitly have the same asymptotic behavior, then the Hausdorff distance between them
is finite.
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The results that we obtain in this paper (and also for the case of curves) are essential
for some applications in the framework of computer-aided geometric design (CAGD) as, for
instance, in the approximate parametrization problem (see [11]). This problem can be stated
as follows: we are given a non-rational affine surface V (we assume that it is a perturbation
of a rational surface), and we would like to compute, if it exists, a parametrization of a new
rational affine surface denoted by V , which is near to the input surface. The effectiveness
of the algorithm depends on the closeness of V and V , and then, here, one needs to show
that the Hausdorff distance between V and V is finite.

This paper is structured as follows: in Section 2, we present the notions and prelimi-
naries that will be used throughout the paper. Section 3 introduces the concept of infinity
branch, and here, we prove some important properties. Section 4 provides the notions of
convergent branches and approaching surfaces. Additionally, we characterize whether or not
two algebraic surfaces approach each other. The results presented in this section will be
used in Section 5, where an algorithm to compare the asymptotic behavior of two algebraic
surfaces is designed. Finally, we prove that if two given algebraic surfaces have the same
asymptotic behavior, the Hausdorff distance between them is finite. We finish with a section
for conclusions and future work (Section 6).

2. Preliminaries and Terminology

In the following, we present some concepts and notions that will be used throughout
the paper. In particular, we introduce some previous results concerning local parametriza-
tions and Puiseux series. For further details, one may see for instance, Section 2.5 in [3],
Chapter 4 (Section 2) in [4], [12–15], etc.

We represent by C[[t]] the domain of formal power series in the variable t with coeffi-
cients in the field of complex numbers C. That is, C[[t]] is the set of all the sums ∑∞

i=0 aiti,
ai ∈ C. The quotient field of C[[t]] is the field of a formal Laurent series, which is de-
noted by C((t)). Every non-zero formal Laurent series A ∈ C((t)) can be written in the
form A(t) = tk · (a0 + a1t + a2t2 + · · · ), where a0 6= 0 and k ∈ Z. Furthermore, the field
C� t� :=

⋃∞
n=1 C((t1/n)) is the field of a formal Puiseux series. By Puiseux’s Theorem,

one gets that the field K � t � is algebraically closed. Observe that Puiseux series are
power series with fractional exponents. Furthermore, given a Puiseux series, ϕ, one has a
bound for the denominators of exponents with non-vanishing coefficients of ϕ. This bound
is known as the ramification index of ϕ, and we represent it as ν(ϕ) (see [13]).

The order of a (Puiseux or Laurent) series A is the smallest exponent of a term with a
non-vanishing coefficient in A. We represent it by ord(A), and we say that the order of 0
is ∞.

Let Y(x) be a Puiseux series solving f (x, y) = 0, ord(Y) > 0, and let n be the least
integer for which Y(x) ∈ C((x

1
n )) (i.e., ν(Y) = n). We set x

1
n = t, and then (tn, Y(tn)) is a

local parametrization with center at the origin. The solutions of f (x, y) of order 0 are places
with a center on the y-axis different from the origin. The solutions of negative order are
places at infinity (that is, places with center at an infinity point).

Let Y(x) = ∑i≥r aixi/n be a Puiseux series with ν(Y) = n. The series σε(Y), εn = 1 are
defined as the conjugates of Y, where σε(Y) = ∑i≥r εiaixi/n. The set of all the conjugates
of Y is called the conjugacy class of Y. The number of different conjugates of Y is ν(Y).
Two Puiseux series provide the same place if they belong to the same conjugacy class
(see [13,16]).

For the case of Puiseux power series in several variables, one may use the notation
introduced in [14]. More precisely, let us fix a vector of variables x = (x1, . . . , xn), n > 1,
and an integer d > 0. We will use the lexicographic order ≤lex on Rn, which can be defined
as follows: since we can assign to every monomial xa1

1 · · · x
an
n , ai ∈ Z, i = 1, . . . , n, the

vector (a1, . . . , an) ∈ Zn of its exponents, we consider the lexicographic order of the group
M = {xa}{a∈Zn} of monomials by writing

xa1
1 · · · x

an
n ≤lex xb1

1 · · · x
bn
n ⇔ (a1, . . . , an) ≤lex (b1, . . . , bn).
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This extension will also be called the lexocographic order for monomials, and it is a
group order. The same argument follows for the group M1/d, d ∈ Z, d > 0 of monomials
with vectors of exponents in (1/d) ·Z.

Let Fn,d be the set of all the functions f : (1/d) ·Z→ C; then Fn,d is an abelian group
with respect to the usual addition of functions. If we fix a vector x of variables, we may
write every f ∈ Fn,d as a formal sum f = ∑a∈Zn faxa/d where fa = f (a/d) ∈ K and,
if a = (a1, . . . , an), then xa/d = xa1/d

1 · · · xan/d
n . In this case, we set Fn,d = Fx,d. We call the

support of f the set

E( f ) = {a/d ∈ (1/d) ·Z | a ∈ Zn, fa 6= 0}.

Finally, let us denote by Kx,d the subgroup Kx,d = C((x1/d
n )) · · ·C((x1/d

1 )) of Fx,d,
which is a field constructed by induction (see [14]). Under these conditions, if 0 6= f ∈ Fx,d,
then f ∈ Kx,d if E( f ) is a well-ordered subset of (1/d) · Z for the lexicographic order.
The elements of Kx,d will be called generalized Puiseux power series.

In the next definition, we introduce the concept of projective local parametrization for
a projective algebraic surface.

Definition 1. Let V∗ ⊂ P3(C) be a projective algebraic surface defined by the homogeneous
polynomial F(x, y, z, w) ∈ R[x, y, z, w]. Let A∗, B∗, C∗, D∗ be series in C((t1, t2)) such that: (i)
F(A∗(t1, t2) : B∗(t1, t2) : C∗(t1, t2) : D∗(t1, t2)) = 0 (where the three series converge), and (ii)
there is no K ∈ C((t)) \ {0} such that K · (A∗, B∗, C∗, D∗) ∈ C4. Then P∗ = (A∗ : B∗ : C∗ :
D∗) ∈ P3(C((t1, t2)) ) is called a projective local parametrization of C∗.

One can always find such a parametrization such that min{ord(A∗), ord(B∗), ord(C∗),
ord(D∗)} = 0, and the point P∗(0) ∈ V∗ is called the center of P∗.

For a given affine surface, the previous notion can be stated as follows:

Definition 2. Let V be a real algebraic surface over C implicitly defined by the irreducible polyno-
mial f (x, y, z) ∈ R[x, y, z]. Let A, B, C be series in C((t1, t2)) such that: (i) f (A(t1, t2), B(t1, t2),
C(t1, t2)) = 0 (where the series converge), and (ii) not A and B and C, are constants. Then
P = (A, B, C) is called an (affine) local parametrization of V . If ord(A), ord(B), ord(C) ≥ 0,
and the point P(0) = (a, b, c) ∈ V is called the center of P .

