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Abstract: The incidence of age associated chronic diseases has increased in recent years. Although
several diverse causes produce these phenomena, abundant evidence shows that oxidative stress
plays a central role. In recent years, numerous studies have focused on elucidating the role of
oxidative stress in the development and progression of both aging and chronic diseases, opening
the door to the discovery of new underlying mechanisms and signaling pathways. Among them,
senolytics and senomorphics, and extracellular vesicles offer new therapeutic strategies to slow the
development of aging and its associated chronic diseases by decreasing oxidative stress. In this review,
we aim to discuss the role of extracellular vesicles in human cardiorenal syndrome development and
their possible role as biomarkers, targets, or vehicles of drugs to treat this syndrome.

Keywords: aging; oxidative stress; senescence; extracellular vesicles; senolytics; inflammation; age-
related pathologies; oxi-inflamm-aging

1. Introduction

In 1956, Harman et al. [1] proposed the “free radical theory of aging”, where the au-
thors described how oxidative stress generates cell damage associated with aging. Another
well-established theory is that of the “Hayflick limit”, which states that every cell has a max-
imum limit of divisions [2]. Both theories are related to each other, as ROS accumulation
can reduce the Hayflick limit, thereby shortening the life span. This phenomenon is known
as premature senescence due to oxidative stress. Moreover, senescent cells release several
bioactive molecules, termed senescence-associated-secretory phenotypes (SASP), creating a
pro-inflammatory ambiance. Indeed, the SASP may contribute to chronic inflammation,
often referred to as inflammaging [3].

Each of these features, oxidative stress, senescence, and chronic inflammation, lead to
the appearance of age-related diseases.
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1.1. Aging and Oxidative Stress

Aging can be defined as the progressive loss of tissue and organ function over time [4].
Age-related functional losses are due to the accumulation of reactive oxygen and nitrogen
species (RONS) that damage lipids, DNA, proteins, and carbohydrates [1,5]. Cells have de-
veloped RONS scavengers to maintain cellular homeostasis, i.e., an antioxidant defense sys-
tem that includes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx).

The balance between oxidants and antioxidant systems in the aging process seems to
show a trend for oxidative stress [6]; however, this is not always true. Several studies did
not find a positive correlation between oxidative stress and age when comparing healthy
elderly people [7,8]. Indeed, a systematic review that analyzed the centenarian cohort, who
represent a model of successful aging, concluded that these long-lived individuals present
less oxidative damage and significantly lower plasma lipid peroxidation biomarkers than
control individuals [9]. Thus, oxidative damage does not correlate with age, especially in
the geriatric population, but rather with the frailty state, where frailty is a multifaceted
geriatric disorder characterized by lower physical activity, decreased muscle strength and
endurance, and the inability to cope with stress.

1.2. Aging and Senescence

Cellular senescence can be described as a stable state of growth arrest in which cells
are unable to proliferate in response to several stresses. Senescent cells are characterized by
a flattened and enlarged morphology, increased expression of cell cycle-inhibitory proteins
such as p16INK4a, and higher senescence-associated β-galactosidase activity. Senescent cells
exert their pleiotropic biological functions through the transcriptional activation of a SASP
program composed of cytokines, chemokines, growth factors, extracellular matrix proteases,
and even extracellular vesicles (EVs) that affect the local tissue microenvironment [10].
Indeed, cellular senescence entails chronic inflammation through the SASP and impairs
tissue regenerative potential when affecting stem cells, leading to chronic age-associated
diseases and organismal aging [11].

Moreover, cellular senescence has also been detected in immune cells, driving a declin-
ing immune system function, a phenomenon called immunosenescence. This phenomenon
leads to the impaired clearance of senescent cells, thereby contributing to their accumula-
tion in the tissues. Cellular senescence accumulates systematically over time, affecting both
mitotic and postmitotic cells and spreading SASP factors, thus leading to tissue dysfunction
and pathology [12].

1.3. Aging and Inflammation

With advancing age, individuals tend to develop a chronic pro-inflammatory con-
dition, characterized by high circulating levels of inflammatory molecules, known as
“inflammaging” [13]. Inflammaging describes the low-grade, chronic, systemic inflamma-
tion in aging and is a highly significant risk factor for both morbidity and mortality in
older people.

As previously mentioned, the accumulation of senescent cells and their associated pro-
inflammatory secretome is a constant trigger of inflammaging [14,15]. The level of cytokines
often remains within the upper limit of the normal range; several mediators secreted by
monocyte/macrophages such as tumor necrosis factor-alpha (TNFα), interleukin-1 (IL-1),
and interleukin-6 (IL-6), as well as chemokines such as monocyte chemoattractant protein-1
(MCP-1) and interleukin-8 (IL-8), are increased. On the other hand, anti-inflammatory me-
diators such as IL-10, IL-4, and IL-13 may also be increased as a tentative measure to control
this state [16]. Nonetheless, long-lived people, such as centenarians, can cope with chronic
inflammation through an anti-inflammatory response called “anti-inflammaging” [17].

1.4. Extracellular Vesicles and Aging

In the 1980s, a new cell–cell communication system was discovered based on the
action of vesicles that carry bioactive molecules to neighboring cells [18]. These vesicles,
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known as EVs, act as regulators of several pathophysiological processes and participate in
the development and progression of multiple diseases [19]. EVs contain specific proteins,
lipids, and nucleic acids (including DNA, RNA, and miRNA) that mirror parental cells, and
can report active metabolites from their cell or tissue of origin to neighboring cells [20–22].

In general, three EVs types have been described depending on the size, morphology,
biochemical composition, and release mechanism [23]. However, due to the lack of unique
markers for defining the different kinds of EVs and their heterogeneous size, small or large
EVs [24], there is a discrepancy in the nomenclature (Table 1). Therefore, in this review, we
have generally referred to EVs.

Table 1. Principal features of EVs.

General Characteristics of EVs

Types of EVs Different Classification by Process Mediated EVs Used as

Exosomes Size Physiological/homeostasis
(beneficial effects)

Biomarker (in clinical
prognosis or diagnosis)

Microvesicles/Microparticles Morphology Pathological effect: chronic
inflammatory diseases (CKD, diabetes,

hypertension, peripheral vascular
disease, heart failure, and CKD).

Therapeutic target

Apoptotic bodies Biochemical composition Therapeutic tool
Small or large EVs Release mechanism

EVs can mediate beneficial effects [25]. However, elevated plasma levels of EVs are
involved in the etiopathogenesis of many chronic inflammatory diseases. They have been
detected in patients with cardiovascular risk factors (diabetes, hypertension, peripheral
vascular disease, heart failure), aged people, and individuals who have suffered from CKD
and cancer [25–27]. Thus, EVs are emerging as promising candidates in clinical diagnosis
and a possible alternative in monitoring the therapeutic follow-up, acting as biomarkers
due to their involvement in developing senescence in chronic inflammatory pathologies,
such as CVD-associated-CKD [26,28].

