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In this paper, we obtain a simple formula based on the computation of some derivatives 
for determining the branches and the asymptotes of curves that are defined by a 
parametrization. For this purpose, we use some previous results and notions presented 
in Blasco and Pérez-Díaz (2014a,b, 2015, 2020). From these results, we show how the 
generalized asymptotes of the input curve can be easily computed and we present some 
applications related to the ramification index and degree of the asymptote, the infinity 
form and the multiplicity of the infinity points. Furthermore, we show how to construct all 
the families of parametric curves having some given asymptotes. We develop this method 
for the plane case but it can be trivially adapted for dealing with rational curves in n-
dimensional space. In addition, the formulaes presented can be similarly obtained for 
curves defined by a parametrization not necessarily rational.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In almost any engineering sub-discipline, sometimes one encounters phenomena that have asymptotic behavior, but 
people don’t think of studying or using those phenomena as using asymptotes. It comes up (among other places) whenever 
you want to understand the long-term behavior of a system. In more detail, suppose you have a model of a system that 
involves a time parameter t (among other parameters). In fact, to simplify things let’s say you fix the value of all but two 
parameters: t and x, where x measures something. You are often interested in possible behavior of x as t → ∞. If you find 
that there’s a horizontal asymptote at some value of x, say x = x0, then you know that is the long term equilibrium of that 
parameter, at least given your choices for all the other parameters. Asymptotes show up everywhere as for instance terminal 
velocity, population models, equilibrium pricing in markets, control systems/feedback loops, etc., and recognize them—they 
give simplified view of the function at extreme points.

The asymptotes of an infinity branch, B , of a real plane algebraic curve, C , reflect the status of B at the points with 
sufficiently large coordinates (see for instance Maxwell (1962)). For example, if you look at the value of f (x) = 1/x when x is 
very large, it is clear that f (x) gets closer to 0, it approaches 0, without ever reaching it. That means that f (x) asymptotically 
approaches 0 as x approaches infinity: its asymptote is y = 0. That is called a horizontal asymptote, because the function 
approaches a horizontal line. On the other side, we say that f (x) = 1/x approaches infinity as x approaches 0 from the 
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positive direction. We also say that f (x) = 1/x approaches negative infinity as x approaches 0 from the negative direction. 
That is called a vertical asymptote (x = 0), because the function approaches a vertical line. But an asymptote do not always 
have a constant value. For instance, f (x) = x + 1/x asymptotically approaches f (x) = x as x goes to infinity. That is called an 
oblique asymptote (y = x). Note that in this case, these limits can be computed, and thus we may obtain the equation of the 
asymptote of C at B . However, if this branch B is implicitly defined and its equation cannot be converted into an explicit 
form, both the decision and the computation of the asymptote of C at B require some other tools. Even worse, a curve may 
have more general curves than lines describing the status of a branch at the points with sufficiently large coordinates.

Intuitively speaking, we say that a curve C̃ is a generalized asymptote (or g-asymptote) of another curve C if the distance 
between C̃ and C tends to zero as they tend to infinity, and C can not be approached by a new curve of lower degree (see 
Blasco and Pérez-Díaz, 2014a,b, 2015, 2020). This motivates our interest in efficiently computing these generalized asymptotes
for a wider variety of varieties such as the curves defined in the n-dimensional space or those that are not algebraic curves. 
In a more general way, our purpose is to determine all the infinity branch using the input parametrization and providing 
some easy formulaes based on the computation of derivatives. In fact, all the infinity branch can be computed by means 
of the presented formula and some important results can be obtained from here as for instance, how to read from the 
input parametrization the ramification index and degree of the g-asymptote and how to compute the infinity form and the 
multiplicity and the character of the infinity points.

This problem, and in particular the study of the g-asymptotes (or generalized asymptotes) as well as some notions and 
results as for instance the concept of perfect curves or the asymptotic behavior is dealt in previous papers (see Blasco 
and Pérez-Díaz (2014a,b, 2015, 2019, 2020). In particular some methods for computing the g-asymptotes are presented for 
algebraic curves parametrically and implicitly defined. For this purpose, the notions of infinity branches, approaching curves 
and perfect curves are introduced. The new goal we solve in this paper consists in providing a simple formula based on 
derivatives that allow to compute easily the branches (and in particular, the g-asymptotes) of curves defined parametrically 
in n-dimensional space. In addition, some consequences are presented. More precisely, we show how to read from the 
input parametrization the ramification index and degree of the g-asymptote and how to compute the infinity form and the 
multiplicity and character of the infinity points. Additionally, from these results we show how to construct all the families 
of parametric curves having some given asymptotes. Determining the branches and, in particular, the asymptotes of a curve 
is an important step, for instance, in sketching its graph, but also it provides some important properties as for instance in 
singularity theory, where one may find in a great variety of applications in computer aided design, science and engineering, 
and in particular as described by partial differential equations (see e.g. Arnold (1989, 1990), Bazant and Crowdy (2005), 
Caflisch and Papanicolau (1993), Chorin and Marsden (2000), Eggers and Fontelos (2015), Greuel et al. (2007), Landau and 
Lifshitz (1976)).

We have intended the paper to be self-contained. For this reason, we have included Section 2, where we review the 
theory of infinity branches and introduce the notions of convergent branches (that is, branches that get closer as they tend 
to infinity) and approaching curves (see Blasco and Pérez-Díaz (2014a)), and Section 3, where we lay down fundamental 
concepts like perfect curve (a curve of degree d that cannot be approached by any curve of degree less than d) and g-
asymptote (a perfect curve that approaches another curve at an infinity branch). In addition, we present the methods that 
allow to compute the infinity branches of a given curve implicitly and parametrically defined, and a g-asymptote for each 
of them (see Subsections 3.1, 3.2 and 3.2.1).

The main results of the paper are presented in Section 4. Here, we develop a method that allows to easily compute all the 
generalized asymptotes of a curve defined by a parametrization by only determining some simple derivatives of functions 
constructed from the given parametrization. The results presented are concerned with plane curves but, as we remark in 
the paper, they can be adapted for dealing with curves in n-dimensional space. From this formula, some important results 
can be obtained (see Subsection 4.1). In particular, we show how to read from the input parametrization the ramification 
index and degree of the g-asymptote and how to compute the infinity form and the multiplicity and the character of the 
infinity points. As a consequence, we also comment how this formula could provide an answer the question on determining 
the families of parametric curves that have some input given g-asymptotes. Finally, we finish with some conclusions, and 
future work (see Section 5).

2. Notation and previous results

In the following, we introduce some basic notions as the concept of infinity branch, convergent branches and approaching 
curves, and we present some properties which allow us to compare the behavior of two implicit algebraic plane curves at 
infinity. For more details on these concepts and results, we refer to Blasco and Pérez-Díaz (2014b) (see Sections 3 and 4).

We consider an irreducible algebraic affine plane curve C over C defined by the irreducible polynomial f (x, y) ∈R[x, y]. 
Let C∗ be its corresponding projective curve, defined by the homogeneous polynomial

F (x, y, z) = fd(x, y) + zfd−1(x, y) + z2 fd−2(x, y) + · · · + zd f0 ∈ R[x, y, z],
where d := deg(C). We assume that (0 : 1 : 0) is not an infinity point of C∗ (otherwise, we may consider a linear change of 
coordinates).

In order to get the infinity branches of C, we consider the curve defined by the polynomial g(y, z) = F (1 : y : z) and 
we compute the series expansion for the solutions of g(y, z) = 0 around z = 0. There exist exactly degy(g) solutions given 
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by different Puiseux series that can be grouped into conjugacy classes (see e.g. Chapter 2 in Sendra et al. (2007) and 
Example 1). More precisely, if

ϕ(z) = m + a1zN1/N + a2zN2/N + a3zN3/N + · · · ∈C〈〈z〉〉, ai �= 0, ∀i ∈N,

where N ∈ N , Ni ∈ N, i ∈ N , and 0 < N1 < N2 < · · · , is a Puiseux series such that g(ϕ(z), z) = 0, and ν(ϕ) = N (i.e., N is 
the ramification index of ϕ), the series

ϕ j(z) = m + a1cN1
j zN1/N + a2cN2

j zN2/N + a3cN3
j zN3/N + · · ·

where c j, j = 1, . . . , N are the complex roots of xN = 1 (that is, |cN
j | = 1, j ∈ {1, . . . , N}), are called the conjugates of ϕ . The 

set of all the conjugates of ϕ is called the conjugacy class of ϕ and it contains ν(ϕ) different series.
Since g(ϕ(z), z) = 0 in some neighborhood of z = 0 where ϕ(z) converges, there exists M ∈R+ such that F (1 : ϕ(t) : t) =

g(ϕ(t), t) = 0 for t ∈C and |t| < M , which implies that F (t−1 : t−1ϕ(t) : 1) = f (t−1, t−1ϕ(t)) = 0, for t ∈C and 0 < |t| < M . 
We set t−1 = z, and we obtain that f (z, r(z)) = 0 for z ∈C and |z| > M−1 where

r(z) = zϕ(z−1) = mz + a1z1−N1/N + a2z1−N2/N + · · · + akz1−Nk/N + ak+1z1−Nk+1/N + · · · ,

ai ∈C \ {0}, ∀i ∈N , N, Ni ∈N, i ∈N , and 0 < N1 < N2 < · · · . In addition, let Nk ≤ N ≤ Nk+1, i.e. the terms a j z1−N j/N with 
j ≥ k + 1 have negative exponent.

