
List of Publications

Article 1

Title: Energy-Efficient Acoustic Violence Detector for Smart Cities

Authors: Marta Bautista-Durán, Joaquín García-Gómez, Roberto Gil-Pita, Inma
Mohino-Herranz, Manuel Rosa-Zurera

Journal: International Journal of Computational Intelligence Systems (IJCIS)

• Year: 2017

• Volume: 10. Issue: 1

• Pages: 332-349

• ISSN (online): 1875-6883. ISSN (print): 1875-6891

• License: Open Access under the CC BY-NC license

• D.O.I.: https://doi.org/10.2991/ijcis.10.1.89

Ranking:

• JCR (2017): 2

• Quartile Rank - Computer Science, Artificial Intelligence: 54/132 (Q2).

• Quartile Rank - Computer Science, Interdisciplinary Applications: 49/105 (Q2).

Contribution to the article: The doctoral student has contributed to the whole
development of this publication, including the conceptualization of the problem,
methodology, creation of the dataset, software programming, analysis of the results,
and writing.



Article 2

Title: Cost-constrained Drone Presence Detection through Smart Sound Processing

Authors: Joaquín García-Gómez, Marta Bautista-Durán, Roberto Gil-Pita, Inma
Mohino-Herranz, Miguel Aguilar-Ortega, César Clares-Crespo

Book: Proceedings of the 8th International Conference on Pattern Recognition Ap-
plications and Methods (ICPRAM)

• Year: 2019

• Volume: 1

• Pages: 766-772

• ISBN: 978-989-758-351-3

• D.O.I.: 10.5220/0007556007660772

Contribution to the article: The doctoral student has contributed to the whole
development of this publication, including the conceptualization of the problem,
methodology, creation of the dataset, software programming, analysis of the results,
and writing.



Article 3

Title: Analysis of the performance of Evolved Frequency Log-Energy Coefficients in
Hearing Aids for different Cost Constraints and Scenarios

Authors: Joaquín García-Gómez, Inma Mohino-Herranz, César Clares-Crespo, Al-
fredo Fernández Toloba, Roberto Gil-Pita

Library: AES E-Library. 145th AES Convention

• Year: 2018

• Paper number: 10111

• ISBN: 978-1-942220-25-1

• D.O.I.: https://doi.org/10.17743/aesconv.2018.978-1-942220-25-1

Contribution to the article: The doctoral student has contributed to the whole
development of this publication, including the conceptualization of the problem,
methodology, software programming, analysis of the results, and writing.



Article 4

Title: Linear detector and neural networks in cascade for voice activity detection in
hearing aids

Authors: Joaquín García-Gómez, Roberto Gil-Pita, Miguel Aguilar-Ortega, Manuel
Utrilla-Manso, Manuel Rosa-Zurera, Inma Mohino-Herranz

Journal: Applied Acoustics

• Year: 2021

• Volume: 175

• Article number: 107832

• License: Open Access under the CC BY-NC-ND license

• D.O.I.: https://doi.org/10.1016/j.apacoust.2020.107832

Ranking:

• JCR (2019): 2.44

• Quartile Rank - Computer Science, Artificial Intelligence: 9/32 (Q2).

• Quartile Rank - Acoustics: 49/105 (Q2).

Contribution to the article: The doctoral student has contributed to the whole
development of this publication, including the conceptualization of the problem,
methodology, software programming, analysis of the results, and writing.



Article 5

Title: Smart Sound Processing for Defect Sizing in Pipelines Using EMAT Actuator
Based Multi-Frequency Lamb Waves

Authors: Joaquín García-Gómez, Roberto Gil-Pita, Manuel Rosa-Zurera, Antonio
Romero-Camacho, Jesús Antonio Jiménez-Garrido, Víctor García-Benavides

Journal: Sensors. Special issue “State-of-the-Art Sensors Technology in Spain 2017”

• Year: 2018

• Volume: 18. Number: 3

• Article number: 802

• Pages: 1298-1305

• ISBN (pdf): 978-3-03842-960-9. ISBN (pbk): 978-3-03842-959-3

• License: Open Access under the CC BY-NC-ND license

• D.O.I.: https://doi.org/10.3390/s18030802

Ranking:

• JCR (2018): 3.076

• Quartile Rank - Instruments & Instrumentation: 13/61 (Q1)

• Quartile Rank - Physics, Applied: 42/148 (Q2)

• Quartile Rank - Engineering, Electrical & Electronic: 87/266 (Q2)

Contribution to the article: The doctoral student has contributed to the whole
development of this publication, including the conceptualization of the problem,
methodology, taking of measurements, software programming, analysis of the results,
and writing.



Doctoral student declaration

The doctoral student Joaquín García-Gómez states that the publications which sup-
port this thesis have not been used previously by other researchers as an endorsement
of other compendium doctoral theses.

Alcalá de Henares, 5 de marzo de 2021.

Fdo. D. Joaquín García Gómez



Abstract

Smart cities are places that try to implement new technologies and ideas in a sus-
tainable and intelligent way to obtain benefits in a wide range of areas, focusing on
creating social improvements, economic growth and new oportunities. In this the-
sis, four applications that can contribute to the improvement of the quality of life
of people and must be present in this kind of spaces are researched: violent situa-
tion detection, drone presence detection, voice activity detection in hearing aids and
pipeline defect assessment. All of them can help in solving issues related to public
security, welfare, social inclusion and natural resources management, among others.

To develop these applications, different types of data can be obtained from the cities,
including audio, video, radar or radio-frequency signals. Acoustic signals are a rich
source of study due to the large amount of information they provide about the en-
vironments that surround us, and for that reason they have been considered in this
thesis. Furthermore, the advantages of microphones compared to other devices like
video cameras are numerous, such as their smaller size, consumption and price, their
tolerance to adverse environmental conditions, or their capability to provide an onmi-
directional sensing.

In this thesis, machine learning techniques are developed to detect different sound
events in those signals. A typical pattern recognition scheme is presented in all the
systems, including feature extraction, feature selection and detection stages. These
processes are restricted in terms of computational cost, since the number of operations
carried out in a microprocessor is directly related to the consumption of the device,
and we want the systems to work autonomously to the extent possible. For this
reason, and as massive datasets are not generally available in these issues, more
complex techniques such as deep learning have been avoided.

Promising results are obtained along the thesis, and we can conclude that it is possible
to apply computationally constrained sound event detection techniques to the four
applications mentioned above, reaching a balance between consumption and perfor-
mance. Furthermore, additional optimization techniques based on cascade-detectors
seem to be useful when dealing with very restrictive devices such as hearing aids.



Resumen

Las ciudades inteligentes son lugares en que se tratan de implementar nuevas tec-
nologías e ideas de manera sostenible e ingeniosa, con el objetivo de conseguir mejo-
ras en una gran variedad de ámbitos, destacando especialmente la consecución de
mejoras sociales, crecimiento económico y nuevas oportunidades. En esta tesis se
han investigado cuatro aplicaciones que pueden ayudar a mejorar la calidad de vida
de las personas y que deberían estar presentes en este tipo de lugares: la detección de
situaciones violentas, la detección de presencia de drones, la detección de actividad
vocal en audífonos y el análisis de defectos en tuberías. Todas ellas pueden contribuir
a resolver problemas relacionados con la seguridad pública, el bienestar, la inclusión
social y la gestión de recursos naturales, entre otros.

Existen gran variedad de datos presentes en las ciudades que pueden ayudar a desar-
rollar estas aplicaciones, como señales de audio, vídeo, radar o radiofrecuencia. Las
señales acústicas son una valiosa fuente de estudio, ya que proporcionan una gran
cantidad de información acerca de los entornos que nos rodean, y por esta razón han
sido consideradas en esta tesis. Además, son muchas las ventajas de los micrófonos en
comparación con otro tipo de dispositivos como las videocámaras: tienen un tamaño,
consumo y precio menores, poseen una tolerancia mayor a condiciones ambientales
adversas, y permiten grabar de forma omnidireccional.

En esta tesis se han desarrollado técnicas de aprendizaje automático para detectar
eventos sonoros en las señales. En todas las aplicaciones se ha implementado un sis-
tema de reconocimiento de patrones que incluye las fases de extracción de caracterís-
ticas, selección de las mismas y detección. Estos procedimientos se han restringido en
cuanto a coste computacional, ya que el número de operaciones que lleva a cabo un
microprocesador se encuentra directamente relacionado con el consumo del disposi-
tivo, y se desea desarrollar sistemas que trabajen de forma autónoma en la medida
de lo posible. Por esta razón, y dado que generalmente no existen bases de datos
extensas en estos campos, se ha evitado el uso de técnicas más complejas como el
aprendizaje profundo.

A lo largo de la tesis se han obtenido resultados satisfactorios, y se puede por tanto
afirmar que es posible aplicar técnicas de detección de eventos acústicos restringidas
en términos computacionales a las aplicaciones mencionadas anteriormente, alcan-
zando un equilibro entre consumo y rendimiento. Además, la aplicación de técnicas
de optimización adicionales basadas en detectores en cascada ha demostrado ser útil
en un dispositivo final restrictivo, como es el caso de un audífono.
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Chapter 1

Introduction and scope

1.1 Introduction

The idea of a smart city appeared for the first time in (Heng and Low, 1993), when Singapore
presented itself as an “intelligent city”. From that moment, different organizations and authors
have raised several definitions and understandings of this concept. In (Giffinger et al., 2007), the
authors presented a smart city as a place that performs its activity by intelligently combining the
industry, education, citizen participation and technical infrastructure fields to serve its citizens.
Later, IBM company defined a smart city as an instrumented, interconnected and intelligent city
(Harrison et al., 2010): instrumented city because it must collect and integrate real data in real
time from sensors, applications, personal devices, etc; interconnected city because all these data
must be integrated into a computing platform to provide a set of services; and intelligent city
because complex elements are required to meet this objective, including analytical calculations,
modelling, optimization and visualization of services. Another famous definition was made by
the authors in (Hancke et al., 2013), who considered a smart city as a city that operates in a
sustainable and intelligent way, so that all the infrastructure and citizen services are integrated,
and smart devices are used for monitoring and control.

To this day, and due to the fact that the smart city concept is relatively recent, it is not
completely clear which technologies and ideas must be considered in their development, since
this concept covers a large number of fields and technologies. One thing is clear: smart cities
must implement the latest technologies to obtain benefits in a wide range of areas, focusing on
creating social improvements, economic growth and new opportunities (Chamoso et al., 2018).
And what is probably more important is that the final beneficiary in most of the perceptions of a
smart city is the citizen: the main focus is “people first and foremost” (Boulos et al., 2015). This
will be beneficial for the vast majority of people, since forecasts indicate that by 2050 around
two-thirds of the world’s population will live in urban areas (6 billion people of the world’s total
9.7 billion people) (State of Green, 2020, United Nations, 2018).

The technologies that are part of a smart city can and must be applied to a wide range of
aspects of the daily life of an urban area. For clarity, it is necessary to classify the different
services that are usually available in a city. Authors in (Neirotti et al., 2014) provided a very
clear and cohesive classification of them depending on the domain they belong to:

• Natural resources and energy domain: smart grids, lightning, renewable energies, waste
management, water management, food and agriculture.

• Transport and mobility: city logistics, mobility information, mobility of people and services
exposing district information models.

2
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• Smart building: facilities management, construction services and housing quality.

• Daily life: entertainment, hospitality, pollution control, public security, health, welfare,
social inclusion, culture and management of public spaces.

• Government: e-governance, e-democracy and transparency.

• Economy and society: innovation and entrepreneurship, cultural heritage management,
digital education and human capital management.

In this thesis, four different applications that can contribute to improving the quality of life
of people and must be present in this kind of spaces have been researched. In the following
lines, they will be briefly described and classified into one or more domains from the previous
classification.

• Violent Situation Detection (VSD). The public security issue, which is included within
the daily life domain, tries to protect citizens and their belongings based on the active
involvement of public organizations, the police, and even citizens themselves, including the
collection and monitoring of information for crime prevention (Khan et al., 2014). A system
capable of detecting when a violent situation is taking place in a public space (streets) or
private space (home) would be extremely useful in a smart city. The idea is to detect the
first signs of violence, such as a heated argument or the start of a physical fight between two
or more people, avoiding the fatal end that these situations can imply, from serious injuries
to the death of a citizen. In addition, this application can help to the improvement of the
transport and mobility domain, particularly the mobility of people, since crime situations
could be mitigated in public transport, avoiding disorders in the bus, the train or the
underground, and ensuring the security and tranquility of all the passengers.

• Drone Presence Detection (DPD). City logistics issue, which is included within the trans-
port and mobility domain in smart cities, tries to improve the logistics by efficiently inte-
grating business needs with traffic, geographical and environmental conditions (Nowicka,
2014). Related to this topic, it seems evident that unmanned aerial vehicles, also known as
drones, will be present in these futuristic cities. They will play some important roles, such
as delivering goods and merchandise, serving as mobile hot spots for broadband wireless
access, and maintaining surveillance and security (Vattapparamban et al., 2016). How-
ever, they could also be used by malicious entities or people to produce physical or cyber
attacks, or to threaten the society with an invasion of privacy of the citizens and public
administrations. Because of that, a system capable of detecting drones and checking if their
flights are permitted or not will be necessary to ensure the public security issue previously
mentioned, allowing the protection of citizens and their belongings.