In the following, we deal with affine surfaces. The results and notions presented can
be adapted easily for projective algebraic surfaces.

For our purposes, we will need a generalization of the above definition. More precisely,
we will be in the conditions of Definition 2, but the place P(0, t2) = (a(t2), b(t2), c(t2)) ∈
V , a(t2), b(t2), c(t2) ∈ C� t2 �, will be the center of P .

Definition 3. An equivalence class of irreducible local parametrizations of the surface V is called a
place of V . The common center of the local parametrizations (if it exists) is the center of the place.

Now, we introduce the notion of a branch of a surface.

Definition 4. Given a local parametrization (X, Y, Z) of a surface V , the set of all points (X(t1, t2),
Y(t1, t2), Z(t1, t2)) obtained by allowing t1 to vary within some neighborhood of 0 where X(t1, t2)
and Y(t1, t2) and Z(t1, t2) converge is called a branch of V .

It can be proved that two equivalent local parametrizations provide the same branch.
Hence, one gets a branch for each place of the input surface.

Furthermore, the center of a local parametrization of V is a point on V . Reciprocally,
from the following theorems, we also get that every point on V is the center of at least one
place of V .
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Theorem 1. Let V be a surface defined by f (x, y, z) ∈ R[x, y, z]. To each root (X(z), Y(z)) ∈
C � z � of f (x, y, z) = 0 with ord(X) >, ord(Y) > 0, there corresponds a unique place of V
with a center at the origin. Conversely, to each place (X(t1, t2), Y(t1, t2), Z(t1, t2)) of V with a
center at the origin, there correspond ord(Z) roots of f (x, y, z) = 0, each of order greater than zero.

3. Infinity Branches

In the following, we define an infinity branch (see Definition 5), and we get some
important properties which will be essential for the results we will obtain.

For this purpose, let V be an algebraic affine surface over C implicitly defined by
the irreducible polynomial f (x, y, z) ∈ R[x, y, z]. Let V∗ be its corresponding projective
surface defined by the homogeneous polynomial F(x, y, z, w) ∈ R[x, y, z, w]. In addition,
let p = (m1(t2), m2(t2)), where m1(t2), m2(t2) ∈ C � t2 �, be a local parametrization
of an infinity curve of V∗ implicitly defined by the irreducible polynomial g(y, z, 0) that
divides F(1 : y : z : 0) (see Definition 2). Observe that F(1 : m1(t2) : m2(t2) : 0) = 0, and by
abuse of notation, we refer to P = (1 : m1(t2) : m2(t2) : 0) as an infinity point of the input
surface V∗.

We compute the series expansion for the solutions of g(y, z, t1) = 0 w.r.t (y, z) in some
neighborhood of t1 = 0. We obtain solutions given by different Puiseux series that can be
grouped into conjugacy classes. Let one of these solutions be given by the Puiseux series
ϕ(t1, t2) = (ϕ1(t1, t2), ϕ2(t1, t2)) =:(

m1(t2) + ∑
N∈N2

h1,NξN/N , m2(t2) + ∑
N∈N2

h2,NξN/N

)
∈ C� t1, t2 �2,

where, for j = 1, 2, N = (Nj1, Nj2), ξN/N = t
Nj1/N1
1 t

Nj2/N2
2 , νti (ϕ) = Ni ∈ N, i =

1, 2, N ∈ N2, and the lexicographic order for monomials is considered. We have that
g(ϕ1(t1, t2), ϕ2(t1, t2), t1) = 0 in some neighborhood of t1 = 0 where ϕ(t1, t2) converges.
Then, there exists some M ∈ R+ such that

F(1 : ϕ1(t1, t2) : ϕ2(t1, t2) : t1) = g(ϕ1(t1, t2), ϕ2(t1, t2), t1) = 0,

where (t1, t2) ∈ C2 and |t1| < M, which implies that

F(t−1
1 : t−1

1 ϕ1(t1, t2) : t−1
1 ϕ2(t1, t2) : 1) = f (t−1

1 , t−1
1 ϕ1(t1, t2), t−1

1 ϕ2(t1, t2)) = 0,

for (t1, t2) ∈ C2 and 0 < |t1| < M. We set t−1
1 → t1, and we obtain that

f (t1, r1(t1, t2), r2(t1, t2)) = 0, (t1, t2) ∈ C2 and |t1| > M−1,

where

rj(t1, t2) = t1 ϕj(t−1
1 , t2) = mj(t2)t1 + ∑

N∈N2

hj,NχN/N ∈ C� t1, t2 �,

N = (Nj1, Nj2), χN/N = t
1−Nj1/N1
1 t

Nj2/N2
2 for j = 1, 2.

Since νt1(ϕ) = N1, we get that there are N1 different series in its conjugacy class (with
respect to the variable t1). Let ϕ11, . . . , ϕ1N1 be these series, and r1i(t1, t2) = t1 ϕ1i(t−1

1 , t2) =

m1(t2)t1 + a1(t2)c
N11
i t1−N11/N1

1 + a2(t2)c
N21
i t1−N21/N1

1 + a3(t2)c
N31
i t1−N31/N1

1 + · · · (1)

where c1, . . . , cN1 are the N1 complex roots of xN1 = 1. Similarly, one reasons for r2i(t1, t2).
Now, we introduce the notion of an infinity branch.
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Definition 5. The set B =
⋃N1

i=1 Li where

Li = {(t1, r1i(t1, t2), r2i(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > Mi}

is called an infinity branch of the affine surface V . The subsets L1, . . . , LN1 are called the leaves of
the infinity branch B.

Remark 1.

1. Note that, up to conjugation, an infinity branch is uniquely determined from one leaf. That is,
if B =

⋃N1
i=1 Li, where Li = {(t1, r1i(t1, t2), r2i(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > Mi},

and r1i(t1, t2) = t1 ϕ1i(t−1
1 , t2) =

m1(t2)t1 + a1(t2)t
1−N11/N1
1 + a2(t2)t

1−N21/N1
1 + a3(t2)t

1−N31/N1
1 + · · ·

then r1j = r1i, j = 1, . . . , N1, up to conjugation; i.e., r1j(t1, t2) = t1 ϕ1j(t−1
1 , t2) =

m1(t2)t1 + a1(t2)c
N11
j t1−N11/N1

1 + a2(t2)c
N21
j t1−N21/N1

1 + a3(t2)c
N31
j t1−N31/N1

1 + · · ·

where cN1
j = 1, j = 1, . . . , N1, and N1, Ni1 ∈ N. Similarly, one reasons for r2j.

