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Kidney transplantation is the best option for patients with end-stage renal disease.

Despite the improvement in cardiovascular burden (leading cause of mortality among

patients with chronic kidney disease), cardiovascular adverse outcomes related to

the inflammatory process remain a problem. Thus, the aim of the present study

was to characterize the immune profile and microvesicles of patients who underwent

transplantation. We investigated the lymphocyte phenotype (CD3, CD4, CD8, CD19, and

CD56) and monocyte phenotype (CD14, CD16, CD86, and CD54) in peripheral blood,

and endothelium-derived microvesicles (annexin V+CD31+CD41–) in plasma of patients

with advanced chronic kidney disease (n= 40), patients with transplantation (n= 40), and

healthy subjects (n = 18) recruited from the University Hospital “12 de Octubre” (Madrid,

Spain). Patients with kidney transplantation had B-cell lymphopenia, an impairment in

co-stimulatory (CD86) and adhesion (CD54) molecules in monocytes, and a reduction

in endothelium-derived microvesicles in plasma. The correlations between those

parameters explained the modifications in the expression of co-stimulatory and adhesion

molecules in monocytes caused by changes in lymphocyte populations, as well as the

increase in the levels of endothelial-derivedmicrovesicles in plasma caused by changes in

lymphocyte and monocytes populations. Immunosuppressive treatment could directly or

indirectly induce those changes. Nevertheless, the particular characteristics of these cells

may partly explain the persistence of cardiovascular and renal alterations in patients who

underwent transplantation, along with the decrease in arteriosclerotic events compared

with advanced chronic kidney disease. In conclusion, the expression of adhesion

molecules by monocytes and endothelial-derived microvesicles is related to lymphocyte

alterations in patients with kidney transplantation.
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FIGURE 11 | Correlation between T-cytotoxic lymphocytes and monocytes in renal transplantation. Correlations between T-cytotoxic lymphocytes and the percentage

of classical (A) and non-classical (B) CD54+ monocytes, and the expression of CD54 in classical (C) and intermediate (D) monocytes are shown.

There is limited research on the expression of CD86/B7.2
and CD54/ICAM1 in the monocyte subsets, particularly in CKD.
CD80/b7.1 and CD86/B7.2 are co-stimulatory molecules, which
are essential for the activation of T cells. This co-stimulation
is exhibited by the antigen-presenting cells. Some studies did
not report changes in the expression of CD86 in monocytes
of patients with chronic renal failure (75), whereas others
showed a decrease in its expression in monocytes (75) and
dendritic cells (76) of patients undergoing dialysis. Nevertheless,
the proinflammatory and proatherogenic monocytes showed an
increase in CD86 expression (77, 78).

Although further research is warranted, the
microinflammatory state of the CKD transplant could lead
to the development of senescent monocytes with an increased
expression of CD86, explaining the present results. Regarding
the expression of CD86 by monocytes in patients with KT,
the blockage of B7/CD28 co-stimulation required a specific
antibody against B7 components (79–81). This is rarely used and
had shown more significant effect but differs between the two
subtypes of B7 due to differences in biochemical characteristics
(82, 83). CD54/ICAM1 is an adhesion molecule expressed by
immune and endothelial cells. The increased expression of
ICAM1 in allograft tissue is related to rejection (84, 85). The
monocytes of patients who underwent transplantation and

were treated with mycophenolate mofetil did not show any
differences in the expression of CD54 (86). The expression of
CD86 and CD54 is markedly increased in intermediate and
non-classical monocytes (4, 87, 88). These monocytes are highly
proinflammatory and participate in atherosclerosis (4). The
elevation in the expression of these molecules in all monocyte
subsets of patients with transplantation may indicate an increase
in senescent monocytes participating in cardiovascular disease,
which is one of the main causes of death in patients with KT (89).
The increase on the expression in costimulatory molecules has
been shown in autoimmune disease; in particular, a increase of
these costimulatory molecules in monocytes and in plasma lead
to dysregulation of the immune response toward an exacerbate
inflammatory one (90–92).