• Voice Activity Detection in Hearing Aids (VADHA). The daily life domain includes the
welfare and social inclusion group, which tries to improve the quality of life by stimulating
social learning and participation, with particular attention to certain groups of citizens,
such as the elderly and people with disabilities (Hussain et al., 2015). In this sense, people
who suffer from hearing losses with varying degrees of severity must have access to intel-
ligent devices capable of overcoming this deficiency. Hearing aids are devices with limited
battery life, so it is essential that they include algorithms capable of detecting whether
a conversation to which the user belongs is taking place. In this way, the device can be
activated when this event occurs, and it can hibernate and save power otherwise. Although
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Figure 1.1: Illustration of the four applications in a hypothetical smart city. Source: Own elabo-
ration from freepik vectors.

PDA

DPD

VADHA

VSD

this application has been included inside welfare and social inclusion groups, it provides
benefits that go beyond them, since it allows people with this disability to access mobility
information, entertainment, culture, etc.

• Pipeline Defect Assessment (PDA). The natural resources and energy domain includes the
renewable energy group, which will try to exploit natural resources that are regenerative
or inexhaustible, such as heat, water or air (González-Briones et al., 2018, Viitanen and
Kingston, 2014). In 2018 renewables made up 26% of global electricity generation, and it is
expected to reach 45% by 2040 (Murdock et al., 2019). Thus, it appears to be distant when
this kind of energy production will be fully implemented around the world. Until then, gas
and oil must be carried through pipelines buried underground and underwater along the
countries and cities, which requires a certain maintenance. Furthermore, similar pipelines
also distribute water, one of the most critical resources together with electricity. Nowadays,
these distribution systems are non-intelligent, and sometimes it is tricky to diagnose the
system early enough to detect a leak in one of the distribution pipes, especially if it is not
readily visible (Hancke et al., 2013). In this kind of cities, it would be useful to implement
advanced sensing capable of monitoring the condition of those pipelines, in order to detect
whether corrosion and defects are appearing on them. In this way, the maintenance teams
could repair the materials before a gas, oil or water leak happens, reducing costs and
avoiding power and water cuts, which can affect to the citizens and companies.

In Figure 1.1, an illustration of a smart city is presented to aid the reader in identifying the

https://www.freepik.es/
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four applications. It can be observed a fight that has started between two people, a drone which
is surrounding public administration buildings, two elderly people who are using hearing aids to
communicate with each other, and an underwater pipeline that needs to be repaired. The VSD
system has alerted the policeman to the fight, the DPD has warned the authorities about the
presence of an unauthorized drone, the VADHA provides the two elderly people with a better
listening experience just when a conversation is taking place, and the PDA system has allowed
the maintenance company to know where the defect is located along the pipeline.

To carry out the tasks mentioned above, it is necessary to have data that allow us to detect
whether these events are taken place or not. The type of data that can be used varies across the
applications: audio, video, radar, radio frequency or temperature signals, among others. This
thesis has researched how acoustics signals can contribute to those applications in two different
ways: the use of sounds (in VSD, DPD and VADHA) and ultrasounds (in PDA). The following
paragraphs review the state-of-the-art related to event detection with audio signals, both in a
general way and specifically in each application.

1.2 State-of-the-art

In recent years, machine learning and signal processing advances have contributed to the devel-
opment of new techniques for Sound Event Detection (SED). This field has an excellent potential
for many applications, as well as many research challenges. The reason why sounds provide such
a rich source of study is that this kind of signals carry a great amount of information about the
environments that surround us, including both individual physical events and sound scenes as a
whole (Virtanen et al., 2018). This becomes clear when we imagine ourselves with our eyes closed
standing in the street of an urban area. We would probably listen to other pedestrians walking
on the sidewalk, the sound emitted by the vehicles in a traffic jam, or the kids playing in a
nearby park. But what if a discussion or a fight starts between two people? And if a drone starts
flying around us? Would we be capable of recognizing when a person starts talking to us? The
answer to all these questions must be an unequivocal ‘yes’. We should be able to identify these
situations without needing to open our eyes and use the visual information that they provide to
us. Consequently, an artificial intelligence system that processes the same information should be
able to extract the same conclusions as ourselves, with the difference that they should use the
signals recorded by microphones, or other devices, instead of the ones received by the ears.

Ultimately sound is an important source of information about the events that happen in urban
life. The growing development of acoustic sensor networks means that urban sound monitoring
is becoming an increasingly appealing alternative, or a complement, to video cameras and other
forms of environmental sensing. This is due to the significant benefits that microphones provide
compared with video cameras. Firstly, microphones are generally less expensive and smaller than
video cameras, so they can be more easily placed anywhere. Secondly, environmental conditions
(daily changes in light, fog, pollution or rain) affect negatively to the visibility, making the quality
of the video camera signal worse, while the quality of the microphone signal remains intact in
this sense. Thirdly, sound is less susceptible to occlusion, since it can travel through obstacles
even if diffraction effects cause scattering in the signal. Unfortunately, the same does not happen
when something or someone appears on the scene between a video camera and the situation of
interest. Fourthly, microphones are capable of providing omni-directional sensing, while video
cameras can hardly record a panoramic view bigger than 180◦. Finally, one of the most important
advantages of microphones is their small consumption compared with video cameras. It means
that if these devices are programmed to work autonomously because they can not be directly
connected to a power source, or they are powered by a solar cell, or the city just needs to be less
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polluting, the battery of the microphones will last much longer.
Regarding this last issue, it must be considered that the elements of a smart city must

be effective and innovative enough to avoid being harmful to the environment (Chamoso et al.,
2018). The way we can make these devices less polluting is directly related to their consumption,
apart from feeding them with renewable sources of energy instead of carbon-based ones, which
lies outside the scope of this thesis. For this reason, the algorithms presented in this study are
constrained in terms of computational cost, and the computational cost parameter goes hand in
hand with the final consumption of the device. This will make it easier for the resulting devices
to extend their battery life, that is, to increase their autonomy. We will see further on how the
computational cost has been controlled in the different applications, depending on the available
resources of each of them.

Furthermore, approximately half of the world’s population has a smartphone with a mi-
crophone (3.5 billion people according to December 2020 statistics (O’Dea, 2020), out of 7.8
worldwide citizens). This fact makes easier the deployment of these applications in a hypotheti-
cal future where microphone signals could be used for smart cities purposes. In this assumption,
microphones from the users could continue providing information even when the citizens carried
them in their pockets, which would not be the case with video cameras. However, it is too early
to state whether it will be possible, since issues related to the right to privacy and the right to
anonymity should be discussed previously.

Once the type of signals used in this thesis has been defined, it is important to define the
term ‘sound event’ before continuing. A sound event is a specific sound produced by a distinct
physical sound source that typically has a well-defined, brief, duration in time (e.g., a car passing
by, a bird singing, or a doorbell). This concept must be differentiated from the ‘sound scene’
one, which refers to the entirety of sound formed by sounds from various sources (e.g., the sound
scene of a street, which contains cars passing by, footsteps, people talking, etc.). A sound event
can be classified or detected, which consists in locating in time the occurrences of a specific type
of sound by finding all the temporal positions when the sound is active. In this thesis, SED will
be the subject matter, resulting in two different classes in each dataset: occurrence of the event
(‘1’ or ‘positive’) or absence of event (‘0’ or ‘negative’) (Virtanen et al., 2018).

As stated at the beginning, SED requires using several techniques related to machine learning.
The term ‘machine learning’ was first coined in the ’50s, and it referred to the transfer of
intelligent activities made by human to machine (Guyon et al., 2008). Since that moment, the
research efforts have focused on finding and extracting relationships in data. This methodology
can be applied in every task defined by a series of examples or cases rather than by predefined
rules. Another definition for machine learning is the subset of artificial intelligence that builds a
mathematical model based on sample data (“training set”) to make predictions or decisions (our
case) in a new set of data (“test set”) (Zhang, 2020).

The implementation of SED techniques differs quite considerably between the four applica-
tions due to the peculiarities of each of them. Because of that, the review of the state-of-the-art
will be presented separately, starting with the literature of VSD in Section 1.2.1, continuing with
the state-of-the-art of DPD in Section 1.2.2, addressing later the literature of VADHA in Section
1.2.3, and finishing with the state-of-the-art of PDA in Section 1.2.4.

1.2.1 State-of-the-art in VSD

Many people suffer from violence issues every day in society, and statistics show this number has
maintained or almost increased recently. The first that must be determined when addressing this
problem is the definition of the term ‘violence’, since each person could understand it in a different
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way. The World Health Organization defines violence as “the intentional use of physical force or
power, threatened or actual, against oneself, another person, or against a group or community,
which either results in or has a high likelihood of resulting in injury, death, psychological harm,
maldevelopment, or deprivation” (Krug et al., 2002). Other related works define violence in
very diverse ways, principally referring to the physical act itself. Some examples are: “physical
violence or accident resulting in human injury or pain” (Penet et al., 2012), “a series of human
actions accompanying with bleeding” (Chen et al., 2011), or “any situation or action that may
cause physical or mental harm to one or more persons” (Giannakopoulos et al., 2006). However,
anything produced in an injurious or damaging way might be described as violent, even if there
is no implicit physical effect. Depending on the nature of violence, it can be classified into
physical, psychological or even sexual violence. Nowadays, women and children are the largest
and most vulnerable group of victims. Referring to the first one, recent researches show that
35% of women around the world have suffered physical or sexual violence during their lives
(World Health Organization et al., 2019), and 43% of women from the European Union declared
suffering psychological violence at least once (FRA-European Union Agency for Fundamental
Rights, 2014). On the other hand, lots of children are abused every day in the schools. In
2016, more than 9% of students from Spain suffered from bullying, and approximately 21% were
usually insulted (Trueba Sánchez et al., 2016). These statistics demonstrate how these situations
continue being relevant at present, and this problem must be treated to prevent the tragic end
that sometimes takes place.

Studies in the literature have tried to find a solution to this problem previously, some of them
using both audio and video signals. They have applied MFCC-based audio and advanced motion
features (Chen et al., 2011), or SVMs for action scene detection and bloody frame detection (Acar
et al., 2016), and the results obtained with the combination of those sources seem to be efficient.
However, as stated at the beginning of this thesis, the main disadvantages of video are its high
computational cost and intrusiveness, and its poor coverages. Furthermore, audio and video have
been tested in the literature separately and in combination (Dias, 2016). Their conclusions show
that the system works properly using just audio source. When video information is added, the
performance improves slightly, but computational cost increases in a big way. In the state-of-the-
art, other proposals where audio is used to detect violence by itself can be found (Giannakopoulos
et al., 2006), since violent situations are commonly accompanied by signs like arguments, shouts
or an increase in the volume of the conversation. However, they tested a small dataset (only 20
minutes of audio).

Related to the data used, some problems were found in the datasets available in the literature.
In (Jain and Vishwakarma, 2020), a review of the most popular datasets for violence detection
is made, including 15 different video datasets from 2004 to 2017, and in (Ramzan et al., 2019) a
review of the state-of-the-art violence detection techniques is carried out. The main conclusion
from those studies is that artificial vision techniques have been highly extended, so the datasets
available usually implement video-features more than audio-features, and in most of them the
images are recorded with surveillance cameras, which sometimes do not include audio informa-
tion. Other datasets are composed of videos from films or games, which have been recorded
in optimal conditions with pretended violence (Nievas et al., 2011, Perperis et al., 2011, Schedi
et al., 2015, Sjöberg et al., 2014). Another problem is that in some datasets, the definition of
violence is directly related to the appearance of gunshots or blood in a sequence, which differs
significantly from the objective pursued in this thesis.
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1.2.2 State-of-the-art in DPD

Unmanned aerial vehicles, also known as drones, are extensively used in nowadays societies due
to the advantages they provide, and they are expected to play a major role in connected smart
cities in the future, including tasks like package delivery, traffic monitoring, policing, drone taxi,
ambulance services, firefighting, rescue operation, etc. (Khan et al., 2018). However, people
sometimes misuse them, trying to invade the privacy of others or bypass the security systems
(Altawy and Youssef, 2016). A recent example is the drone that crashed on the White House in
January 2015, causing a brief lockdown (Miller, 2015). Officials said that the device was a two-
foot wide remote-controlled quadcopter that is sold in stores. More recently, a drone bypassed
all security efforts in Puerta del Sol (Madrid) last New Year’s Eve, when the square was almost
empty due to Covid-19 restrictions (Keane, 2021). This device carried a black ribbon along with
a Spanish flag and appeared during the TV broadcasting.

For all these reasons, it is essential to develop a system capable of detecting the presence of
drones in particular environments where they can be used for malicious purposes, such as house-
holds, public buildings, or restricted-access areas. In the state-of-the-art there are many studies
that deal with this issue (Ganti and Kim, 2016). In general, this problem can be approached
using different data sources, like radar information, radio frequency, video, or even audio signals.
All of them have some drawbacks. Some manuscripts use radar signals for aircraft detection
(Drozdowicz et al., 2016), but the small size of the drones complicates the task. Related to
radio frequency based methods, they are useful for the problem at hand, since radio frequency is
the communication mode used between drones and the remote controller (Nguyen et al., 2016).
However, the use of Wi-Fi range (2.4-5 GHz) in no-license channels causes the appearance of
high interferences. Talking about temperature-based detection (Farlik et al., 2019), it is an effi-
cient solution if the drone uses a propulsion engine, which usually appears in fixed-wing drones.
However, most current drones are made of plastic and their electric engines do not radiate much
heat. Video disadvantages were explained previously in this thesis, but it appears an additional
difficulty when distinguishing between drones and birds, even after including bird flight patterns
that drones do not follow (Ganti and Kim, 2016).