Reasoning similarly with the N different series in the conjugacy class, ϕ1, . . . , ϕN , we get

ri(z) = zϕi(z−1) = mz + a1cN1
i z1−N1/N + a2cN2

i z1−N2/N + a3cN3
i z1−N3/N + · · ·

where c1, . . . , cN are the N complex roots of xN = 1. Under these conditions, we introduce the following definition.

Definition 1. An infinity branch of an affine plane curve C associated to the infinity point P = (1 : m : 0), m ∈ C, is a set 

B =
N⋃

j=1

L j , where L j = {(z, r j(z)) ∈C2 : z ∈C, |z| > M}, M ∈R+ , and

r j(z) = zϕ j(z−1) = mz + a1cN1
j z1−N1/N + a2cN2

j z1−N2/N + a3cN3
j z1−N3/N + · · · (2.1)

where N, Ni ∈N, i ∈N , 0 < N1 < N2 < · · · , and |cN
j | = 1, j ∈ {1, . . . , N}. The subsets L1, . . . , LN are called the leaves of the 

infinity branch B .

Remark 1. An infinity branch is uniquely determined from one leaf, up to conjugation. That is, if B =
N⋃

i=1

Li , where Li =

{(z, ri(z)) ∈C2 : z ∈C, |z| > Mi}, and

ri(z) = zϕi(z−1) = mz + a1z1−N1/N + a2z1−N2/N + a3z1−N3/N + · · ·
then r j = ri, j ∈ {1, . . . , N}, up to conjugation; i.e.

r j(z) = zϕ j(z−1) = mz + a1cN1
j z1−N1/N + a2cN2

j z1−N2/N + a3cN3
j z1−N3/N + · · ·

where N, Ni ∈N , and |cN
j | = 1, j ∈ {1, . . . , N}.

By abuse of notation, we say that B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} (where M := max{M1, . . . , MN}). Moreover, we 
say that N is the ramification index of the branch B and we write ν(B) = N . Note that B has ν(B) leaves.

The proceeding introduced above allows us to obtain the infinity branches of a curve C , under the assumption that 
(0 : 1 : 0) /∈ C∗ . However, a curve may have infinity branches, associated to the infinity point (0 : 1 : 0), which can not be 
constructed in this way. We call them Type II infinity branches and they have the form {(r(z), z) ∈ C2 : z ∈ C, |z| > M}. 
A Type II infinity branch may be obtained by interchanging the variables x and y. See Blasco and Pérez-Díaz (2014b)
(Definition 3.3) for further details.

In the following, we introduce the notions of convergent branches and approaching curves. Intuitively speaking, two 
infinity branches converge if they get closer as they tend to infinity. This concept will allow us to analyze whether two 
curves approach each other.

Definition 2. Two infinity branches, B and B , are convergent if there exist two leaves L = {(z, r(z)) ∈C2 : z ∈C, |z| > M} ⊂
B and L = {(z, r(z)) ∈C2 : z ∈C, |z| > M} ⊂ B such that limz→∞(r(z) − r(z)) = 0. In this case, we say that the leaves L and 
L converge.
3
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The following theorem provides a characterization for the convergence of two infinity branches (see Lemma 4.2 and 
Remark 4.3 in Blasco and Pérez-Díaz (2014b)).

Theorem 1. The following statements hold:

1. Two leaves L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} and L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} are convergent if and only if the 
terms with non negative exponent in the series r(z) and r(z) are the same.

2. Two infinity branches B and B are convergent if and only if for each leaf L ⊂ B there exists a leaf L ⊂ B convergent with L, and 
reciprocally.

3. Two convergent infinity branches must be associated to the same infinity point.

This paper is concerned with the study of the asymptotes of a curve. The classical concept of asymptote stands for a line 
that approaches a given curve when it tends to the infinity. In the following we generalize this idea by claiming that two 
curves approach each other if they, respectively, have two infinity branches that converge (see Definition 3 and Theorem 2
below).

Definition 3. Let C be an algebraic plane curve with an infinity branch B . We say that a curve C approaches C at its infinity 
branch B if there exists one leaf L = {(z, r(z)) ∈C2 : z ∈C, |z| > M} ⊂ B such that limz→∞ d((z, r(z)), C) = 0.

The following theorem is proved in Blasco and Pérez-Díaz (2014b) (see Theorem 4.11).

Theorem 2. Let C be a plane algebraic curve with an infinity branch B. A plane algebraic curve C approaches C at B if and only if C
has an infinity branch, B, such that B and B are convergent.

Obviously, “approaching” is a symmetric concept, that is, C1 approaches C2 if and only if C2 approaches C1. When it 
happens we say that C1 and C2 are approaching curves or that they approach each other. In the next section we use this 
concept to generalize the classical notion of asymptote of a curve.

In the following example, we illustrate all the notions included in this section.

Example 1. Let C be the plane curve implicitly defined by the irreducible polynomial

f (x, y) = xy3 − 2y4 − x3 − x2 y + 2xy2 + y3 + 2 ∈R[x, y].
The corresponding projective curve C∗ is defined by

F (x : y : z) = xy3 − 2y4 − x3z − x2 yz + 2xy2z + y3z + 2z4 ∈ R[x, y, z].
Note that P1 = (1 : 1/2 : 0) and P2 = (1 : 0 : 0) are infinity points of C∗ . Let us compute the infinity branches associated 
to P1 and P2. For this purpose, we consider the curve implicitly defined by the polynomial g(y, z) = F (1 : y : z), and we 
observe that g(p j) = 0, where p1 = (1/2, 0), p2 = (0, 0).

We compute the series expansion for the solutions of g(y, z) = 0. For this purpose, we use for instance the algcurves
package included in the computer algebra system Maple. We get that:

ϕ1(t) = 1/2 − 4116t3 − 98t2 − 7/2t + · · · , and

ϕ2(t) = 13475554t11/3/729 + 1213997t10/3/243 + 1372t3 + 31117t8/3/81 + 8930t7/3/81 + 98t2/3 + 91t5/3/9 + 10t4/3/3 +
4t/3 + t2/3 + t1/3 + · · · .

That is, g(ϕ j(t), t) = 0, j = 1, 2 (see e.g. Section 2.5 in Sendra et al. (2007)). Note that ν(ϕ1) = 1, which implies that 
we only have one Puiseux series in the conjugacy class of ϕ1 and that ϕ1 is associated to the infinity point P1. However, 
ν(ϕ2) = 3 and then, we have three conjugate Puiseux series in the conjugacy class of ϕ2, namely ϕ2, j(t), j = 1, 2, 3. Observe 
that ϕ2 is associated to the infinity point P2.

Thus, we obtain two infinity branches (marked above the curve)

B1 = L1 = {(z, r1(z)) ∈C2 : z ∈C, |z| > M}, where r1(z) = zϕ1(z−1)

and B2 = L2,1 ∪ L2,2 ∪ L2,3, where L2,i = {(z, r2,i(z)) ∈ C2 : z ∈ C, |z| > M} and r2,i(z) = zϕ2,i(z−1), i = 1, 2, 3. In Fig. 1, we 
plot the curve C and some points of the infinity branches B1 and B2 associated to the infinity points P1, P2, respectively.

Now, let us consider the plane curve C implicitly defined by the polynomial

f (x, y) = xy3 − 2y4 − 2x3 + 2x2 y + xy2 + 10y3 + 1 ∈ R[x, y].

4
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Fig. 1. Infinity branches B1 (left), and B2 (right).

Fig. 2. C (left), C (center), and both approaching curves (right).

Let us prove that C and C approach each other (see Fig. 2) at the infinity branch associated to the infinity points P1 and P2
(note that both curves have these points as infinity points).