2. Let M := max{M1, . . . , MN}. In the following, we consider Li = {(t1, r1i(t1, t2), r2i(t1, t2))

∈ C3 : (t1, t2) ∈ C2, |t1| > M}.

Let ϕji(t1, t2) = mj(t2) + ∑N∈N2 hj,i,NξN/N , j = 1, 2, be a series expansion for a so-

lution of g(ϕ1i(t1, t2), ϕ2i(t1, t2), t1) = 0. We consider ψji(t1, t2) := ϕji(t
N1
1 , tN2

2 ), and we

observe that (1 : ϕ1i(t
N1
1 , tN2

2 ), ϕ2i(t
N1
1 , tN2

2 ) : tN1
1 ) is a local projective parametrization,

with a center at P = (1 : m1(t2) : m2(t2) : 0), of the projective surface V∗.
Thus, from ψji(t1, t2) := ϕji(t

N1
1 , tN2

2 ), i = 1, . . . , N1, j = 1, 2 (ϕji are the N1 different
series in the conjugacy class of ϕji). We obtain N1 equivalent local projective parametriza-

tions, (1 : ψ1i(t1, t2) : ψ2i(t1, t2) : tN1
1 ) (note that they are equivalent since ϕj1, . . . ϕjN1

belong to the same conjugacy class). Therefore, the leaves of B are all associated to a unique
infinity place.

Conversely, from a given infinity place defined by a local projective parametrization (1 :
ϕ1(t

N1
1 , tN2

2 ), ϕ2(t
N1
1 , tN2

2 ) : tN1
1 ), we obtain N1 Puiseux series, ϕji(t1, t2) = ψ(cit1

1/N1 t1
1/N1),

cN1
i = 1, that provide different expressions rji(t1, t2) = t1 ϕji(t−1

1 , t2), i = 1, . . . , N1, j = 1, 2.
Hence, the infinity branch B is defined by the leaves

Lj = {(t1, r1j(t1, t2), r2j(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, j = 1, . . . , N1.

From the previous disquisitions, we conclude that there exists a one-to-one relation
between infinity places and infinity branches, and we may say that each infinity branch is
associated with a unique infinity point (which is given by the center of the corresponding
infinity place). Reciprocally, from the previous construction, we obtain that every infinity
point has associated, at least, one infinity branch. Thus, every algebraic surface has, at least,
one infinity branch. Furthermore, every algebraic surface has a finite number of branches.

The above process can be applied to an infinity point of the form (a(t2) : b(t2) : c(t2) :
0), a(t2) = 1 that provides a local parametrization (b(t2), c(t2)) of an infinity curve. For the
case that b(t2) = 1, we may reason similarly by considering the surface implicitly defined
by the polynomial F(x, 1, z, w). Observe that g(p, 0) = 0, where p = (m1(t2), m2(t2)),
m1(t2), m2(t2) ∈ C� t2 �, is a local parametrization of an infinity curve of V∗ implicitly
defined by the irreducible polynomial g(x, z, 0) that divides F(x : 1 : z : 0). In this case,
F(m1(t2) : 1 : m2(t2) : 0) = 0, and by abuse of notation, we refer to P = (m1(t2) : 1 :
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m2(t2) : 0) as an infinity point of the input surface. In this situation, we get that there exists
M ∈ R+ such that

F(ϕ1(t1, t2), 1, ϕ2(t1, t2), t1) = h(ϕ1(t1, t2), ϕ2(t1, t2), t1) = 0,

for (t1, t2) ∈ C2 and |t1| < M, where for j = 1, 2,

ϕj(t1, t2) = mj(t2) + ∑
N∈N2

hj,NξN/N ∈ C� t1, t2 �,

N = (Nj1, Nj2), ξN/N = t
Nj1/N1
1 t

Nj2/N2
2 , νti (ϕj) = Ni ∈ N, Nji ∈ N, i = 1, . . . (and the

lexicographic order for monomials is considered) is a series expansion for a solution of
h(x, z, t1) = 0 with respect to (x, z) in some neighborhood of t1 = 0. We set t1 → t−1

1 , and
we get that

f (r1(t1, t2), t1, r2(t1, t2)) = 0, (t1, t2) ∈ C2 and |t1| > M−1,

where rj(t1, t2) = t1 ϕj(t−1
1 , t2) for j = 1, 2.

Thus, we obtain an infinity branch B =
⋃N1

i=1 Li whose leaves have the form:

Li = {(r1i(t1, t2), t1, r2i(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}.

Observe that we may apply this construction to any infinity point of the form (a(t2) :
b(t2) : c(t2) : 0), b(t2) 6= 0.

Finally, for the case c(t2) = 1, we may consider the surface implicitly defined
by the polynomial F(x, y, 1, w). Observe that g(p, 0) = 0, where p = (m1(t2), m2(t2)),
m1(t2), m2(t2) ∈ C � t2 �, is a local parametrization of an infinity curve of V∗ im-
plicitly defined by the irreducible polynomial g(x, y, 0) that divides F(x : y : 1 : 0).
In this case, F(m1(t2) : m2(t2) : 1 : 0) = 0, and by abuse of notation, we refer to
P = (m1(t2) : m2(t2) : 1 : 0) as an infinity point of the input surface. In this situation,
we get that there exists M ∈ R+ such that

F(ϕ1(t1, t2), ϕ2(t1, t2), 1, t1) = h(ϕ1(t1, t2), ϕ2(t1, t2), t1) = 0,

for (t1, t2) ∈ C2 and |t1| < M, where for j = 1, 2,

ϕj(t1, t2) = mj(t2) + ∑
N∈N2

hj,NξN/N ∈ C� t1, t2 �,

N = (Nj1, Nj2), ξN/N = t
Nj1/N1
1 t

Nj2/N2
2 , νti (ϕj) = Ni ∈ N, Nji ∈ N, i = 1, . . . (and the

lexicographic order for monomials is considered) is a series expansion for a solution of
h(x, y, w) = 0. We set t1 → t−1

1 and we get that

f (r1(t1, t2), r2(t1, t2), t1) = 0, (t1, t2) ∈ C2 and |t1| > M−1, where

rj(t1, t2) = t1 ϕj(t−1
1 , t2) for j = 1, 2.

Thus, we obtain an infinity branch B =
⋃N1

i=1 Li whose leaves have the form:

Li = {(r1i(t1, t2), r2i(t1, t2), t1) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}.

Observe that we may apply this construction to any infinity point of the form (a(t2) :
b(t2) : c(t2) : 0), c(t2) 6= 0.