Some proposals have based their study on audio information, mixed or not with video. Au-
thors in (Case et al., 2008) propose using an array of microphones and an infrared camera to get
the information. They try to trace the path followed by the drone through beamforming tech-
niques. Others use only one microphone (King and Faruque, 2016), but they focus on detecting a
particular model of drone, so the results could not be generalizable. In other manuscript (Ganti
and Kim, 2016), the authors analyze video information to detect the difference between frames,
and in this way they track the drone movement, while they use audio information for detecting
the vehicle with a threshold in frequency. The problem is that it is not very effective when
background noise is high. In addition, audio appears to be more reliable for detecting drones
according to some studies (Liu et al., 2017).

For several reasons such as privacy, it is difficult to find public drone audio datasets in the
literature. Recently a dataset was uploaded (Al-Emadi et al., 2019), but it only included 662
s of drone sound from tbe Parrot Bebop and Parrot Mambo models. The authors doubled the
duration of the dataset by adding background noise to them, and other unknown sounds were
included too.

1.2.3 State-of-the-art in VADHA

Hearing loss is a common issue, especially when people become older and start to suffer from
hearing impairment (Meister et al., 2015). It is a problem that affects over 5% of the world



1.2. State-of-the-art 9

population, having the largest impact on people over 65 years old (one-third of them has a
loss greater than 40 dB) (World Health Organization, 2020). This issue has several health
implications, including social isolation, depression, altered physical function, reduced activity
participation, falls, greater cognitive decline, and higher risk of dementia (Amieva et al., 2018).
To provide these people a better quality of life, hearing aid devices are the best option, as their
use has a positive impact on long-term cognition (Amieva et al., 2015). However, these devices
must present several restrictions due to the consumption and real-time processing requirements.
Firstly, the computational capability of the device and the number of assembled components
must be restricted to satisfy the battery life requirements. Secondly, the processing algorithms
must present a low-delay, which in numerical terms cannot exceed 20 ms (Stone and Moore,
2002). All the mentioned characteristics must be taken into account during the design process
of these devices (Gil-Pita et al., 2017). For example, the low-delay requirement limits the length
of the time frame in the time-frequency analysis, therefore limiting the frequency resolution.

Several algorithms are presented in hearing aids, including feedback cancellation, environment
classification or speech enhancement (Gong and Xia, 2015, Lee et al., 2017). However, all of
them depend on the VAD algorithm, which allows differentiating between conversations and
noise. The field of VAD is plenty of research in the literature: some authors used a decision-
directed parameter estimation along with Hidden Markov Model (HMM) (Sohn et al., 1999);
others measured the Long-Term Spectral Estimation (LTSE) between speech and noise, and
compared the envelope to the average noise spectrum (Ramırez et al., 2004); in (Wisdom et al.,
2015), the second-order non-circularity of speech and noise complex subbands is used; authors
in (Mukherjee et al., 2018) used features based on Line Spectral Frequency (LSF) along with
extreme learning classifiers; a smartphone app was developed in (Sehgal and Kehtarnavaz, 2018)
for real-time VAD with Convolutional Neural Networks (CNNs); a Deep Neural Networks (DNN)
based model was implemented in (Kim and Hahn, 2018); just to mention a few. Recently, a study
compared a large number of previous proposals and showed that, despite the usefulness of a long
temporal context and a look-ahead for VAD, they require much more CPU consumption than
the available for off-the-shelf hearing aids (Graf et al., 2015)

VADHA issue has already been studied in the literature too. In (Gil-Pita et al., 2015), the
authors proposed a computationally efficient system for sound environment classification and
VAD, which provided a proper classification of some audios into speech, music and noise. They
considered the computational limitations previously stated, and because of that, they proposed
a novel set of designed features inspired in the MFCCs, denominated Evolved Frequency Log-
Energy Coefficients (EFLECs). These coefficients achieve a performance equivalent to the MFCC
one, but reducing the computational complexity. This is achieved by using uniform filters instead
of triangular ones, removing the Discrete Cosine Transform (DCT) block, and applying evolutive
algorithms to select the limits of the frequency bands where the filters are distributed, instead
of using the standard Mel scale.

1.2.4 State-of-the-art in PDA

It is estimated that the length of the oil and gas pipelines worldwide is higher than 3.5 million
kilometers (CIA, 2019). During their useful life, some failures can take place, including corrosion,
weld defects and third-party damage. The first of them is the most common, being the first cause
of failures according to studies from Europe (European Gas Pipeline Incident Data Group, 2015),
United States (Wang et al., 2017), Canada (Alberta Government, 2017) and United Kingdom
(United Kingdom Onshore Pipeline Operators’ Association, 2018). When corrosion takes place
over a long period of time, it usually results in the appearance of leakages, whose consequences
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are devastating: heavy economic losses appear (Lu et al., 2020d), and also the environment and
personal safety can be threatened (Lu et al., 2020b,c). As an illustration, an oil pipeline leaked
last November 2013 in the Chinese city of Qingdao, giving rise to some explosions that left at
least 62 people died and 136 injured, and causing economic losses of more than 751 million
Chinese yuan, apart from spreading oil to the sea (Meng, 2013). Subsequently, an investigation
found 8000 safety problems and corrosion issues along the nation’s pipeline network.

To reduce the probability of these events happening, it is important to monitor the state
of the pipelines before the leakage occurs through the use of corrosion detection methods. In
(Lu et al., 2020a), the authors provide a deep classification of the different technologies, differ-
entiating between hardware-based and software-based methods. All the methods have different
characteristics, as well as advantages and disadvantages. One of them is the ultrasonic guided
wave method, an acoustic technique widely used in nondestructive testing (NDT) based on the
generation of waves through a sensor. This sensor generates a wave that is propagated through
the boundary of the pipeline, reflecting back and forth at the interface and resulting in complex
waveform conversion and mutual interference. The sensors can be selected to stimulate single or
various modes of the guided wave. The disadvantages of this technique are the following: the
selected detection frequency must be obtained previously; professional staff are required to inter-
pret the data; the echo signal of the wave can be affected by the outer layer of the pipeline, the
inhomogeneity of weld and the severity of the defect; and there can be high requirements for the
sensors. On the other hand, this technique offers important benefits: it is especially suitable for
covering long distances, which can save detection time and costs, and reduce the labor intensity;
it allows the company to detect defects of the whole section of the pipeline (HAO and SHI, 2008);
in addition, it provides low attenuation and high testing efficiency in the experiments (Liu et al.,
2020).

The literature approaches generate ultrasonic guided waves through three main methods:
piezoelectric transducer (PZT), magnetostrictive patch transducer (MPT) and electromagnetic
acoustic transducer (EMAT) (Green Jr, 2004, Huan et al., 2019). The biggest issue when using
the first two techniques is that there must exist a robust sonic contact and coupling with the
pipeline, so the inspection is not efficient in some applications. For its part, EMAT can test the
pipelines in a non-contact and coupling-free way, and there is no need to previously accomodate
surfaces with oxide, dirt or coatings (Hao et al., 2011, Xie et al., 2017). Other advantages
provided by EMAT are its high speed of inspection and the capability to test structures submitted
to high temperatures and fast movement (Pei et al., 2016, Petcher et al., 2014, Urayama et al.,
2010). In addition, this technology is capable of exciting multiple types of waves: Lamb, shear,
longitudinal and Rayleigh. These EMAT-generated guided-waves are usually generated through
some magnetics and testing coils, in a way that the magnetics create a static magnetic field,
and the testing coils induce and receive an eddy current or an alternating magnetic field (He
et al., 2017). Furthermore, when the system is implemented with meander-line-coils, the waves
are generated in a directional way, which allows differentiating between circumferential and axial
scans.

The pipeline inspection using EMAT has been previously studied in the literature. In (Clough
et al., 2017), the authors provide a screening technique that generates Shear Horizontal (SH)
waves to axially examine pipelines through circumferential scans. They explain the behavior of
different wave modes when they interact with defects, in both experimental measurements and
artificially created ones, but they do not provide error measurements, so it is difficult to know
how well the defect sizing is carried out. In (Nakamura et al., 2017), the authors use other
type of guided waves (torsional) and test several aluminum pipes, concluding that amplitude
and phase information have enough detection sensitivity, being this last one more powerful for
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quantitative purposes. Even they classify the usefulness of amplitude and phase information into
good, unsatisfactory or poor, for different types of defects, performance measurements related to
defect sizing are not presented to the author again.

Machine learning methods have been previously applied to this issue in the literature. Authors
in (Sun et al., 2020) use deep neural networks for defect inspection. However, they evaluate their
algorithms in a plate instead of pipelines, and though the results using deep neural networks are
very promising, these techniques require large datasets with a wide variety of defects and are very
costly in computational terms. It may represent a problem in some cases when applying portable
handheld inspection, since a large proportion of the battery life may be consumed during the
signal generation and taking of measurements, so the processing block must be energy-efficient to
provide enough autonomy. Something similar is proposed in (Lu et al., 2018), where deep neural
networks are applied to other type of signals for pipeline sizing. In other proposal (Layouni et al.,
2017), the authors apply feature extraction (maximum magnitude, peak-to-peak distance, mean
average, standard deviation, integral of the normalized signal), pattern-adapted wavelets and
artificial neural networks for defect detection and sizing. Similarly, authors in (Mohamed et al.,
2015a,b) apply feature extraction combined with Artificial Neural Networks (ANNs), or with
Support Vector Machines (SVMs), but they provide insufficient information about the dataset
used, without detailing the number and characteristics of the defects used in their experiments.
In the last three cited studies the results are promising, but the authors use Magnetic Flux
Leakage (MFL) inspection for acquiring the signals, a method which has proved to have several
limitations (Safizadeh and Azizzadeh, 2012, Shi et al., 2015): it is hardly applied in practice, as
a big qualitative analysis of the signal is needed because the working conditions can not match
the laboratory conditions; it is limited to the material surface and near surface, but the detection
of axial narrow and long defects is restricted; the probe is susceptible to the pipe wall and its
anti-interference ability is low, in a way that false data will be collected when impurities appear;
among others.

1.3 Problem formulation and scope of the thesis

The research questions that have been identified from the review of the literature and will be
answered through-out this thesis are the following:

• RQ1: Are the datasets available in the state-of-the-art suitable for testing the four appli-
cations? If not, is it possible to create new acoustic datasets?

• RQ2: Is it feasible to solve these problems using standard machine learning techniques
without applying more deeply learning ones, which generally involve a higher computational
cost?

• RQ3: Is it possible to carry out a quantitative analysis of the computational cost required
by those systems to increase their autonomy, trying to reach a compromise between the
performance of the algorithms and the computational cost associated with them, without
highly degrading the proper functioning of the system?

• RQ4: Can advanced optimization methods based on cascade-detectors reduce even more
the computational cost of the system in VADHA issue while keeping the same performance?
Similarly, is it possible to use these cascade-detectors to improve the performance of the
system without increasing the resulting computational cost?
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Figure 1.2: Scheme of supervised machine learning method applied along this thesis.
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• RQ5: Are the typical pattern recognition methods suitable for an application in which
ultrasounds are used as signals (PDA)? In this issue, is it possible to heuristically find
useful features to solve the problem?

1.4 Materials and methods

From the raised scope of the thesis, several research studies have been carried out. In this section,
a summary of the different investigations carried out is presented. They will be explained in detail
in the articles attached in Part II: Publications.

Machine learning is an extensive field that can be approached in different ways. One of
them is supervised learning, which will be used along this thesis as it is the mainstream and
typically the most efficient and generic method for developing this kind of systems (Virtanen
et al., 2018). It consists in having a training set that includes labeled data and learning a general
rule that maps inputs to outputs. By way of analogy, this is like a teacher or supervisor that
gives a student a problem (finding the relationship between inputs and outputs) and its solutions
(labeled output data), and later he asks that student to learn how to solve new problems (unseen
data). In Figure 1.2 the scheme of supervised learning that has been followed along the research
is shown.

The system takes an input captured by a microphone (in the case of sounds) or a sensor
(in the case of ultrasounds). In this thesis, we have worked with datasets composed of signals
captured with one of the previous devices. Once the signals are available in our system, they
go through different modules or stages: pre-processing, feature extraction, feature selection, and
detection, including cross-validation techniques, until the final decision is taken. Each of them
is detailed below.

• Pre-Processing. In some audio signals it is necessary to implement this module before
feature extraction is applied, in order to enhance certain characteristics of the signal for
maximizing the performance of the detection. For example, when the audio data is collected
from various sources, there are usually variations in the sampling frequency and the amount
of captured audio channels (Virtanen et al., 2018). In this thesis, this occurs in VSD, DPD
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and VADHA. These variations have been addressed by converting the audio signal into
a uniform format, both re-sampling it into a fixed sampling frequency and down-mixing
it into a fixed number of channels. On the one hand, sampling frequency has been set
to 22 kHz in VSD, 16 kHz in VADHA, and 8 kHz in DPD. The reason for using different
sampling frequencies is due to the different quality of the audios that makes up the different
datasets, since the sampling frequency must always be at the lowest of the frequencies of
all the audios. In addition, having different values of this parameter allows us to check if
SED can be performed in different recording conditions. On the other hand, the number of
channels was fixed to one, as most of the audios do not provide multi-channel recordings.
For their part, this stage of pre-processing allows us to discard signals in PDA when the
sensor does not run properly along the pipeline. Other parameters are standardised in this
application along all the measurements.

