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Abstract
This paper shows that the multiplicity of the base point locus of a projective rational
surface parametrization can be expressed as the degree of the content of a univariate
resultant. As a consequence, we get a new proof of the degree formula relating the
degree of the surface, the degree of the parametrization, the base point multiplicity
and the degree of the rational map induced by the parametrization. In addition, we
extend both formulas to the case of dominant rational maps of the projective plane
and describe how the base point loci of a parametrization and its reparametrizations
are related. As an application of these results, we explore how the degree of a surface
reparametrization is affected by the presence of base points.

Keywords Base point · Hilbert–Samuel multiplicity · Surface parametrization ·
Reparametrization · Parametrization degree · Surface degree
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1 Introduction

Let X,Y be irreducible projective varieties of the same dimension, and consider a
dominant rational map � = (�1 : · · · : �m) : X ��� Y, where the �i are homoge-
neous polynomials of the same degree and gcd(�1, . . . , �m) = 1. The base points of
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� are the elements in the subvariety of X where � is not defined; that is, the projec-
tive variety defined by {�1, . . . , �m}. In our case, since we are mainly interested in
projective rational parametrizations, X is the whole projective space, i.e., X = P

n . If
n = 1, then Y is a curve and � does not have base points. For the surface case, i.e.,
n = 2, the base point subvariety is either empty or zero dimensional. If n > 2, the
dimension of base point locus can be positive.

Base points play an important role in the analysis of unirational varieties, since the
explanation of many degenerate behaviors is often based on them. Some examples
are, for instance, the study of the degree of a rational surface by means of the degree
of the polynomials in its rational parametrizations (see, e.g., [9,13,18,19,25,27]), or
the surjective cover of a surface by means of the images of finitely many rational
parametrizations (see, e.g., [4,21,22]). As a consequence, many authors have studied
base points (see, e.g., [1,5,16,20,25]).

In this paper, we deal with the problem of properly counting the number of base
points of projective rational surface parametrizations. This question has been treated
bymany authors. In [9], the problem is addressed for birational triangular parametriza-
tions, and in [27], the case of tensor product surfaces is established; see also, [13,25]. In
addition, Schicho [18] introduces the notion of blowup of the base locus, and referring
to [6] presents a formula for the case of a birational parametrization. To our knowl-
edge, the first general answer to the problem, in the sense of requiring no additional
hypothesis such as the birationality of the parametrization or any particular structure
of the parametrization, appears in [8], where the degree formula is proved using Segre
classes from Fulton’s book [11]. Another proof that applies Bézout’s Theorem to two
generic linear combinations of the polynomials in the parametrization and uses reduc-
tion ideals to relate this to the Hilbert–Samuel multiplicity of the base points appears
in an unpublished lecture of the first author [10].

In this paper, alsowithout assuming additional hypotheses,wepresent a formula that
relates the multiplicity of the base point locus with the content of a univariate resultant
(see Theorems 2.7 and 2.9). Furthermore, as a consequence of this relationship, we
present an elementary proof of the degree formula (see Theorem 2.15) relating the
degree of the surface, the degree of the parametrization, the multiplicity of the base
locus and the cardinality of the generic fiber of the parametrization. The proof in this
paper was found independently of any previous work. Our methods are based on the
intersection theory of curves in combination with well-known results from elimination
theory, especially the properties of resultants (see [23,24]).

The usual definition of the multiplicity of the base point locus uses Hilbert–Samuel
multiplicities, which can be challenging to compute individually. In Corollary 2.10, we
provide a simple computational method to determine the sum of these multiplicities.

Finally, we also state similar formulas for the case of rational maps between projec-
tive planes (see Theorems 3.3, 3.4 and 3.6). Moreover, as a consequence, we study the
variation of the base locus under reparametrizations (see Theorems 4.2, 4.7) as well as
the behavior of the parametrization degree under reparametrizations (see Theorems 4.2
and 4.4 as well as Corollary 4.5).

For this purpose, in Sect. 2 we associate to the given parametrization two plane
projective curves, defined over the algebraic closure of a transcendental field extension
of the ground field (see (2.2) and (2.5)). Our definition of multiplicity is tailored to our
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needs and gives a good notion of the multiplicity of the base locus. In Proposition 2.3
and Corollary 2.4, we show that this agrees with the usual definition via Hilbert–
Samuel multiplicity. Our definition enables us to express the multiplicity of the base
locus in terms of the content (w.r.t. the introduced transcendental elements) of the
resultant of the two polynomials defining the curves (see Theorem 2.7). In a second
step, we show that the curves can be simplified by introducing fewer transcendentals
in the field extension (see (2.7)), so that for almost all projective transformations the
content of the resultant of these two new curves also yields the multiplicity of the base
locus (see Theorem 2.9). From here, we carefully analyze the primitive part of the
resultant of the new curves and relate it to the degree of the surface and the cardinality
of the generic fiber of the parametrization (see Lemma 2.13). Then, the degree formula
stated in Theorem 2.15 follows immediately.

In Sect. 3, we show how the results in Sect. 2 can be adapted to dominant rational
maps from P

2 onto P
2 (see Theorems 3.3, 3.4 and 3.6). Finally, in Sect. 4, we study the

behavior of the base loci of two parametrizations of the same surface, when one is the
reparametrization of the other; see Theorems 4.2, 4.4 and 4.7 as well as Corollaries 4.3
and 4.5. In addition, we apply the results developed in Sect. 4 to study how the degree
of a parametrization varies under the presence of base points. More precisely, letP,Q
be curve parametrizations related by P = Q ◦ S, where S is a non-constant rational
function. Then, deg(P) = deg(Q) deg(S). However, for surface parametrizations, this
equality is not true in general. In this paper a characterization of the equality is given
when P ,Q are surface parameterizations and S is a dominant rational map of P

2. We
show how this characterization is directly related with the base points ofQ and S (see
Theorem 4.2). Furthermore, we prove that the degree of the composition decreases,
i.e., deg(P) < deg(Q) deg(S), if and only if a certain polynomial gcd is non-trivial,
a fact that can be geometrically interpreted by asking a base point of Q to be in the
image of a curve via the rational map S. We conclude that if Q has no base points,
then deg(P) = deg(Q) deg(S) (see Corollary 4.5).

The paper concludes with an appendix that explains how the proof of the degree
formula given in Theorem 2.15 relates to the unpublished argument sketched in [10].
Notation. Throughout this paper, we will use the following notation:

• K is an algebraically closed field of characteristic zero.
• For a rational map

M : P
k1(K) ��� P

k2(K)

t = (t1 : · · · : tk1+1) �−→ (M1(t) : · · · : Mk2+1(t)),

where the nonzero Mi are homogenous polynomial in t of the same degree, we
denote by deg(M) the degree degt (Mi ), for Mi nonzero, and by degMap(M) the
degree of the map M; that is, the cardinality of the generic fiber of M (see, e.g.,
[12]).

• Let f ∈ L[t1, t2, t3] be homogeneous and nonzero, where L is a field extension of
K. Then, C ( f ) denotes the projective plane curve defined by f over the algebraic
closure of L.
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• G (Pk(K)) denotes the set of all projective transformations of P
k(K), and

G (Pk(K))∗ denotes the set of those transformations in G (Pk(K)) whose matrix
representation is of the form

(
A 0T

0 1

)
,

where 0 = (0, . . . , 0).

2 Formula for Rational Surface Parametrizations

In this section, we consider a projective rational surface S ⊂ P
3(K) and a rational

parametrization of S , namely,

P : P
2(K) ��� S ⊂ P

3(K)

t �−→ (p1(t) : · · · : p4(t)), (2.1)

where t = (t1, t2, t3) and the pi are homogenous polynomials of the same degree such
that gcd(p1, . . . , p4) = 1. We assume that p4 is not zero.

We will deal with the multiplicity of intersection of curves by means of resultants.
For this purpose, in the sequel, we will assume that (0 : 0 : 1) /∈ C (pi ) for all
i ∈ {1, . . . , 4}.

The two hypotheses imposed above are technicalities for our reasoning. We will
see in Remark 2.19 that the final formula in Theorem 2.15 is also true when they do
not hold.

Definition 2.1 A base point of P is an element A ∈ P
2(K) such that P(A) = 0. We

denote byB(P) the set of base points of P .

We observe that B(P) consists of the intersection points of the projective plane
curves C (pi ). That is,

B(P) =
4⋂

i=1

C (pi ).

Note that B(P) is either empty or finite since gcd(p1, . . . , p4) = 1.
We introduce the following auxiliary polynomials:

W1(x, t) :=
4∑

i=1

xi pi (t1, t2, t3),

W2(y, t) :=
4∑

i=1

yi pi (t1, t2, t3), (2.2)
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where xi , yi are new variables.Wewill workwith the projective plane curvesC (Wi ) in
P
2(F), where F is algebraic closure ofK(x, y). In this situation, we have the following

notion.