Reasoning as above for the curve C , we get that the infinity branch of C associated to P1 is

B1 = L1 = {(z, r1(z)) ∈C2 : z ∈C, |z| > M}, where r1(z) = zϕ1(z−1)

and

ϕ1(t) = 1/2 + 1240t3 + 60t2 + 2t + · · · .

Furthermore, the infinity branch of C associated to P2 is and B2 = L2,1 ∪ L2,2 ∪ L2,3, where L2,i = {(z, r2,i(z)) ∈ C2 : z ∈
C, |z| > M} and r2,i(z) = zϕ2,i(z−1), i = 1, 2, 3, where

ϕ2(t) = −5890391582 · 22/3t11/3/4782969 − 1237130869 · 21/3t10/3/1594323 − 1240t3/3 − 3993827 · 22/3t8/3/39366 −
297529 · 21/3t7/3/6561 − 20t2 − 1535 · 22/3t5/3/486 − 83 · 21/3t4/3/81 + t + 22/3t2/3)/3 + 21/3t(1/3) + · · · .

Using Theorem 1, we conclude that both branches converge.

3. Asymptotes of an algebraic curve

Given an algebraic plane curve C and an infinity branch B , in Section 2, we have described how C can be approached at 
B by a second curve C . Now, suppose that deg(C) < deg(C). Then one may say that C degenerates, since it behaves at infinity 
as a curve of smaller degree. For instance, a hyperbola is a curve of degree 2 that has two real asymptotes, which implies 
that the hyperbola degenerates, at infinity, to two lines. Similarly, one can check that every ellipse has two asymptotes, 
although they are complex lines in this case. However, the asymptotic behavior of a parabola is different, since it cannot be 
approached at infinity by any line. This motivates the following definition:

Definition 4. An algebraic curve of degree d is a perfect curve if it cannot be approached by any curve of degree less than d.

More properties on perfect curves can be found in Blasco and Pérez-Díaz (2014a). In particular, one has that if a given 
curve has an only branch and its degree is equal to the input curve, then it is perfect. For instance, a curve C defined by a 
proper parametrization of the form (tn, antn + an−1tn−1 + · · · + a0) is always perfect since it has an only branch B given by 
5
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Fig. 3. C (left) and asymptotes (center and right).

Fig. 4. Curve C and asymptotes.

(z, r(z)) = (z, anz + an−1z(n−1)/n + · · · + a0) and deg(C) = deg(B) = n (note that deg(B) = n since the given parametrization 
is proper).

A curve that is not perfect can be approached by other curves of smaller degree. If these curves are perfect, we call them 
g-asymptotes. More precisely, we have the following definition.

Definition 5. Let C be a curve with an infinity branch B . A g-asymptote (generalized asymptote) of C at B is a perfect curve 
that approaches C at B .

The notion of g-asymptote is similar to the classical concept of asymptote. The difference is that a g-asymptote is not 
necessarily a line, but a perfect curve. Actually, it is a generalization, since every line is a perfect curve (this fact follows 
from Definition 4). Throughout the paper we refer sometimes to g-asymptote simply as asymptote.

Remark 2. The degree of an g-asymptote is less than or equal to the degree of the curve it approaches. In fact, a g-asymptote 
of a curve C at a branch B has minimal degree among all the curves that approach C at B .

In Fig. 3, we plot a given curve C defined implicitly by the polynomial

f (x, y) = 4x2 y3 − 4xy4 + y5 + 2x3 y − x2 y2 + 2x2 y + 2xy2 + x2 + x

and the two g-asymptotes defined by the polynomials

f 1(x, y) = 0, f 2(x, y) = 1/2x + y2 + 1/4y + 1/64.

In Fig. 4, we plot the curve and the asymptotes together.
In Subsection 3.1, we show that every infinity branch of a given algebraic plane curve implicitly defined has, at least, 

one asymptote and we show how to compute it. For this purpose, we rewrite Equation (2.1) defining a branch B (see 
Definition 1) as

r(z) = mz + a1z1−n1/n + · · · + akz1−nk/n + ak+1z1−Nk+1/N + · · · (3.1)

where N = n · b, N j = n j · b, j ∈ {1, . . . , k}, and b = gcd(N, N1, . . . , Nk) (see Equation (2.1)). That is, we have simplified 
the non negative exponents such that gcd(n, n1, . . . , nk) = 1. Note that 0 < n1 < n2 < · · · , and nk ≤ n, and N < Nk+1, i.e. the 
6
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terms a j z−N j/N+1 with j ≥ k +1 are those which have negative exponent. We denote these terms as A(z) := ∑∞
�=k+1 a�z−q� , 

where q� = 1 − N�/N ∈Q+ , � ≥ k + 1.
Under these conditions, we introduce the definition of degree of a branch B:

Definition 6. Let B = {(z, r(z)) ∈C2 : z ∈C, |z| > M} (r(z) is defined in (3.1)) be an infinity branch associated to an infinity 
point P = (1 : m : 0), m ∈C. We say that n is the degree of B , and we denote it by deg(B).

3.1. Construction of asymptotes for curves implicitly defined

Taking into account Theorems 1 and 2, we have that any curve C approaching C at B should have an infinity branch 
B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} such that the terms with non negative exponent in r(z) and r(z) are the same. In the 
simplest case, if A = 0 (i.e. there are no terms with negative exponent; see Equation (3.1)), we obtain

r̃(z) = mz + a1z1−n1/n + a2z1−n2/n + · · · + akz1−nk/n, (3.2)

where a1, a2, . . . ∈ C \ {0}, m ∈ C, n, n1, n2 . . . ∈ N , gcd(n, n1, . . . , nk) = 1, and 0 < n1 < n2 < · · · . Note that r̃ has the same 
terms with non negative exponent as r, and r̃ does not have terms with negative exponent.

Let C̃ be the plane curve containing the branch B̃ = {(z, ̃r(z)) ∈ C2 : z ∈ C, |z| > M̃} (note that C̃ is unique since two 
different algebraic curves have finitely many common points). Observe that

Q̃(t) = (tn,mtn + a1tn−n1 + · · · + aktn−nk ) ∈C[t]2,

where n, n1, . . . , nk ∈N , gcd(n, n1, . . . , nk) = 1, and 0 < n1 < · · · < nk , is a polynomial parametrization of C̃ , and it is proper 
(see Lemma 3 in Blasco and Pérez-Díaz (2014a)). In Theorem 2 in Blasco and Pérez-Díaz (2014a), we prove that C̃ is a 
g-asymptote of C at B .

From these results, we obtain the method presented in Blasco and Pérez-Díaz (2014a) and Blasco and Pérez-Díaz (2015), 
that computes g-asymptote that is independent of the leaf chosen to define the infinity branch. We assume that we have 
prepared the input curve C , by means of a suitable linear change of coordinates, such that (0 : 1 : 0) is not an infinity point 
of C . We recall that throughout the paper we refer sometimes to g-asymptote simply as asymptote.

In the following, we illustrate the method with an example.

Example 2. Let C be the curve of degree d = 4 defined by the irreducible polynomial

f (x, y) = 3645 − 11178x − 891y + 2250yx + 207y2 + 11997x2 − 357y2x − 1859yx2 + 156y2x2 + 496yx3 + 21xy3 − 25y3 −
5039x3 + 576x4 + y4 ∈R[x, y].
First, we have that f4(x, y) = (9x + y)(4x + y)3. Hence, the infinity points are P1 = (1 : −9 : 0) and P2 = (1 : −4 : 0).

We start by analyzing the point P1: there is one infinity branch associated to P1, B1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M1}, 
where

r1(z) = −9z − 1402/z4 + 233/z3 − 43/z2 + 10/z + 8 + · · · ,

(we compute r1 using the algcurves package included in the computer algebra system Maple; in particular we use the 
command puiseux).
We compute r̃1(z), and we have that r̃1(z) = 8 − 9z. The parametrization of the asymptote C̃1 is given by

Q̃1(t) = (t, 8 − 9t).

Now, we focus on the point P2: there is one infinity branch associated to P2, B2 = {(z, r2 j(z)) ∈ C2 : z ∈ C, |z| > M2}, 
where

r2(z) = −4z + 17/3 − 4/3z1/3 + 7z2/3 − 10/3z−1 + 598/243z−2/3 − 479/81z−1/3 + · · · ,

We compute r̃2(z), and we have that r̃2(z) = −4z +17/3 −4/3z1/3 +7z2/3. The parametrization of the asymptote C̃2 is given 
by

Q̃2(t) = (t3, −4t3 + 17/3 − 4/3t + 7t2).