Definition 6. Let V be an affine surface over C defined by an irreducible polynomial f (x, y, z) ∈
R[x, y, z].
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• An infinity branch of V of type 1 associated with the infinity point P = (1 : m1 : m2 :
0), m1, m2 ∈ C� t2 � is a set B =

⋃N1
i=1 Li, where Li = {(t1, r1i(t1, t2), r2i(t1, t2)) ∈ C3 :

(t1, t2) ∈ C2, |t1| > M}, i = 1, . . . , N1, M ∈ R+, and r11, . . . , r1N1 are the conjugates of

r1(t1, t2) = m1(t2)t1 + ∑
N∈N2

hNχN/N ∈ C� t1, t2 �,

N = (N11, N12), χN/N = t1−N11/N1
1 tN12/N2

2 (similarly for r2);
• An infinity branch of V of type 2 associated with the infinity point P = (m1 : 1 : m1 :

0), m1, m2 ∈ C� t2 � is a set B =
⋃N1

i=1 Li, where Li = {(r1i(t1, t2), t1, r2i(t1, t2)) ∈ C3 :
(t1, t2) ∈ C2, |t1| > M}, i = 1, . . . , N1, M ∈ R+, and r11, . . . , r1N1 are the conjugates of

r1(t1, t2) = m1(t2)t1 + ∑
N∈N2

hNχN/N ∈ C� t1, t2 �,

N = (N11, N12), χN/N = t1−N11/N1
1 tN12/N2

2 (similarly for r2);
• An infinity branch of V of type 3 associated with the infinity point P = (m1 : m2 : 1 :

0), m1, m2 ∈ C� t2 � is a set B =
⋃N1

i=1 Li, where Li = {(r1i(t1, t2), r2i(t1, t2), t1) ∈ C3 :
(t1, t2) ∈ C2, |t1| > M}, i = 1, . . . , N1, M ∈ R+, and r11, . . . , r1N1 are the conjugates of

r1(t1, t2) = m1(t2)t1 + ∑
N∈N2

hNχN/N ∈ C� t1, t2 �,

N = (N11, N12), χN/N = t1−N11/N1
1 tN12/N2

2 (similarly for r2).

Remark 2.

1. In the following, we work with the type 1 infinity branches of a given algebraic surface V .
Similarly, one can reason for the other infinity branches;

2. We will say that N1 is the ramification index of the branch B with respect to t1, and we will
write it as νt1(B) = N1. Note that B has νt1(B) leaves.

In the following examples, we compute the infinity branches for some given surfaces.

Example 1. Let V be the a surface implicitly defined by the irreducible polynomial

f (x, y, z) = x2 + y2 − z2 − 1 ∈ R[x, y, z].

The corresponding projective surface V∗ is defined by

F(x : y : z : w) = x2 + y2 − z2 − w2 ∈ R[x, y, z, w].

Note that P = (1 : −1/2(t2− 1)(t2 + 1)/t2 : 1/2(1+ t2
2)/t2 : 0) is an infinity point of V∗.

We determine the infinity branches associated with P. For this purpose, we consider the curve
defined by the irreducible polynomial g(y, z, w) = F(1 : y : z : w), and we observe that g(p, 0) = 0,
where p = (−1/2(t2 − 1)(t2 + 1)/t2, 1/2(1 + t2

2)/t2) is a rational parametrization of the curve
defined implicitly by g(y, z, 0) = F(1 : y : z : 0) = 1 + y2 − z2. Note that in this case, we have
more than a local parametrization of g(y, z, 0) but a rational parametrization of g(y, z, 0).

Now, we compute the series expansion for the solutions of g(y, z, t1) = 0 with respect to (y, z)
around t1 = 0. In this case, since g(y, z, t1) is rational over C(t1), we compute a parametrization
and we get that:

ϕ1(t1, t2) = 1/2(1− t2
1 − t2

2)/t2 ∈ C(t1, t2) ⊂ C� t1, t2 �, and

ϕ2(t1, t2) = 1/2(1− t2
1 + t2

2)/t2 ∈ C(t1, t2) ⊂ C� t1, t2 � .
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Observe that p = (ϕ1(0, t2), ϕ2(0, t2)), and g(ϕ1(t1, t2), ϕ2(t1, t2), t1) = 0. Note that
νt1(ϕj) = 1, j = 1, 2, which implies that we only have one Puiseux series in the conjugacy class of
ϕj, j = 1, 2. Thus, we obtain one infinity branch:

B1 = L1 = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r1(t1, t2) = t1 ϕ1(t−1
1 , t2) = 1/2t1t−1

2 − 1/2t−1
1 t−1

2 − 1/2t1t2,

r2(t1, t2) = t1 ϕ2(t−1
1 , t2) = 1/2t1t−1

2 − 1/2t−1
1 t−1

2 + 1/2t1t2.

Example 2. Let V be the surface implicitly defined by the irreducible polynomial

f (x, y, z) = x2 + z2x2 + zy3 ∈ R[x, y, z].

The corresponding projective surface V∗ is defined by

F(x : y : z : w) = x2w2 + z2x2 + zy3 ∈ R[x, y, z, w].

Note that P1 = (1 : t2 : −t3
2 : 0) and P2 = (1 : t2 : 0 : 0) are the two infinity points of

V∗. We determine the infinity branches associated with P1 and P2. For this purpose, we consider
the curve defined by g(y, z, w) = F(1 : y : z : w), and we observe that g(p1, 0) = 0, where
p1 = (t2,−t3

2). Note that in this case, we have more than a local parametrization of g(y, z, 0) but a
rational parametrization of g(y, z, 0).

Now, we compute the series expansion for the solutions of g(y, z, t1) = 0 with respect to
(y, z) around t1 = 0. In this case, g(y, z, t1) is not rational over C(t1); thus, we compute a local
parametrization, and we get two different solutions:

1. First, we get that ϕ1(t1, t2) = (ϕ11(t1, t2), ϕ12(t1, t2)), where

ϕ11(t1, t2) = t2 ∈ C(t1, t2) ⊂ C� t1, t2 �, and

ϕ12(t1, t2) = −t3
2 + t2

1/t3
2 + t4

1/t9
2 + · · · ∈ C(t1, t2) ⊂ C� t1, t2 � .

Observe that ϕ1(0, t2) = p1, and g(ϕ1(t1, t2), t1) = 0. Note that νt1(ϕ1j) = 1, j = 1, 2,
which implies that we only have one Puiseux series in the conjugacy class of ϕj, j = 1, 2. Thus,
we obtain one infinity branch:

B1 = L1 = {(t1, r11(t1, t2), r12(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r11(t1, t2) = t1 ϕ11(t−1
1 , t2) = t1t2,

r12(t1, t2) = t1 ϕ12(t−1
1 , t2) = −t1t3

2 + t−1
1 t−3

2 + t−3
1 t−9

2 + · · · .