• Feature extraction. Once the signals are standardised to the desired values of sampling
frequency and number of channels, it is time to extract useful information from them.
Feature extraction is a widely extended stage (Virtanen et al., 2018). The objective of
extracting acoustic features is to represent the audio in a compact and non-redundant way.
The idea is that these features vary slightly among the examples which are part of the same
event, and present distant values between examples that are part of different events (in
our case, the presence or absence of an event) (Gold et al., 2011). In addition, the amount
of memory and computational power required by these features will always be lower than
using the raw data. As shown in Figure 1.3, several procedures can be identified within
this stage: frame blocking, windowing, espectrum calculation, measurement calculation,
and statistic calculation.

– Frame blocking. In this part of the stage, the audio signal is sliced into fixed-length
frames, shifted with a timestep. This is due to the fact that audio signals are generally
non-stationary and their parameters change rapidly over time, so it is better to analyze
periodically short-time segments or frames, where the signal is quasi-stationary. The
length of the frames is different in each application: 512 frames in VSD, which sampled
at 22 kHz translates into 23.22 ms; 512 frames in DPD, which sampled at 8 kHz is
equivalent to 64 ms; and 128 samples in VADHA, which sampled at 16 kHz translates
into 8 ms. Typical frames are between 20 and 60 ms, but in the VADHA application
the total delay introduced by the processing time cannot exceed 20 ms (Stone and
Moore, 2002).

– Windowing. When spectral features are extracted (VSD, DPD and VADHA appli-
cations), it is important to smooth the frames with a windowing function. It will
avoid the appearance of distortions in the spectrum due to abrupt changes at the
frame boundaries. In this thesis, when frequency-based features have been calculated,
a Hann window (also known as Hanning or raised cosine window) has been applied
(Harris, 1978). It has been used because it is the most popular one, resulting in an
outstanding overall performance (it works properly in around 95% of cases according
to (National Instruments, 2019)). It provides fair frequency resolution and reduced
spectral leakage, thus increasing the dynamic range of analysis, as leakage can swamp
signal components of close frequencies and much smaller magnitudes.

– Spectrum calculation. Features can be calculated directly in the time-domain, but
sometimes it is interesting to work in the frequency-domain. In this thesis we have
worked in one or both domains, depending on the application: time-domain and
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Figure 1.3: Feature extraction process. Source: Own elaboration from freepik vectors.
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frequency-domain in VSD and DPD, frequency-domain in VADHA, and time-domain
in PDA. The spectrum calculation involves computing the Discrete Fourier Transform
(DFT), which represents the time-domain signal as a superposition of sinusoidal base
functions, each of them with different value of magnitude and phase (Oppenheim and
Schafer, 1989).

– Measurement calculation. After the previous steps, acoustic measurements are com-
puted through different equations and formulas. In this sense, the amount of mea-
surements available in the literature for SED is substantial. However, one of the most
frequent and that deserves to be explained at this point since it will appear in almost
all the applications are the Mel-Frequency Cepstral Coefficients (MFCCs) (Davis and
Mermelstein, 1980). They are designed to emulate the human auditory perception,
which focuses only on magnitudes of frequency components. The perception of these
magnitudes by the human ear is highly non-linear, and, in addition, the perception
of frequencies is also non-linear. On this basis, the extraction of these measurements
uses non-linear representation for magnitudes (power spectrum and logarithm) and
non-linear frequency scaling (Mel-frequency scale). This scale is implemented by using
a set of filters that integrate the spectrum at non-linearly spaced frequency ranges,
with narrow band-pass filters at low frequencies and larger bandwidth at higher fre-
quencies (Virtanen et al., 2018). In summary, these measurements provide a compact
and smooth representation of the spectral envelope, so that most of the energy is
concentrated in the first coefficients (Mohino-Herranz, 2017). The computing process
of the MFCCs is: once the DFT is computed, a bank of triangular filters spaced ac-

https://www.freepik.es/
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cording to the Mel frequency scale (Stevens et al., 1937) is applied, and after that the
logarithm of the Discrete Cosine Transform (DCT) is computed.

– Statistic calculation. Once the different measurements have been calculated, some
parameters or statistics are applied to a segment of samples consisting of several
fixed-length frames previously mentioned. The number of frames that compose the
segment depends on how frequently we want the decision to be taken: the decision
is made every 5 s in the VSD, every 1 s in the DPD, and every 16 ms in VADHA.
The parameters applied to these segments are the mean and the standard deviation,
which are the most commonly used in the literature, although others have also been
calculated depending on the different applications. Once these statistics are applied
to the measurements, feature extraction has finished, and it is possible to move to the
next step.

Before continuing, it must be noted that in the application of PDA the feature extraction
is made directly in the signal that arrives from the sensor, since the features applied on
them are different from the ones usually implemented for acoustic purposes. The analysis
of each frame of the signal disappears as other measurements that will be detailed later
are considered, and the number of samples of the signal in each point of the pipeline is
limited to the length of the circumference of the pipeline. In a way, the traditional time-
analysis and frequency-analysis used in the rest of applications are not valid when using
ultrasounds, but the general methodology can be applied almost identically.

• Feature selection. There may be grounds to select a subset of features from all the features
computed in the previous stage. In this thesis, a subset of relevant features has been
selected due to the more extensive set initially calculated and to control the computational
cost of the system. There are several reasons for using feature selection:

– The simplification of the complexity of a model makes them easier to be interpreted
by future researchers or users (James et al., 2013).

– It enables training times to be shorter, that is, the machine learning algorithm can be
trained faster.

– It allows reducing generalization problems by minimizing overfitting (or reduction
of variance) (Bermingham et al., 2015). This phenomenon appears when the model
cannot identify the relevant information in the training data and, instead of that, it
specializes in those data without extracting a general rule from them. Overfitting
happens when the trained models violate the principle of parsimony (Hawkins, 2004)
(also knows as Occam’s Razor principle (Walsh, 1979)), which states that models and
procedures must contain all that is necessary for the modeling but nothing more.
Overfitting models include more terms or use more complicated approaches than are
required. As a result, when new data from other datasets are tested, the algorithm
performance fails, remaining unable to generalize.

– The accuracy of the model improves if the right subset is chosen.

– The curse of dimensionality problem is avoided. This phenomenon (Bellman et al.,
1957) relates to the fact that when the dimensionality increases, the volume of the
space increases so fast that the available data appear sparse. This sparsity becomes
a problem for any statistical method, as generally the amount of data needed grows
exponentially with the dimensionality.
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In the literature, there exist different alternatives regarding feature selection procedures.
The simplest way to carry out this task is to test each possible subset of features finding the
one which gets the best performance, that is, the lowest error rate. This is an exhaustive
search of the space that is computationally unthinkable, even more if our goal is to develop
an energy-efficient system. The most common and feasible methods used in the literature
are classified into wrapper, filter and embedded methods (Guyon and Elisseeff, 2003).

– Wrapper methods are a simple and powerful way of carrying out feature selection
(Kohavi and John, 1997). They use a predictive model to score subsets of features,
giving us an idea of its usefulness. Each subset of features is used to train a model,
whose performance is tested on a hold-out set. The major disadvantage of this method
is its computational intensity, due to the use of the classifier in each subset of features.
On the other hand, they usually provide the best subset of features for a particular
model, problem or dataset.

– Filter methods select subsets of features by scoring them using another proxy measure,
different from the typical error rate (e.g., the mutual information, the pointwise nat-
ural information, the inner-class or intra-class distance, etc.). This makes the method
faster, but still capturing the usefulness of the feature set. The main difference with
the wrapper methods is that filters usually need less computational resources to be
executed, but the chosen feature subset is not trained to a specific type of predictive
model (Zhang et al., 2013). Consequently, the performance provided by this type of
methods is usually lower than the one offered by wrapper ones.

– Embedded methods choose the best subset of features in the process of training. Their
computational complexity is between the previous two methods.

In this thesis, the number of computed features is computationally affordable (around
150 features in the worst cases, VSD and DPD). Because of that, the methodology which
provides the best subset of features in terms of performance has been applied, that is,
wrapper methods. Within these methods, one of the most extended is the randomized
one, which uses search strategies such as simulated annealing (Meiri and Zahavi, 2006),
hill climbing (Long et al., 2011) or genetic algorithms (Shah and Kusiak, 2004). The latter
have been successfully applied in the past to the issue of feature selection (Babatunde et al.,
2014, Tan et al., 2008), and it has been used in this thesis. These algorithms, proposed in
(Holland et al., 1992), are based on the principle of survival of the fittest, in a way that some
modifications are applied to the chromosomes of the individuals of one population to find
for the one which fulfills better with the requirements of our system. The individuals would
be the different subsets of features, being the chromosomes each of the available features
previously computed (if the chromosome is ‘1’, the feature is included in the subset; if the
chromosome is ‘0’, the feature is discarded). The following process is applied iteratively:

1. First, several individuals (subsets of features) are randomly generated.

2. It is checked if one of them is identical to another, and in this case, one of them is
changed (through including or discarding one of the features).

3. Constraints are applied to each individual of the population. In this thesis, compu-
tational cost has been restricted, so it is checked if the sum of costs of each of the
features that compose the individual exceeds the set value. In this case, one or more
features are disabled in the individual (set to ‘0’) until it fulfills the cost requirement.
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4. The different individuals are ranked according to the performance evaluation param-
eter obtained after applying a simple detector over the design set.

5. The best individuals are selected as “survivors”, while the rest are regenerated through
crossovers between the survivors.

6. All the individuals, excluding the best one, are mutated with a very low probability.

The stopping point of the algorithm is controlled through the number of iterations. In
addition, the full process is repeated several times to avoid local minima and facilitate
generalization in the results.

• Detector. Once the subset of features is determined, it is time to assign each observation
to one of the classes (in a binary way in the case of VSD, DPD and VADHA, and as
a predictor in the case of PDA). The overall aim in this step is to build a discriminant
function capable of assigning each of the observations to one of the classes. This function
should meet two requirements: it must ensure generalization, in a way that the algorithm
must work properly if another dataset is tested, without “learning the data” during the
learning process; and it must optimize a set parameter, which will be different in each
application: error rate in the case of DPD and VADHA, probability of detection for a set
probability of false alarm in the case of VSD, and Root-Mean Square Error (RMSE) in the
case of PDA. To fulfill the previous requirements, the detector must follow the principle of
Ockham’s Razor (Jefferys and Berger, 1992). This principle states that having two theories
on equal terms and with the same consequences, the simplest theory has more probability
of being the correct one. From a preliminary study of the data from this thesis, three
detectors in total have been applied along the different applications, depending on the
requirements of each of them. They are the Least-Squares Linear Discriminant (LSLD),
the Least-Squares Quadratic Discriminant (LSQD), and the Multilayer Perceptron (MLP).
Others like k-Nearest Neighbors (KNN) or Support Vector Machines (SVM) were tested as
well, but because of the worse results obtained, they have not been included in the articles.

– Least-Squares Linear Discriminant (LSLD). This detector is based on the work made
by (Van Trees, 1968). Its main advantages compared to other detectors are: it is not
necessary to know the probability density function, which can be difficult to char-
acterize; the values of the coefficients can be directly obtained from the design data
without using optimization algorithms; and the classification rule is straightforward,
so the overfitting problems are minimized, avoiding loss of generalization. As a disad-
vantage, this method provides decision boundaries that can be very simple for some
issues. However, this applies above all to multi-class problems, while in this thesis
2-class (binary) problems are studied in most applications. In the following lines, the
steps that allow us to implement the LSLD in a binary application will be detailed.
In a linear classifier, the decision rule (g) is a function of a linear combination of the
components of the observation. It is expressed in the following equation:

g = f(y) = f

(
C∑

n=1

wnxn + b

)
, (1.1)

being x = [x1 x2 . . . xC ]T the input vector; w = [w1 w2 . . . wC ]T the weights vector;
C the number of features; and b a constant value called “bias”.
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In binary issues, the decision boundary is usually a hyperplane. This occurs whenever
the number of features is equal to or higher than three. The decision is made by
applying a threshold to the linear combination. It can be expressed according to the
following expression.

y =

C∑

n=1

wnxn + b =

{
−1, if y < 0
+1, if y ≥ 0

, (1.2)

being +1 y −1 each of the classes.
The most extended linear classifiers are based on the Linear Discriminant Analysis
(LDA) proposed by Fischer (Xanthopoulos et al., 2013), whose objective is to combine
the features to make the discrimination between classes as effective as possible. The
optimum application of the LDA tries to minimize the distance between the same
class patterns and maximize the distance between the different class patterns at the
same time. There are numerous studies about LDA and its variants. In this thesis,
the LSLD has been applied, a detector that tries to minimize the Mean Square Error
(MSE). Now the mathematical formulation upon which LSLD is based will be detailed.
Firstly, the desired output (t) and the coefficients of the linear combination (v) are
defined:

t = (t1 t2 . . . tI) = (1 1 . . . − 1 ) (1.3)

v = (w1 . . . wC b), (1.4)

being I the number of instants in which the decision has to be taken.
Now we define the design patterns through the matrix Q, which contains the input
features for the detection:

Q =

[
P

ones(1, I)

]
=




x11 x12 x13 . . . x1I
x21 x22 x23 . . . x2I
...