One may compute the polynomial defining implicitly C̃1, C̃2 (apply for instance the results in Sendra et al. (2007); see 
Chapter 4). We have,

f̃1(x, y) = −9x + 8 − y

f̃2(x, y) = 4913 − 6184x − 2601y + 13581x2 + 2916yx + 459y2 − 1728x3 − 1296yx2 − 324y2x − 27y3.

In Figs. 5 and 6, we plot the curve C , and the asymptotes C̃1 and C̃2 and the three curves together.
7
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3.2. Construction of asymptotes for rational curves parametrically defined

Throughout this paper so far, we have dealt with algebraic plane curves implicitly defined. In this subsection, we present 
a method to compute infinity branches and g-asymptotes of a plane curve from their parametric (rational) representation 
(without implicitizing). This method is included in Blasco and Pérez-Díaz (2015) (see Section 5) and it involves the com-
putation of Puiseux series and infinity branches. In Subsection 3.2.1, we develop a new method presented in Blasco and 
Pérez-Díaz (2020) that allows to easily compute the generalized asymptotes (g-asymptotes) by only determining some sim-
ple limits of rational functions constructed from the given parametrization. We recall that throughout the paper we refer 
sometimes to g-asymptote simply as asymptote.

Let C be a plane curve defined by the rational parametrization

P(s) = (p1(s), p2(s)) ∈R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1,2.

If C∗ represents the projective curve associated to C , we have that a parametrization of C∗ is given by P∗(s) = (p1(s) :
p2(s) : 1) or, equivalently,

P∗(s) =
(

1 : p2(s)

p1(s)
: 1

p1(s)

)
.

We assume that we have prepared the input curve C , by means of a suitable linear change of coordinates (if necessary) 
such that (0 : 1 : 0) is not a point at infinity of C∗ .

In order to compute the g-asymptotes of C , first we need to determine the infinity branches of C . That is, the sets

B = {(z, r(z)) ∈C2 : z ∈C, |z| > M}, where r(z) = zϕ(z−1).

For this purpose, taking into account Definition 1, we have that f (z, r(z)) = F (1 : ϕ(z−1) : z−1) = F (1 : ϕ(t) : t) = 0
around t = 0, where t = z−1 and F is the polynomial defining implicitly C∗ . Observe that in this section, we are given 
the parametrization P∗ of C∗ and then, F (P∗(s)) = F (1 : p2(s)/p1(s) : 1/p1(s)) = 0. Thus, intuitively speaking, in order to 
compute the infinity branches of C , and in particular the series ϕ , one needs to rewrite the parametrization P∗(s) in the 
form (1 : ϕ(t) : t) around t = 0. For this purpose, the idea is to look for a value of the parameter s (in the parametrization 
P∗(s)), say �(t) ∈C〈〈t〉〉, such that P∗(�(t)) = (1 : ϕ(t) : t) around t = 0.

Hence, from the above reasoning, we deduce that first, we have to consider the equation 1/p1(s) = t (or equiva-
lently, p12(s) − tp11(s) = 0), and we solve it in the variable s around t = 0. From Puiseux’s Theorem, there exist solutions 
�1(t), �2(t), . . . , �k(t) ∈C〈〈t〉〉 such that, p12(�i(t)) − tp11(�i(t)) = 0, i ∈ {1, . . . , k}, in a neighborhood of t = 0.

Thus, for each i ∈ {1, . . . , k}, there exists Mi ∈ R+ such that the points (1 : ϕi(t) : t) or equivalently, the points (t−1 :
t−1ϕi(t) : 1), where ϕi(t) = p2(�i(t))

p1(�i(t))
, are in C∗ for |t| < Mi (note that P∗(�(t)) ∈ C∗ since P∗ is a parametrization of C∗). 

Observe that ϕi(t) is a Puiseux series, since p2(�i(t)) and p1(�i(t)) can be written as Puiseux series and C〈〈t〉〉 is a field.
Finally, we set z = t−1. Then, we have that the points (z, ri(z)), where ri(z) = zϕi(z−1), are in C for |z| > M−1

i . Hence, 
the infinity branches of C are the sets Bi = {(z, ri(z)) ∈C3 : z ∈C, |z| > M−1

i }, i ∈ {1, . . . , k}.
Note that the series �i(t) satisfies that p1(�i(t))t = 1, for i ∈ {1, . . . , k}. Then, we have that

ϕi(t) = p2(�i(t))

p1(�i(t))
= p2(�i(t))t, ri(z) = zϕi(z−1) = p2(�i(z−1)).

Once we have the infinity branches, we can compute a g-asymptote for each of them by simply removing the terms with 
negative exponent from ri .

Additionally we note, that some of the solutions �1(t), �2(t), . . . , �k(t) ∈C〈〈t〉〉 might belong to the same conjugacy class. 
Thus, we only consider one solution for each of these classes. The output asymptote C̃ is independent of the solutions 
�1(t), �2(t), . . . , �k(t) ∈C〈〈t〉〉 chosen in step 1, and of the leaf chosen to define the branch B .

In the following example, we consider a parametric plane curve with two real infinity branches. We obtain these 
branches and compute a g-asymptote for each of them.

Example 3. Let C be the plane curve introduced in Example 2 defined by the parametrization

P(s) =
(

s4 − s3 + 1

(s − 1)s3
,

s4 − 7s − 4 + s2

(s − 1)s3

)
∈R(s)2.

We compute the asymptotes of C . For this purpose, we determine the solutions of the equation p12(s) − tp11(s) = 0 around 
t = 0. For this purpose, we may use, for instance, the command puiseux included in the package algcurves of the computer 
algebra system Maple. There are two solutions that are given by the Puiseux series

�1(t) = 1 + 327t5 − 54t4 + 10t3 − 2t2 + t + · · ·
�2(t) = −10/3t3 + 38768/19683t8/3 + 8546/6561t7/3+
8
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2/3t2 + 100/243t5/3 + 8/81t4/3 − 1/3t + 1/3t2/3 + t1/3 + · · · .

Now, we compute

r1(z) = p2(�1(z−1)) = −9z + 8 + 10z−1 − 43z−2 + 233z−3 + · · ·
r2(z) = p2(�2(z−1)) = −4z + 17/3 − 4/3z1/3 + 7z2/3 − 10/3z−1 + 598/243z−2/3 − 479/81z−1/3 + · · ·
(we may use, for instance, the command series included in the computer algebra system Maple). The curve has four infinity 
branches given by Bi = {(z, ri(z)) ∈C2 : z ∈C, |z| > M} for some M ∈R+ (note that B2 has three leaves).

We obtain r̃i(z) by removing the terms with negative exponent in ri(z) for i = 1, 2. We get

r̃1(z) = −9z + 8 and r̃2(z) = −4z + 17/3 − 4/3z1/3 + 7z2/3.

The input curve C has two real asymptotes C̃i at Bi for i = 1, 2 that can be polynomially parametrized by (see Fig. 5):

Q̃1(t) = (t, −9t + 8), Q̃2(t) = (t3, −4t3 + 17/3 − 4/3t + 7t2).

Compare the output with the output obtained in Example 2.

3.2.1. New method for the parametric case
In this subsection, we present an improvement of the method described above, which avoids the computation of infinity 

branches and Puiseux series (see Blasco and Pérez-Díaz (2020)). We develop this method for the plane case but it can be 
adapted for dealing with rational curves in n-dimensional space. For this purpose, one may apply the same reasoning as the 
used in Blasco and Pérez-Díaz (2015) (see also Remark 6).

In the following we consider a rational plane curve C defined by the rational parametrization

P(s) = (p1(s), p2(s)) ∈R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1,2.

We assume that deg(pi1) ≤ deg(pi2) = di, i = 1, 2 (otherwise, we apply a linear change of variables); thus, we have that 
lims→∞ pi(s) �= ∞, i = 1, 2 and the infinity branches of C will be traced when s moves around the different roots of the 
denominators p12(s) and p22(s). In fact, each of these roots yields an infinity branch. The following theorem (see Theorem 
3 in Blasco and Pérez-Díaz (2020)) shows how to obtain a g-asymptote for each of these branches, by just computing some 
simple limits of rational functions constructed from P(s).

Theorem 3. Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s)) ∈R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1,2,

where deg(pi1) ≤ deg(pi2) = di, i = 1, 2. Let τ ∈ C be such that we write pi2(t) = (t − τ )ni pi2(t) where pi2(τ ) �= 0, i = 1, 2, and 
n1 ≥ 1, and let B be the corresponding infinity branch. A g-asymptote of B is defined by the parametrization

Q̃(t) = (tn1 , an2tn2 + an2−1tn2−1 + . . . + a0),

where

an2 = limt→τ
p2(t)

p1(t)n2/n1

an2−1 = limt→τ p1(t)1/n1 f1(t), f1(t) := p2(t)

p1(t)n2/n1
− an2

an2−2 = limt→τ p1(t)1/n1 f2(t), f2(t) := p1(t)1/n1 f1(t) − an2−1
...