In Figure 1, we plot the surface V and a surface, V1, constructed from the infinity branch B1
that approach the input surface (see Section 4);



Mathematics 2022, 10, 1445 9 of 19

Figure 1. Surface V (left), and surface V1 (right).

2. We also get that ϕ2(t1, t2) = (ϕ21(t1, t2), ϕ22(t1, t2)), where

ϕ21(t1, t2) = t2 ∈ C(t1, t2) ⊂ C� t1, t2 �, and

ϕ22(t1, t2) = −t2
1/t3

2 − t4
1/t9

2 + · · · ∈ C(t1, t2) ⊂ C� t1, t2 � .

Observe that ϕ2(0, t2) = p2, and g(ϕ2(t1, t2), t1) = 0. Note that νt1(ϕ2j) = 1, j = 1, 2,
which implies that we only have one Puiseux series in the conjugacy class of ϕj, j = 1, 2. Thus,
we obtain one infinity branch:

B2 = L2 = {(t1, r21(t1, t2), r22(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r21(t1, t2) = t1 ϕ21(t−1
1 , t2) = t1t2,

r22(t1, t2) = t1 ϕ22(t−1
1 , t2) = −t−1

1 t−3
2 − t−3

1 t−9
2 + · · · .

In Figure 2, we plot the surface V and a surface, V2, constructed from the infinity branch B2
that approach the input surface (see Section 4). In Figure 3, we plot the surface V and the
surfaces V1 and V2 together.

Figure 2. Surface V (left), and surface V2 (right).
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Figure 3. Surface V (left), surface V and surfaces V1 and V2 (right).

Remark 3. The computation of ϕi(t1, t2) ∈ C � t1, t2 �, i = 1, 2, is not an easy question.
In some cases, this problem can be easily solved as in Examples 1 and 2. For a more general
cases, and also for the case of surfaces parametrically defined, we will deal with this question in a
future work.

In the following, we prove that any point of the surface with sufficiently large coordi-
nates belongs to some infinity branch. For this purpose, we recall that if h is a complex-
valued function of a complex variable, h : C3 → C, we say that the limit of h(z1, z2, z3) as
zi approaches ∞ is L, written lim

z→∞
h(z) = L. If whenever {zn}n∈N is a sequence of points

with lim
n→∞

zn = ∞, it holds that lim
n→∞

h(zn) = L (see, e.g., [17] or [18]).

Lemma 1. Let V be an algebraic surface. There exists K ∈ R+ such that for every p = (a, b, c) ∈ V
with |a| > K, it holds that p ∈ Bp, where Bp is an infinity branch of C.

Proof. Let us assume that the lemma does not hold, and we consider a sequence {Kn}n∈N ⊂
R+ such that limn→∞ Kn = ∞. Then, for every n ∈ N, there exists a point pn = (an, bn(t2),
cn(t2)) ∈ V such that |an| > Kn, and pn does not belong to any infinity branch of V .

Let Pn = (an : bn(t2) : cn(t2) : 1). Since F(Pn) = f (pn) = 0, then limn→∞ F(Pn) = 0.
Thus, we distinguish the following different cases:

(a) If there exist two not-bounded monotone subsequences, {bnl (t2)/anl}l∈N and
{bnl (t2)/cnl (t2)}l∈N, we have that

lim
l→∞

bnl (t2)/anl = lim
l→∞

bnl (t2)/cnl (t2) = ∞,

and then liml→∞ anl /bnl (t2) = 0 and liml→∞ cnl (t2)/bnl (t2) = 0. Hence,
liml→∞ F(Qnl ) = F(0 : 1 : 0 : 0) = 0, where Qnl = (anl /bnl (t2) : 1 : cnl (t2)/bnl (t2) :
1/bnl (t2)), which implies that P = (0 : 1 : 0 : 0) is an infinity point of V∗;

(b) If there exist a not-bounded monotone subsequence {bnl (t2)/anl}l∈N and a bounded
monotone subsequence {bnl (t2)/cnl (t2)}l∈N, we have that liml→∞ bnl (t2)/anl = ∞
and liml→∞ bnl (t2)/cnl (t2) = m(t2), and then liml→∞ anl /bnl (t2) = 0 and
liml→∞ cnl (t2)/bnl (t2) = 1/m(t2) := m2(t2) (if m(t2) 6= 0). Hence,

lim
l→∞

F(Qnl ) = F(0 : 1 : m2(t2) : 0) = 0,
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where Qnl = (anl /bnl (t2) : 1 : cnl (t2)/bnl (t2) : 1/bnl (t2)), which implies that P = (0 :
1 : m2(t2) : 0) is an infinity point of V∗.
Note that if m(t2) = 0, then we consider liml→∞ anl /cnl (t2) = 0. Hence,

lim
l→∞

F(Qnl ) = F(0 : 0 : 1 : 0) = 0,

where Qnl = (anl /cnl (t2) : bnl /cnl (t2) : 1 : 1/cnl (t2)), which implies that P = (0 : 0 :
1 : 0) is an infinity point of V∗;

(c) If there exist two bounded monotone subsequences {bnl (t2)/anl}l∈N and
{bnl (t2)/cnl (t2)}l∈N, we have that liml→∞ bnl (t2)/anl = m1(t2) and

lim
l→∞

cnl (t2)/anl = lim
l→∞

(cnl (t2)/bnl (t2))/(bnl (t2)/anl ) = m(t2)/m1(t2) := m2(t2)

(if m1(t2) 6= 0). Thus,

lim
l→∞

F(Qnl ) = F(1 : m1(t2) : m2(t2) : 0) = 0,

where Qnl = (1 : bnl (t2)/anl : cnl (t2)/anl : 1/anl ), which implies that P = (1 : m1(t2) :
m2(t2) : 0) is an infinity point of V∗.
If m1(t2) = 0, that is, liml→∞ bnl (t2)/anl = 0, since liml→∞ bnl (t2)/cnl (t2) = n(t2) (we
assume that n(t2) 6= 0), we get that liml→∞ cnl (t2)/anl = 0. Thus,

lim
l→∞

F(Qnl ) = F(1 : 0 : 0 : 0) = 0,

where Qnl = (1 : bnl (t2)/anl : cnl (t2)/anl : 1/anl ), which implies that P = (1 : 0 : 0 : 0)
is an infinity point of V∗.
If m1(t2) = n(t2) = 0, that is, liml→∞ bnl (t2)/anl = liml→∞ bnl (t2)/cnl (t2) = 0,
then liml→∞ cnl (t2)/anl = n(t2) or liml→∞ anl /cnl (t2) = m(t2). Let us assume that
liml→∞ cnl (t2)/anl = n(t2). Then, since liml→∞ bnl (t2)/anl = 0, we get that

lim
l→∞

F(Qnl ) = F(1 : 0 : n(t2) : 0) = 0,

where Qnl = (1 : bnl (t2)/anl : cnl (t2)/anl : 1/anl ), which implies that P = (1 : 0 :
n(t2) : 0) is an infinity point of V∗.