...
...

...
...

xC1 xC2 xC3 . . . xCI

1 1 1 . . . 1




(1.5)

So, the output of the linear detector for the design data is a vector obtained as a
linear combination of the inputs according to equation (1.6)

y = v ·Q = [y1 y2 . . . yI ] (1.6)

The error is the difference between the desired output and the obtained output:

e = y− t = v ·Q− t (1.7)

The error is a vector with size 1xI, and the MSE is computed according to equation
(1.8).

MSE =
1

I

I∑

n=1

e2n (1.8)
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The minimization of the MSE is obtained by deriving with respect to v and equaling
to zero.

e ·QT = zeros(1, C + 1) (1.9)

v ·Q ·QT = t ·QT (1.10)

The resulting equation is (1.11), which is known as the equation of Wiener-Hopf
(Van Trees, 1968).

v = t ·QT · (Q ·QT)
−1 (1.11)

With this expression, it is possible to determine the values of the coefficients in order
to minimize the MSE for a subset of features.

– Least-Squares Quadratic Discriminant (LSQD). This detector provides satisfactory
results with a speedy learning process (Gil-Pita et al., 2012). The intelligence of
the LSLD is increased by adding quadratic terms to the linear combinations, which
directly implies an improvement of the performance and the complexity, and inevitably
the probability of appearance of generalization problems is increased. These new terms
are shown in equation (1.12).

y = w0 +
C∑

n=1

wnxn +
C∑

n=1

C∑

m=1

vmnxmxn, (1.12)

where wn and vmn are the linear and quadratic weights, respectively. In the exper-
iments, a simplified version of this detector will be applied, using only the diagonal
terms, that is, those in which vmn = 0, ∀m 6= n. Subject to such consideration,
equation (1.12) is simplified into equation (1.13).

y = w0 +

C∑

n=1

wnxn +

C∑

n=1

vnnx
2
n (1.13)

An extended pattern matrix Q can be defined containing the input features and their
quadratic values. It is shown in equation (1.14).

Q =




1 1 1 . . . 1
x11 x12 x13 . . . x1I
...

...
...

. . .
...

xC1 xC2 xC3 . . . xLI
x211 x212 x213 . . . x21I
...

...
...

. . .
...

x2C1 x2C2 x2C3 . . . x2LI




(1.14)

In addition, the weights can be rearranged in a vector v according to equation (1.15).

v =
[
w10 w11 . . . w1C v111 v122 . . . v1CC

]
(1.15)

This way, the output can be obtained as y = v ·Q, and the coefficients that minimize
the MSE can be obtained through the Wiener-Hopf equations, as in the LSLD. This
is shown in equation (1.16).
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v = t ·QT · (Q ·QT)
−1 (1.16)

The main difference with the previous detector is that the boundaries are quadratic
functions, so the system becomes more complex. As stated above, the greater intelli-
gence of the classifier, the best results can be obtained in the experiments, but more
generalization problems can appear.

– Artificial Neural Networks (ANNs): Multilayer Perceptron (MLP). ANNs are learning
machines consisting of several simple processing elements called neurons, intercon-
nected between them (Principe et al., 2000). There exist many types of neurons, but
one of the most common is the one proposed in (McCulloch and Pitts, 1943). Af-
ter that, the perceptron was proposed (Rosenblat, 1958) as a neuron with adjustable
weights and a step-activation function type, being the first model capable of learning
through supervised training. The perceptron splits the observation space into two
regions through a hyperplane, being its linear basis function the pondered sum of
the inputs, similarly to the equation (1.1) of the previously explained LSLD. In this
model, the neurons were only activated when the stimulation was total, that is, when
the result of the activation function I(y) was positive. Later, it was discovered that
neurons emit electrical activity impulses with a variable frequency and present some
activity at rest, so nonlinear activation functions started to be used. The most imple-
mented one nowadays is the sigmoid, a mathematical function with a characteristic
“S”-shaped curve (Han and Moraga, 1995). Within this function, the best known is
the Log-Sigmoid, which is obtained using a logistic function, and the Tan-Sigmoid,
which uses the hyperbolic tangent.
The MLPs have one or more layers of neurons sequentially arranged, in a way that
the outputs of the neurons of a layer are the inputs of the neurons of the next layer.
It is a direct propagation network, so the outputs of the network are calculated as
functions of the inputs and the weights. The output of the neurons of the first layer
X is a matrix of size NneuxN , where Nneu is the number of neurons of the first hidden
layer. This matrix can be obtained using equation (1.17).

X = I(VQ), (1.17)

where V is a matrix of size Nneux(C+1) which contains the weights of the first layer.
The universal approximation theorem states that any classification can be imple-
mented using a single-layer perceptron (only one hidden layer) with enough neurons
(Kurková, 1992). Because of that, in this thesis only two layers will be implemented:
the hidden layer and the output layer, which combines the subspaces generated by each
of the neurons of the first layer. In this way, the decision boundary will be formed
by the nonlinear combinations of the hyperplanes, and with a sufficient number of
hyperplanes any kind of decision boundary can be implemented.
The activation function implemented is the Tan-Sigmoid in the hidden layer and the
linear in the output layer. Related to the number of neurons selected, it is a parameter
that will be tested along the applications which use MLPs (VADHA and PDA), as
its value is difficult to determine upon being highly dependent on the specific issue
(Sheela and Deepa, 2013). It must be noted that this parameter only affects to the
hidden layer, as the number of neurons in the output layer will be equal to one in the
case of binary detection (the scope of this thesis).
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The output of the MLP ŷ can be obtained using equation (1.18).

ŷ = ŵ ·
(

ones(1, I)
tanh(VQ)

)
= ŵ · Q̂, (1.18)

where ŵ is a vector of size 1x(Nneu + 1), which contains the weights of the second
layer. As in the case of LSLD and LSQD, the decision is computed by applying a
threshold to the output ŷ.
The weights of the neurons that make up the network are determined through train-
ing algorithms. They are usually based on partial derivatives, such as the Gradi-
ent method, the Newton method or the Gauss-Newton method. In this thesis, the
Levenberg-Marquardt algorithm has been implemented (Levenberg, 1944, Marquardt,
1963). It is a quasi-Newton iterative method in which the objective function to min-
imize must be a sum of quadratic terms (like the mean squared error function), and
which provides a fast optimization of the parameters using a set of training data. In
addition, it is one of the most robust methods from the literature, as in many cases
it finds a solution even if it is initialized very far from the final result.
The use of MLPs has several disadvantages. Firstly, the convergence is not guar-
anteed, since many local minima are usually presented. To avoid this problem, the
training process has been repeated several times (10), so that the weights are initial-
ized in a different way each time. It drastically reduces the probability of stopping
the algorithm in local minima, or at least obtaining the same local minimum in all
the repetitions. Secondly, this algorithm usually implies a loss of generalization, so
the performance falls when new data from a new dataset are tested. To address this
issue, a part of the data is used for validation, so the learning process is stopped in
time. Thus, the design data are divided into two subsets: training data (80%) and
validation data (20%). Test data are not used neither for training nor validation pur-
poses. The training process finishes when the performance of the validation set does
not improve after a certain number of iterations.

• Cross-Validation (CV). The feature selection and detection processes previously detailed
are part of a cross-validation process, which is a validation method that tries to accurately
estimate the performance of the general system. The motivation for using it is that the
final model usually overfits the training data, and the performance is too optimistic. With
this validation technique, it is possible to know how well the model would generalize in a
new dataset. A dataset is usually divided into two subsets: the training set (also called the
design set), which is known to the detector as it uses it to learn, and the test set, which
is composed of unknown data to test the system. In this thesis, a non-exhaustive cross-
validation method has been applied, in particular the k-fold cross-validation (Hastie et al.,
2009). This method splits the dataset into k different folds and runs k times the whole
design process (feature selection, parameter optimization and design of the detector), so in
each experiment 1 fold is used as the test set and the remaining k− 1 folds are used as the
design set. The final evaluation metric is the average of the obtained metrics. This way,
all the samples are used for both training and test.

Once a general perspective of the material and methods used along the thesis has been
presented, the particularities of each of the four applications will be detailed in the following
lines. We will explain which dataset has been used for training the algorithms or how it has been
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created in case there are not suitable datasets in the literature, what are the parameters set in
the experiments, etc.

1.4.1 Overview of the experiments in VSD

In the VSD issue, our goal is to detect the signs of violence that appear previously to those
extreme events, but it is difficult to find a real-life acoustic dataset for VSD. For that reason, a
dataset composed of real violent situations from Y ouTube website has been created, considering
as violent the presence of heated arguments, people shouting and screaming among them, or
even physical fights (García-Gómez et al., 2016).

The audio content has been extracted from the video signal, and all the audios were set to
22,050 Hz of sampling frequency, which was the minimal frequency of the original audios. Most of
them were recorded with mobile phone cameras and similar, so they don’t have high quality. This
is an interesting characteristic because these recordings are more like the real world situations,
where it usually appears background noise, compared to a fictional scenario, such as films. Once
downloaded, the file segments were labeled. It consisted in listening to the audios and tagging
where a scene was considered violent or not. This task was carried out by two people, comparing
the results to make the labeled data more objective than if just one person is involved.

Regarding the implementation of a VSD system in smart cities, the system proposed in this
thesis has taken account of the possibility of working in an autonomous way, such as being pow-
ered through solar cells. Because of that, some restrictions related to the computational cost
the features need to be computed have been applied. Specifically, the number of Floating Oper-
ations Per Second (FLOPS) required by each of the features have been evaluated. The software
developed in (Qian, 2015) allowed us to detect the different kind of operations of each line of
code (arithmetic operations, elementary functions, variance calculation, determinant calculation,
etc.). After that, different limits related to the number of FLOPS (from 1 to 15 MFLOPS) have
been imposed during the algorithm learning process, particularly in the feature selection pro-
cess, as they are directly related to the power consumption. To justify these values, a study
was carried out (Fernández-Toloba et al., 2018) using a low-power processor (ARM Cortex-M4)
provided with MEMS microphones and powered by a small solar cell of 1 dm2, which spends 1
W/dm2. Assuming a minimum average of 2.5 hours of sun per day (a typical value in several
winter in regions such as Spain), the average total power will be 100 mW. If 57.4 mW are con-
sumed by the microphones to record the audio samples, and other portion of energy is consumed
when transmitting data, around 10 mW could be used to execute the detection algorithm. An
ARM Cortex-M4 typically consumes approximately 0.2 mW/MHz, and a conservative relation
of 3 FLOP per Hz can be assumed as a multiply requires 3 cycles according to the technical
reference manual (ARM Developer, 2020). With these values, around 16.6 MFLOPS could be
executed at most with the power available in the processor.

In Table 1.1 the parameters used in the experiments carried out in VSD are explained, includ-
ing the used dataset, the computed features, the applied detectors, the applied computational
cost constraints, and the parameter which evaluates the performance of the algorithms.

It must be noted that, apart from LSLD and LSQD, MLPs were also applied in the experi-
ments, but the results have not been included because the performance drastically fell, probably
because of overfitting problems.

1.4.2 Overview of the experiments in DPD

As previously stated, it is not easy to find acoustic datasets in the DPD issue. Because of that,
we created a new dataset (García-Gómez et al., 2017). As in the VSD issue, sounds from different
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Table 1.1: Main parameters of the system implemented for VSD application.

Parameter Value

Dataset

New dataset Yes
Total duration 27,802 s
Violence duration 3,051 s
Ratio of violence 10.97 %
Number of audios 109
Min audio length 15 s
Max audio length 4,966 s

Features

Frequency-domain

Mel-Frequency Cepstral Coefficients (MFCCs)
Delta MFCCs (∆MFCCs)
Spectral Rolloff (SR)
Spectral Centroid (SC)
Spectral Flux (SF)

Time-domain

Pitch
Harmonic Noise Rate (HNR)
Ratio of Unvoiced Frames (RUF)
Short Time Energy (STE)
Energy Entropy (EE)
Zero Crossing Rate (ZCR)

Detectors LSLD, LSQD
Cost Constraints 1, 3, 5, 10, 15 MFLOPS
Evaluation Probability of Detection for low Probability of False Alarm

models of drones (DJI Phantom, UDI 817, Parrot AR, Cheerson CX10, Eachine Racer 250, etc.)
in motion were collected and labeled from Y ouTube and FreeSound websites. In addition, we
make the dataset more challenging after adding sounds from other sources that can appear in
the scene at the same time as a drone. Specifically, sounds from planes, helicopters, shavers,
building work, diggers, motorbikes, mowers, F1 cars, cut-off wheels, fire sirens and drag racers
were included. In some cases, the sound produced by them results quite similar to the one made
by drones.

The implementation of a DPD system has been thought similarly to the VSD system, that
is, in an autonomous way. As the same features have been computed, a similar study related to
computational cost constraints has been implemented. However, the limits associated with the
number of FLOPS have been set to be more restrictive (the maximum limit is set to 4 MFLOPS,
while in VSD it was set to 15 MFLOPS) in order to be consistent with the sampling frequency
used (8 kHz against 22 kHz).

In Table 1.2, similarly to Table 1.1, the parameters used in the experiments carried out in
DPD are explained, including the used dataset, the computed features, the applied detectors,
the applied computational cost constraints, and the parameter which evaluates the performance
of the algorithms.