...

an2−i = limt→τ p1(t)1/n1 f i(t), f i(t) := p1(t)1/n1 f i−1(t) − an2−(i−1), i ∈ {2, . . . ,n2}.

Remark 3. From the above construction, each root τ of p12(t) yields an infinity branch and, hence, an infinity point P∗ . 
Note that the parametrization P(t) can be expressed as P(t) =

(
q11(t)
q(t) ,

q12(t)
q(t)

)
, where q(t) = lcm(p12(t), p22(t)) and q1i(t) =

pi(t)q(t). Now, the corresponding projective curve is parametrized by P∗(t) = (q11(t), q12(t), q(t)) and the infinity point 
associated to τ is P∗ = (q11(τ ) : q12(τ ) : 0).

In the following corollary, we analyze the special case of the vertical and horizontal g-asymptotes, i.e. lines of the 
form x − a or y − b, where a, b ∈ C (observe that these asymptotes correspond to branches associated to the infinity 
points (0 : 1 : 0) and (1 : 0 : 0), respectively). More precisely, we prove that these asymptotes are obtained from the non–
common roots of the denominators of the given parametrization. Note that in the practical design of engineering and 
modeling applications, the rational curves are usually presented by numerical coefficients and P(s) mostly satisfies that 
gcd(p12, p22) = 1. A proof of this corollary can be found in Corollaries 1, 2 and 3 in Blasco and Pérez-Díaz (2020).
9
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Corollary 1. Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s)) ∈R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1,2,

where deg(pi1) ≤ deg(pi2), i = 1, 2.

1. Let τ ∈ C be such that p12(t) = (t − τ )n1 p12(t) where p22(τ )p12(τ ) �= 0, and n1 ≥ 1. It holds that a g-asymptote of C corre-
sponding to the infinity point (1 : 0 : 0) is the horizontal line y − p2(τ ) = 0, defined by the parametrization Q̃(t) = (t, p2(τ )).

2. Let τ ∈ C be such that p22(t) = (t − τ )n2 p22(t) where p12(τ )p22(τ ) �= 0, and n2 ≥ 1. It holds that a g-asymptote of C corre-
sponding to the infinity point (0 : 1 : 0) is the vertical line x − p1(τ ) = 0, defined by the parametrization Q̃(t) = (p1(τ ), t).

Remark 4. The previous theorem outputs the parametrization Q̃(t) = (tn1 , an2tn2 + an2−1tn2−1 + . . . + a0), and n1 ≥ n2 (oth-
erwise (0 : 1 : 0) is an infinity point of the input curve). Note that the degree of the defined curve is not necessary n1 since 
Q could be improper which is equivalent to gcd(n1, n2, . . . , n2 − j) �= 0 for every j = 0, . . . , n2 − 1 such that an2− j �= 0. Let 
us assume that gcd(n1, n2, . . . , n2 − j) = β for every j = 0, . . . , n2 − 1 such that an2− j �= 0. Then, let n = n1/β and

M(t) = P(t1/β) = (tn,an2tn2/β + an2−1t(n2−1)/β + . . . + a0) ∈ K[t]2

is a proper reparametrization of Q. Then we get that the theorem outputs an asymptote since the output curve is perfect 
(it has an only branch and the degree of the curve which is n is equal to the degree of the branch).

By applying the above results, we can easily obtain all the g-asymptotes of any rational plane curve, as the following 
example shows.

Example 4. Let C be the plane curve introduced in Examples 2 and 3 defined by the parametrization

P(s) =
(

s4 − s3 + 1

(s − 1)s3
,

s4 − 7s − 4 + s2

(s − 1)s3

)
∈R(s)2.

We compute the asymptotes of C using the new method just presented. For this purpose, we first observe that p12(s) has 
the roots τ1 = 1, τ2 = 0, with multiplicities n1 = 1, and n2 = 3. The multiplicities of these roots in p22(s) are the same and 
p22(s) does not have additional roots.
For τ1 = 1, we compute

a1 = limt→1
p2(t)

p1(t)
= −9, a0 = limt→1 p1(t) f1(t) = 8, f1(t) := p2(t)

p1(t)
− a1.

Then, we obtain the asymptote C̃1, defined by the proper parametrization

Q̃1(t) = (t, −9t + 8).

For τ2 = 0, we compute

a3 = limt→0
p2(t)
p1(t) = −4

a2 = limt→0 p1(t)1/3 f1(t) = 7, f1(t) := p2(t)
p1(t) − a3

a1 = limt→0 p1(t)1/3 f2(t) = −4/3, f2(t) := p1(t)1/3 f1(t) − a2

a0 = limt→0 p1(t)1/3 f3(t) = 17/3, f3(t) := p1(t)1/3 f2(t) − a1.

Then, we obtain the asymptote C̃2, defined by the proper parametrization

Q̃2(t) = (t3, −4t3 + 17/3 − 4/3t + 7t2).

See Figs. 5 and 6 and compare the output with the output obtained in Example 3.

The above method allows us to easily obtain all the generalized asymptotes of a rational curve. However, we should 
compute the roots of the denominators of the parametrization, which may entail certain difficulties if algebraic numbers are 
involved. This problem is solved using the notion of conjugate points (see Definition 12 in Pérez-Díaz (2007)), which help 
us to overcome this problem. The idea is collect the points whose coordinates depend algebraically on all the conjugate 
roots of a same irreducible polynomial (for more details see Pérez-Díaz (2007) and Subsection 4.2 in Blasco and Pérez-Díaz 
(2020)).
10
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Fig. 5. Curve C (left) and asymptotes (center and right).

Fig. 6. Curve C and asymptotes.

4. Computation of branches and asymptotes using derivatives and some applications

In this section, we present the main results of the paper. More precisely, we first develop a method that allows to easily 
compute all the g-asymptotes and the branches of a curve defined by a parametrization by only determining some simple 
derivatives of functions constructed from the input parametrization. From the formula obtained, some important results 
can be deduced. In particular, we show how to read from the input parametrization the ramification index and degree of 
the g-asymptote and how to compute the infinity form and the multiplicity and the character of the infinity points. As 
a consequence, we also comment how this formula could provide an answer the question on determining the families of 
parametric curves that have some input given g-asymptotes. These consequences will be presented in Subsection 4.1.

In the following, we consider C be a curve defined by a rational parametrization

P(s) = (p1(s), p2(s)) ∈R(s)2, pi(s) = pi1(s)/p(s), gcd(pi1, pi2, p) = 1, i = 1,2.

We assume that all the roots of the denominators can be written as τ ∈C such that p(t) = (t − τ )n p(t) where p(τ )p1(τ ) �=
0, i = 1, 2, and n ≥ 1. Otherwise, we consider a change of coordinates to afterwards undoing it.

Theorem 4. Let C be a curve defined by a parametrization

P(s) = (q1(s),q2(s)) ∈R(s)2, qi(s) = pi(s)/p(s), gcd(p1, p2, p) = 1, i = 1,2.

Let τ ∈ C be such that we write p(t) = (t − τ )n p(t) where p(τ )p1(τ ) �= 0, i = 1, 2, and n ≥ 1. Let B be the corresponding infinity 
branch. A g-asymptote of B is defined by the parametrization
11
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Q̃(t) = (tn, antn + an−1tn−1 + · · · + a0),

where

an = p2(τ )

p1(τ )
,

and for 0 ≤ i ≤ n − 1

ai = 1

(n − i)! · ∂n−1−i

∂tn−1−i

(
∂

∂t

(
p2(t)

p1(t)

)
·
(

p1(t)

p(t)

)(n−i)/n
)

(τ )

Proof. First, in order to improve the notation we denote

�(t) = p2(t)

p1(t)
, r(t) =

(
p1(t)

p(t)

)1/n

.

Thus, we have to prove that

an = �(τ ), ai = 1

(n − i)! · ∂n−1−i

∂tn−1−i

(
∂�

∂t
(t) · r(t)(n−i)

)
(τ ), 0 ≤ i ≤ n − 1.

We assume w.l.o.g. that τ = 0. Otherwise, one reasons similarly. First, we easily get that

an = limt→0
q2(t)

q1(t)
= limt→0

p2(t)

p1(t)
= �(0).

In order to prove the other equality, we observe that for i = 1, . . . , n we may write

an−i = limt→0
r μi(t)

ti
,

where

μi(t) =
(
(�(t) − an)r

i−1 − an−1ri−2t − an−2ri−3t2 − . . . − an−i+2rti−2 − an−i+1ti−1
)

.