(d) If there exist a bounded monotone subsequence {bnl (t2)/anl}l∈N and a not-bounded
monotone subsequence {bnl (t2)/cnl (t2)}l∈N, we have that

lim
l→∞

bnl (t2)/anl = m1(t2)

and
lim
l→∞

cnl (t2)/anl = lim
l→∞

(cnl (t2)/bnl (t2))/(bnl (t2)/anl ) = 0.

Thus,
lim
l→∞

F(Qnl ) = F(1 : m1(t2) : 0 : 0) = 0,

where Qnl = (1 : bnl (t2)/anl : cnl (t2)/anl : 1/anl ), which implies that P = (1 : m1(t2) :
0 : 0) is an infinity point of V∗.
Note that if liml→∞ bnl (t2)/anl = 0, then since liml→∞ cnl (t2)/bnl (t2) = 0, we get that
liml→∞ cnl (t2)/anl = 0. Thus,

lim
l→∞

F(Qnl ) = F(1 : 0 : 0 : 0) = 0,

where Qnl = (1 : bnl (t2)/anl : cnl (t2)/anl : 1/anl ), which implies that P = (1 : 0 : 0 : 0)
is an infinity point of V∗.
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From both situations, we deduce that there exists a sequence {Qn}n∈N that approaches
to an infinity point P as n tends to infinity; i.e., there exists M ∈ R+ such that ‖Qn − P‖ ≤ ε
for n ≥ M. Therefore, one may conclude that {Qn}n∈N, n≥M can be determined by a
place centered at P. Thus, pn belongs to some infinity branch of V , which contradicts
the hypothesis.

Remark 4. Reasoning as in Lemma 1; one gets that there exists K ∈ R+ satisfying that for every
p = (a, b, c) ∈ V , |b| > K, it holds that p ∈ Bp, where Bp is an infinity branch of V . The
reasoning is similar if |c| > K.

4. Convergent Branches and Approaching Surfaces

In the following, we define convergent branches and approaching surfaces. We say
that two infinity branches converge if they get closer as they tend to infinity. This notion
will allow us to analyze whether two surfaces approach each other at the infinity.

The results obtained in this section will be used in Section 5. In Section 5, we present a
method that compares the asymptotic behavior of two surfaces implicitly defined.

Definition 7. Given two leaves, L = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}
and L = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, we say that they are
convergent if limt1→∞(ri(t1, t2)− ri(t1, t2)) = 0, for i = 1, 2.

Lemma 2. Two leaves L = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M} and
L = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M} are convergent if and only if the
monomials on the variable t1 that have a non-negative exponent in the series ri(t1, t2) and ri(t1, t2)
are the same (for i = 1, 2).

Proof. Let
r1(t1, t2) = m1(t2)t1 + ∑

N∈N2

h1,NχN/N ∈ C� t1, t2 �,

N = (N11, N12), χN/N = t1−N11/N1
1 tN12/N2

2 , and

r1(t1, t2) = m1(t2)t1 + ∑
N∈N2

h1,NχN/N ∈ C� t1, t2 �,

N = (N11, N12), χN/N = t1−N11/N1
1 tN12/N1

2 . Then,

r1(t1, t2)− r1(t1, t2) = m1t1 −m1t1 + ∑
N∈N2

h1,NχN/N − ∑
N∈N2

h1,NχN/N .

Note that limt1→∞(r1(t1, t2)− r1(t1, t2)) = 0 if and only if r1(t1, t2)− r1(t1, t2) has no
monomials having a non-negative exponent. This situation holds if the monomials on the
variable t1 that have a non-negative exponent in both series, r1 and r1, are the same.
One reasons similarly for r2 and r2.

Remark 5.

1. From Lemma 2, we deduce that mi(t2) = mi(t2), i = 1, 2, and then, L and L are associated
with the same infinity point;

2. Note that the number of monomials with regard to t1 that have a positive exponent in both
series is finite.

Definition 8. Two infinity branches, B and B, are convergent if there exist two convergent leaves
L ⊂ B and L ⊂ B.
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Remark 6. Statement 1 in Remark 5 implies that two convergent infinity branches are associated
with the same infinity point.

Proposition 1. Two infinity branches B and B are convergent if and only if for each leaf L ⊂ B
there exists a leaf L ⊂ B convergent with L, and reciprocally.

Proof. The proof follows reasoning similarly as in Proposition 4.6 in [5].

Remark 7. Two convergent infinity branches may have different ramification indexes; that is, they
may have different numbers of leaves. However, n1 ∈ N, which is obtained by simplifying the
non-negative exponents in the variable t1, is the same in both branches. We refer to it as the degree
of the infinity branch with respect to t1. Note that from the proof of Proposition 1, we get that
two convergent infinity branches have the same degree with respect to t1.

Two convergent infinity branches may be contained in the same surface or they may
belong to different surfaces. In this second case, we will say that those surfaces approach
each other. In order to define this concept in a more formal way, we first introduce the
following distance:

Definition 9. Given an algebraic surface V over C and a point p ∈ C3, we define the distance
from p to V as d(p,V) = min{d(p, q) : q ∈ V}.

Remark 8. We should note that since V is a closed set, this minimum exists.

Definition 10. Let V be an algebraic surface over C with an infinity branch B. We say that a surface
V approaches V at its infinity branch B if there exists one leaf L = {(t1, r1(t1, t2), r2(t1, t2)) ∈
C3 : (t1, t2) ∈ C2, |t1| > M} ⊂ B such that limt1→∞ d((t1, r1(t1, t2), r2(t1, t2)),V) = 0.

We will show that this condition is satisfied for one leaf of B if and only if it is satisfied
for every leaf of B. It will be derived as a consequence of the following theorem.

Theorem 2. Let V be an algebraic surface over C with an infinity branch B. An algebraic surface
V approaches V at B if and only if V has an infinity branch, B, such that B and B are convergent.

Proof. The proof follows reasoning similarly as in Theorem 4.11 in [5].

Remark 9.

1. Theorem 2 implies that “proximity” is a symmetric relation. More precisely, the surface V
approaches the surface V at some infinity branch B if and only if V approaches V at some
infinity branch B. In the following, we say that V and V approach each other or that they are
approaching surfaces;

2. From Theorem 2 and Remark 6, we get that two approaching surfaces have a common infin-
ity point;

3. Theorem 2 and Proposition 1 imply that V approaches V at an infinity branch B if for
every leaf

L = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : t1, t2,∈ C, |t1| > M} ⊂ B,

it holds that lim
z→∞

d((t1, r1(t1, t2), r2(t1, t2)),V) = 0.