Definition 2.2 We define the multiplicity of a base point A ∈ B(P) as multA(C (W1),

C (W2)), that is, as the multiplicity of intersection at A of C (W1) and C (W2).
In addition, we define the multiplicity of the base point locus of P , denoted

mult(B(P)), as

mult(B(P)):=
∑

A∈B(P)

multA(C (W1),C (W2)). (2.3)

A base point A also has the Hilbert–Samuel multiplicity e(IA, RA) (see [3, 4.6]),
where

IA:=〈 p̃1, p̃2, p̃3, p̃4〉 ⊂ RA = OP2(K),A (2.4)

and p̃i is a local equation of pi near A. This agrees with the multiplicity defined in
Definition 2.2, as we now show.

Proposition 2.3 For A ∈ B(P), we have e(IA, RA) = multA(C (W1),C (W2)).

Proof Recall that we have the field extension K ⊂ F. Since W1 and W2 are defined
over the larger field F, Definition 2.2 implies that

multA(C (W1),C (W2)) = dimFOP2(F),A/〈W̃1, W̃2〉,

where W̃i is a local equation of Wi near A. In contrast, e(IA, RA) is defined over
the base field K. Since OP2(K),A has dimension 2, the Hilbert–Samuel multiplicity
satisfies

dimK RA/I d+1
A = 1

2e(IA, RA)d2 + terms of lower degree in d

for d 
 0 by the proof of Proposition 4.6.2(b) in [3]. Over the larger field F, we also
have the Hilbert–Samuel multiplicity e(IA,F, RA,F), where

IA,F:=〈 p̃1, p̃2, p̃3, p̃4〉 ⊂ RA,F:=OP2(F),A.

Let us show that these Hilbert–Samuel multiplicities are equal. The key point is that
for A ∈ P

2(K) ⊂ P
2(F), IA,F and RA,F are obtained from (2.4) by tensoring with F.

It follows easily that

dimF RA,F/I d+1
A,F

= dimK RA/I d+1
A ,

from which we conclude that e(IA,F, RA,F) = e(IA, RA). Hence, the proposition will
follow once we prove

e(IA,F, RA,F) = dimF RA,F/〈W̃1, W̃2〉.
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By Theorem A.1 of [2], we know that if S1 and S2 are generic linear combinations
of p1, . . . , p4 over F, then

e(IA,F, RA,F) = e(〈S̃1, S̃2〉, RA,F).

The proof uses the theory of reduction ideals developed in [3, 4.6]. The fieldF contains
x1, . . . , x4, y1, . . . , y4 ∈ F that are algebraically independent over K. These give
generic linear combinations W1 and W2, so that

e(IA,F, RA,F) = e(〈W̃1, W̃2〉, RA,F).

Since W̃1, W̃2 form a regular sequence (this follows from the proof of Lemma 2.5),
we can use the well-known fact that for a complete intersection, the Hilbert–Samuel
multiplicity is easy to compute:

e(〈W̃1, W̃2〉, RA,F) = dimF RA,F/〈W̃1, W̃2〉.

The proposition follows. ��
Corollary 2.4 mult(B(P)) = ∑

A∈B(P) e(IA, RA).

In [3, p. 189], Bruns and Herzog note that computing Hilbert–Samuel multiplicities
“may be a painful and often impossible task.” In the sequel, we will see how the sum
of Hilbert–Samuel multiplicities in Corollary 2.4, when reinterpreted via (2.3), can be
computed by means of a simple resultant.

For this purpose, for L = (L1 : L2 : L3 : L4) ∈ G (P3(K)), we introduce the
polynomials

WL
1 (x, t) :=

4∑
i=1

xi Li (P(t)) ∈ K(x, y)[t],

WL
2 (y, t) :=

4∑
i=1

yi Li (P(t)) ∈ K(x, y)[t]. (2.5)

Note that Wi = W Id
i , where Id is the identity map. In addition, we denote by PL the

parametrization L ◦ P .
In the next proposition, we study some properties of these polynomials in relation

with the base points.

Proposition 2.5 If L ∈ G (P3(K)), then:

1. C (WL
1 ),C (WL

2 ) have no common components.
2. If P, Q ∈ C (WL

1 ) ∩ C (WL
2 ) are colinear with (0 : 0 : 1) and P ∈ P

2(K), then
Q ∈ P

2(K).
3. B(P) = C (WL

1 ) ∩ C (WL
2 ) ∩ P

2(K).
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4. If A ∈ B(P), then

mult(A,C (WL
1 )) = mult(A,C (WL

2 )) = min{mult(A,C (pi )) | i = 1, . . . , 4}.
5. If A ∈ B(P), then the tangents to C (WL

1 ) at A (similarly to C (WL
2 )), with the

corresponding multiplicities, are the factors in K[x, t] \ K[x] of
ε1x1T1 + ε2x2T2 + ε3x3T3 + ε4x4T4,

where Ti is the product of the tangents, counted with multiplicities, of C (Li (P))

at A, and where εi = 1 if mult(A,C (Li (P)))) = min{mult(A,C (Li (P))) | i =
1, . . . , 4} and 0 otherwise.

Proof Without loss of generality, we may assume that L is indeed the identity map,
and hence, it is enough to prove the result for W1,W2.

(1) If the two curves share a component, then 1 �= B:= gcd(W1,W2) ∈ K[t]. Then,
B divides gcd(p1, . . . , p4) = 1, a contradiction.

(2) Let F be the algebraic closure of K(x, y). Suppose that Q ∈ P
2(F) \ P

2(K). The
line L passing through P = (λ : μ : ρ) and (0 : 0 : 1) is λt2 = μt1, with
λ,μ ∈ K. We assume w.l.o.g. that μ �= 0 and hence L is of the form t1 = γ t2
for some γ ∈ K. If Q is at infinity, i.e., Q = (a : b : 0), then since a = γ b,
we have Q = (γ : 1 : 0) ∈ P

2(K). So we can assume that Q is affine. Consider
the polynomials Ai (t2, t3):=Wi (γ t2 : t2 : t3). Since Q ∈ C (W1) ∩ L , Q can be
expressed as

Q = (γ α : α : 1),
where α is a root of A1; note that α is in the algebraic closure of K(x). Similarly,
since Q ∈ C (W2) ∩ L , then Q is also expressible as

Q = (γβ : β : 1),
where β is a root of A2; note that β is in the algebraic closure of K(y). Therefore,
α = β is a root of gcd(W1,W2) ∈ K[t2, t3]. So Q ∈ P

2(K).
(3) Let A ∈ B(P). Then, clearly A ∈ P

2(K). Moreover, pi (A) = 0, i = 1, . . . , 4.
So,W1(A) = 0 = W2(A). Therefore, A ∈ C (W1)∩C (W2)∩P

2(K). Conversely,
if A ∈ C (W1) ∩ C (W2) ∩ P

2(K), then since A ∈ P
2(K), we get pi (A) = 0 for

all i , and hence, A ∈ B(P).
(4) Changing coordinates, we may assume that A = (0 : 0 : 1). Then, pi can be

expressed as

pi (t) = Mi,nP (t1, t2) + · · · + Mi,nP−	i (t1, t2)t
	i
3 ,

whereMi,k is homogeneousof degree k,	i :=mult(A,C (pi )), andnP :=deg(P) =
deg(pi ). Moreover, WL

1 can be expressed as (similarly for WL
2 )

WL
1 = NnP (x, y, t1, t2) + · · · + NnP−	(x, y, t1, t2) t

	
3 ,
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where Nk is {t1, t2}-homogeneous of degree k and 	 = min{	1, 	2, 	3}. Indeed,
if we define Mi, j = 0 if j < nP − 	i , then

NnP−	(x, y, t1, t2) = x1M1,nP−	 + x2M2,nP−	 + x3M3,nP−	 + x4M4,nP−	.

(2.6)

From here, the result follows.
(5) For L being the identity and A = (0 : 0 : 1), the result follows from (2.6).

Now, the general case follows by taking into account how tangents change via a
projective transformation and using the fact that multiplicities are preserved. ��

Clearly B(P) = B(PL). The next lemma relates the base point multiplicities of
P and PL .

Lemma 2.6 For every A ∈ B(P) and L ∈ G (P3(K)), it holds that

mult(A,B(P)) = mult(A,B(PL))

and

mult(B(P)) = mult(B(PL)).