We easily may check that

∂ jμi

∂t j
(0) = 0, j = 0, . . . , i − 1, i = 1, . . . ,n,

and

∂μ1

∂t
(t) = ∂�

∂t
(t).

In addition, for i = 2, . . . , n

∂ iμi

∂ti
(t) =

((
i

i − 1

)
∂ i−1λi−2

∂ti−1
(t)

∂r

∂t
(t) + r(t)

∂ iλi−2

∂ti
(t)

)
where,

λ0 = �(t) − an, λi−2 = λi−3 r − an−i+2ti−2, i = 3, . . . ,n.

Indeed: let i ∈ {2, . . . , n}. First, we observe that

∂ iμi

∂ti
(t) = ∂ i (r λi−2)

∂ti
(t)

and since ∂ jλi−2
∂t j (0) = 0, j = 0, . . . , i − 2, we have that

∂ iμi

∂ti
(0) =

((
i

i − 1

)
∂ i−1λi−2

∂ti−1
(0)

∂r

∂t
(0) + r(0)

∂ iλi−2

∂ti
(0)

)
.

Now, taking into account the previous equalities and that r(t) is defined in t = 0, by L’Hôpital rule we get that

an−1 = r(0)
∂μ1
∂t (0) =

(
∂�

(t) · r(t)

)
(0)
1! ∂t

12
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=

and for i ∈ {2, . . . , n},

an−i = r(0)
∂ iμi
∂ti (0)

i! =
r(0)

(( i
i−1

) ∂ i−1λi−2
∂ti−1 (0) ∂r

∂t (0) + r(0)
∂ iλi−2

∂ti (0)
)

i! .

Thus, finally we only need to prove that for i ∈ {2, . . . , n}

r(0)

((
i

i − 1

)
∂ i−1λi−2

∂ti−1
(0)

∂r

∂t
(0) + r(0)

∂ iλi−2

∂ti
(0)

)
= ∂ i−1

∂ti−1

(
∂�

∂t
(t) · r(t)i

)
(0).

For this purpose, we consider the factor(
α2

∂ i−1λi−2

∂ti−1
(0) + α1

∂ iλi−2

∂ti
(0)

)

where α1 = r(0) and α2 = ( i
i−1

)
∂r
∂t (0). Since λi−2 = λi−3 r − an−i+2ti−2 and taking into account that ∂ jλi−2

∂t j (0) = 0, j =
0, . . . , i − 2, we have that,(

α2
∂ i−1λi−2

∂ti−1
(0) + α1

∂ iλi−2

∂ti
(0)

)
=

(
α3

∂ i−2λi−3

∂ti−2
(0) + α2

∂ i−1λi−3

∂ti−1
(0) + α1

∂ iλi−3

∂ti
(0)

)

where α1 = r2(0), α2 = ( i
i−1

)
∂r2

∂t (0) and α3 = ( i
i−2

)
∂2r2

∂t2 (0). Since λi−3 = λi−4 r − an−i+3ti−3 and taking into account that 
∂ jλi−2

∂t j (0) = 0, j = 0, . . . , i − 2, we have that,(
α3

∂ i−2λi−3

∂ti−2
(0) + α2

∂ i−1λi−3

∂ti−1
(0) + α1

∂ iλi−3

∂ti
(0)

)
=

(
α4

∂ i−3λi−4

∂ti−3
(0) + α3

∂ i−2λi−4

∂ti−2
(0) + α2

∂ i−1λi−4

∂ti−1
(0) + α1

∂ iλi−4

∂ti
(0)

)

where α1 = r3(0), α2 = ( i
i−1

)
∂r3

∂t (0), α3 = ( i
i−2

)
∂2r3

∂t2 (0) and α4 = ( i
i−3

)
∂3r3

∂t3 (0). Therefore, applying this process i times, we get 
that ((

i

i − 1

)
∂r

∂t
(0)

∂ i−1λi−2

∂ti−1
(0) + r(0)

∂ iλi−2

∂ti
(0)

)
=

(
i

i

)
ri−1(0)

∂ iλ0

∂ti
(0)+

(
i

i − 1

)
∂ri−1

∂t
(0)

∂ i−1λ0

∂ti−1
(0)+

(
i

i − 2

)
∂2ri−1

∂t2
(0)

∂ i−2λ0

∂ti−2
(0)+· · ·+

(
i

i − 1

)
∂ iri−1

∂ti
(0)

∂λ0

∂t
(0) =(

i

i

)
ri−1(0)

∂ i�

∂ti
(0) +

(
i

i − 1

)
∂ri−1

∂t
(0)

∂ i−1�

∂ti−1
(0) +

(
i

i − 2

)
∂2ri−1

∂t2
(0)

∂ i−2�

∂ti−2
(0) + · · · +

(
i

i − 1

)
∂ iri−1

∂ti
(0)

∂�

∂t
(0).

Therefore,

r(0)

((
i

i − 1

)
∂ i−1λi−2

∂ti−1
(0)

∂r

∂t
(0) + r(0)

∂ iλi−2

∂ti
(0)

)
=

r(0)

((
i

i

)
ri−1(0)

∂ i�

∂ti
(0) +

(
i

i − 1

)
∂ri−1

∂t
(0)

∂ i−1�

∂ti−1
(0) +

(
i

i − 2

)
∂2ri−1

∂t2
(0)

∂ i−2�

∂ti−2
(0) + · · · +

(
i

i − 1

)
∂ iri−1

∂ti
(0)

∂�

∂t
(0)

)
(

i − 1

i − 1

)
ri(0)

∂ i�

∂ti
(0) +

(
i − 1

i − 2

)
∂ri

∂t
(0)

∂ i−1�

∂ti−1
(0) +

(
i − 1

i − 3

)
∂2ri

∂t2
(0)

∂ i−2�

∂ti−2
(0) + · · · +

(
i − 1

0

)
∂ i−1ri

∂ti
(0)

∂�

∂t
(0) =

∂ i−1

∂ti−1

(
∂�

∂t
(t) · r(t)i

)
(0). �

Remark 5. Observe that as an important consequence of Theorem 4, using the formulae presented we can construct all the 
families of parametric curves having a given asymptote. See also Subsection 4.1 and Example 8
13
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Corollary 2. Let C be a curve defined by a parametrization

P(s) = (q1(s),q2(s)) ∈R(s)2, qi(s) = pi(s)/p(s), gcd(p1, p2, p) = 1, i = 1,2.

Let τ ∈C be such that p(t) = (t − τ )n p(t) where p(τ )p1(τ ) �= 0, i = 1, 2, and n ≥ 1. The corresponding infinity branch B is given as

(tn, antn + an−1tn−1 + . . . + a0 + a−1t−1 + a−2t−2 + . . .),

or equivalently

(t, ant + an−1t(n−1)/n + . . . + a0 + a−1t−1/n + a−2t−2/n + . . .),

where

an = p2(τ )

p1(τ )
,

and for i ≤ n − 1

ai = 1

(n − i)! · ∂n−1−i

∂tn−1−i

(
∂

∂t

(
p2(t)

p1(t)

)
·
(

p1(t)

p(t)

)(n−i)/n
)

(τ )

Remark 6. Note that we have developed this method for the plane case but it can be trivially adapted for dealing with 
rational curves in n-dimensional space. For instance, if n = 3, we have a curve P(s) = (p1(s), p2(s), p3(s)) with pi(s) =
pi1(s)/pi2(s) and gcd(pi1, pi2) = 1, i = 1, 2, 3, and the asymptotes have the form

Q̃ = (tn1 , an2tn2 + an2−1tn2−1 + . . . + a0, bm2tm2 + bm2−1tm2−1 + . . . + b0).

These asymptotes can be computed by successively applying the previous results to each component (for more details on 
this reasoning see Blasco and Pérez-Díaz (2015)).

Example 5. Let C be the plane curve introduced in Examples 2, 3 and 4 defined by the parametrization

P(s) =
(

s4 − s3 + 1

(s − 1)s3
,

s4 − 7s − 4 + s2

(s − 1)s3

)
∈R(s)2.

We compute the asymptotes of C using the new method just presented. For this purpose, we first observe that p12(s) has 
the roots τ1 = 1, τ2 = 0, with multiplicities n1 = 1, and n2 = 3. The multiplicities of these roots in p22(s) are the same and 
p22(s) does not have additional roots.
For τ1 = 1, we consider

�(s) := s4 − 7s − 4 + s2

s4 − s3 + 1

and

r(s) := s4 − s3 + 1

s3
,

and we compute

a1 = �(1) = −9, a0 = ∂�

∂t
(1)r(1) = 8.