2. Cardiovascular Diseases as the Paradigm of Age-Related Chronic Diseases:
Cardiorenal Syndrome

Age is a risk factor for CVD and chronic kidney diseases (CKDs) [29]. The prevalence
of CVD in the elderly (those over 65 years old), especially in those over 80 years of age, is
over 80% [30], whereas CKD prevalence is around 50% in patients who are 70 years old or
older [31]. Furthermore, both are expected to increase by 10% over the next 20 years due to
the growth of the elderly population and the increase of other risk factors such as diabetes
mellitus, obesity, or hypertension [30,32]. Thus, both pathologies have become a significant
threat to public health in modern societies [33,34].

A remarkable fact is that kidney failure is also a major cause of cardiovascular morbid-
ity and mortality [32]. Indeed, epidemiological studies have demonstrated that CKD is a
significant risk for cardiovascular events independently of classical risk [35,36]. Moreover,
several studies have pointed out that CKD patients undergo accelerated aging, which
enhances the appearance of CVDs [37]. Thus, although CKD and CVD share classical
Framingham risks factors [38], this fact does not fully explain the uneven increase in cardio-
vascular morbidity and mortality in CKD patients. This has led many research groups to
look for new mechanisms explaining the high cardiovascular syndrome presented in CKD
patients. As a result, a new term has arisen: cardiorenal syndrome (CRS), which suggests
the existence of common mechanisms and mediators involved in CVD and CKD progres-
sion [39]. However, this link is complex and remains poorly understood; therefore, the
physio-pathogenic mechanisms by which CKD increases the risk of cardiovascular events
are currently under intensive investigation. Several studies suggest that various substances
accumulated in the bloodstream during CKD, such as uremic toxins, pro-inflammatory
chemokines and cytokines, reactive oxygen species, and extracellular vesicles, come into
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direct contact with the endothelial cells causing endothelial damage and dysfunction, vas-
cular inflammation, and oxidative stress and, consequently, vascular remodeling, thus
triggering the onset of CVD [40].

2.1. Age-Related Changes in Renal and Cardiovascular System

Even in the absence of other risk factors, the aging population presented structural
and functional alterations in the kidneys, vessels, and heart. (Figure 1).
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Figure 1. Role of aging in the cardiorenal syndrome. Some graphical elements from this figure were
adapted from BioRender (http://biorender.com, accessed on 1 December 2021) and the Servier Medi-
cal ART (SMART) Powerpoint image bank (http://smart.servier.com, accessed on 1 December 2021).

Age is associated with a decrease in renal function [41], including glomerular filtration
rate (GFR) decline and impaired urine concentrating capacity [42]. Even without any
injury, GFR declined approximately 8 mL/min/1.73 m2 per decade after 40 years of
age [43], but it has been suggested that GFR decline may start even earlier in the patient’s
20s [44]. Structurally, the aging kidney presented glomerulosclerosis, tubulointerstitial
fibrosis, and tubular atrophy [45]. Besides, heart failure is a condition classically related
to the elderly [46]. The most common pathophysiological characteristics of an aging
heart are increased left ventricular (LV) hypertrophy and fibrosis [47]. Elderly patients
presented diastolic dysfunction, increased atrial fibrillation, and a reduction in cardiac
reserve [48]. Regarding vascular aging, it is characterized by endothelial dysfunction,
mainly due to decreased nitric oxide (NO) availability [49], large arteries walls thickening
and progressive stiffness of central arteries, particularly the aorta [48,50], resulting in
atherosclerosis Figure 1.

Several mechanisms may participate in aging-induced cardiovascular and renal struc-
tural and functional impairments, including cell senescence, inflammation, oxidative stress,
and genetic and epigenetic modifications.

2.2. Cellular Senescence in Cardiovascular and Renal Aging

Cellular senescence is a process characterized by a stable cell–cycle arrest [51] that
causes inflammation and the capacity to modify the microenvironment through the SASP.
The accumulation of senescent cells in the kidney, heart, and vascular vessels has been
associated with structural and functional changes related to aging [52]. Furthermore, the
acquisition of a senescent phenotype by aging or age-related chronic disease, including CKD
and CKD-associated CVD, seems to be an irreversible pathophysiological process [22,53].

http://biorender.com
http://smart.servier.com
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In large vessels, aging-associated endothelial cell senescence is a key cause of vascular
structural changes and vascular dysfunction observed in atherosclerosis [45]. Additionally,
human atherosclerotic plaque vulnerability is promoted by senescence vascular smooth
muscle cells (VSMCs) [54]. Further osteoblastic-like phenotypes acquired by senescent
VSMC seem to be responsible for vascular calcification [55]. In the kidney, the source of
senescent cells depends on the pathology, and proximal tubular cells are the main source of
senescent cells in the aged kidneys.

2.3. Inflammation in Cardiovascular and Renal Aging

Inflammaging describes the pro-inflammatory state observed in the older organism,
even in the absence of other risk factors or diseases [13]. Several epidemiological studies
have pointed to inflammaging as a risk factor of most age-related diseases, including CVD
and CKD [56,57]. Chronic inflammation is a key factor in several CVD pathologies [58]
and a key contributor to CKD development and its progression to end-stage renal disease
(ESRD) [59]. Moreover, proinflammatory cytokines and chemokines released by kidneys
can reach the circulation, resulting in dysfunction of distant organs, including the cardio-
vascular system [60], a fact that may explain, at least in part, the accelerated cardiovascular
aging observed in CKD patients [37].

Among the inflammatory mediators elevated in blood during aging, IL-6 and TNF-α
are particularly noteworthy [61]. An elevation of both IL-6 and TNF-α and other molecules
such as C-reactive proteins have been associated with high mortality in the elderly [62].
Even in centenarians, elevated levels of TNF-α correlated with morbidity, including CVD
and mortality [63]. On the other hand, both molecules are also key factors in the onset and
development of renal and CVDs [64–67]. Indeed, both molecules are considered uremic
toxins and are therefore molecular markers and/or therapeutic targets for cardiorenal
syndrome.

Elevated IL-6 and TNF-α levels have been observed in CKD patients, and these levels
are inversely correlated with GFR [68]. Moreover, elevated IL-6 levels and TNF-α have
been associated with the development of atherosclerosis and vascular calcification in CKD
patients [69–71]. Likewise, IL-6 has been proposed as a risk factor for left ventricular
hypertrophy in peritoneal dialysis patients [72].

The human GG polymorphism at the −174 position in the promoter region of the IL-6
gene, which is associated with increased levels of IL-6, has been related to an increased risk
of developing age-associated CVD [73,74] and with increased mortality in peritoneal dialy-
sis patients [75]. On the other hand, this polymorphism is less frequent in centenarians than
in young adults [76], whereas other IL-6 SNPs have been associated with longevity [77,78].
Moreover, in aged patients, including centenarians, high levels of TNF-α in the blood were
associated with a high prevalence of atherosclerosis [63,79].