Proof We prove that multA(W1,W2) = multA(WL
1 ,WL

2 ). Let L = (L1 : L2 : L3 :
L4), and let p


i :=Li (P). Then, the ideals 〈p1, p2, p3, p4〉 and 〈p

1, p



2, p



3, p



4〉 are

equal. Therefore, the result follows from Proposition 2.3. ��
Taking into account Proposition 2.5(1), (2), Lemma 2.6 and the relation between

resultants and the multiplicity of intersections (see Chapter IV, Section 5 in [24]), we
get the next theorem which relates the multiplicity of the base locus with resultants.

For this purpose, in the following, we use the notion of content and primitive
part of a polynomial. More precisely, given a nonzero polynomial p(v1, . . . , vn) ∈
I [v1, . . . , vn], where I is a unique factorization domain, the content of p w.r.t. the set
of variables v:=(v1, . . . , v j ), j ≤ n is the gcd of all the coefficients of p(v) w.r.t.
v. We denote it by Contentv(p). Observe that Contentv(p) divides the polynomial
p. In addition, we denote by Primpartv(p) the primitive part of p w.r.t. v. We have
that p(v) = Contentv(p)PrimPartv(p), and it holds that the gcd of all coefficients of
PrimPartv(p) is 1 (see [26]).

Theorem 2.7 For every L ∈ G (P3(K)), we have

mult(B(P)) = degt (Content{x,y}(Rest3(WL
1 ,WL

2 ))).

Proof By hypothesis, (0 : 0 : 1) /∈ C (WL
i ) for i = 1, 2. By Proposition 2.5 (2), any

intersection point in P
2(F) colinear with (0 : 0 : 1) and a base point lies in P

2(K) and
hence is a base point by Proposition 2.5 (3). Since the curves do not share components
by Proposition 2.5 (1) and Lemma 2.6, the result follows from Theorem 5.3 of [24,
p. 111]. ��
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In the second part of the section, we will show that for almost all projective trans-
formations, the multiplicity of intersection of the base point locus can be achieved by
a simplified version of the curves C (WL

i ). More precisely, consider the polynomials

K L
1 (x, t) := WL

1 (x4, 0, 0,−x1, t) = x4L1(P) − x1L4(P) ∈ K(x)[t]
K L
2 (x, t) := WL

2 (0, 0, x4,−x3, t) = x4L3(P) − x3L4(P) ∈ K(x)[t], (2.7)

where L = (L1 : · · · : L4) ∈ G (P3(K)). We start with a technical lemma that relates
Rest3(K

L
1 , K L

2 ) �= 0 to the resultant Rest3(W
L
1 ,WL

2 ) when L lies in a suitably chosen
open subset of G (P3(K))
 � G (P3(K)) (see the notation in Sect. 1).

Lemma 2.8 Let A = (x4, 0, 0,−x1, 0, 0, x4,−x3,t1, t2). Then, there exists a non-
empty Zariski open subset � of G (P3(K))
 such that for every L ∈ �, we have

1. Rest3(W
L
1 ,WL

2 )(A) = Rest3(K
L
1 , K L

2 ) �= 0.
2. Primpartx (Rest3(W

L
1 ,WL

2 )(A)) = Primpartx (Rest3(K
L
1 , K L

2 )).
3. Contentx (Rest3(W

L
1 ,WL

2 )(A)) = Contentx (Rest3(K
L
1 , K L

2 )).
4. degt (Primpart{x,y}(Rest3(WL

1 ,WL
2 ))) = degt (Primpartx (Rest3(K

L
1 , K L

2 ))).

5. degt (Content{x,y}(Rest3(WL
1 ,WL

2 ))) = degt (Contentx (Rest3(K
L
1 , K L

2 ))).

Proof Let L(u1, . . . , u4) = (L1 : L2 : L3 : u4) be a generic element of
G (P3(K))
; that is, Li = zi,1u1 + zi,2u2 + zi,3u3, where zi, j are undetermined
coefficients satisfying that the determinant of the corresponding matrix is not zero.
Let z = (z1,1, . . . , z3,3). We introduce some notation:

• WL
1 := ∑4

i=1 xiLi (P), WL
2 := ∑4

i=1 yiLi (P), see (2.5).
• KL

1 :=x4L1(P) − x1L4(P), KL
2 :=x4L3(P) − x3L4(P), see (2.7).

• X:=(X1, . . . ,X4) are new variables; similarly forY. Let W̃1:=W1(X, t), see (2.2);
similarly for W̃2.

• RL(z, x, y, t1, t2):=Rest3(W
L
1 ,WL

2 ), SL(z, x, t1, t2):=Rest3(K
L
1 , KL

2 ).
• T (X,Y, t1, t2):=Rest3(W̃1, W̃2).
• A1:=(x4, 0, 0,−x1, t1, t2), and A2:=(0, 0, x4,−x3, t1, t2).
• T :=(x4z1,1, x4z1,2, x4z1,3,−x1, x4z3,1, x4z3,2, x4z3,3,−x3, t1, t2).
• For L ∈ G (P3(K))
, we denote by zL the coefficient list of L . In addition, we
denote by T L the tuple T specialized at the coefficients of L .

We now prove statement (1). First observe that for L ∈ G (P3(K))
, the summands
x4 p4 of WL

1 and x1 p4 of K L
1 do not depend on L . It follows that degt3(K

L
1 ) =

degt3(W
L
1 ), and degt3(K

L
2 ) = degt3(W

L
2 ) holds similarly. Since K L

1 = WL
1 (A1) and

K L
2 = WL

2 (A2), we can apply Lemma 4.3.1 in [26, p. 96] on the specialization of
resultants to obtain

Rest3(W
L
1 ,WL

2 )(A) = Rest3(W
L
1 (A1),W

L
2 (A2)) = Rest3(K

L
1 , K L

2 ),

proving the first part of statement (1). However, to ensure that the resultant is nonzero,
we need to put some restrictions on L ∈ G (P3(K))
. We construct a non-empty open
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subset �1 ⊂ G (P3(K))
 as follows. Consider

G1(z, t1, t2):=Rest3(L1(P), p4) ∈ K[z, t1, t2].

Let us show that G1 �= 0. Indeed, if G1 = 0, then gcd(z1,1 p1 + z1,2 p2 +
z1,3 p3, p4) �= 1. Since p4 ∈ K[t], this gcd divides p1, p2, p3, p4, which contra-
dicts gcd(p1, . . . , p4) = 1. Then, define B1(z) to be any nonzero coefficient of G1
w.r.t. {t1, t2}.

Similarly, consider

G2(z, t1, t2):=Rest3(L3(P), p4) ∈ K[z, t1, t2],

and reasoning as above shows that G2 �= 0. Let B2(z) be any nonzero coefficient of
G2 w.r.t. {t1, t2}. Then, define �1 as

�1 = {L ∈ G (P3(K))
 | B1(z
L) B2(z

L) �= 0}. (2.8)

It follows that gcd(L1(P), L4(P)) = gcd(L3(P), L4(P))) = 1 for all L ∈ �1.
Now suppose Rest3(K

L
1 , K L

2 ) = 0 for some L ∈ �1. Then, K L
1 = x4L1(P) −

x1L4(P) and K L
2 = x4L3(P) − x3L4(P) have a non-trivial common factor which

must divide L1(P), L3(P) and L4(P). This is impossible since L ∈ �1, and statement
(1) is proved.

Statements (2) and (3) now follow when L ∈ �1 since Rest3(K
L
1 , K L

2 ) �= 0. For
statements (4) and (5), our arguments will require that we shrink�1 slightly. This will
lead to the open subset � in the statement of the lemma.

Before actually constructing �, we need some preliminary work that will be useful
below. Let LCt3 denote the leading coefficient w.r.t. t3. Since pi (0, 0, 1) �= 0, we know
that degt3(p1) = · · · = degt3(p4) = deg(P). Then,

A∗
1(z, x, t1, t2):=LCt3(W

L
1 ) =

(∑3
i=1 xi

∑3
j=1 zi, jLCt3(pi )

)
+ x4LCt3(p4),

A∗
2(z, y, t1, t2):=LCt3(W

L
2 ) =

(∑3
i=1 yi

∑3
j=1 zi, jLCt3(pi )

)
+ y4LCt3(p4).