Corollary 1. Let V be an algebraic surface with an infinity branch B. Let V1 and V2 be two
different surfaces that approach V at B. Then, V1 and V2 approach each other.

Proof. From Theorem 2, there exist two infinity branches B1 ⊂ V1 and B2 ⊂ V2, con-
vergent with B. Thus, for each leaf L = {(t1, r1(t1, t2), r2(t1, t2)) ∈ C3 : ti ∈ C, |t1| >
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M} ⊂ B, there exist two leaves L1 = {(t1, l1(t1, t2), l2(t1, t2)) ∈ C2 : ti ∈ C, |t1| >
M1} ⊂ B1 and L2 = {(t1, s1(t1, t2), s2(t1, t2)) ∈ C3 : ti ∈ C, |t1| > M2} ⊂ B2 such that
limt1→∞(r1(t1, t2)− l1(t1, t2)) = 0 and limt1→∞(r1(t1, t2)− s1(t1, t2)) = 0. Then

|l1(t1, t2)− s1(t1, t2)| ≤ |l1(z)− r1(t1, t2)|+ |r1(t1, t2)− s1(t1, t2)|−−−→t1→∞0

(one reasons similarly for r2). Therefore, V1 and V2 approach each other.

In Example 3, we illustrate the above results.

Example 3. Let V and V be two surfaces implicitly defined by the polynomials

f (x, y, z) = x2 + z2x2 + zy3 ∈ R[x, y, z] and

f (x, y, z) = x2 + z2x2 + zy3 + x− 2y− 9 ∈ R[x, y, z],

respectively. Let us prove that V and V approach each other at the infinity branch associated with
the infinity points

P1 = (1 : t2 : −t3
2 : 0), P2 = (1 : t2 : 0 : 0)

(note that both surfaces have P1 = (1 : t2 : −t3
2 : 0) and P2 = (1 : t2 : 0 : 0) as infinity points).

Reasoning as in Example 2, we get that the infinity branch of V associated with P1 is given by

B1 = L1 = {(t1, r11(t1, t2), r12(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M},

where
r11(t1, t2) = t1 ϕ11(t−1

1 , t2) = t1t2,

r12(t1, t2) = t1 ϕ12(t−1
1 , t2) = −t1t3

2 + t−1
1 t−3

2 + t−3
1 t−9

2 + · · · .

The infinity branch of V associated with P2 is given by

B2 = L2 = {(t1, r21(t1, t2), r22(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M},

where
r21(t1, t2) = t1 ϕ21(t−1

1 , t2) = t1t2,

r22(t1, t2) = t1 ϕ22(t−1
1 , t2) = −t−1

1 t−3
2 − t−3

1 t−9
2 + · · · .

On the other hand, the infinity branch of V associated with P1 is given by

B1 = L1 = {(t1, r11(t1, t2), r12(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M},

where
r11(t1, t2) = t1t2,

r12(t1, t2) = −t1t3
2 + t−1

1 t−3
2 − 2t−2

1 t−3
2 + t−3

1 t−9
2 + · · · .

The infinity branch of V associated with P2 is given by

B2 = L2 = {(t1, r21(t1, t2), r22(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M},

where
r21(t1, t2) = t1t2,

r22(t1, t2) = −t−1
1 t−3

2 − 2t−2
1 t−2

2 − t−2
1 t−3

2 + · · · .

From Lemma 2, we conclude that both branches converge, since the terms with non-negative
exponent in both series, rij and rij, are the same.
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Remark 10. In the above example, the surfaces V and V are approaching surfaces, since V ap-
proaches V at one of its infinity branches reciprocally.

In fact, V approaches V at all of its infinity branches and reciprocally. In this case, we say that
both surfaces have the same asymptotic behavior. We focus on this special relation in the next section.

5. Asymptotic Behavior

From the results obtained previously, we obtain an algorithm that compares the
asymptotic behavior of two surfaces implicitly defined. Two surfaces have the same
asymptotic behavior if they approach each other at all of the infinity branches. Furthermore,
we show that if two algebraic surfaces have the same asymptotic behavior, the Hausdorff
distance between them is finite.

The algorithm developed, as well as the results presented in this section, provide essen-
tial tools in the frame of practical applications in computer-aided geometric design (CAGD)
such as, for instance, the problem of the approximate parametrization (see Section 1).

To start with, we first introduce the following definition.

Definition 11. We say that two algebraic surfaces, V and V , have the same asymptotic behavior if
every infinity branch of V converges to another branch of V and does so reciprocally.

Remark 11. From Theorem 2, we get that V and V have the same asymptotic behavior if V
approaches V at all its infinity branches and does so reciprocally.

Now, we recall the notion of Hausdorff distance.

Definition 12. Given a metric space (E, d) and two subsets A, B ⊂ E \ {∅}, the Hausdorff
distance between them is defined as:

dH(A, B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.

If E = C3 and d is the Euclidean distance, the Hausdorff distance between two surfaces V and
V can be expressed as:

dH(V ,V) = max{sup
p∈V

d(p,V), sup
p∈V

d(p,V)}.

Proposition 2. Let V and V be two algebraic surfaces having the same asymptotic behavior.
Then, the Hausdorff distance between them is finite.

Proof. The proof follows reasoning similarly as in Proposition 5.4 in [5].

The following algorithm allows us to compare the asymptotic behavior of two surfaces
V and V .

We assume that we have prepared V and V such that by means of a suitable linear
change of coordinates (the same change applied to both surfaces), x = 0 is not a curve of
infinity of V∗ and V∗.

In Example 4, we illustrate the performance of Algorithm 1.

Example 4. Let V and V be two surfaces implicitly defined by the polynomials

f (x, y, z) = xy− xz− y4 + y3z + yz2 − z3 + 1, and

f (x, y, z) = xy− xz + yz2 − z3 − y4 + y3z + 5 + 2x− 3y− x2 + 2y2,

respectively (see Figure 4).
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Algorithm 1 Asymptotic Behavior.

Given two implicit algebraic surfaces V and V , the algorithm decides whether V and V
have the same asymptotic behavior.
1. Compute the infinity curves of V and V . If they are not the same, RETURN the surfaces

do not have the same asymptotic behavior (see Remark 6). Otherwise, let P1, . . . , Pn be the
infinity points corresponding to these infinity curves.

2. For each Pk := (1 : m1k : m2k : 0), k = 1, . . . , n do:
2.1. Compute the infinity branches of V associated to Pk. Let B1, . . . , Bnk be these

branches. For each i = 1, . . . , nk, let Li = {(t1, r1i(t1, t2), r2i(t1, t2)) ∈ C3 :
(t1, t2) ∈ C2, |t1| > Mi} be any leaf of Bi.