Then, we obtain the asymptote C̃1, defined by the proper parametrization

Q̃1(t) = (t, −9t + 8).

For τ2 = 0, we consider

r(s) := (s4 − s3 + 1)1/3

(s − 1)1/3
,

and we compute
14
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a3 = �(0) = −4
a2 = ∂�

∂t (0)r(0) = 7,

a1 = 1
2! · ∂

∂t

(
∂�(t)

∂t
· r(t)2

)
(0) = −4/3,

a0 = 1
3! · ∂2

∂t2

(
∂�(t)

∂t
· r(t)3

)
(0) = 17/3.

Then, we obtain the asymptote C̃2, defined by the proper parametrization

Q̃2(t) = (t3, −4t3 + 17/3 − 4/3t + 7t2).

See Figs. 5 and 6 and compare the output with the output obtained in Example 3.
Let us see that, additionally, one may compute the branches associated to each infinity point. In particular, we compute 

the branch for τ2 = 0 that provides the infinity point (1 : −4 : 0). For this purpose, we apply Corollary 2, and we get that 
The corresponding infinity branch is given as

(tn, a3t3 + a2t2 + a1t + a0 + a−1t−1 + a−2t−2 + . . .),

where a3, a2, a1, a0 where computed above and for i ≤ −1

ai = 1

(3 − i)! · ∂2−i

∂t2−i

(
∂

∂t

(
p2(t)

p1(t)

)
·
(

p1(t)

p(t)

)(3−i)/3
)

(0).

We get

a−1 = 1
4! · ∂3

∂t3

(
∂�(t)

∂t
· r(t)4

)
(0) = −479/81

a−2 = 1
5! · ∂4

∂t4

(
∂�(t)

∂t
· r(t)5

)
(0)) = 598/243,

a−3 = 1
6! · ∂5

∂t5

(
∂�(t)

∂t
· r(t)6

)
(0) = −10/3,

a−4 = 1
7! · ∂6

∂t6

(
∂�(t)

∂t
· r(t)7

)
(0) = 29402/6561

...

Example 6. Let C be the plane curve defined by the parametrization (see Fig. 7)

P(s) =
(

s4 − s3 + 5s2 + 2s + 1

s4(s − 1)(s − 2)
,

1/27(−108 − 216s + 27s4 − 367s3 − 2440s2)

s4(s − 1)(s − 2)

)
∈R(s)2.

We compute the asymptotes of C using the new method just presented. For this purpose, we first observe that p3(s) has the 
roots τ1 = 1, τ2 = 2, τ3 = 0, with multiplicities n1 = n2 = 1, and n3 = 4. They provide the infinity points (1 : −388/27 : 0)

(for τ1, τ2) and (1 : −4 : 0) (for τ3).
For τ1 = 1, we consider

�(s) := 1/27(−108 − 216s + 27s4 − 367s3 − 2440s2)

s4 − s3 + 5s2 + 2s + 1

and

r(s) := 1/27(−108 − 216s + 27s4 − 367s3 − 2440s2)

s4(s − 2)
,

and we compute

a1 = �(1) = −388/27, a0 = ∂�

∂t
(1)r(1) = −405460/729.

Then, we obtain the asymptote C̃1, defined by the proper parametrization (see Figs. 8 and 9)

Q̃1(t) = (t, −388/27t + 1045/27).

For τ2 = 2, we consider
15
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Fig. 7. Curve C.

r(s) := 1/27(−108 − 216s + 27s4 − 367s3 − 2440s2)

s4(s − 1)
,

and we compute

a1 = �(2) = −388/27, a0 = ∂�

∂t
(2)r(2) = −67415/729.

Then, we obtain the asymptote C̃2, defined by the proper parametrization (see Figs. 8 and 9)

Q̃2(t) = (t, −388/27t + 695/108).

Here, we observe that the infinity point (1 : −388/27 : 0) has two asymptotes C̃1 and C̃2.
For τ3 = 0, we consider

r(s) := (1/27(−108 − 216s + 27s4 − 367s3 − 2440s2))1/4

(s − 1)1/4(s − 2)1/4
,

and we compute

a4 = �(0) = −4
a3 = ∂�

∂t (0)r(0) = 0,

a2 = 1
2! · ∂

∂t

(
∂�(t)

∂t
· r(t)2

)
(0) = 950/27

√
2,

a1 = 1
3! · ∂2

∂t2

(
∂�(t)

∂t
· r(t)3

)
(0) = 0

a0 = 1
4! · ∂3

∂t3

(
∂�(t)

∂t
· r(t)4

)
(0) = 6535/144.

Then, we obtain the asymptote C̃3, defined by the parametrization (t4, −4t4 + 950/27
√

2t2 + 3080665/2916) that is not 
proper. A reparametrization of it provides the proper parametrization (see Figs. 8 and 9).

Q̃3(t) = (t2, −4t2 + 950/27
√

2t + 6535/144).

4.1. Some applications: ramification index, degree of the asymptote, infinity form and multiplicity of an infinity point

Let us consider the infinity point p = (1 : α : 0) and the parametrization

P(t) = (p1(t) : p2(t) : p3(t)) = (p1(t) : p2(t) : p3(t)p(t))

such that s1, . . . , su are the (different) roots of p3(t) and p(s j) �= 0 and p2(s j)/p1(s j) = α for j = 1, . . . , u. For j = 1, . . . , u, 
we denote by N j the multiplicity of s j as the root of the polynomial p3(t).

We assume that we have prepared the input curve C , by means of a suitable linear change of coordinates (if necessary) 
such that (0 : 1 : 0) is not a point at infinity.

Under these conditions, we have the following results that show the relation between ramification index, degree of the 
asymptote, infinity form and multiplicity of the infinity points.
16
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Fig. 8. Asymptotes of the curve C.

Fig. 9. Curve C and asymptotes.

Theorem 5. For each j = 1, . . . , u, we have one branch associated to p = (1 : α : 0) with ramification index N j (number of leaves) 
given as

B j = {(z, r j(z)) ∈C2 : z ∈C, |z| > M j},
where

r j(z) = αz + ak1 j z
k1 j/N j + · · · + a0 j + a−1 j z

−1/N j + a−2 j z
−2/N j + · · ·

and 0 ≤ k1 j < N j is the first natural number such that ak1 j �= 0.
In addition, for each j = 1, . . . , u, the asymptote is defined by the rational parametrization

Q j(t) = (tN j ,αtN j + ak1 j t
k j + · · · + a0 j).

The degree of the asymptote is n j = N j/β j , where β j := gcd(N j, k1 j, . . . , k1 j − i) for every i = 0, . . . , k1 j − 1 such that aij �= 0.

Proof. This theorem is obtained from Theorem 4 and Corollary 2. We note that for each j = 1, . . . , u, the degree of the 
asymptote is not necessary N j since Q j(t) could be improper which is equivalent to gcd(N j, k1 j, . . . , k1 j − i) �= 0 for every 
i = 0, . . . , k1 j − 1 such that aij �= 0.

Thus, under these conditions, for each j = 1, . . . , u, let β j := gcd(N j, k1 j, . . . , k1 j − i) and n j = N j/β j for i = 0, . . . , k1 j − 1
such that aij �= 0. Thus, we consider

M j(t) = (tn j ,αtn j + ak1 j t
k1 j/β j + · · · + a0)

that is a proper reparametrization of Q j(t). Then, we get that the degree of the asymptote is n j . �
Theorem 6. It holds that (x −αy)N1+···+Nu divides the form of the maximum degree of the implicit equation defining the input curve.

Proof. This result is obtained using Lemma 2 in Blasco and Pérez-Díaz (2014a). �
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From the previous theorem, we easily obtain the following corollary.

Corollary 3. Let P(t) = (p1(t) : p2(t) : p3(t)) such that p3(t) = ∏d
i=1 p3i(t) and for every root μ of p3i(t), it holds that 

p2(μ)/p1(μ) = αi . It holds that the form of maximum degree of the implicit equation defining the input curve is given by ∏d
i=1(x − αi y)deg(p3i) and the infinity points are pi = (1 : αi : 0) for i = 1, . . . , d.

Theorem 7. In the conditions stated at the beginning of the subsection, it holds that p = (1 : α : 0) is a point of multiplicity 
∑u

j=1(N j −
k1 j) in the asymptote and in the input curve.