(2.9)

So A∗
1(z,A1) �= 0 and A∗

2(z,A2) �= 0. Moreover, we observe that for all L ∈
G (P3(K))
, we have LCt3(W

L
1 ) �= 0 since it contains the summand x4LCt3(p4) that

does not depend on zL ; similarly LCt3(W
L
2 ) �= 0. Then, using the behavior of the

resultant under a ring homomorphism (see [26, Lemma 4.3.1]), we obtain

RL (
zL , x, y, t1, t2

)
= Rest3

(
WL

1 ,WL
2

)
. (2.10)

Analogous reasoning applied to KL
i yields

SL
(
zL , x, t1, t2

)
= Rest3

(
K L
1 , K L

2

)
. (2.11)
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On the other hand, a direct algebraic manipulation shows that W̃i (T ) = KL
i , and

similarly as above one gets

T (T ) = SL(z, x, t1, t2). (2.12)

Let us now construct�. For this purpose, we introduce the polynomials A1, A2, A3
as follows.
Definition of A1. By Proposition 2.5 (3), we know that T �= 0. Let us show that
RL �= 0. Indeed, if it is zero, then B:= gcd(WL

1 ,WL
2 ) �= 1.Thus, B divides x1L1(P)+

x2L2(P)+x3L3(P)+x4 p4 and y1L1(P)+y2L2(P)+y3L3(P)+y4 p4. So, B divides
p4 and also divides Li (P) for i ∈ {1, 2, 3}. In particular, B ∈ K[t] and B divides∑3

i=1 z1,i pi . That is, B also divides p1, p2, p3. Hence, B divides gcd(p1, . . . , p4) =
1, a contradiction.

Now factor T as product of the content and the primitive partw.r.t. {X,Y}, and RL as
product of the content and the primitive part w.r.t. {x, y}. This gives T (X,Y, t1, t2) =
C∗(t1, t2)M∗(X,Y, t1, t2) and RL(z, x, y, t1, t2) = C(z, t1, t2)M(z, x, y, t1, t2).
Taking L as the identity in Theorem 2.7, and using Proposition 2.5 (3), we see
that C∗ is the factor generated by the base points with the corresponding multi-
plicities of intersection. Moreover, the same argument applies to C for L generic
in G (P3(K))
, namely L. Therefore, if B(t1, t2) is the factor coming from the based
points, then C∗ = B and C = N B for some N ∈ K[z, t1, t2]. Let us show that
N ∈ K[z]. Indeed, by Theorem 2.7, degt (B) = mult(B(P)). Now suppose that N
depends on {t1, t2}. Then, taking L such that N (zL , t1, t2) is non-constant, by (2.10),
degt (Content{x,y}(Rest3(WL

1 ,WL
2 ))) > degt (B) = mult(B(P)), which contradicts

Theorem 2.7. So we have

T (X,Y, t1, t2) = B(t1, t2)M∗(X,Y, t1, t2),
RL(z, x, y, t1, t2) = N (z)B(t1, t2)M(z, x, y, t1, t2).

(2.13)

We define the polynomial A1 as follows usingM∗(T ). Observe that since by definition
M∗(X,Y, t1, t2) is primitive w.r.t. {X,Y}, M∗(T ) is primitive w.r.t. {x, z}. Therefore,
the resultant

E(x, z, t1) = Rest2(M
∗(T ), B(t1, t2))

is nonzero. Since E is homogeneous w.r.t. t1, E is of the form E = D(x, z)tm1 for
some m ∈ N, with D �= 0. Let e(z) be a nonzero coefficient of D w.r.t. x . In this
situation, we define A1(z) = N (z) e(z).
Definition of A2. Let M be as in (2.13). Let us show that M(z,A) �= 0. Indeed, if
M(z,A) = 0, then RL(z,A) = 0. Using the behavior of the resultant under a ring
homomorphism (see [26, Lemma 4.3.1]), we have

0 = RL(z,A) = LCt3

(
WL

1

)
(z,A1)

β Rest3
(
WL

1 (z,A1),W
L
2 (z,A2)

)
,

for β = |degt3(WL
1 (z,A1)) − degt3(W

L
2 (z,A2))|. As noted above, LCt3(W

L
1 )

(z,A1) �= 0, and hence, Rest3(W
L
1 (z,A1),WL

2 (z,A2)) = 0. Thus, gcd(WL
1 (z,A1),
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WL
2 (z,A2)) �= 1, i.e., x4L1(P) − x1L4(P) and x4L3(P) − x3L4(P) have a common

factor. Reasoning as above, this factor divides gcd(p1, . . . , p4) = 1, a contradiction.
Let Q(z, x) be a nonzero coefficient of M(z,A) w.r.t. {t1, t2}. We define the poly-

nomial A2(z) to be any nonzero coefficient of Q w.r.t. x .
Definition of A3. Consider the resultant (see (2.13))

G(z, x, y, t1) = Rest2(M(z, x, y, t1, t2), B(t1, t2)).

G �= 0 because M is primitive w.r.t. {x, y}. Since G is homogeneous w.r.t. t1, we have
G = D∗(z, x, y)tm1 for some m ∈ N, and some D∗ ∈ K[z, x, y] \ {0}. Let g(z) be a
nonzero coefficient of D∗ w.r.t. {x, y}. In this situation, we define A3(z) = g(z).

We define � to consist of those projective transformations L ∈ �1 from (2.8) such
that A1(zL) · A2(zL) · A3(zL) �= 0. Let us prove that statements (4) and (5) of the
lemma hold for L ∈ �. We begin with the following equalities:

N (zL)B(t1, t2)M(zL ,A) = RL(zL ,A) see (2.13)
= Rest3(W

L
1 ,WL

2 )(A) see (2.10)
= Rest3(K

L
1 , K L

2 ) see statement (1)
= SL(zL , x, t1, t3) see (2.11)
= T (T L) see (2.12)
= B(t1, t2)M∗(T L). see (2.13).

Therefore, since A1(zL) �= 0, we have N (zL) �= 0 and hence M(zL ,A) = M∗(T L)

up to multiplication by a nonzero field element. Furthermore, since e(zL) �= 0, we
see that M∗(T L) is primitive w.r.t. x , and thus, M(zL ,A) also. In this situation, using
(2.10) and (2.13) we obtain

Rest3
(
WL

1 ,WL
2

)
(A) = N (zL)B(t1, t2)M(zL ,A).

Moreover, since M(zL ,A) is primitive w.r.t. x we get

Primpartx
(
Rest3

(
WL

1 ,WL
2

)
(A)

)
= M(zL ,A). (2.14)

On the other hand, applying (2.11), (2.12) and (2.13), we have

B(t1, t2)M
∗(T L) = T (T L) = Rest3

(
K L
1 , K L

2

)
,

and since M∗(T L) is primitive w.r.t. x , we get

Primpartx
(
Rest3

(
K L
1 , K L

2

))
= M∗(T L). (2.15)

By statement (2), we have M(zL ,A) = M∗(T L), so

degt
(
Primpartx

(
Rest3

(
K L
1 , K L

2

)))
= degt

(
M(zL ,A)

)
. (2.16)
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Furthermore, since A2(zL) �= 0, we have degt (M(zL ,A)) = degt (M(z,A)). On
the other hand, we have seen above that M(z,A) �= 0. So, since M(z, x, y, t1, t2)
is homogeneous w.r.t. {t1, t2}, we have degt (M(z,A)) = degt (M(z, x, y, t1, t2)).
Finally, since A3(zL) �= 0, we get that M(zL , x, y, t1, t2) is primitive w.r.t. {x, y}, and
hence, by (2.10) and (2.13), we have

Primpart{x,y}(Rest3(WL
1 ,WL

2 )) = M(zL , x, y, t1, t2). (2.17)

Moreover, note that M is nonzero, primitive w.r.t. {x, y}, and homogeneous w.r.t. t .
Thus, degt (M(zL , x, y, t1, t2)) = degt (M(z, x, y, t1, t2)). Therefore,

degt (Primpartx (Rest3(K
L
1 , K L

2 ))) = degt (M(zL ,A)) see (2.16)
= degt (M(z, x, y, t1, t2)) A2(z

L ) �= 0
= degt (M(z, x, y, t1, t2)) see above
= degt (Primpartx,y(Rest3(W

L
1 ,WL

2 ))). see (2.17)

So (4) follows. Finally, (5) follows from (4) and the fact that both resultants have the
same degree w.r.t. t . ��

As a consequence of these lemmas, we get the following theorem that can be seen
as a more efficient version of the resultant-based formula in Theorem 2.7.

Theorem 2.9 Let � be the open set introduced in Lemma 2.8. If L ∈ �, then

mult(B(P)) = degt (Contentx (Rest3(K
L
1 , K L

2 ))).

Proof By Theorem 2.7, it is enough to prove that

degt (Content{x,y}(Rest3(WL
1 ,WL

2 ))) = degt (Contentx (Rest3(K
L
1 , K L

2 ))).

And this is a consequence of Lemma 2.8. ��
Theorems 2.7 and 2.9 and Proposition 2.3 imply the following result about the

Hilbert–Samuel multiplicity of the base points.

Corollary 2.10 Assume the notation of Theorems 2.7 and 2.9. Then,

1. For every L ∈ G (P3(K)), we have

∑
A∈B(P)

e(IA, RA) = degt (Content{x,y}(Rest3(WL
1 ,WL

2 ))).