2.4. Oxidative Stress in Cardiovascular and Renal Aging

As previously indicated, the oxidative stress theory of aging states that age-associated
loss of functionality would be due to the accumulation of oxidative damage to lipids,
DNA, and proteins by RONS [5]. However, recent studies have demonstrated a more
complex relation between oxidant and antioxidant mechanisms in aging and age-related
diseases [80].

Oxidative stress is a key component of several age-related pathologies, including
CVDs and acute CKD, and the role of different pro-oxidant molecules, as well as the
therapeutic effects of several antioxidants, have been widely studied both in experimental
models and in clinical trials [81–88].

CKD and ESRD patients show increased levels of different oxidative stress markers, in-
cluding advanced oxidation protein products, malondialdehyde, and oxidized-low density
lipoproteins (ox-LDL), which have been associated with a decline in renal function. Further-
more, an increase in ox-LDL, together with high IL-6 levels, has been associated with an
increased risk of CVD events and CVD-related mortality in CKD patients in hemodialysis
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(HD) [89] and accelerated atherosclerosis development observed in CKD [82]. Besides
its role in foam cells formation within the arterial wall, ox-LDLs also participate in other
proatherogenic events, including endothelial dysfunction and smooth muscle prolifera-
tion, suggesting an essential role of ox-LDLs in atherosclerotic plaque development and
destabilization [90,91].

Furthermore, increased levels of ox-LDL in older adults have also been associated with
arterial stiffening [92]. However, another study in aged patients reported no correlation
between ox-LDL levels and cardiovascular morbidity nor mortality, suggesting that in
elderly patients, the ox-LDL may not be a good marker [93]. What seems clear is that ox-LDL
levels are related to endothelial dysfunction observed in adults and elderly individuals [49].

Oxidative stress induces endothelial dysfunction by decreasing NO bioavailability [94],
mainly by the formation of peroxynitrite (ONOO−), through its combination with superox-
ide anion (O2

•−), which is elevated in atherosclerotic lesions [95]. Moreover, ONOO− also
leads to endothelial nitric oxide synthase (eNOS) uncoupling activity, thus perpetuating the
detrimental response. In addition to its role in endothelial function, NO has other effects,
including antithrombotic, anti-inflammatory, and anti-atherogenic effects [49]. Therefore,
in vascular endothelium, ox-LDL and NO exert antagonistic actions in all phases of athero-
genesis. Indeed, some authors have proposed using ox-LDL to NO ratio (ox-LDL/NO) as
a new biomarker for endothelial dysfunction in atherosclerosis [49]. Curiously, whereas
NO produced by eNOS seems to have atheroprotective effects, excessive NO produced
by inducible nitric oxide synthase (iNOS), under proinflammatory conditions, had detri-
mental effects in the endothelium [95]. Conversely, elderly humans presented elevated NO
production within the vasculature but a reduced NO bioavailability. In the kidney, aging-
associated NO reduction increases renal vascular vasoconstriction, Na+ retention, and renal
fibrosis, thus contributing to enhanced hypertension and declined renal function [45].

Finally, given the close relationship between oxidative stress, inflammation, and aging,
the free radical theory of aging has been updated, giving rise to the oxidation-inflammatory
theory of aging or oxi-inflamm-aging [96]. This new theory postulates that aging is a loss
of body homeostasis due to sustained oxidative stress that activates different systems,
including the immune system, thus inducing an inflammatory response that increases
oxidative stress and perpetuating positive feedback of oxidative stress and inflammation.

2.5. Extracellular Vesicles in Cardiovascular and Renal Aging

In human renal and cardiovascular pathologies, changes in composition and levels
of EVs have been described [97]. In addition, different studies showed the effect of drug
treatment on EVs’ profile in different diseases [98]. Altogether these results point to
a potential role of EVs as biomarkers for diagnosis and as tools for therapy by drug
administration of different cargo.

In CKD, circulating EVs are augmented and are key players in vascular calcifica-
tion [99], endothelial dysfunction [100], and vascular mortality [101]. In hemodialyzed
patients with CKD, plasma circulating EVs were increased compared with elderly subjects
without CKD used as controls [102]. In this study, the level of EVs released by proinflam-
matory monocytes was high, and no differences in total monocyte-derived EVs were found
as other authors had previously described [103–105]. The uremic toxin proinflammatory
environment in these CKD patients induces proinflammatory monocytes activation, alters
miR-126-3p, miR-233-3p, miR-192-5p expression, and increases the release of proinflamma-
tory EVs that enhance vascular inflammation. As miR-126-3p participates in endothelial
proliferation and endothelization in large vessels [106–108], the decreased miR-126-3p
circulating levels reported in these hemodialyzed patients indicate its implication in the
vascular dysfunction observed [102].

In addition, the decrease in miRNA-233-3p expression and circulating levels observed
in CDK patients was reversed and even increased after kidney transplantation [109,110],
indicating its participation in vascular complications development. The lower expression of
miR-192-5p was also found in hemodialyzed patients [102], venous thromboembolism [111],
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and hypertension [112]. As the expression of several miRNAs can be positively or nega-
tively correlated with different diseases and inflammatory states, authors consider those
miRNA ratios to be a clinical feature of every disease and a diagnostic and therapeutic
biomarker.

The mentioned studies suggest that serum levels and the profile of miRNAs and EVs
depend on CKD’s uremic inflammatory state and promote cardiovascular damage [102].

The progressive decrease in renal function is a risk factor in most CVDs and worsens
the clinical outcomes [113,114].

For example, non-valvular atrial fibrillation is linked to kidney disease because of
increased thromboembolism mediated by higher levels of EVs from the prothrombotic
endothelial-platelet origin but not by other markers of thrombotic state and cellular activa-
tion [115] even in anticoagulated patients.

In hypertensive patients, the presence of EVs indicating podocyte injury, a character-
istic expression of miRNAs, and peritubular capillaries damage has been described [116].
Furthermore, EVs released by endothelial cells from perivascular capillaries had been
detected in the urine of essential and renovascular hypertensive patients, the concentration
of which directly correlates with clinical parameters and capillary rarefaction but inversely
with renal perfusion [117]. Therefore, the levels of urinary EVs in hypertension could be
an early marker of renal injury due to peritubular capillaries damage, and the said levels
inversely correlate with renal function (estimated glomerular filtration, eGFR) after medical
treatment in essential and renovascular hypertensive patients [117].

Intensive treatment of T2DM patients suffering an acute coronary attack showed
decreased endothelial CD31+/CD41+ EVs levels [118]. Administration of pioglitazone to
patients with metabolic syndrome reduced endothelial EV levels [119]. In patients with
T2DM and hypertension, endothelial EV levels correlate directly with the mean systolic
and pulse blood pressure but inversely with eGFR compared with normotensive diabetic
patients [120]. CD31+/CD42− [121,122] and CD31+/CD42−/CD51+ [123] endothelial-
derived EVs are increased in hypertensive patients with T2DM correlating these levels with
mean arterial pressure and mean systolic blood pressure.