It was recently discovered that MVs are a form of extracellular
communication. They play an essential role in the development
of multiples disease (93, 94), but they have been extensively
studied in cardiovascular alterations (95–98). In disease, there is
an increase in the number and changes in the content of MVs
(96). The increase in indoxyl sulfate shown in CKD has been
related to the increase in endothelial MVs that participated in
vascular calcification (98, 99). This increase in indoxyl sulfate and
other uremic toxins may explain the increased number of MVs
and endothelial MVs in patients with ACKD. Transplantation
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FIGURE 12 | Correlation between lymphocytes and microvesicles in renal transplantation. Correlation between T-helper lymphocytes and the number (A) and

percentage (B) of endothelium microvesicles. Correlation between T-cytotoxic lymphocytes and percentage of endothelium microvesicles (C). Correlation of CD4/CD8

ratio with the number (D) and percentage (E) of endothelium microvesicles.

partially solves this problem by increasing kidney function.
Tissue factor (CD142) triggers thrombotic responses and plays an
important role in atherosclerosis. Thus, elevated levels of tissue
factor in microparticles is associated with an increased risk of
atherosclerosis and thrombosis (100–102). The elevation in the

expression of tissue factor in patients with ACKD contributes
to the increased risk of cardiovascular disease in patients
with CKD.

To the best of our knowledge, this is the first study to
correlate changes in lymphocyte subsets with different monocyte
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FIGURE 13 | Correlation between monocytes and microvesicles in renal transplantation. Correlations between the percentage of CD86+ non-classical monocytes

and the total number of microvesicles (A), the expression of CD86 in classical monocytes and the percentage of 142+ endothelium microvesicles (B), the expression

of CD86 in intermediate monocytes and the total number of microvesicles (C), the expression of CD86 in non-classical monocytes and the total number of

microvesicles (D), the percentage of CD54+ intermediate monocytes and the total number of microvesicles (E), and the percentage of CD54+ intermediate

monocytes and the number of endothelium microvesicles (F) are shown.

subtypes in renal transplantation. The cells of the immune system
communicate through cytokines and microparticles to maintain
the homeostasis of the organism. Monocytes influence T-cell
differentiation by antigenic presentation, release of cytokines,
or cell-cell communications (103). The present results showed
the correlations of different phenotypes of lymphocytes with the
three different subsets of monocytes and the expression of CD86
and CD54. Despite the renal transplantation, the leading cause of
CKD and the co-morbidities persist.

Consequently, the microinflammation process continues,
based on the persistence of the main cause of the disease
and the alteration of renal alteration function (showed by a
decreased GFR compared to with HS), which can modulate
the different subsets of leukocytes in patients who undergo
transplantation. Despite the immunosuppressive treatment, the
monocytes are influenced by these effects. This leads to
further alteration of the vascular endothelium, resulting in
adverse cardiovascular outcomes. This is more important in
the interaction between cytotoxic T-cells and endothelial MVs,
leading to an increased risk of atherogenic complications in
patients with transplantation.

Even though the promising results of this work, the vast
variety of treatment, not only immunosuppression, but also
concomitant medications such as statins and allopurinol, that
CKD patients suffers complicates the study and analysis of
these patients. Most of this concomitant medication has anti-
inflammatory effects (104–107) and affected immune phenotypes
(108–111). Also, said medication can change the number and
content of MVs (112–114).

The main limitation of this study is the number of
volunteer HS of the same socioeconomic status (2), which

is an important factor influencing the outcome of the
disease. Furthermore, the wide variety of immunosuppressive
treatment options, as well as concomitant meditation and
comorbidities, complicate the study of the effects of the
drugs in monocytes and MV subsets. However, this study
provides original and integrative knowledge regarding the
differences and relationships of leukocyte subpopulations. This
could lead to a better comprehension of the participation of
the immune function in negative outcomes in patients who
undergo transplantation.

In conclusion, B-cell lymphopenia and an increase in
the expression of costimulatory and adhesion molecules
were observed in patients with KT. These changes
were interrelated and associated with the number of
MVs. These findings can partially explain the negatives
outcomes of cardiovascular disease in patients with renal
transplantations and the persistence of adverse renal outcomes.
Further prospective studies are warranted to elucidate this
communication mechanism and its role in negative outcomes.
The increase in risk factor linked to CKD and the high
cost associated with renal substitutive therapies could
bring a heavy burden to public healthcare systems in the
near future.
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