2. For every L in the open set � from Lemma 2.8, we have

∑
A∈B(P)

e(IA, RA) = degt (Contentx (Rest3(K
L
1 , K L

2 ))).
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Remark 2.11 Corollary 2.10 provides the promised resultant-based algorithm to com-
pute the sum of the Hilbert–Samuel multiplicities e(IA, RA) for A ∈ B(P).

Example 2.12 We consider the surfaceS introduced in [10] parametrized by

P(t):=(p1 : · · · : p4) = (t22 t3 + t31 : t21 t3 + t32 : t1t2t3 : t22 t3).

Let us illustrate how to compute mult(B(P)) by means of resultants. First of all, since
(0 : 0 : 1) belongs to C (pi ), we apply a projective transformation. For instance, we
replace P(t) by P(t1 + t3, t2 + t3, t3). In this situation, applying Corollary 2.10, we
see that the sum of the Hilbert–Samuel multiplicities of the base points is given by

degt

(
Content{x,y}

(
Rest3

(
WL
1 ,WL

2

)))
= degt

(
t41 − 4t31 t2 + 6t21 t

2
2 − 4t1t

3
2 + t42

)
= 4.

In fact, this parametrization has (0 : 0 : 1) as its unique base point, necessarily of
multiplicity 4. But the above calculation was done without knowing anything about
the number of base points or their individual multiplicities.

In the next lemma, we relate the degree of the primitive part of the resultant to the
degree of the surface defined by P and by the degree of the rational map induced by
P (see notation in Sect. 1). Note that degMap(P) can be computed using [14].

Lemma 2.13 There exists a non-empty Zariski open subset �′ of G (P3(K))
 such that
for every L ∈ �′, we have

degt (Primpart{x}(Rest3(K L
1 , K L

2 ))) = deg(S ) degMap(P),

where S is the surface parametrized by P .

Proof We use the notation introduced in the proof of Lemma 2.8. In particular, let
L = (L1 : · · · : L4) be a generic element of G (P3(K))
. We construct �′ as the
intersection of open subsets �1,�2,�3.
Definition of �1. This is the subset �1 defined in (2.8). Recall that for L ∈ �1, we
have gcd(L1(P), L4(P)) = gcd(L3(P), L4(P))) = 1.
Definition of �2. We want �2 such that if L = (L1 : · · · : L4) ∈ �2 ⊂ G (P3(K))
,
then the gradients {∇(L1(P)(t1, t2, 1)/L4(P)(t1, t2, 1)), ∇(L3(P)(t1, t2, 1)/L4(P)

(t1, t2, 1))} are linearly independent as vectors inK(t)2. Recall that p4 �= 0 by hypoth-
esis.

Since P parametrizes a surface, there exist two different indexes in {1, 2, 3}, say
w.l.o.g. 1 and 2, such that ∇ (p1(t1, t2, 1)/p4(t1, t2, 1)), ∇ (p2(t1, t2, 1)/p4(t1, t2, 1))
are linearly independent.

For j ∈ {1, 3}, we introduce the gradient vectors

v j (z, t1, t2) = (v j,1, v j,2):=∇
(L j (P)(t1, t2, 1)

L4(P)(t1, t2, 1)

)
=

3∑
i=1

z j,i∇
(
pi (t1, t2, 1)

p4(t1, t2, 1)

)
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as well as the matrix

� =
(

v1,1(z, t1, t2) v1,2(z, t1, t2)
v3,1(z, t1, t2) v3,2(z, t1, t2)

)
.

We observe that det(�) �= 0 because specializing v j at z = (1, 0, 0, 0), 0, (0, 1, 0, 0)
gives ∇ (p1(t1, t2, 1)/p4(t1, t2, 1)) and ∇ (p2(t1, t2, 1)/p4(t1, t2, 1)), which are lin-
early independent by hypothesis. Let A3(z) be any nonzero coefficient of det(�)w.r.t.
{t1, t2}. We define �2 as

�2 = {L ∈ G (P3(K))
 | A3(z
L) �= 0}.

Definition of �3. We take �3 as the open subset of G (P3(K))
 such that if
F(u1, u2, u3, u4) = 0 is the implicit equation of the surface parametrized by P , and
L ∈ G (P3(K))
, then F(L(u1, u2, u3, u4)) does not vanish at (0 : 1 : 0 : 0). Note that
thismeans that the total degree, and the partial degreew.r.t. u2, of F(L(u1, u2, u3, u4))
are the same.

In this situation, we define � = �1 ∩ �2 ∩ �3. We observe that for L ∈ �, the
parametrization L(P) satisfies the general hypotheses in [15, p. 120]. Therefore, by
Theorem 6 of [15], using our notation,

degx2(S
L) = degt (Primpartx (Rest3(K

L
1 , K L

2 )))

degMap(L(P))
,

whereS L denote the surface parametrized by L(P). Now the result follows by taking
into account that since L ∈ �3, degx2(S ) is the degree of the surface parametrized
by L(P), that is, degx2(S

L) = deg(S ). Moreover, degMap(L(P)) = degMap(P)

since L ∈ G (P3(K)). ��
Remark 2.14 In Lemmas 2.8 and 2.13, we have introduced two non-empty open sets of
G (P3(K))
. The existence of these sets will be used in the next results. Nevertheless,
the proofs of the lemmas are indeed constructive and show how to define the open
sets. This might be useful in future investigations on the topic.

As a consequence of the previous lemmas, we have the following degree formula
relating degrees and base point locus multiplicity (see notation in Sect. 1).

Theorem 2.15 mult(B(P)) = deg(P)2 − deg(S ) · degMap(P).

Proof Let L ∈ � ∩ �′, where � is from Lemma 2.8 (and Theorem 2.9) and �′
is from Lemma 2.13. Since p4(0, 0, 1) �= 0 and L ∈ G (P3(K))
, we know that
degt3(K

L
i ) = deg(L(P)) = deg(P). Then,

Rest3(K
L
1 , K L

2 )︸ ︷︷ ︸
The degree
is deg(P)2

= Contentx (Rest3(K
L
1 , K L

2 ))︸ ︷︷ ︸
By Theorem 2.9, the
degree is mult(B(P))

· Primpartx (Rest3(K
L
1 , K L

2 ))︸ ︷︷ ︸
By Lemma 2.13, the degree
is deg(S ) degMap(P)

,
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where “degree” means the degree in {t1, t2}. ��
When we combine this theorem with Proposition 2.3, we get a new proof of the

well-known degree formula (compare with [8]).

Corollary 2.16 deg(S ) · degMap(P) = deg(P)2 − ∑
A∈B(P) e(IA, RA).

Example 2.17 Consider the surface S parametrized by

P(t) = (p1 : · · · : p4) = (t22 t3 + t31 : t21 t3 + t32 : t1t2t3 : t22 t3)

from Example 2.12, where we computed that mult(B(P)) = 4. One may also check
that deg(P) = 3, deg(S ) = 5 and degMap(P) = 1 (using results from [14]). Thus,

mult(B(P)) = 4 = 32 − 5 · 1 = deg(P)2 − deg(S ) · degMap(P),

as predicted by Theorem 2.15.

Applying Theorems 2.7, 2.9 and 2.15 and Lemma 2.13, we get the following
resultant-based formula for the degree of the implicit equation of the surfaceS .

Theorem 2.18 1. For every L ∈ G (P3(K)), we have

deg(S ) = deg(P)2 − degt (Content{x,y}(Rest3(WL
1 ,WL

2 )))

degMap(P)

= degt (Primpart{x}(Rest3(WL
1 ,WL

2 )))

degMap(P)
.

2. For every L in the open set � introduced in Lemma 2.8, we have

deg(S ) = deg(P)2 − degt (Content{x}(Rest3(K L
1 , K L

2 )))

degMap(P)

= degt (Primpart{x}(Rest3(K L
1 , K L

2 )))

degMap(P)
.

Remark 2.19 At the beginning of this section, we imposed two main hypotheses,
namely, that (0 : 0 : 1) /∈ C (pi ) for all i and that p4 �= 0. The first hypothesis was used
to relate mult(B(P)) with the resultant, and the second was used in Lemma 2.13 to
allow the dehomogenization w.r.t. the fourth parametrization component. Let us show
that the formula in Theorem 2.15 is still valid in both cases. If the first hypothesis fails,
we can apply a projective transformation 	(t) such that P∗(t) = P(	(t)) satisfies the
condition. In this situation, observe that deg(P∗) = deg(P) that mult(B(P)) =
mult(B(P∗)), and that degMap(P∗) = degMap(	) degMap(P) = degMap(P).
Therefore, since the formula holds for P∗ it also holds for P .