From the studies explained above, endothelial-derived EVs can be considered an
endothelial damage marker. In addition, along with EVs secreted from other sources such
as platelets and leukocytes, endothelial-derived EVs play an active role in the pathogenesis
of hypertension. Increased levels of EVs relate to a smaller ability of vessels to regener-
ate, increasing cardiovascular risk and nephropathy [124]. All these studies point to the
importance of assessing plasma EV levels to establish the risk of organ damage in diabetes.

In a different approach, EVs would have beneficial effects as carriers of signals to pre-
serve, for example, endothelial function and vessel integrity in vascular diseases [125,126].
Indeed, EVs have therapeutic potential as vehicles for transferring and secreting different
molecules (cytokines, chemokines, growth factors, nucleic acids, etc.) to other targets in
disease [127]. Furthermore, EVs from mesenchymal stem cells can preserve myocardial
function after ischemia/reperfusion in animal models and humans [128–130]. Moreover,
EVs derived from bone marrow CD34+, or endothelial progenitor cells, increase cardiac
viability by decreasing oxidative stress and activating PI3K/Akt pathway and promoting
angiogenesis [131–133]. In addition, EVs derived from cardiac progenitor cells protect the
myocardium from ischemia/reperfusion injury [134].

EVs have advantages in regenerative medicine and therapy because they maintain
their properties during long storage periods. Thus, the limitations of using viable cells that
can undergo aberrant differentiation are avoided.

EVs could be useful vectors in gene therapy by transporting and delivering nucleic
acids. For instance, PI3K/Akt pathway mRNAs carried by endothelial progenitor cells-
derived EVs promote angiogenesis response in endothelial cells after EVs and endothelial
cell fusion [135]. Circulating EVs also carry miRNAs known for their implication in the
pathophysiology of cardiovascular and other diseases by modulating target cell gene
expression [136], and specific miRNAs are expressed and packed in circulating EVs in
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these diseases [137]. This compartmentalization is stimulus-dependent. This is similar to
hypoxia which determines the regenerative properties of mesenchymal stem cells-derived
EVs and the expression of pro-angiogenic miRNAs in endothelial progenitor cells-derived
EVs [128,138,139]. It has been demonstrated that miR-126 is carried by circulating EVs
for regulating angiogenesis and vascular integrity [108,140,141]. miR-126 transported into
recipient human coronary artery endothelial cells by endothelial EVs released by apoptotic
endothelial cells promoted reendothelialization. Still, hyperglycemia lowered the amounts
of miR-126 transported and reduced endothelial repair capacity in vivo [141]. Interestingly,
patients with coronary artery disease have low levels or lack miR-126 compared with
healthy subjects [138,139], indicating the importance of EVs cargo in developing and
treating the disease.

3. Unraveling Underlying Mechanisms: Therapeutical Approaches

As mentioned previously, aging is a significant risk factor for many human diseases,
especially in CRS, a pathology considered an age-related chronic disease.

A gradual decline in physical and cognitive function during the aging process leads to
a higher risk of illness. The World Health Organization (WHO) indicated that age-related
diseases have increased in the last century due to the increase in lifespan and predicts
a doubling of the world’s population aged over 60 years by 2050 [142]. Therefore, im-
proving the quality of health, nutrition, education, income, and medicine are strategic
actions to delay aging and age-related diseases [143] and research efforts to understand the
biological mechanisms underpinning age-related chronic diseases are vital. Nonetheless,
increased vulnerability in premature aging, CKD-associated CVD triggers pathophysio-
logical processes such as chronic inflammation, immune activation, dysregulation of the
musculoskeletal and endocrine systems, oxidative stress, energy imbalance, endurance, are
briefly characterized by a reduced physiological function, which can lead to frailty [144,145].
However, even though in CKD, the biological mechanism that causes frailty is unknown,
the frailty in CKD patients may be due to CVD comorbidities.

Moreover, chronic systemic inflammatory state characteristic of frail patients is also
found in advanced CKD patients [146], especially those in renal replacement therapy [147].
At the beginning of the 20th century, the prevalence of frailty in the elderly population
was 11% compared with 60% in HD patients [145]. Thus, the main problem of aging or
age-associated diseases such as CRS is frailty aggravated by consistent and low-grade
systemic inflammation environments. In this case, cells lose resilience against external
injuries and are close to acquiring senescent phenotype; therefore, senescence is intimately
associated with frailty [148]. Recently, Boccardi and Mecocci highlighted the role of cellular
senescence with advanced age-related CVD and frailty [149].

This idea is not accurate because, in contrast with the preconceived frailty concept, the
loss of cellular resilience is not associated with pathology or aging. A far as we know, it is of
note that the number of frail patients reaching end-stage kidney disease is increasing [145].
In addition, frailty has been associated with an increased risk of CVD [27,150]. However,
patients who reverse the frailty state also prevent the development of CVD [144].

In contrast, acquiring senescent phenotype by aging or age-related chronic disease,
among others CKD-associated CVD, is an irreversible pathophysiological process [22,53,151].
Therefore, some therapeutic approaches emerged focusing on eliminating senescent cells
using compounds called senolytics [151]. Accordingly, senomorphics are drugs that can
delay the appearance of senescent cells or can inhibit the senescent cell detrimental ef-
fects [151]. More recently, other therapeutic drugs have been developed to modulate the
proinflammatory senescent secretome (senostatics) [152]. Each of these therapies appear to
be helpful to delay aging and age-related diseases [152,153].

More importantly, in the cell–cell communication system during senescence devel-
opment, EVs act as regulators of several physiological processes and participate in the
development and progression of multiple diseases, including EVs delivered from senescent
cells in pathologies associated with premature aging such as CRS [154,155].
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Cells acquire a senescent phenotype due to the multifactorial causes of aging and
age-related diseases, and therefore some therapeutic approaches have been developed
to delay the accumulation and/or eliminate senescent cells. To date, the most important
treatments are antioxidants [156], senolytics, senomorphics, and senostatics [152,157], and
the intervention in senescence cell-associated EVs that serve as therapeutic targets and
tools [158]. Thus, studies related to the senescence field are essential for developing
drugs that can eliminate senescent cells. In addition, the modulation of intercellular
communication could also have a therapeutic potential to treat age-related diseases and
CVD and/or CRS.

3.1. Senolytics, Senomorphics, and Senostatics

In recent years, several studies have focused on designing and examining the potential
of selective drugs to delay premature aging associated with chronic inflammatory patholo-
gies, especially CRS, to decrease senescent cells’ accumulation in several tissue and organs
in aging. The main objective is to stop the harmful effects of senescent cells in the evolution
of chronic diseases.