Proof. Observe that each branch provides N j − k1 j to the multiplicity of the point p. In fact, if N j − k1 j ≥ 2 since

∂ i

∂ it

(
p2

p1

)
(0) = 0, for i = 1, . . . , N j − k1 j − 1

and

∂N j−k1 j

∂N j−k1 j t

(
p2

p1

)
(0) �= 0

(see Theorem 4), we get that aN j−i = 0 for i = 1, . . . , N j − k1 j − 1 and ak1 j �= 0. Furthermore, we also get that

G(t) = gcd(p2(t) − αp1(t), (t − s j)
N j p(t)) =

u∏
j=1

(t − s j)
N j−k1 j

which implies that deg(G) = ∑u
j=1(N j − k1 j). Hence, we conclude that p = (1 : α : 0) is a point of multiplicity 

∑u
j=1(N j −

k1 j). �
From the previous theorem and using Theorem 2 in Pérez-Díaz (2018), we obtain the following corollary.

Corollary 4. Let p = (1 : α : 0) and infinity point having multiplicity 
∑u

j=1(N j − k1 j) ≥ 2. Then, p is a singular point. Furthermore, it 
is non–ordinary if and only if one of the following statements holds:

1. There exists at least a root si ∈K of p3(t) of multiplicity Ni ≥ 2.
2. If Ni = 1, i = 1, . . . , u and there exists at least two roots s0, s1 ∈K such that

p1(s1)(p′
2(s0) − αp′

2(s1)) = (p′
1(s0) − αp′

1(s1))p2(s1), α = p′
3(s0)/p′

3(s1).

Proof. 1. Taking into account the proof of Theorem 7 and by applying Theorem 2, statement 1, in Pérez-Díaz (2018), we 
get that p = (1 : α : 0) is a non-ordinary singularity of multiplicity 

∑u
j=1(N j − k1 j) in the asymptote and also in the 

input curve since

∂ i

∂ it

(
p2

p1

)
(0) = 0, for i = 1, . . . , N j − k1 j − 1

and

∂N j−k1 j

∂N j−k1 j t

(
p2

p1

)
(0) �= 0

(see Theorem 4).
2. We apply Theorem 2, statement 2, in Pérez-Díaz (2018). �

Finally, we consider the following particular case which is the common situation for the real applications which in 
general the input parametrization has some previous perturbations. This theorem is obtained from the previous results.

Theorem 8. Let P(t) = (p1(t) : p2(t) : ∏u
j=1(t − s j)p(t)) be such that p(s j) �= 0 and p2(s j)/p1(s j) = α for j = 1, . . . , u and si �= s j

for every i �= j and i, j ∈ {1, . . . , u}. It holds that:

1. there exist u different branches associated to p = (1 : α : 0), and each branch has one leaf.
2. p = (1 : α : 0) is a point of multiplicity u since G(t) = gcd(p2(t) − αp1(t), 

∏u
j=1(t − s j)p(t)) = ∏u

j=1(t − s j), i.e. deg(G) = u.
18
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3. The asymptotes are

Q j(t) = (t,a1 jt + a0 j), j = 1, . . . , u

where

a1 j = α = p2

p1
(s j), a0 j = ∂

∂t

(
p2

p1

)
(s j)

p1(s j)∏u
i=1, i �= j(s j − si)p(s j)

, j = 1, . . . , u.

4. (x − αy)u divides the form of the maximum degree of the implicit equation defining the input curve.

Example 7. Let C be the plane curve introduced in Example 6 defined by the parametrization

P(s) =
(

s4 − s3 + 5s2 + 2s + 1

s4(s − 1)(s − 2)
,

1/27(−108 − 216s + 27s4 − 367s3 − 2440s2)

s4(s − 1)(s − 2)

)
∈R(s)2.

Using Theorems 5, 6 and 7 and Corollaries 3 and 4, we get the following properties concerning the infinity points.
First, we observe that (1 : −388/27 : 0) is an infinity point that has two branches each with ramification index equal to 

N1 = N2 = 1, and (1 : −4 : 0) is an infinity point that has one branch with ramification index equal to N3 = 4 (Theorem 5). 
In the first two branches, we have that k11 = k12 = 1, but in the third one we have that k13 = 2. Therefore, the degree of 
the asymptotes are 1, 1 and 4/2 = 2, respectively. Additionally, one gets that the form of maximum degree of the implicit 
equation is (x + 388/27y)2(x + 4y)4 (see Theorem 6 and Corollary 3).

Finally, we also get that (1 : −388/27 : 0) is an ordinary singularity of multiplicity 
∑2

j=1(N j −k1 j) = (1 −0) + (1 −0) = 2, 
and (1 : −4 : 0) is a non-ordinary singularity of multiplicity (N3 − k13) = (4 − 2) = 2 (Theorem 7 and Corollary 4).

Using the results presented in this subsection and also Theorem 4, in the following example we show how we can 
construct all the families of parametric curves having some given asymptotes (see also Remark 5).

Example 8. Let us construct all the plane curves C having the asymptotes

Q̃1(t) = (t, −12/61t + 53/122), Q̃2(t) = (t3, 4t3 − 89/6 − 7 · 21/3t).

From Q̃1 we deduce that (1 : −12/61 : 0) is an infinity point that is simple and has only one branch and N1 = 1. Fur-
thermore, from Q̃2 we deduce that (1 : 4 : 0) is an infinity point of multiplicity 2 that has only one branch with N2 = 3. 
Furthermore k11 = k12 = 1 and the degree of the asymptotes are 1 and 3, respectively. Additionally, one gets that the form of 
maximum degree of the implicit equation is (x + 12/61y)(x − 4y)3. Therefore, deg(P) = 4, where P denotes all the proper 
parametrizations having these asymptotes.

First, one may assume w.l.o.g. that P(s) =
(

p1(s)
p3(s) ,

p2(s)
p3(s)

)
, where p3(s) = s3(s − τ ), τ �= 0, and

pi(t) = βi4s4 + βi3s3 + βi2s2 + βi1s + βi0, pi(0)pi(τ ) �= 0, i = 1,2.

First, we impose that for the root of the denominator s = 0, we obtain the asymptote Q̃2. For this purpose, we consider 

�(s) := p2
p1

and r(s) := p1/3
1

(s−τ )1/3 , and we consider the equalities

a3 = �(0) = 4
a2 = ∂�

∂t (0)r(0) = 0,

a1 = 1
2! · ∂

∂t

(
∂�(t)

∂t
· r(t)2

)
(0) = −7 · 21/3,

a0 = 1
3! · ∂2

∂t2

(
∂�(t)

∂t
· r(t)3

)
(0) = −89/6.

Second, we impose that for the root of the denominator s = τ , we obtain the asymptote Q̃1. For this purpose, let r(s) := p1
s3 , 

and we consider the equalities

a1 = �(τ ) = −12/61
a0 = ∂�

∂t (τ )r(τ ) = 53/122.

All the intersection common points to the six curves defined by these equations and satisfying that P is a parametrization 
provide the following families of parametrizations satisfying that the asymptotes are given by Q̃i , i = 1, 2. For instance, we 
impose that τ = 2:

p1(s) = b14s4 + b13s3 − 3413/384s2 − 1003/768s2b11 + 427/768Is2b11
√

3 + 427/384Is2
√

3 − b13s2 + b11s + 1,

p2(s) = 4 − 4b13s2 − 12/61b14s4 + 4b13s3 + 4b11s − 235/732s4b11 − 7/3Is3b11
√

3 + 7/12Is4b11
√

3 − 245/96Is2
√

3 −
4651/732s4 + 82/3s3 − 2741/96s2 + 7/3s3b11 − 1003/192s2b11 − 64/61s4b13 + 427/192Is2b11

√
3 − 7/12Is4

√
3 + 7/3Is3

√
3.
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5. Conclusion

The main result of this paper, Theorem 4, provides a simple formula based on the computation of derivatives to de-
termine the infinity branch corresponding to an infinity point of an input parametric curve. As a consequence, one may 
determine the generalized asymptotes of an input curve by only computing some simple derivatives of functions constructed 
from the given parametrization. So, we avoiding the laborious computation of Puiseux series and an alternative method that 
can be extended to curves in the n–dimensional space or even to non-algebraic curves is developed. Thus, the present paper 
yields a remarkable improvement of the methodology developed in some previous papers as Blasco and Pérez-Díaz (2015, 
2020).

From these results, we present some applications related to the computation of the ramification index and the degree of 
the asymptote, the infinity form and the multiplicity and character of the infinity points. As a consequence, we show how 
to construct all the families of parametric curves having some given asymptotes.

As a future work, we aim to extend the notion of g-asymptote to the study of the asymptotic behavior of algebraic 
surfaces. We look for surfaces which approach a given one of higher degree, when “moving to infinity”, that is, when some 
of the coordinates take infinitely large values. The ideas introduced in this paper might provide the foundations for efficient 
methods that allow us to compute those “asymptotic surfaces”.
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