On the other hand, if p4 = 0, we can simply take L ∈ G (P3(K)) such that L(P)

satisfies the hypothesis. Now, the reasoning is as in the previous paragraph.
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The following corollaries are direct consequences of Theorem 2.15. We observe
that Corollary 2.20 improves the formulae given in Theorem 1 in [17].

Corollary 2.20 deg(P) ≥ √
deg(S ) degMap(P) ≥ √

deg(S ).

Corollary 2.21 If P is birational, then deg(P)2 − mult(B(P)) = deg(S ).

Corollary 2.22 A rational surface whose degree is not the square of a natural number
cannot be birationally parametrized without base points in P

2(K).

We observe that although the presence of base points might be inevitable (see
Corollary 2.22), one may reparametrize so that they are all on a line, in particular on
the line at infinity (see Theorem 4.1 of [22]).

3 Rational Maps of P
2(K)

In this section, we analyze the base points of rational maps P
2(K) ��� P

2(K) and
adapt the results in the previous section to this case. To begin, let

S : P
2(K) ��� P

2(K)

t = (t1 : t2 : t3) �−→ S(t) = (s1(t) : s2(t) : s3(t)), (3.1)

where gcd(s1, s2, s3) = 1, be a dominant rational transformation of P
2(K) and let

degMap(S) denote the degree of the map S. Similarly, as in Sect. 2, we assume that
(0 : 0 : 1) /∈ C (si ) for i = 1, 2, 3. Later in Remark 3.10, we will see that our results
hold even when this hypothesis is not satisfied.

Definition 3.1 We say that A ∈ P
2(K) is a base point of S(t) if s1(A) = s2(A) =

s3(A) = 0. That is, the base points of S are the intersection points of the projective
plane curves, C (si ), defined over K by si (t), i = 1, 2, 3. Let us denote by B(S) the
set of base points of S, i.e.,B(S) = C (s1) ∩ C (s2) ∩ C (s3).

First, we introduce the polynomials

V1 =
3∑

i=1
xi si (t) ∈ K(x, y)[t]

V2 =
3∑

i=1
yi si (t) ∈ K(x, y)[t],

(3.2)

where xi , y j are new variables; compare with (2.2). Then, as we did in Sect. 2, we
have the following notion of multiplicity.

Definition 3.2 For A ∈ B(S), we define the multiplicity of intersection of A as
multA(C (V1),C (V2)).

In addition, we define the multiplicity of the base point locus of S, denoted
mult(B(S)), as

mult(B(S)):=
∑

A∈B(S)

multA(C (V1),C (V2)).
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For every L ∈ G (P2(K)) (see the notation in Sect. 1), we introduce the polynomials
(compare with (2.5))

V L
1 =

3∑
i=1

xi Li (S) ∈ K(x, y)[t],

V L
2 =

3∑
i=1

yi Li (S) ∈ K(x, y)[t].
(3.3)

In this situation, Proposition 2.5 and Lemma 2.6 extend naturally to the case of the
map S, and hence, the following theorem holds (compare with Theorem 2.7).

Theorem 3.3 If L ∈ G (P2(K)), then

mult(B(S)) = degt (Content{x,y}(Rest3(V L
1 , V L

2 ))).

For L ∈ G (P2(K)), we consider the polynomials (compare with (2.7))

J L
1 (x, t) = V L

1 (x3, 0,−x1, t) = x3L1(S) − x1L3(S) ∈ K(x)[t],
J L
2 (x, t) = V L

2 (0, x3,−x2, t) = x3L2(S) − x2L3(S) ∈ K(x)[t]. (3.4)

Similar to Sect. 3, the corresponding versions of Lemma 2.8 and Theorem 2.9 hold.
We state here the version of Theorem 2.9 for S.

Theorem 3.4 There exists a non-empty open subset �S of G (P2(K)) such that for
L ∈ �S , we have

mult(B(S)) = degt (Contentx (Rest3(J
L
1 , J L

2 ))).

The results in the last part of Sect. 2 involve surface parametrizations in P
3(K). In

order to apply these results to a map S as in (3.1), we consider the map

PS : P
2(K) ��� S S ⊂ P

3(K)

t �−→ (s1(t) : s2(t) : s2(t) : s3(t)). (3.5)

We observe that the rank of the Jacobian of S is 2, and hence, the rank of the Jacobian
of PS is also 2. Therefore, S S is a surface. Moreover, since si (0, 0, 1) �= 0 for all
i ∈ {1, 2, 3}, none of the curves defined by the components of PS passes through
(0 : 0 : 1) either. Also note that S S is not the plane u4 = 0; rather, S S is the plane
u2 = u3. So PS satisfies the hypotheses required in Sect. 2. In addition, we clearly
have degMap(S) = degMap(PS).

The next lemma relates the multiplicities of the base point lociB(S) andB(PS).

Lemma 3.5 B(S) = B(PS) and mult(B(S)) = mult(B(PS)).

Proof The first assertion is obvious since S = (s1, s2, s3) and PS = (s1, s2, s2, s3).
For the second, first note that the analog of Proposition 2.3 holds for S, so that
mult(B(S)) is the sum of the Hilbert–Samuel multiplicities of the base points for
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the ideal generated S. Since S and PS give the same ideal, this equals the sum of the
Hilbert–Samuel multiplicities of the base points for the ideal generated byPS . Hence,
the sum is mult(B(PS)) by Proposition 2.3. ��

In this situation, we can adapt Lemma 2.13 and Theorem 2.15 to the case of the
map S as follows.

Theorem 3.6 1. mult(B(S)) = deg(S)2 − degMap(S).
2. There exists a non-empty Zariski open subset �′

S of G (P2(K)) such that for every
L ∈ �′

S , we have

degt (Primpart{x}(Rest3(J L
1 , J L

2 ))) = degMap(S).

Proof Observe that deg(PS) = deg(S) and degMap(PS) = degMap(S). Since PS
parametrizes the plane u2 = u3 in P

3, the image surface S S has deg(S S) = 1.
Hence,

degMap(S) = 1 · degMap(PS)

= deg(PS)2 − mult(B(PS)) (see Theorem 2.15)
= deg(S)2 − mult(B(S)) (see Lemma 3.5).

This proves statement (1).
For (2), assume for the moment that we have a non-empty open subset �4 of

G (P2(K)) such that degt (J
L
1 ) = degt (J

L
2 ) = deg(S) for all L ∈ �4. Set �′

S =
�4 ∩ �S , where �S is from Theorem 3.4.

Now take L ∈ �′
S . Then, Theorem 3.4 allows us to rewrite statement (1) in the

form

degMap(S) = deg(S)2 − degt (Content{x,y}(Rest3(J L
1 , J L

2 ))).

However, we have the factorization

Rest3(J
L
1 , J L

2 ) = Content{x,y}(Rest3(J L
1 , J L

2 )) · Primpart{x}(Rest3(J L
1 , J L

2 )).

This resultant has degree deg(S)2 w.r.t. t since L ∈ �4, and statement (2) follows.
It remains to construct �4. Let L = (L1 : L2 : L3) be a generic projective

transformation; that is, Li = zi,1t1 + zi,2t2 + zi,3t3, where zi, j are undetermined
coefficients satisfying that the determinant of the corresponding matrix is not zero.
Since si (0, 0, 1) �= 0 for all i , arguing as in the proof of Lemma 2.8, we obtain

LCt3(J
L
1 ) = x3

3∑
j=1

z1, jLCt3(si ) − x1

3∑
j=1

z3, jLCt3(si ),

LCt3(J
L
2 ) = x3

3∑
j=1

z2, jLCt3(si ) − x2

3∑
j=1

z3, jLCt3(si ),
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(compare with (2.9)). If we set A1(z) := ∑3
j=1 z3, jLCt3(si ), then the desired �4

consists of all L ∈ G (P2(K)) such that A1(zL) �= 0 (zL is defined in the proof of
Lemma 2.8). ��

Applying Theorems 3.3, 3.4 and 3.6, we get the following resultant-based formula
which is the corresponding version of Theorem 2.18.

Theorem 3.7 1. If L ∈ G (P2(K)), then

degMap(S) = deg(S)2 − degt (Content{x,y}(Rest3(V L
1 , V L

2 ))).

= degt (Primpart{x}(Rest3(V L
1 , V L

2 ))).

2. For every L in the open set �′
S defined in Theorem 3.6, we have

degMap(S) = deg(S)2 − degt (Content{x}(Rest3(J L
1 , J L

2 )))

= degt (Primpart{x}(Rest3(J L
1 , J L

2 ))).

Since a birational map of P
2(K) has degMap(S) = 1, we get the following corol-

laries.

Corollary 3.8 If S is birational, then mult(B(S)) = deg(S)2 − 1.

Corollary 3.9 Every nonlinear birational transformation of P
2(K) has base points.