Much effort has been recently made to therapeutically target detrimental effects of
cellular senescence, including selectively killing senescent cells (senolytics), delaying the
senescence-phenotype (senomorphics) [157], and modulating a proinflammatory senescent
secretome (senostatics) [152]. Whereas senolytics are drugs that can be dead cells that
target selectively senescent cells, senomorphics can modulate the secretory phenotype of
senescent cells. Therefore, these agents can delay or stop the senescence process. Senostatics
are drugs that slow or stop the process in the same way as senomorphics; their target is the
pro-inflammatory cytokines released by senescent cells. Thus, the clearance of senescence
cells through these drugs appears promising for the treatment of age-related diseases such
as CKD or CRS [152,153].

In the case of senolytic drugs, they mainly target proteins involved in apoptosis, such
as B-cell lymphoma 2 (Bcl-2) family members, phosphoinositol 3 kinase/protein kinase B
(PI3K)/AKT), and fork head box transcription factor-p53 (FOX04-p53) axis. These agents
induce the senescent cells’ apoptosis selectively. In this regard, some chemical compounds
could have a senolytic effect, as shown in Figure 2: (1) specific inhibitors of anti-apoptotic
BCL family proteins (ABT-263 or Navitoclax, ABT-737, A-1331852) and (2) unspecific
inhibitors of kinases (Dasatinib, Quercetin), which cannot distinguish between senescent
and normal cells, could therefore be associated with several undesired side-effects [157,159].
Recently, a new approach has been developed using nanocapsules whose cargo are senolytic
drugs (specific and unspecific) in mice to deliver to the senescent cells [157]. In this regard,
senotherapy was used to treat senescent cells’ accumulation in CVD, preventing disease
evolution [160]. In this sense, preclinical studies have focused on preventing or reversing a
wide range of aging and premature aging diseases, CVD associated-CKD, using senolytic
drugs [160]. However, the field is still new, and before administrating these drugs to
humans, clinical trials shall be conducted.

Another approach is senomorphics that delay SASP also referred to as SASP inhibitors.
In this case, SASP is characterized by a secretory phenotype between cytokines, chemokines,
and growth factors that mediate paracrine and autocrine signaling in the development
of senescence [20]. In this way, senomorphic drugs modulate the SASP and stimulate
the immune system to clear the senescent cells [161]. The target of the senomorphics
are kinases, pro-inflammatory mediators, mammalian target of rapamycin (mTOR), and
PI3K/AKT [157]. The main disadvantage of senomorphics is their unspecificity for senes-
cent cells. Nevertheless, some therapeutical drugs have been shown to modulate SASP in
CKD [161] (Figure 2):

• Metformin (used to treat type 2 diabetes mellitus): presents a role in diabetic nephropa-
thy because it attenuates age-related diseases through Nuclear Factor Kappa B NF-κB
inhibition [162].
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• Rapamycin (used as an immunosuppressor after organ transplant): treatment with
rapamycin delays death in an in vivo fibrotic kidney model of mice [163].

• Niacin and resveratrol activate sirtuin and inhibit NF-κB signaling, which is altered in
reduced kidney function [164,165].
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Finally, the senostatic approach prevents the progression of senescence, modulating
the senescent inflammation (Figure 2). Senotatics’ role is very similar to senomorphics
because they inhibit SASP indirectly. Remarkably, polyphenols with their antioxidant and
anti-inflammatory properties have been considered senostatics. Interestingly, resveratrol
could also be considered senostatic due to the fact that it inhibits senescent cells in car-
diovascular complications [166]. Moreover, some authors believed that senostatics such
as rapamycin, metformin, and statins had been shown to mitigate the pathological cell
senescence associated with atherosclerosis and CVD in humans [167].

In general, various therapeutic approaches, including senolytics, senomorphics, and
senostatics, have emerged as a strategy to mitigate/alleviate age-related diseases, among
them, CRS.

3.2. Antioxidants

In cardiac and renal disorder or CRS, CVD is the leading cause of death in CKD
patients [81]. ESRD is a terminal illness characterized by a high reduction of kidney
function and appears when the glomerular filtration rate is less than 15 mL/min. These
patients have been treated with dialysis. Patients in HD are the maximum exponent of
the oxidative stress and inflammatory situation in which the clinical evolution is fast.
CVD development in uremic patients involves complex oxidative stress, inflammation,
and endothelial dysfunction processes, resulting in CVD, such as atherosclerosis. Both
oxidation and inflammation increase for different reasons in HD, with uremic toxins playing
a decisive role [40]. Moreover, CKD-related pathologies increase ROS generation and, on
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the other hand, are associated with a defect in antioxidant machinery, both resulting in an
imbalance and accumulation of oxidative stress in the organism [81].

There is some evidence regarding the relationship of other uremic toxins (such as p-
cresol and indoxyl sulfate) with oxidative stress and inflammation. For example, it has been
demonstrated that ROS increases the Nuclear Factor Kappa-B (NF-κB transcription factor),
which regulates the synthesis of the proinflammatory cytokine [81,168]. Furthermore, the
increment of proinflammatory factors stimulates the immune system and kidney filtration
failure [169].

Some antioxidant compounds have been administered in CKD patients to prevent
illness related to CRS and its progression. Nowadays, melatonin, a tryptophan derivate,
appears in the list of uremic toxins described to date, although its role in CKD is unknown,
and its main role is as an antioxidant [138]. Moreover, to date, it has been shown that
exogenous melatonin administration inhibits oxidative stress in vivo [170]. Moreover, aging
is associated with increased ROS and a reduction of endogenous melatonin secretion [171].

Other tryptophan metabolites such as kynurenine, quinolinic acid, and kynurenic
acid are increased in CKD patients and play a key role in generating oxidative stress in
CKD. Moreover, these levels are associated with increased antioxidant enzymes and the
prevalence of CVD in patients with end-stage renal disease [170,172].

Recently, due to the important role of oxidative stress in the pathogenesis of aging and
premature aging diseases such as CRS, some studies have been conducted to investigate
the therapeutic approach of the antioxidants [5,173] (Figure 2):

• Vitamins A, C, and E: the higher intake of these vitamins lowers CVD risk and type 2
diabetes mellitus [173,174].

• Vitamin D: its deficiency is characteristic in CKD patients. This vitamin is important
in redox balance, endothelial function, and immunity. Moreover, vitamin D disorder
is associated with calcium phosphate disbalance and increased oxidative stress in the
pathogenesis of CKD [81]. For this reason, CKD patients are recommended to take
calcitriol.

• Coenzyme Q10: plays a role in the mitochondrial respiratory chain, and therefore,
oral administration is an antioxidant strategy in chronic pathologies associated with
mitochondrial dysfunction [175].

• Selenium: is involved in oxidative stress because some antioxidant enzymes are
selenoproteins. This element is essential to prevent inflammatory diseases, CVD,
diabetes mellitus, stroke, CKD, and cancer [176].

• Polyphenols: are derivatives from fruits, vegetables, and cereals. Quercetin and
resveratrol are present in red wine. Both act as antioxidants that prevent diseases
such as CVD, hypertension, diabetes mellitus, and cancer. Although this has not
been firmly established, they are known for their antioxidant and anti-inflammatory
properties [173,177].