1.4.3 Overview of the experiments in VADHA

In this thesis, we have applied the EFLECs to VADHA, including computational cost restrictions
related to the IPS (Instructions Per Second) (García-Gómez et al., 2018, Gil-Pita et al., 2017).
After that, we have tried to apply additional optimizations based on cascade-detectors, imple-
menting a simple detector in a first stage (LSLD) followed by a second stage based on MLPs,
which must be used when the decision of the system is not clear. The objective was to reduce the
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Table 1.2: Main parameters of the system implemented for DPD application.

Parameter Value

Dataset

New dataset Yes
Total duration 3,671 s
Drone duration 1913 s
Ratio of violence 50.08 %
Number of audios 36
Min audio length 6 s
Max audio length 316 s

Features

Frequency-domain

Mel-Frequency Cepstral Coefficients (MFCCs)
Delta MFCCs (∆MFCCs)
Spectral Rolloff (SR)
Spectral Centroid (SC)
Spectral Flux (SF)

Time-domain

Pitch
Harmonic Noise Rate (HNR)
Ratio of Unvoiced Frames (RUF)
Short Time Energy (STE)
Energy Entropy (EE)
Zero Crossing Rate (ZCR)

Detectors LSLD, LSQD
Cost Constraints 0.5, 1.0, 1.5, ..., 4.0 MFLOPS
Evaluation Error Rate

computational cost of the system while maintaining the performance of a more complex VAD
system, or even to keep the same computational cost while improving the performance of the
system.

The field of VAD has been widely researched in the literature, and the fact that the final
implementation is set to hearing aid devices does not involve any additional requirement to the
typical datasets of the field. Because of that, there was no need to create a new dataset, and
the QUT-NOISE TIMIT one has been used (Dean et al., 2010). It contains a large number of
conversations between people, including 10 different background noises from real and common
places (café, home, street, car and reverberant places).

The computational constraints applied to VADHA have been much more restrictive than
in the previous applications (between 10 and 200 KIPS instead of millions of them), as the
power available in these devices is much lower and other important algorithms must also be
implemented in them. To determine this range of values, the power consumption of a hearing
aid in which only the compression algorithm was implemented and the consumption of a similar
device where the VAD algorithm was also implemented were compared (García-Gómez et al.,
2021). Using a real device with a DSP working at 1.92 MHz, an average power consumption of
0.87 mW was estimated in the case of only implementing the main compression algorithm, which
required 1100 KIPS, and an average power consumption of 0.90 mW was calculated in the case of
also implementing the proposed VAD algorithm running with 200 KIPS. Thus, it is shown that
the consumption of the latter is negligible, saving power that can be used by other algorithms.

In Table 1.3, the parameters used in the experiments carried out in VADHA are explained,
including the used dataset, the computed features, the applied detectors, the applied computa-
tional cost constraints, and the parameter which evaluates the performance of the algorithms.

1It must be noted that a subset of the dataset QUT-NOISE TIMIT was considered in the experiments due
to the long duration of the original set, which contains around 600 hours of audios.
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Table 1.3: Main parameters of the system implemented for VADHA application.

Parameter Value

Dataset

New dataset No. QUT-NOISE TIMIT
Total duration1 21,600 s
Voice duration ≈10,800 s
Ratio of voice ≈50 %
Number of audios 240
Min audio length 60 s
Max audio length 120 s
SNR Medium (0, 5 dB) and low (-5, -10 dB)

Features Frequency-domain Evolved Frequency Log-Energy Coefficients
(EFLECs)

Detectors LSLD in cascade with MLPs (1, 2, 3, 4, 5, 10, 15, 20 neurons)
Cost Constraints 10, 20, 30, ..., 100, 120, 140, ..., 200 KIPS
Evaluation Error Rate

1.4.4 Overview of the experiments in PDA

In this thesis, we collaborated with the company Innerspec Technologies Europe S.L., involved
in providing advance Non-Destructive Testing (NDT) solutions, for addressing the problem of
PDA. The first step was the generation of Lamb guided-waves at different frequencies using
EMAT technology, whose advantages were detailed previously. The Innerspec Powerbox H and
the MRUT PMX scanner were the hardware devices employed. They allow to axially scan
pipelines with a single or double sensor, and thus measure attenuation and velocity changes in
the signal due to the presence of corrosion, cracks or other defects around the circumference of
the pipe. The generation of the waves involves the appearance of different modes of the signals,
affecting the dispersion effect in a different way to each of them according to the frequency
excited.

Companies that work in the defect sizing field compete between them for commercializing
their products into the market. Because of that, they do not usually release the datasets used for
testing the algorithms. The data used for this purpose have been shared between the mentioned
company and the researchers of our research group. They have some real pipelines in their
facilities, which have been inspected by their devices to provide us the dataset. In addition, an
experimental dataset has been developed through the Finite Element Method (FEM) included
in the Partial Differential Equations Toolbox of Matlab. This is due to the limited number of
real pipelines and defects, and to try to study the relation between the parameters of the signals
(amplitude, time of arrival related to group velocity, phase velocity, etc.) and the shape and
dimensions of the defects.

In this application, the features computed during the feature extraction process are substan-
tially different from the acoustic features calculated in the previous applications, since in this
application standard acoustic signals are not processed. In this case, the signal changes in every
new scan, that is, when the sensor moves to a new position in the pipeline, but there is not a
typical time-domain like in the rest of the applications. A heuristic study was made to evaluate
whether some features contain useful information to address the problem, and later six of them
were computed and submitted to a feature selection process. Due to the limited number of
features, computational cost constraints have not been applied in the system.

In Table 1.4, the parameters used in the experiments of this application are shown. The
details of the two generated datasets are presented, as well as the computed features, the applied
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detectors, and the parameter which evaluates the performance of the algorithms.

Table 1.4: Main parameters of the system implemented for PDA application.

Parameter Value

Datasets

Simulated dataset

New dataset Yes
Number of defects 418
Depth of the defects 0.5, 1, 1.5, ..., 9 mm
Excited Frequencies 158, 250, 350, 450, 548 kHz

Real dataset

New dataset Yes
Number of defects 3
Depth of the defects 1.85, 4.63, 6.18 mm
Excited frequencies 158, 548 KHz

Features Time-domain

Maximum Amplitude (dB)
Phase delay (µs)

Average energy (dB)
Group delay (µs)

Maximum amplitude of the echo (dB)
Average energy of the echoes (µs)

Detectors MLPs with 1, 2, 3, 4, 5 neurons
Evaluation RMSE (mm)

1.5 Structure of the thesis

This thesis by compendium of articles has been divided into three parts, which in turn, are made
up of several chapters.

• Part I contains the current chapter (Chapter I), in which the scope of this thesis is exposed,
including the importance of four different applications in smart cities (VSD, DPD, VADHA
and PDA), the reason for using acoustic signals for solving the issues, the different machine
learning systems implemented on them, and a description of the experiments carried out.

• Part II contains Chapters 2, 3, 4, 5 and 6, which are the publications that have given rise
to the thesis.

– Chapter 2 includes the publication “Energy-Efficient Acoustic Violence detector for
Smart Cities”, published in the International Journal of Computational Intelligence
Systems. In this article the VSD application is developed.

– Chapter 3 is the publication “Cost-constrained Drone Presence Detection through
Smart Sound Processing”, which is included within Proceedings of the 8th Interna-
tional Conference on Pattern Recognition Applications and Methods (ICPRAM 2019).
In this article, the DPD application is proposed.

– In Chapters 4 and 5, the conference paper “Analysis of the performance of Evolved
Frequency Log-Energy Coefficients in Hearing Aids for different Cost Constraints and
Scenarios”, included within 145th AES Convention E-Library, and the publication
“Linear detector and neural networks in cascade for voice activity detection in hearing
aids”, published in Applied Acoustics journal, are attached. The VADHA application
is explained in both chapters. The latter is an expansion of the former, including new
methodologies and improvements.



– Chapter 6 focuses on the publication “Smart Sound Processing for Defect Sizing in
Pipelines Using EMAT Actuator Based Multi-Frequency Lamb Waves”, published in
Sensors journal. The application PDA is included there.

• Part III contains the last chapter (Chapter 7), which collects the conclusions from the
obtained results, in a general way and specifically for each application, as well as the
future research lines.
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Contribution to the scope of the thesis

In this publication, the Violent Situation Detection (VSD) issue is addressed. Violence
continues to be a latent conflict in actual society, so this article proposes an energy-efficient
system capable of acoustically detecting violent scenes in real time and real situations.
In the solution, different experiments are carried out using genetic algorithms to select
the best subset of features with a computational cost constrained in terms of the number
of operations per second. A novel dataset is tested, with the objective of maximizing
the probability of detection for low probabilities of false alarm. Results demonstrate
the viability of the system, thanks to the low cost that some violence features require,
making feasible the implementation of the proposed method in a nowadays low power
microprocessor. In addition, the usefulness of MFCCs for solving the problem at hand is
proved.
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Abstract

Violence detection represents an important issue to take into account in the design of intelligent algorithms for smart
environments. This paper proposes an energy-efficient system capable of acoustically detecting violence. In our
solution, genetic algorithms are used to select the best subset of features with a constrained computational cost.
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1. Introduction

Violence continues being a latent conflict in actual soci-
ety. Recent researches show that 35% of women around
the world have suffered physical or sexual violence dur-
ing their lives1 and 43% of women from the European
Union declared suffering psychological violence at least
once.2 This fact makes violence detection and prevention
to represent an important issue to take into account in the
design of intelligent algorithms for smart environments.
In this sense, violence can be detected through audio and
video surveillance. Some works in the literature treat this
problem using both audio and video processing,3,4,5 and
the results obtained with the combination of those sources
seems to be efficient.

Main disadvantages of video can be found in terms
of computational cost, intrusiveness and poor coverages.
Some authors have evaluated computational cost using
core hours as metric.6 Furthermore, audio and video have
been tested both in separate and together ways in the
literature.7 Their conclusions show that the system works
properly using just audio source. When video informa-
tion is added the performance improves slightly, but com-
putational cost increases in a big way. Besides, an audio-

based system is economic in terms of e/m2.

In the literature we can find other proposals where
audio is used to detect violence by itself,8 since violent
situations are commonly accompanied by signs like ar-
guments, shouts or an increase in the volume of the con-
versation. However, most of the studies up to now have
been done with pretended violence from films or games,
which are not applicable to real violence situations.9

In order to implement real-time audio surveillance
systems in wide areas, the need of energy-efficient pro-
cessing nodes arises. An energy-efficient real-time sys-
tem has the restriction of consumption when it is im-
plemented in some place where it is working in an au-
tonomous way. In this scenario, the computational cost,
related to the clock frequency of the processing units, is
an important factor to take into account, and the control
of the computational cost of the violence detection sys-
tem is mandatory.

Bearing this in mind, this paper proposes a real-time
implementation of an energy-efficient system capable of
detecting a violent situation in smart environments. Since
the system has to work in an autonomous way, compu-
tational cost is strictly constrained, and there is a need
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to find a reduced set of features. In this sense, genetic
algorithms are proposed to solve the constrained feature
selection process, allowing a good tradeoff between per-
formance and computational cost.

This paper is structured as follows. First, Section
2 introduces the implemented classification system, de-
scribing the feature extraction (Subsection 2.1), the com-
putational cost evaluation (Subsection 2.2) and the fea-
ture selection process using genetic algorithms (Subsec-
tion 2.3). Then, Section 3 describes the results, includ-
ing the description of the database, the validation method
employed and the discussion of the results. To sum up,
Section 4 presents the conclusions.

2. The Acoustic Surveillance System

The proposed system has the objective of studying so-
lutions for audio-based violence detection in real envi-
ronments and in real time, where the system has to take
a decision every T seconds. The steps of the proposed
acoustic surveillance system, shown in Figure 1, are be-
ing explained in detail in the following sections.

FEATURE 
EXTRACTION

VIOLENCE 
DETECTION

Fig. 1. Proposed system.

2.1. Feature extraction

There are several audio features that could exhibit a good
discrimination capability for the problem at hand.8,10

This section includes a brief description of the most in-
teresting features for violence detection.

Most of the features tend to analyze some time statis-
tics over the evaluation of a measurement along the time
to get useful information from the audio. So, in order
to evaluate/extract the features, the audio segments of T
seconds are divided into M frames of L samples with an
overlap of S%. By default, the statistics applied to these
measurements are typically the mean and the Standard
Deviation (SD), although for some particular measure-
ments more specific statistics are used.

All measurements can either be taken in the time do-
main or in the frequency domain. For notation purposes,

let us assume xim is the i-th audio sample of the m-th time
frame (i = 1, . . . ,L and m = 1, . . . ,M), and Xkm is the k-
th frequency component for the m-th time frame of the
Short-Time Fourier Transform (STFT), evaluated apply-
ing a windowed Discrete Fourier Transform (DFT) to the
m-th time frame.

The features considered in this paper are:

• The Mel-Frecuency Cepstral Coefficients (MFCCs),
which are a set of perceptual parameters commonly
used in speech recognition,10 calculated from the spec-
trum. They provide a compact representation of the
spectral envelope. Perceptual analysis emulates human
ear non-linear frequency response by creating a set of
filters on non-linearly spaced frequency bands.11

In the case of violence detection and considering a
sampling frequency of 22,050 Hz, N = 25 cepstral
coefficients are calculated,12 so that there will be 25
different MFCCs per frame, denoted MFCCnm, n =

1, . . . ,25.
• The Delta Mel-Frequency Cepstral Coefficients

(∆MFCCs), calculated as the time difference of stan-
dard MFCCs in two different time frames,10 so that
∆MFCCnm = MFCC(n+1)m −MFCC(n−1)m.