Remark 3.10 At the beginning of this section, we required that (0 : 0 : 1) /∈ C (si )
for i = 1, 2, 3. Reasoning as in Remark 2.19, we get that since the formula holds for
S∗(t) = S(	(t)) (	(t) is a projective transformation), it also holds for S.

In the last part of this section, we discuss an additional property satisfied by bira-
tional transformations of P

2(K). This property is related with the rationality of the
curves C (J L

1 ) and C (J L
2 ).

Lemma 3.11 There exists a non-empty Zariski open subset �′′
S of G (P2(K)) such that

for every L ∈ �, C (J L
i ) is irreducible.

Proof Let L = (L1 : L2 : L3) be a generic projective transformation as in the proof
of Theorem 3.6 and set zi = (zi,1, zi,2, zi,3). Let Ai (zi ) be the leading coefficient of
Li (S) w.r.t. t3. Now set RL(z1, z3, t1, t2) := Rest3(L1(S),L3(S)) ∈ K[z1, z3, t1, t2].
If RL = 0, then L1(S),L3(S) have a common factor B. Arguing as in the proof
of Lemma 2.8, B ∈ K[t]. So, in particular, B divides L1(S), and hence, B divides
gcd(s1, s2, s3), a contradiction. Therefore, RL is nonzero. Then, let M1(z1, z3) be the
gcd of all coefficients of RL w.r.t. {t1, t2}. Repeating the same argument for L2(S)

and L3(S), we get a polynomial M2(z2, z3).
In this situation, let �′′

S consist of all projective transformations whose coefficients
are not zeros of A1 · A2 · A3 · M1 · M2. If L ∈ �′′

S , then J L
1 and J L

2 are irreducible.
Indeed, if J L

1 is reducible, then gcd(L1(S), L3(S)) �= 1. Moreover, since A1 and
A3 do not vanish, Rest3(L1(S), L3(S)) specializes properly. Thus, RL(z1, z3, t1, t2)
vanishes, and hence, M1 also vanishes, a contradiction. Similar reasoning shows that
J L
2 is also irreducible. ��
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Example 3.12 Consider the classical Cremona transform S(t) = (t2t3, t1t3, t1t2). It
has base points {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} and deg(S) = 2. Since S is
birational, Theorem 3.6 implies

mult(B(S)) = 22 − 1 = 3.

Hence, base point has multiplicity 1. Also notice that the polynomials

J1(x, t) = x3(t2t3) − x1(t1t2) = t2(x3t3 − x1t1)

and

J2(x, t) = x3(t1t3) − x2(t1t2) = t1(x3t3 − x2t2)

are not irreducible. This explains why the open set �′′
S is needed in Lemma 3.11.

Proposition 3.13 Let S be a birational map of P2(K) and �′′
S be the open subset from

Lemma 3.11. Assume L ∈ �′′
S and letRL = R ◦ L−1 = (r L1 : r L2 : r L3 ) be the inverse

of L ◦ S. Then, we have:
1. C (J L

1 ) is rational and can be parametrized by

J1(h1, h2) = ( j1,1(x1, x3, h1, h2) : j1,2(x1, x3, h1, h2) : j1,3(x1, x3, h1, h2)),

where j1,i (x1, x3, h1, h2) is the homogenization of r Li (x1, h1, x3) as polynomial
in K[x][h1].

2. C (J L
2 ) is rational and can be parametrized by

J2(h1, h2) = ( j2,1(x2, x3, h1, h2) : j2,2(x2, x3, h1, h2) : j2,3(x2, x3, h1, h2)),

where j2,i (x2, x3, h1, h2) is the homogenization of r Li (h1, x2, x3) as a polynomial
in K[x][h1].

Proof Since the J L
i are irreducible polynomials (see Lemma 3.11) and RL is the

inverse of L ◦ S, we have J L
i (Ji (h1, h2)) = 0. This proves (1) and (2). ��

A natural question is whether the curves C (K L
i ) in P

3(F) (see (2.7)), when P is
birational, are also rational. However, in general, this is not true. For instance, consider

P(t) = (t31 − t1t2t3 − t33 : t2t23 − t31 − 5t33 : t31 − t22 t3 − t21 t3 + 4t33 : t31 − t2t
2
3 − t33 ).

One may check that degMap(P) = 1 (use [14]), mult(B(P)) = 3 and deg(S ) = 6
(check that the formula in Theorem 2.15 holds). However, there exists a non-empty
open Zariski subset � of G (P3(K)) such that for every L ∈ �, the curves C (K L

1 ) and
C (K L

2 ) have genus 1.

Remark 3.14 As a future work, one may think on considering maps P
k(K) → P

n(K)

with k > 2 by using generalized (or multivariate) resultants.
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4 Behavior of Base Points Under Composition

In this section, we analyze the relation between the base loci of two differ-
ent parametrizations of the same surface under the assumption that one is the
reparametrization of the other. More precisely, in the sequel we fix a surface S ⊂
P
3(K), as well as two rational parametrization ofS , namely P andQ. Moreover, we

assume that there exists a rational map S of P
2(K) such that P = Q ◦ S. Note that

if Q is birational then S always exists; indeed, in that case, S = Q−1 ◦ P . In this
situation, our goal is to relate mult(B(P)),mult(B(S)), and mult(B(Q)).

To begin, letQ(t) = (q1 : · · · : q4), S(t) = (s1 : s2 : s3) where gcd(q1, . . . , q4) =
gcd(s1, s2, s3) = 1. Also set pi (t) = qi (s1(t), s2(t), s3(t)). Here is a first result.

Proposition 4.1 1. deg(P) ≤ deg(Q) deg(S).
2. mult(B(P)) ≤ deg(S)2mult(B(Q)) + deg(S ) degMap(Q)mult(B(S)).

Proof For (1), note that deg(pi ) = deg(Q) deg(S). Then, the desired inequality fol-
lows since P is obtained from the pi after dividing out by gcd(p1, p2, p3, p4).

For (2), Theorems 2.15 and 3.6 imply

deg(P)2 = mult(B(P)) + deg(S ) degMap(P)

deg(Q)2deg(S)2 = (
mult(B(Q)) + deg(S ) degMap(Q)

)(
mult(B(S)) + degMap(S)

)
.

Since degMap(P) = degMap(Q) degMap(S), it follows that

deg(P)2 − deg(Q)2deg(S)2 = mult(B(P)) − (
mult(B(Q))mult(B(S))

+ mult(B(Q)) degMap(S)

+ deg(S ) degMap(Q)mult(B(S))
)

= mult(B(P)) − (
deg(S)2mult(B(Q))

+ deg(S ) degMap(Q)mult(B(S))
)
, (4.1)

where the last equality uses deg(S)2 = mult(B(S)) + degMap(S) by Theorem 3.6.
By (1), the left-hand side is non-positive, so the same is true for the right-hand side. ��

In the following theorem, we characterize when the inequalities in Proposition 4.1
are equalities.

Theorem 4.2 The following statements are equivalent:

1. gcd(p1, p2, p3, p4) = 1.
2. deg(P) = deg(Q) deg(S).
3. mult(B(P)) = deg(S)2mult(B(Q)) + deg(S ) degMap(Q)mult(B(S)).

Proof 1 ⇔ 2. This follows from the proof of statement (1) of Proposition 4.1.
2 ⇔ 3. This is an immediate consequence of (4.1). ��

The following corollary follows directly from the previous result.
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Corollary 4.3 If gcd(p1, . . . , p4) = 1, then we have:

1. B(Q) = ∅ if and only if mult(B(P)) = deg(S ) degMap(Q)mult(B(S)).
2. IfB(Q) = ∅ and Q is birational, then mult(B(P)) = deg(S )mult(B(S)).
3. B(P) = ∅ if and only ifB(Q) = ∅ = B(S).

Theorem 4.4 IfB(Q) = ∅, then gcd(p1, p2, p3, p4) = 1.

Proof Assume that a non-constant polynomial h(t) ∈ K[t] divides pi for all i . Then,
h divides qi (s1, s2, s3) for all i , so that for each a ∈ C (h), qi (s1(a), s2(a), s3(a)) = 0
for all i . But C (s1) ∩ C (s2) ∩ C (s3) is finite since gcd(s1, s2, s3) = 1. It follows that
C (h)\ (C (s1)∩C (s2)∩C (s3)) �= ∅. Let a ∈ C (h)\ (C (s1)∩C (s2)∩C (s3)). Then,
(s1(a), s2(a), s3(a)) ∈ P

2(K) and hence is a base point of Q, a contradiction. ��
Theorems 4.2 and 4.4 have the following nice corollary.

Corollary 4.5 IfB(Q) = ∅, then deg(P) = deg(Q) deg(S).

The converse of Theorem 4.4 is not true, as the following example shows.