• Physical exercise: aging and/or physical inactivity/sedentary lifestyle increase oxida-
tive stress, especially in skeletal muscle. A healthy, active lifestyle and regular and
moderate exercise are critical to maintaining an optimal state of health due to reduced
oxidative stress, and therefore, it is beneficial to prevent chronic diseases [178].

In general, it is highlighted that antioxidants therapies, vitamins, ions, polyphenols,
and physical exercise reduce the oxidative stress levels that used to be associated with
aging and premature aging, such as CRS. Moreover, these antioxidant therapies have been
shown to reduce the frailty incidence, but there is no lifespan extension [179].

However, clinical trials involving antioxidant supplementation in the treatment of
several aging-associated diseases often show conflicting results and lead to dangerous
misconceptions. Firstly, the linear dose-response relationship between increasing amounts
of ROS and biological damages is currently being replaced by a modernized view of
this theory that considers the so-called “mitohormesis” (a biological response where the
induction of a reduced amount of mitochondrial stress leads to an increment in health
and viability within a cell, tissue, or organism). Secondly, the genetic background of the
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patients enrolled in the studies should also be considered for the conflicting results. This
is because longevity depends not only on lifestyle habits but also on genetic background.
Lastly, controversies might also be due to many aspects, among which the often-limited
statistic power of the studies. The patient initial quantitative redox state, the bioavailability
of the molecules used, the non-specific effects that antioxidants might have in the human
body, and the validity of the biomarkers used to determine the effects of antioxidants on
human health should be taken into account [173].

Therefore, based on the factors mentioned above, the effect of the antioxidant therapies
should be re-evaluated and considered as a preventive therapy for aging and premature
aging-related diseases.

3.3. Extracellular Vesicles

Since the discovery that EVs can transfer biological information and mediate beneficial
effects, their use as drug delivery tool vehicles has gained scientific interest [180]. This
highlights that EVs may serve as diagnostic and therapeutic targets and tools [98]. Therefore,
in this section, we focus on discussing the role of EVs in the initiation and evolution of
chronic inflammatory diseases (EVs as a biomarker in the clinical diagnosis) and the recent
advances in EVs as a therapeutic target and therapeutic tool (Figure 2).

3.3.1. Extracellular Vesicles in Clinical Prognosis/Diagnosis as a Biomarker

EVs can be used as a clinical diagnostic biomarker in biological function, pathogenic
procedures, and pharmacological response; therefore, EV characterization, quantification
and biological cargo could be used by therapeutic intervention. There are some advantages:
(1) EV assessment is an analytical tool to quickly measure and evaluate their level in
blood or plasma, (2) These data are helpful to assess the risk or identify pathologies.
The disadvantages are: (1) EV evaluation requires blood extraction, which is an invasive
technique, and (2) EV parameter measurement could be expensive. Interestingly, EV
evaluation makes it possible to identify individuals with high pathological risk, diagnose
diseases, and treat patients [181–183]. In addition, EVs allow early detection and carry
out a therapeutic intervention before the disease progresses irreversibly or worsens in
atherosclerosis [181], in kidney diseases [181,183,184] and CRS [184].

We have represented in Table 1 that EVs participate in the etiopathogenesis of multiple
CVDs, particularly in the onset of kidney diseases [185]. Therefore, there is great interest
in evaluating the changes in EV levels in response to drug treatment [26,186]. On the one
hand, there is the possibility of acting at the production and release of EVs. On the other
hand, current difficulties which influence both processes should always be considered
because the cellular mechanisms involved are not completely clear [26,186].

3.3.2. Extracellular Vesicles as a Therapeutic Target (Therapeutical Approach)

Different studies have shown that specific pharmacological treatments targeting EVs
decreased their levels in CVDs [28,187,188]. Therefore, the premature aging associated with
these chronic inflammatory pathologies highlighted CVD-associated-CKD [28,189].

During CKD progression due to the accumulation of uremic toxins, EVs generated
from different cell types induce endothelial dysfunction because they are responsible for
increasing oxidative stress, reducing the bioavailability of nitric oxide, and producing
chronic cardiovascular inflammation [26,190]. Knowledge regarding their formation and
release represents an attractive therapeutic target to limit EV levels, but the release mech-
anisms are not fully elucidated. As far as we know, direct or indirect inhibition of EV
generation and/or liberation is a more effective proposal in CKD and other inflammatory
diseases [26,191].

The regulation of EVs release on plasma, or drug uptake by target cells, reduces
cardiovascular risk in inflammatory diseases, including CKD. Furthermore, these drugs
could mediate a reduction in EV concentrations in plasma, having a beneficial effect on the
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etiopathogenesis and the evolution of chronic diseases [26,187,191]. Some of these drugs
are described in Table 2.

Table 2. EVs are involved in the pathogenesis of CVD-associated-CKD.

EVs as Clinical Prognosis/Diagnostic Biomarker in Chronic Diseases

Origin (Cells) Species
Levels (Plasma)
↑: Increase
↓: Decrease

Diseases Effect References

Leukocytes
Platelets

Endothelial
Human ↑

Initiation and
progression of CVD

(associated with
inflammation)

Apoptosis/activation
platelets, leukocytes

erythrocytes, and
endothelial cells

Endothelial function and
angiogenesis

Inflammation and
thrombosis

[21,187]

Leukocytes
Platelets

Endothelial
Human ↑ Atherosclerosis (chronic

inflammatory)

Vascular injury
Inflammation

Pro-thrombotic state
[21]

Endothelial
Blood Human ↑

CKD
(including

cardiovascular events)
Chronic inflammation [26]

Platelets
Erythrocytes
Endothelial

Human ↑ Metabolic syndrome
(inflammatory diseases)

Metabolic complications
Vascular effects

Immuno-inflammatory
responses

[192]

Platelets
Endothelial Human ↑ Type 1 Diabetes Mellitus Inflammation

Autoimmunity [193]

Monocyte
subpopulations Human ↑

CKD on HD
(mainly people with

diabetes)

Progression of the CVD in
patients with CKD

CKD in HD patients with
DM

[101]

Senescent
endothelial cells

from plasma
elderly subjects

Human
(in vivo and

in vitro)
↑ Vascular calcification

Marker for atherosclerosis
Premature vascular

disease associated with
CKD

[20]

From
indoxyl-sulfate

treated endothelial
cells (studies

in vitro)

Human
(in vitro)

↑
(from culture
supernatant)

Vascular calcification in
CVD associated-CKD

Modulation of
pro-inflammatory genes in

VSMCs
Modulation of mediators
involved in calcification
progression in VSMCs

[189]

Endothelial Human ↑ CKD
Vascular inflammation

(acute or chronic)
Endothelial dysfunction

[194]

Moreover, different authors have highlighted the importance of diet on the release of
EVs, perhaps these being one of the mechanisms involved in the role of diet in the devel-
opment of cardiovascular pathologies [191,195]. In the case of flavonoids, they improve
endothelial function as they decrease the levels of endothelial EVs [181].