• The Pitch, related to the fundamental frequency, de-
termines the tone of the speech. It can be used to dis-
tinguish a person from another.11 In this paper we es-
timate the pitch for every frame, evaluating the main
peaks of the autocorrelation of the error of a linear pre-
dictor with P = 10 coefficients.10

• The Harmonic Noise Rate (HNR) quantifies the pu-
rity of the speech in every frame. It measures the rela-
tionship between the harmonic energy produced by the
vocal cords versus non-harmonic energy present in the
signal.10

• The Ratio of Unvoiced time Frames (RUF), is related
to the presence or absence of clear or strong speech in
the analyzed audio. It is obtained dividing the number
of time frames with detected pitch by the total number
of frames.12

• The Short Time Energy (STE) is the energy of the
short speech segment, ST Em = ∑L

i=1 x2
im. It is a simple

and effective classifying parameter for both voiced and
unvoiced frames.13

• The Energy Entropy (EE) expresses abrupt changes
in the energy level of the audio signal. It is useful
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for detecting violence due to rapid changes occurring
in the tone of voice.8 To evaluate this measurement,
each time frame of L samples is divided into B blocks,
and the energy of each block is then measured. So,
EE for the m-th time frame can be evaluated using
EEm = −∑B

b=1 σ2
bmlog2σ2

bm, where σ2
bm is the normal-

ized energy calculated for the b-th block of the m-th
frame, b = 1, . . . ,B. Apart from the mean and the SD,
statistics applied to the energy entropy are the ratios of
maximum to mean and maximum to median values.

• The Zero Crossing Rate (ZCR) is one of the most
widely used time-domain audio features.8 It is deter-
mined by dividing the number of sign changes by the
total length of the frame, so that Zm = ∑L

i=1 |sgn(xim)−
sgn(x(i−1)m)|. Apart from the mean and the SD, the
ratio of the maximum to mean is calculated.

• The Spectral Rolloff (SR) is calculated in the fre-
quency domain and is defined as the frequency kc(m)

below which c% of the magnitude distribution of STFT
coefficients are concentrated for the m-th frame, so
that ∑kc(m)

k=0 |Xkm| = c/100∑L/2
k=0 |Xkm|. It represents the

skewness of the spectral shape.8 The median value is
computed apart from the mean and the SD.

• The Spectral Centroid (SC) is defined as the center
of gravity of the magnitude spectrum of the STFT,14

so that SCm = ∑L/2
k=0 k · |Xkm|/∑L/2

k=0 ·|Xkm|.
• The Spectral Flux (SF) represents the spectral change

between successive frames,8 and is determined using
SFm = ∑L/2

k=0(|Xkm|− |Xk(m−1)|)2.

2.2. Computational Cost Evaluation

A energy-efficient real time system has the restriction of
consumption when it is implemented in some place where
it is working in an autonomous way, for instance working
with a solar powered source. In this scenario, computa-
tional cost is an important aspect to consider if we want
to control the consumption the node has.

In order to calculate the computational cost of our
system, the number of flops that each feature requires
has been calculated determining the number of Floating
Point Operations Per Second (FLOPS).15 The number of
flops is related to the power consumption. To put this in
perspective, if the system has to work autonomously and
is powered by a small solar cell of 1 dm2 which spends
1 W/dm2, and having a minimum average of 2.5 hours

of sun per day (a typical value in several winter in re-
gions such as Spain), the average total power will be 100
mW. Low power processors, such as the ARM-Cortex-
M4, typically consumes around 0.2 mW/MHz which, as-
suming a relationship of 1 FLOP per Hertz, gives us an
idea of the amount of FLOPS that are going to be avail-
able for this kind of devices.16

The number of FLOPS of our system depends on the
set of selected features, so it must take into account which
ones are used for a specific design. To evaluate the impact
of each feature in the selection process, we have carried
out a detailed analysis of the computational cost in terms
of FLOPS required to implement an energy-efficient vio-
lence detection system.

Thus, the cost of each feature has been evaluated and
we propose the above equations with the objective of
generalize the cost in function of some parameters ex-
plained below. As was stated above, the feature extrac-
tion process splits the audio frame of Nsamples (so that
T = Nsamples/ fs, being fs the sampling frequency) into
M frames of L samples, with an overlap between them of
S%, so that:

M =

⌊
Nsamples

S ·L

⌋
(1)

Some features such as pitch-based or MFCCs have
more impact in cost than others due to the amount of flops
needed. Furthermore, some features share some process-
ing blocks that do not need to be replicated for differ-
ent features. Considering the measurements described in
the last section, we have identified four processing blocks
that are shared along more than one measurement:

• The evaluation of the STFT is shared by the MFCCs,
∆MFCCs, the SR, the SC and the SF. Equation (2) rep-
resents the cost of the STFT matrix CS, in terms of op-
erations per decision, in function of the main design
parameters.

CS = L(M −1)(5log2 L+2)+4L+15 (2)

• The evaluation of the MFCCs is shared by both the
MFCCs and the ∆MFCCs. Apart from the evaluation
of the STFT, these features require some shared op-
erations. The cost CM associated to these operations
is expressed using equation (3) in function of N, the
number of MFCCs computed.
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CM = (L ·S +1)(M(2N +5)+10N +23)

+N(3N +11)+N ·M(2N +7)+29, (3)

• The evaluation of the pitch is also shared by the HNR
and the RUF. Its cost CP can be determined using the
next equation:

CP = 2L ·M(5log2 L+P+3)+

M
(
P(2P2 +P+2L+1)−L

)
+1, (4)

where P is the number of Levinson Coefficients.
• At last, the evaluation of the energy is shared by the

STE and the EE (which requires it to normalize the en-
ergy of each block), and its cost CE can be determined
using equation (5)

CE = M(2L+3)−4 (5)

We will use four binary variables bS, bM , bP and bE

related to CS, CM , CP and CE (the number of operations
associated to the described shared processing blocks) to
determine whether the selected set of features does re-
quire the evaluation of one of the aforementioned blocks,
respectively. The total number of operations can be ex-
pressed using equation (6):

CT = bS ·CS +bM ·CM +bP ·CP +bE ·CE +
11

∑
f =1

s f ·Cf ,

(6)
where Cf is the specific additional cost of each measure-
ment, and s f is a binary vector which indicates the se-
lected measurements. The FLOPS can be easily evalu-
ated simply taking into account that the proposed system
requires a decision every T seconds.

To sum up, there are some features which are linked
and depend on others, so that the computation of one al-
lows to compute the others with practically the same cost.
Because of that, we have been grouped measurements
into 8 groups. These groups are: G1 (including MFCCs
and ∆MFCCs), G2 (including Pitch, HNR, and RUF), G3

(STE), G4 (EE), G5 (ZCR), G6 (SR), G7 (SC) and G8

(SF). STE and EE have been evaluated separately because
the cost of the EE is not insignificant respect to the one
of the STE. Table 1 describes the groups, the number of
features of each measurement, the values bS, bM , bP and

bE and the additional cost Cf associated to each measure-
ment, in function of the main design parameters of each
feature.

2.3. Constrained selection of features

As was stated above, to control the computational cost of
the violence detection system, there is a need to find a re-
duced set of patterns that allows a good performance with
an energy-efficient implementation. For this purpose, ge-
netic algorithms have been used in the paper.

Genetic algorithms are based on the principles of ge-
netic and natural selection, allowing to obtain the best
results for solving a problem.17 This method consists of
exchanging randomly the features of the individuals of a
population that constitute the possible solutions for the
problem. In this way, the algorithm is able to resolve
optimization problems.18 Specifically, our problem is to
determinate which features are the best to be applied to
violence detection without resulting in a high cost. For
that reason, a cost constraint is applied when the features
are selected. There are 121 features in total, but each in-
dividual only selects a subset of them in a way that total
cost is below the fixed threshold. The adaptive function
has the aim of maximize the probability of detection as-
sociated to a probability of false alarm for a given detec-
tion system. In this point, two different classifiers will
be applied: The Least Squares Linear Detector and the
simplified version of Least Squares Quadratic Detector.
They are explained in detail in the literature.12

According to the previous parameter, the individuals
will be ranked and only the best individuals survive and
reproduce. The population is composed of 100 individu-
als, 10 of them will be chosen as parents, and they will
generate the remaining 90 sons by crossover. After this,
mutation changes a 4 percent of the genes. This process
is repeated along 30 generations and the whole process is
repeated 10 times to avoid local minima.

3. Results

In order to validate the proposed system, a set of experi-
ments has been carried out using a database of audio files.
These audio files have been divided in segments of T = 5
seconds length with a sampling frequency of fs = 22,050
Hz. Each frame is divided in windows of L = 512 length
and S = 50% overlap between windows, resulting in a to-
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Table 1. Dependence between grouped features.

Group Caract No. feats bS bM bP bE Additional cost (No. operations)

G1
MFCCs 50 1 1 0 0 C1 = 0

∆MFCCs 50 1 1 0 0 C2 = N(M −2)+1

G2

Pitch 2 0 0 1 0 C3 = 0

HNR 2 0 0 1 0 C4 = 9M

RUF 1 0 0 1 0 C5 = M

G3 STE 2 0 0 0 1 C6 = 0

G4 EE 4 0 0 0 1 C7 = M ("2L/B#+3B−5)+6B+3

G5 ZCR 3 0 0 0 0 C8 = (6M +1)(L−1)

G6 SR 3 1 0 0 0 C9 = M(5N +8)+2"M(L ·S −1)/3#
G7 SC 2 1 0 0 0 C10 = M (8N +L ·S +6)+L ·S +4

G8 SF 2 1 0 0 0 C11 = M (9N +5)−3N +1

tal of M = 430 frames per segment. Then feature extrac-
tion has been applied to obtain useful information from
data. With the aim of selecting a reduced set of features,
a genetic algorithm is used.

CROSS-VALIDATION

AUDIO FILES
DATABASE

EXTRACTING 
THE AUDIO 

FRAMES
FEATURE 

EXTRACTION

TRAINING 
SET

CLASSIFYING

TEST SET

SELECTING 
BEST 

FEATURES

FINAL 
DECISION

COST 
RESTRICTION

Fig. 2. Block diagram of the experiments.

This algorithm has been applied using a constraint re-
lated to the cost available in the system. Specifically, dif-
ferent cost thresholds measured in “Maximum number of
Mega Floating Operations Per Second” (MaxMFLOPS)
have been applied (1, 3, 5, 10 and 15 MaxMFLOPS).
This means that the sum of costs of the selected features
has to be below this values. Once the best features have
been selected, a specifically trained classifier aims at giv-
ing the final decision. Figure 2 shows a block diagram
describing the process carried out in the experiments.

In general, the databases used in the state-of-the-art

were not suitable for our problem, so we have used a
novel database developed in a previous work.12 The main
characteristics of the used database are shown in Table 2.

Table 2. Summary of the database.

Parameters Value

Total duration 27,802 s

Violent duration 3,051 s

Percentage of violence 10.97%

Number of audios 109

Minimum audio length 15 s

Maximum audio length 4,966 s

Related to the implemented validation, a tailored ver-
sion of k-fold cross-validation has been used in the exper-
iments to avoid loss of generalization of the results. The
data is divided in k subsets, so that each subset is used
for testing and the remaining k − 1 are used for training.
In our case, 109 folds with different size have been used,
each fold containing data from a different audio file. In
that way, we ensure that data from the same acoustic en-
vironment is not used both for training and testing at the
same time, guaranteeing the generalization of the results.

As it was stated above, two genetic algorithms based
feature selection strategies have been considered: the
case of maximizing the probability of detection with a
linear and with a quadratic detector. In each case, the
same detector has been applied to classify. The probabil-
ity of false alarm considered in the optimization process
has been 10%. Figure 3 shows a comparative between the
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costs (measured in Mega-FLOPS) required by the eight
groups of features. The cost necessary to calculate the
Short Time Fourier Transform (STFT) is depicted in solid
colour, while the additional cost of each feature group is
painted with striped bars. For instance, if the STFT has
been calculated because of the group G1 (MFCCs and
∆MFCCs), this cost can be saved in groups G6, G7 and
G8 (spectral features). In the same way, in group G4 (EE)
energy does not have to be calculated if group G3 (STE)
is computed.

0
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7

MFCCs 
ΔMFCCs

Pitch 
HNR  
RUF

ZCR STE EE SR SC SF

M
FL

OP
S

STFT Cost of the features

Fig. 3. Cost of the different feature groups.

In view of the results, we can appreciate that group G2

(pitch, HNR and RUF) is the most computationally ex-
pensive group, overcoming 6 millions of FLOPS. Group
G1 is also too expensive, but it will provide 100 fea-
tures to the experiments, aside from the calculation of the
STFT, used by other groups.

Now we will evaluate the effect of the limits in the
computational cost available. Figure 4 shows the proba-
bility of detection obtained for low probabilities of false
alarm (under 10%) and using the linear detector, evalu-
ated for the different cost thresholds. The same is shown
in Figure 5 using the quadratic detector.
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Fig. 4. Probability of Detection for Linear Detector.