Example 4.6 Consider the parametrization from Examples 2.12 and 2.17, which we
write as

Q(t) = (t22 t3 + t31 : t21 t3 + t32 : t1t2t3 : t22 t3).

We know that deg(Q) = 3, degMap(Q) = 1, deg(S ) = 5 and mult(B(Q)) = 4.
If S(t) = (t2t2, t1t3, t1t2) is the Cremona transform from Example 3.12, then the
reparametrization P = Q ◦ S is given by

P(t) = (t31 t2(t
2
3 + t22 ) : t1t23 (t32 + t21 t3) : t21 t22 t23 : t31 t2t23 )

= (t21 t2(t
2
3 + t22 ) : t23 (t32 + t21 t3) : t1t22 t23 : t21 t2t23 ),

where the second line factors out the common factor t1. Thus, deg(P) = 5 < 3 · 2 =
deg(Q) deg(S). Furthermore,

mult(B(P)) = deg(P)2 − deg(S ) degMap(P) = 52 − 5 · 1 = 20,

deg(S)2mult(B(Q)) + deg(S ) degMap(Q)mult(B(S)) = 22 · 4 + 5 · 1 · 3 = 31.

This shows that when B(Q) �= ∅, the inequalities in Proposition 4.1 can be strict.

The next theorem extends Corollary 4.3 (1) using the curves from (2.7) and (3.4).

Theorem 4.7 If B(Q) = ∅, then mult(B(P)) = deg(S ) degMap(Q)mult(B(S)).
Furthermore,

Content{x}(Rest3(K
LP
1 , K LP

2 )) = Content{x}(Rest3(J
LS
1 , J LS

2 ))deg(S ) degMap(Q),

where LP belongs to the open set introduced in Theorem 2.9 and LS belongs to the
open set introduced in Theorem 3.4.
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Proof By Corollary 4.3 (1), mult(B(P)) = deg(S ) degMap(Q)mult(B(S)). Now

let us prove that RP = Rdeg(S ) degMap(Q)

S , where

RP (t1, t2) := Content{x}(Rest3(K
LP
1 , K LP

2 ))

RS(t1, t2) := Content{x}(Rest3(J
LS
1 , J LS

2 )).

Indeed, by Theorems 2.9 and 3.4, we know that degt (RP ) = mult(B(P)) and
degt (RS) = mult(B(S)). On the other hand, recall that pi = qi (s1, s2, s3) for
i = 1, . . . , 4. Reasoning as in the proof of Theorem 4.4, we see that every base
point of P is a base point of S (remember that mult(B(Q)) = 0). Furthermore, it is
clear that every base point of S is a base point ofP (qi (0, 0, 0) = 0). Then, RP = Rα

S
for some exponent α, and since mult(B(P)) = deg(S ) degMap(Q)mult(B(S)), we

conclude that RP = Rdeg(S ) degMap(Q)

S . ��
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A Some Underlying Algebra and Geometry

In this appendix, we discuss the algebra and geometry behind Theorem 2.15, which
we write in the form

deg(P)2 = mult(B(P)) + deg(S ) · degMap(P). (A.1)

Our approach in this appendix, based on [10], is intuitive and non-rigorous.
The polynomials W1 and W2 defined in (2.2) are linear combinations of the

parametrizationP = (p1, . . . , p4)with coefficients given by new variables x1, . . . , x4
and y1, . . . , y4. For the time being, we will regard the xi and yi as generic elements
of the base field K. Later in the discussion, they will resume their role as independent
variables.

With this convention, W1 and W2 define curves in P
2(K). By Bézout’s Theorem,

their points of intersection, counted with multiplicity, add up to deg(P)2. This is the
left-hand side of (A.1).

Intersection points of the curves C (W1) and C (W2) come in two flavors:
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• The pi all vanish at the base points B(P), so the same is true for W1 and W2.
Hence, C (W1) and C (W2) always intersect at the base points. These are always
the same, no matter how we choose xi and yi .

• The remaining points in C (W1) ∩ C (W2) depend on the choice of xi and yi .

Let us explain how these two flavors contribute the right-hand side of (A.1):

• In the notation of Proposition 2.3, a base point A ∈ B(P) contributes dimK RA/

〈W̃1, W̃2〉 to Bézout’s Theorem. As noted in the proof, this equals the Hilbert–
Samuel multiplicity e(IA, RA). Summing these up, we see that the base points
contribute mult(B(P)) to Bézout’s Theorem, which explains the first summand
on the right-hand side of (A.1).
The key point here is that to compute e(IA, RA), we replace IA with a reduction
ideal (see [3, 4.6]). Since RA has dimension two, the reduction ideal is generated
by two generic linear combinations of the generators of IA. From the point of view
of commutative algebra, this explains why we work with W1 and W2.

• For the remaining points of intersection, consider the surface S parametrized by
P . Its degree deg(S ) is the number of points where a generic line intersects S .
This line is the intersection of two generic planes H1 and H2. For homogeneous
coordinates u1, . . . , u4 of P

3(K), we can let H1 = C (
∑4

i=1 xiui ) and H2 =
C (

∑4
i=1 yiui ) since xi and yi are generic. Via the parametrization P , the curves

H1 ∩ S and H2 ∩ S on S pull back to C (W1) and C (W2) in P
2(K). From the

point of view of geometry, this explains why we work with W1 and W2.
Since H1 ∩ H2 is generic, we can assume that H1 ∩ H2 meets S transversely at
deg(S ) smooth points of S and that degMap(P) points of P

2(K) map to each
point of H1 ∩ H2 ∩ S . This gives deg(S ) · degMap(P) points of P

2(K), all
contained in C (W1)∩C (W2) by our choice of H1 and H2. Genericity implies that
P is étale at these points (i.e., the Jacobian has maximal rank). When combined
with transversality, it follows that each point contributes 1 to Bézout’s Theorem.
This explains the second summand on the right-hand side of (A.1).

It remains to explain how this relates to the resultants that appear in the body of
the paper. We begin with the proof of Bézout’s Theorem from [7, Chapter 8, Sect. 7].
A coordinate change L ∈ G (P3(K)) gives the polynomials WL

1 ,WL
2 from (2.5).

The basic idea of the proof is that if L is sufficiently generic, then the resultant
Rest3(W

L
1 ,WL

2 ) is a homogeneous polynomial in t1, t2 whose irreducible factors cor-
respond to the points of intersection and whose exponents give the corresponding
multiplicities. Since the resultant has degree deg(P)2, this proves Bézout’s Theorem.

So far, x = (x1, . . . , x4) and y = (y1, . . . , y4) have been generic elements of K.
But now let them return to being independent variables. Then, Rest3(W

L
1 ,WL

2 ) is a
polynomial in t1, t2, x, y. Thinking in terms of x, y, we have a factorization

Rest3(W
L
1 ,WL

2 ) = Content{x,y}(Rest3(WL
1 ,WL

2 )) · Primpart{x,y}(Rest3(WL
1 ,WL

2 )).

The first factor is polynomial in t1, t2 only, while the second also depends on x, y.
Recall that when the curves intersect, the base points give intersection points that are
independent of x, y. Since the resultant takes multiplicities into account, this suggests
that
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mult(B(P)) = degt (Content{x,y}(Rest3(WL
1 ,WL

2 ))),

which is proved in Theorem 2.7 for any L ∈ G (P3(K)).
To complete the proof of the degree formula (A.1), it remains to show that

deg(S ) · degMap(P) = degt (Primpart{x,y}(Rest3(WL
1 ,WL

2 ))),

This is more challenging, since the line H1 ∩ H2 has to be chosen carefully to meet
the surfaceS transversely. In the body of the paper, we do this in two steps. The first
is the substitution

(x1, x2, x3, x4, y1, y2, y3, y4) → (x4, 0, 0,−x1, 0, 0, x4,−x3),

which turns W1,W2 into K1, K2. The second step applies a carefully chosen L ∈
G (P3(K)) that does not affect the content and provides the needed transversality. The
result is

Rest3(K
L
1 , K L

2 )︸ ︷︷ ︸
The degree
is deg(P)2

= Contentx (Rest3(K
L
1 , K L

2 ))︸ ︷︷ ︸
By Theorem 2.9, the
degree is mult(B(P))

· Primpartx (Rest3(K
L
1 , K L

2 ))︸ ︷︷ ︸
By Lemma 2.13, the degree
is deg(S ) degMap(P)

,

where “degree” means “degree in t .” Notice how the careful choice of L ∈ G (P3(K))

described in Lemma 2.13 involves the gradients needed to prove transversality.
It follows that the proof of (A.1) given in Theorem 2.15 is consistent with the

argument from [10] sketched in this appendix, though the proof of Theorem 2.15 was
discovered independently.
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