Another factor to consider is that some drug treatments and pathologies and their
comorbidities may change the biosynthesis and release of EVs, therefore, modifying their
capacity of interaction with the target cells and their subsequent effect in the subject [196].



Antioxidants 2022, 11, 78 14 of 29

3.3.3. Extracellular Vesicles as a Therapeutic Tool

EVs have been studied as a therapeutic tool to delay or treat many pathologies in the
last years. In this context, EV phenotypes and their origin, source, or parental cell are critical
due to their role in modulating cellular processes and mechanisms. The main reason is that
the cargo of EVs could be similar to the cell that generated it and depend on their features
to induce tissue repair after reprogramming the target cell [197]. Furthermore, all the EVs
contain various biomolecules with some properties: anticoagulant, anti-inflammatory [198],
and antioxidants [195,199,200]. Moreover, recent studies showed the beneficial effects of
EVs from the stem or progenitor cells in chronic inflammatory diseases which are associated
with premature aging (Tables 3 and 4).

Table 3. EVs as target (pharmacological modulation of plasma EVs).

Extracellular Vesicles as a Therapeutic Target (Therapeutical Approach)

Drugs Species
EVs Levels (Plasma)

↑: Increase
↓: Decrease

Diseases Beneficial Effect References

Antioxidants Human ↓

Inflammatory
pathologies:

atherosclerosis, CKD,
CVD, CVD

associated-CKD
Hemostasia disorders

Aging

Improved endothelial
function

↓ evolution of chronic
disease (CVD

associated-CKD)

[158,185,195]

Antioxidants Human ↓
Atherosclerosis

Diabetic patients
Dyslipidaemic patients

↓ endothelial injury
↓ platelet activation [187]

Erythropoietin
therapy Human ↓

(endothelial EVs) CKD in the end-stage ↓ shear stress [201]

Anti-atherosclerotic
drugs

(angiotensin-II
receptor antagonists

or blockers)

Human ↓ Hypertension patients
↓ endothelial injury
↓ coagulation
↓ inflammation

[196,202]

Statins Human ↓
CVD

(the process of
atherogenesis)

↓ cholesterol
↓ vascular

inflammation
↓ platelet aggregation

[187,203]

Simvastatin +
Losartan Human

↓
(monocyte-,

endothelial- and
platelet-EVs)

Patients with
hypertension

Patients with type 2
diabetes

↓ cholesterol
↓ endothelial injury
↓ coagulation
↓ inflammation

[187]

Peroxisome
proliferator-

activated receptor
(PPAR) activators

Human
↓

(platelet-derived
EVs)

DyslipidaemiaType 2
diabetes

Anti-inflammatory
properties [187]

Antiplatelet drugs
(Aspirin,

Clopidogrel)
Human

↓
(platelet- and

endothelial-derived
EVs)

Coronary disease ↓ platelet aggregation [187,202]

Angiotensin-
converting enzyme

(ACE) inhibitors
(Irbesartan)

Human ↓ atherosclerosis ↑ endothelial
progenitor cells [181]
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Table 4. EVs as treatment (therapeutical tool).

Extracellular Vesicles as a Therapeutic Tool

EVs Type
EVs Levels
↑: Increase
↓: Decrease

Effect Features References

Platelet ↑ ↑ endothelial
progenitor cells

Vascular endothelial
repair [98]

Endothelial ↑

Protein C
activation

(↓ thrombin and
↓ tissue factor)

Anticoagulant [198]

Endothelial ↑
↓ cytokine

expression (IL-6
and TNF-α)

Anti-inflammatory [198,204]

Extracellular Vesicles from the Stem or Progenitor Cells as a Therapeutic Tool

Treatment Model Effect/Properties References

EVs-Mesenchymal Stem Cell
(MSC)

cardiovascular
model in vitro
(Inflammatory

endothelial
damage)

↓ endothelial injury
Anti-inflammatory
Pro-angiogenesis
↓monocytes’

migration
Immunosuppressive

[197,205]

EVs-MSC Acute kidney
injury in mice

Anti-apoptotic
feature [197]

EVs-MSC Rat model chronic
liver fibrosis

Anti-fibrotic
Anti-inflammatory [197]

EVs from a different stem cell
(specially MSC-EVs)

Acute kidney
injury (AKI)

CKD

↓ inflammatory
response
↓ Fibrosis

↓ oxidative stress
↓ cell death

[206]

EVs-Adipose derived stroma cell
(ADSC) CRS ↓ cardiac fibrosis [207]

EVs from multiple origins CKD Antioxidant effect in
kidney diseases [180]

In general, the limitations of EVs as a therapeutic tool are (1) to obtain enough EVs,
which depend on the methods of EVs production and isolation, and (2) human therapy
requires a high number of EVs. In contrast, due to the ability of EVs to overcome natural
barriers, their cell communication properties, and their circulation stability, EVs can provide
multiple advantages as a drug delivery system currently available for targeted therapies.

3.3.4. Beneficial and Preventive Effects of Physical Activity and Diet in Cardiovascular and
Renal Diseases Mediated by EVs

Lifestyle interventions, such as diet and exercise, have benefits for healthy and dis-
eased people, for instance increasing lifespan and avoiding or delaying the onset of many
diseases [208–210] such as CVD. In this context, circulating EVs emerged as a signaling
mechanism to spread those benefits affecting many cell functions.

Concerning regular physical activity, it has been proven that it has benefits for healthy
and ill people, such as an increased lifespan and the avoidance or delay of diseases even
when the physical activity is started late in life [211–213]. Exercise does not only prevent the
onset of obesity, T2DM, CVDs (typically hypertension), Alzheimer’s, anxiety, depression,
fibromyalgia, rheumatoid arthritis, osteoporosis, bone, muscle, and joint disorders but also
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helps in the pharmacological treatment of these pathologies [214]. The benefits of exercise
affect all organs using a complex network of cytokines and messengers released by different
organs [215]. As circulating EVs carry signaling molecules or genetic material throughout
the body, they are an excellent mechanism to spread exercise-induced changes.

An increasing number of studies demonstrated changes in the profile of EVs after
exercise depending on the intensity and kind of physical activity performed [216–221].
One explanation for the positive effect of physical activity on health and disease is the
regulation of oxidative stress by EVs. miR-146 content in endothelial-derived EVs increased
with high-intensity interval aerobic exercise and endurance training [222]. miR-146 reduces
NADPH oxidase 4 (NOX4) expression, ROS generation, and inflammation in endothelial
cells [223,224]. Thirty-minute cycling at 70% VO2 peak for 8 weeks, increasing the intensity
over time, increases nuclear factor erythroid-2-related factor 2 (Nrf2) responses in young
and old participants [225]. Nrf2, a transcription factor, is a central regulator in oxidative
stress conditions. miR-93 and miR-145-5p reduce Nrf2 protein content in all tissues, and ex-
ercise decreases the EVs carrying them [226]. EVs can improve antioxidant and detoxifying
gene expression depending on their levels.