2.2. Compute the infinity branches of V associated with Pk. Let B1, . . . , Blk be these
branches. For each j = 1, . . . , lk, let Lj = {(t1, r1j(t1, t2), r2j(t1, t2)) ∈ C3 :
(t1, t2) ∈ C2, |t1| > Mj} be any leaf of Bj.

2.3. For each Bi ⊂ V , find Bj ⊂ V such that the terms with a non-negative exponent
in the variable t1 in r`i and r`j (for ` = 1, 2) are the same up to conjugation.
If there is not such a branch, RETURN the surfaces do not have the same asymptotic
behavior (see Lemma 2).

2.4. For each Bj ⊂ V , find Bi ⊂ V such that the terms with non-negative exponents
in the variable t1 in r`i and r`j are the same up to conjugation. If there is not
such a branch, RETURN the surfaces do not have the same asymptotic behavior (see
Lemma 2).

3. RETURN the surfaces V and V have the same asymptotic behavior.

Figure 4. V (left) and V (right).

We apply Algorithm 1 to decide whether V and V have the same asymptotic behavior:

Step 1: Compute the infinity points of V and V . We obtain that V and V have the same
infinity points that correspond to the curves defined implicitly by y = 0 and y− z = 0.
We start by analyzing the infinity branches associated with y = z:
Step 2.1: We reason similarly as in Example 1, and we get that the only infinity branch

associated with y = z in V is given by

B1 = L1 = {(t1, r11(t1, t2), r12(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r11(t1, t2) = t1t2, r12(t1, t2) = t1t2 − t−3
1 t−3

2 − t−4
1 t−4

2 + · · · .

Step 2.2: We also have that there exists only one infinity branch associated with these curves
of infinity in V . It is given by

B1 = L1 = {(t1, r11(t1, t2), r12(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r11(t1, t2) = t1t2,

r12(t1, t2) = t1t2 + t−1
1 t−3

2 − 2t−1
1 t−1

2 + t−1
1 t−4

2 + t−2
1 t−2

2 − 2t−2
1 t−3

2 + · · · .

Step 2.3 and Step 2.4: r1i(t1, t2) and r1i(t1, t2), i = 1, 2, have the same terms with a non-
negative exponent with respect to t1. Thus, B1 and B1 converge.
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In Figure 5, we plot the surfaces V1 constructed from the infinity branch B1 that approach the
input surface V (left), we plot the surfaces V1 constructed from the infinity branch B1 that
approach the input surface V (right).

Figure 5. Surface V1 (left), and surface V1 (right).

Now we analyze the infinity branches associated with y = 0:
Step 2.1: Reasoning as in Example 1, we get that the only infinity branch associated with
y = 0 in V is given by

B2 = L2 = {(t1, r21(t1, t2), r22(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r21(t1, t2) = t1t2,

r22(t1, t2) = t3/2
2 t3/2

1 − 1/2t−3/2
2 t−1/2

1 − 1/8t−5/2
1 t−9/5

2 + 1/2t−3
1 t−3

2 + · · · .

Step 2.2: The only infinity branch associated with y = 0 in V is given by

B2 = L2 = {(t1, r21(t1, t2), r22(t1, t2)) ∈ C3 : (t1, t2) ∈ C2, |t1| > M}, where

r21(t1, t2) = t1t2,

r22(t1, t2) = t3/2
2 t3/2

1 − 1/2t−3/2
2 t−1/2

1 − 1/2t−1
1 t−3

2 − t−1
1 t−1

2 − 1/2t−3/2
1 t−7/2

2 + t−3/2
1

t−3/2
2 − 1/2t−2

1 t−4
2 + · · · .

In Figure 6, we plot the surfaces V2 constructed from the infinity branch B2 that approach the
input surface V (left), and we plot the surfaces V2 constructed from the infinity branch B2 that
approach the input surface V (right).

Figure 6. Surface V2 (left), and surface V2 (right).

Step 2.3 and Step 2.4: r2i(t1, t2) and r2i(t1, t2), i = 1, 2, have the same terms with non-
negative exponent s with regard to t1. Thus, B2 and B2 converge.

Since every infinity branch of V converges to another branch of V , and reciprocally, the algo-
rithm returns that V and V have the same asymptotic behavior.

In Figure 7, we plot the surfaces V and Vi, i = 1, 2 together (left), and the surfaces V and
V i, i = 1, 2 together (right).
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Figure 7. Surfaces V and Vi, i = 1, 2 (left), and surfaces V and V i, i = 1, 2 (right).

Remark 12.

1. Once we have the infinity branches, we can compute surfaces having the same asymptotic
behavior as the given surface at each of the infinity points. For this purpose, one simply has
to remove the terms with negative exponents in the variable t1 from r1 and r2. However, this
problem, which will be dealt with in a future work, has to be carefully analyzed. Note that if
we remove terms with negative exponents in the variable t1, we could be removing necessary
terms in the variable t2;

2. If we remove the terms with negative exponents in the variable t1 from the series r1 and r2
defining the branch B, we obtain r̃1, r̃2 ∈ (C� t2 �)[t1]. In a future work, we will analyze
whether one may compute the surface Ṽi defined by the local parametrization

(tN1
1 , r̃1(t

N1
1 , t2), r̃2(t

N1
1 , t2)) ∈ (C� t2 �)[t1].

In this case, Ṽ and V would have the same asymptotic behavior at B;
3. For the computation of the series ϕi, i = 1, 2, we are considering y = t2 and solving z by

using Puiseux series (see Examples 1 and 2). This is not the best solution for some surfaces,
and thus, this question should be deeply analyzed in a future work (see Remark 3).

6. Conclusions

In this paper, we introduce the notion of infinity branches and approaching surfaces
for the case of a given algebraic surface implicitly defined. From these notions and the
obtained properties, we present an algorithm that compares the behavior at the infinity of
two algebraic surfaces defined implicitly. As a consequence and taking into account the
case of curves (see [5]), we prove that if two algebraic surfaces have the same asymptotic
behavior, the Hausdorff distance between them is finite.

As in the case of curves, this first paper opens some important questions that should be
answered. In particular, the computation of surfaces having the same asymptotic behavior
as the given surface at each of the infinity branches, the definition of a perfect surface, and
the properties as well as the computation of the generalized asymptotes for implicitly and
parametrically defined surfaces are important points that should be analyzed in a future
work (see [10]).

Finally, we should remind the reader that, as we state in Remark 12, for the compu-
tation of the series ϕi, i = 1, 2, we are considering y = t2 and solving z by using Puiseux
series (see Examples 1 and 2). This is not the best solution for some surfaces, and thus,
this question for the general case (and also for the case of surfaces defined by a rational
parametrization) should be deeply analyzed in a future work (see Remark 3).
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