Moreover, exercise modulates immunosenescence and inflammaging through the
regulation of acetylcholinesterase activity, reducing the proinflammatory effect of Acetyl-
choline [227–229]. Remarkably, circulating exosomal miRNA profile showed cholinesterase-
targeting miRNAs identified in silico, specifically miR-148a, miR-16-2-3p, miR-28-5p, miR-
203-3p, and miR-218-5p, at baseline in endurance-trained elderly men, and miR-218-5p
increased immediately after a single bout in sedentary older men [230].

It was also proposed that aerobic exercise modulate aging and inflammation by
modulating circulating cytokines such as IL-1β. Aerobic exercise increased circulating
levels of EVs carrying IL-1β and decreased circulating free cytokine in experimental animals
preventing the proinflammatory action in aged mice [231]. The mechanisms described
above could explain the effect of aerobic exercise in humans.

As physical training prevents the development of obesity, huge efforts are being made
to find the drug to terminate it. Regular physical activity is a lifestyle strategy to improve
the quality of life and health of overweight people. As occurs with other pathologies, there
can be a role for EVs in obesity. High-intensity interval aerobic exercise increases some
miRNAs in EVs in overweight and normal-weight women [222]. It is known that one of
these miRNAs is increased in adipose tissue of high-fat diet animals [232], so its clearance
in EVs could prevent its effect in different tissues. miR-223-3p in circulating EVs increased
in acute and chronic exercise in obese and aged subjects [222,230]. miR-233 targets are
involved in developing obesity and T2DM [233]; therefore, improved clearance through
EVs by exercise avoids the development of these pathologies. Authors consider miR-233 in
circulating EVs a biomarker of obesity and an index of therapeutic responses or an indicator
of exercise efficacy in overweight and obese groups, including the elderly [234].

T2DM patients obtained benefits of physical training too. T2DM patients with coronary
artery disease, albuminuria, and microalbuminuria had higher levels of circulating endothe-
lial related EVs, monocyte-derived EVs, platelet-derived Evs, and EVs from endothelial
progenitor cells (EPCs) [235]. Increased circulating EVs from endothelial cells indicate
vascular injury progression, atherosclerosis, and nephropathy [124,236–238]. Higher lev-
els of platelet EVs indicate activation and risk of atherothrombosis and cardiovascular
events [239–241]. Increased monocyte-derived EVs augment the risk of atherothrombo-
sis, glomerular inflammation, and an increase of permeability and microvascular dam-
age [242,243]. EVs derived from endothelial progenitor cells carry miRNAs involved in
vascular repair [244]; therefore, the increasing levels indicate vascular damage. When
patients follow 12 months of the aerobic resistance training program, endothelial progenitor
cells derived circulating EVs are significantly increased, indicating a beneficial effect of
exercise in the vascular endothelium. In addition, EVs with procoagulant effects decreased.
In conclusion, the increased circulating EVs in T2DM with albuminuria and coronary artery
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disease is a marker of disease severity, and regular exercise has some beneficial effects in
these patients.

Circulating EVs can also mediate the beneficial effects of regular physical activity
in CVDs. For instance, miR-21 levels carried inside EVs increased with exercise [245].
miR-21 have many cardioprotective effects: favors a reparative and angiogenic macrophage
phenotype in the infarct zone [246], inhibits cell apoptosis [247], increases nitric oxide
synthase activity [208], and promotes angiogenesis by increasing expression of hypoxia-
inducible factor-1 (HIF-1α) and of vascular endothelial growth factor (VEGF) and activating
PTEN/AKT signaling [209].

Circulating EVs represent a cross-talking mechanism between cells in CVDs. For
instance, miR-342-5p carried by endothelial EVs is released and internalized by cardiomy-
ocytes inhibiting JNK2 apoptotic signal and increasing viability after hypoxia and re-
oxygenation [221]. Ischemic cultured cardiomyocytes secrete EVs carrying miR-122 and
miR-143, which promote angiogenesis in vivo [210]. miR-122 is upregulated in endurance-
trained healthy men and women [248], which is remarkable because it could bring to
light an exercise-dependent angiogenic role in humans. Moreover, EVs obtained from
trained coronary syndrome patients stimulated reendothelialization using aortic human
endothelial cells in culture [249].

Regarding other physiological interventions, diet is a lifestyle intervention that poten-
tially prevents many diseases. Similar to exercise, diet can have beneficial effects altering
EVs shedding, contents, and levels.

For instance, in the PREDIMED study, intake of a Mediterranean diet complemented
with nuts or extra-virgin olive oil reduced more prothrombotic EVs shedding from vascular
and blood cells in patients with high cardiovascular risk compared with a low-fat diet.
Therefore, the Mediterranean diet is more effective to decrease atherothrombosis in these
individuals [250].

On the other hand, polyphenols from berries, absorbed in the intestine and detected
in blood [251], can decrease oxidative stress [252–254] and inflammation [255,256], increase
NO production [257] and improve lipid profile [256,258]. Due to those effects, dietary
berries are considered beneficial for preventing CVDs [259]. A group of patients with
myocardial infarction supplemented with bilberry extract every day for 8 weeks reduced
endothelial and platelet vesiculation and vesicle gene transcription [260]. A mixture of
berries extracts decreases platelet aggregation and granule secretion [261–263]. In addition,
anthocyanins, entering endothelial cells from plasma, decreased vesiculation, oxidative
stress, and inflammatory and procoagulant state activation [264–267].

In summary, changes in circulating EVs cargo could be one of the mechanisms by
which exercise produces beneficial effects in health and disease at any age. Therefore,
deep knowledge about these changes could be used as biomarkers of efficacy and exercise
recommendation. In addition, the ability of diet and some components of food-derived
molecules to avoid the increase of EV levels involved in atherosclerosis and other CVDs
could explain their preventive effect.

4. Conclusions

Oxidative stress, senescence, and inflammation are related to aging. As a result, aging
is accompanied by an increased prevalence of age-related chronic diseases, and one of the
most prevalent are CVDs, including hypertension, atherosclerosis, and heart failure. In ad-
dition, oxidative stress, senescent cells accumulation, and the chronic inflammatory process
increase the susceptibility to these diseases in the elderly. Furthermore, due to the growth
of the elderly population and the increase of other risk factors such as diabetes mellitus,
obesity is expected that age-related chronic increase by 10% over the next 20 years [30,32].
Therefore, it seems necessary to improve strategic actions to delay aging and age-related
diseases and increase the research efforts to understand the biological mechanisms under-
pinning age-related chronic diseases. In this regard, it has been suggested that EVs could be
both novel clinical biomarkers and new therapeutic targets for age-related diseases. Despite
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the fact that their characterization and classification are still updating, their cargo and their
origin may be helpful as specific biomarkers in pathologies associated with aging such as
CRS. Moreover, recent studies have shown that EVs could be applied as a therapeutic tool
to inhibit or delay the development of age-related chronic diseases.
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