The behavior is similar in both cases. With low
thresholds (1 MaxMFLOPS) the probabilities of detec-
tion obtained are poor (around 50-55% for 10% of false
alarm). As we increase this threshold the results are con-
siderably improved, reaching around 75-80% of detec-
tion with 5 MaxMFLOPS cost. However, this improve-
ment does not continue for higher costs, so it makes no
sense to spend more resources in this problem.
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Fig. 5. Probability of Detection for Quadratic Detector.

In order to demonstrate the high accuracy of the pro-
posed system in terms of probability of detection, we are
going to make a comparison between our method and the
one proposed by J. Salamon.19. Applying that algorithm
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Table 3. Cost, probability of detection and probability of appearance of the features groups.

MaxMFLOPS 1 MFLOPS 3 MFLOPS 5 MFLOPS 10 MFLOPS 15 MFLOPS

Classifier Lin. Qua. Lin. Qua. Lin. Qua. Lin. Qua. Lin. Qua.

Average Cost (MFLOPS) 0.4 0.4 2.6 2.6 3.9 3.7 9.8 8.3 10.0 8.8

Pd (Pfa = 10%) (%) 50% 54% 64% 67% 74% 76% 69% 78% 70% 74%

G1 (MFCC+∆MFCC) 0% 0% 0% 0% 100% 100% 100% 100% 100% 100%

G2 (Pitch+HNR+RUF) 0% 0% 0% 0% 0% 0% 99% 76% 100% 82%

G3 (STE) 93% 0% 19% 0% 63% 0% 80% 0% 63% 0%

Selection G4 (EE) 100% 100% 100% 100% 97% 92% 73% 89% 95% 96%

rate (%) G5 (ZCR) 100% 100% 100% 100% 80% 31% 25% 12% 80% 35%

G6 (SR) 0% 0% 100% 100% 98% 98% 93% 98% 97% 99%

G7 (SC) 0% 0% 100% 9% 82% 77% 99% 78% 97% 86%

G8 (SF) 0% 0% 6% 98% 49% 57% 41% 63% 41% 70%

the results are around 65% of probability of detection for
a probability of false alarm of 10%, which does not im-
prove the ones obtained with the algorithm proposed in
this experiment.

Now we will study which groups of features are more
selected and useful. Table 3 displays the average cost
employed, the probability of detection for a probability
of false alarm of 10% and the percentages of appearance
(selection rates) of the groups. It has been considered as
appearance the selection of one or more features from the
group.

At the beginning, the algorithm selects groups G3,
G4 and G5 in practically 100% of the cases because of
the low threshold imposed (1 MaxMFLOPS). When we
increase this value to 3 MaxMFLOPS the spectral fea-
tures appear. Furthermore, the MFCCs are selected with
5 or more MaxMFLOPS, and the pitch with 10 MaxM-
FLOPS. The case of 15 MaxMFLOPS allows the algo-
rithm to select whatever it needs, because the sum of the
total cost is lower than this value.

As it can be seen, there are some features that work
better in the quadratic detector than in the linear one.
Such is the case of group G8 (SF), where the difference
between the appearance in both classifiers is always con-
siderable. The opposite happens in groups G3 and G5. In
fact, the appearance of group G3 in quadratic detector is
always 0%.

Additionally, the importance of some features is re-
flected in the table. For instance, when group G1 -MFCCs
and ∆MFCCs- appears (from 5 MaxMFLOPS onwards)

its appearance is 100% in linear and quadratic detectors,
while the appearance of the features that were selected
previously is significantly reduced, like in groups G4 and
G5. Because of that, MFCCs is an excellent group. The
same does not happens to other expensive groups, such
as group G2, which does not improve the results when it
is selected (10-15 MaxMFLOPS).

4. Conclusion

The objective of this work is to develop a system capable
of detect violent scenes in real time and in real situations.
With this purpose, we have carried out different exper-
iments related to audio analysis. The algorithms have
been developed in order to maximize the probability of
detection for low probabilities of false alarm, but subject
to computational cost constraints.

The results derived from the experiments show that
MFCCs are the best features for violence detection, both
for linear and quadratic classifiers. Other features such as
energy only show a good performance in linear classifiers
and their cost is quite low compared to the rest.

Regarding to the classifiers, the results obtained are
better in quadratic case (3-9% of difference respect to the
linear one) for all cases with different cost thresholds.
Higher cost implies better results, but a compromise of
5 MaxMFLOPS could be reached, since the results does
not seem to be improved much from this value.

The cost (e/m2) of this audio-based system is rela-
tively low. For instance, if we consider a typical range
of 20 m2 per node and each node (e.g., Raspberry Pi)
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has a price around 100 e, the deployment costs would be
around 5 e/m2.

To sum up, the experimental results show that it is
viable to implement a real time system capable of de-
tecting violence in an autonomous way. That is possible
thanks to the low cost that some violence features need to
be computed, which can be supported by nowadays low
power microprocessors.
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12. J. Garcı́a-Gómez, M. Bautista-Durán, R. Gil-Pita, I.
Mohino-Herranz and M. Rosa-Zurera, Violence Detection
in Real Environments for Smart Cities, in Ubiquitous Com-
puting and Ambient Intelligence: 10th International Con-
ference, UCAmI, (Springer International Publishing, Spain,
2016), Part II 10, pp. 482–494.

13. M. Jalil, F. A. Butt, and A. Malik, Short-time energy, mag-
nitude, zero crossing rate and autocorrelation measurement
for discriminating voiced and unvoiced segments of speech
signals, in Technological Advances in Electrical, Electron-
ics and Computer Engineering (TAEECE), (2013), pp. 208–
212.

14. G. Tzanetakis, and P. Cook, Musical genre classification of
audio signals, in IEEE Transactions on speech and audio
processing, 10(5), (2002), pp. 293–302.

15. H. Qian, Counting the Floating Point Operations (FLOPS),
MATLAB Central File Exchange, No. 50608, Ver. 1.0,
(2015).

16. ARM, ARM Cortex-M4 Processor: Technical Ref-
erence Manual. Revision: r0p1. Available at:
https://developer.arm.com/docs/100166 0001/00.

17. R. L. Haupt and S. E. Haupt, Practical genetic algorithms.
John Wiley & Sons, (2004).

18. D. E. Goldberg and J. H. Holland, Genetic algorithms and
machine learning. Machine learning, 3(2), (1988), pp. 95–
99.

19. Salamon, J., Jacoby, C., and Bello, J. P, A dataset and taxon-
omy for urban sound research. In Proceedings of the 22nd
ACM international conference on Multimedia (2014), pp.
1041–1044.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1298–1305
___________________________________________________________________________________________________________

1305

46



Chapter 3

Article 2: Cost-constrained Drone
Presence Detection through Smart
Sound Processing

Authors

Joaquín García-Gómez, Marta Bautista-Durán, Roberto Gil-Pita, InmaMohino-Herranz,
Miguel Aguilar-Ortega, César Clares-Crespo

Book

Proceedings of the 8th International Conference on Pattern Recognition Applications
and Methods (ICPRAM)

D.O.I.: 10.5220/0007556007660772

Contribution to the scope of the thesis

This article shows the research related to the Drone Presence Detection (DPD) issue.
Sometimes, drones lead to problems of invasion of privacy or access to restricted areas.
Because of that, it is essential to develop a system capable of detecting the presence
of these vehicles in real time in environments where they could be used for malicious
purposes. However, the computational cost associated with that system must be limited
if it has to work in an autonomously. In this manuscript, an algorithm based on smart
sound processing techniques has been developed, including the typical pattern recognition
stages of feature extraction, computationally-constrained feature selection, and detection.
A novel dataset is tested with the objective of minimizing the error rate of the system.
Results show that it is possible to detect the presence of drones with low-cost feature
subsets easily supported by modern microprocessors, where MFCCs and pitch are the
most relevant ones.
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Abstract: Sometimes, drones lead to problems of invasion of privacy or access to restricted areas. Because of that, it is
important to develop a system capable of detecting the presence of these vehicles in real time in environments
where they could be used for malicious purposes. However, the computational cost associated to that system
must be limited if it has to work in an autonomous way. In this manuscript an algorithm based on Smart Sound
Processing techniques has been developed. Feature extraction, cost constrained feature selection and detection
processes, typically implemented in pattern recognition systems, are applied. Results show that it is possible
to detect the presence of drones with low cost feature subsets, where MFCCs and pitch are the most relevant
ones.

1 INTRODUCTION

The use of Unmanned Aerial Vehicles, also known
as drones, is on the rise in the society, mainly be-
cause of the advantages they offer. However, these
vehicles usually run into problems of invasion of pri-
vacy or access to hazardous areas (e.g. airports). For
this reason it is important to develop a system ca-
pable of detecting the presence of drones in partic-
ular environments where they could be used for mali-
cious purposes, such as households, public buildings
or restricted-access areas. In the state of the art there
are many studies which deal with this issue, trying to
detect and locate drones (Ganti and Kim, 2016). The
wide range of methods includes audio, video, temper-
ature, radar and radio frequency based detection.

Video detection systems can cover long distances,
but there is a difficulty when distinguishing between
drones and birds, even after including bird flight pat-
terns which drones do not follow (Ganti and Kim,
2016). In addition, the computational cost of this kind
of systems is high. Talking about the temperature-
based detection, it is an efficient solution if the drone
uses a propulsion engine, which usually appears in
fixed-wing drones. However, most current drones are
made of plastic and their electric engines do not radi-
ate much heat.

Systems based on radar signal are useful for air-

craft detection, but the small size of the drones com-
plicates their detection. Some manuscripts are work-
ing on this alternative (Drozdowicz et al., 2016). Re-
lated to radio frequency based methods, they are use-
ful for the problem at hand since radio frequency is
the communication mode used between drones and
the remote controller (Nguyen et al., 2016). How-
ever, the use of Wi-Fi range (2.4-5 GHz) in no-license
channels causes the appearance of high interferences.

Some proposals have based their study on audio
information, mixed or not with video one. Some au-
thors propose the use of an array of microphones and
an infrared camera to get the information (Case et al.,
2008). They try to trace the path followed by the
drone through beamforming techniques. Others use
only one microphone, but they are focusing on detect-
ing a particular model of drone, so the results could
not be generalizable (King and Faruque, 2016). In one
manuscript, the authors analyze video information to
detect the difference between frames, and in this way
they track the drone movement, while they use audio
information for detecting the vehicle with a threshold
in frequency (Ganti and Kim, 2016). The problem is
that it is not very effective when background noise is
high. In addition, audio appears to be more reliable
for detecting drones according to some studies (Liu
et al., 2017).

This manuscript proposes a real-time implemen-
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tation of an energy-efficient system capable of detect-
ing drone presence in smart environments. We want
the system to work in an autonomous way, so com-
putational cost related to the clock frequency of the
processing units will be strictly constrained. In this
sense, evolutionary computation (i.e. genetic algo-
rithms) is proposed for selecting a reduced set of fea-
tures from the full set calculated previously, allowing
a good tradeoff between performance and computa-
tional cost.

2 SMART SOUND PROCESSING
(SSP) SYSTEM

In order to detect drone presence, our study will be
based on an efficient system successfully used in other
applications, like violence detection (Bautista-Durán
et al., 2017). This is because this set includes fea-
tures like pitch, which can be useful for detecting the
frequency associated to the drone engine, as well as
the rotation speed, size and material of the propellers.
The system has the objective of studying solutions for
audio-based drone detection in real environments and
in real time, where the system has to make a decision
every T seconds. Fig. 1 shows the system diagram,
whose steps will be explained in the following sec-
tions.

Feature 
Extraction

Feature 
Selection 

with 
COST 

CONSTRAINTS

Detector BINARY
DECISION

Figure 1: Scheme of the system.

2.1 Feature Extraction

The objective of this step is to extract useful infor-
mation from the audio signal in the form of features.
There are several audio features that have demon-
strated to be really useful in other applications, funda-
mentally related to speech problems (Giannakopoulos
et al., 2006; Mohino et al., 2011; Gil-Pita et al., 2015).
In this manuscript we will apply this type of features
to the problem of drone detection. In this section a
theoretical description of the features will be made.
To extract the features, the audio segments of T sec-
onds are divided into M frames of L samples with an
overlap of S%. The following features have been con-
sidered:

• The Mel-Frequency Cepstral Coefficients
(MFCCs). They are N parameters calculated
from the spectrum that are typically used for

speech recognition. With this measurement, a
compact representation of the spectral envelope is
obtained. The objective is to emulate the human
ear non-linear frequency response through a set
of filters on non-linearly spaced frequency bands
(Gil-Pita et al., 2015).

• The Delta Mel-Frequency Cepstral Coefficients
(∆MFCCs). They are calculated differentiating
the previous MFCCs in two different time frames.

• The Pitch. This feature is related to the funda-
mental frequency and determines the tone of the
speech. It allows to distinguish a person from an-
other. In this manuscript the pitch is evaluated in
every frame through the autocorrelation of the er-
ror of a linear predictor with P coefficients (Mo-
hino et al., 2011).

• The Harmonic Noise Rate (HNR). With this fea-
ture it is feasible to evaluate the purity of the
speech. It measures the relation between the har-
monic energy produced by the vocal cords and the
non-harmonic energy.

• The Ratio of Unvoiced time Frames (RUF). It
measures the presence or absence of clear or
strong speech. The computation consists of divid-
ing the number of time frames with detected pitch
by the total number of frames.

• The Short Time Energy (STE), which is the en-
ergy of the short speech segment. It is a simple
and effective parameter for both voiced and un-
voiced frames (Jalil et al., 2013).

• The Energy Entropy (EE). It allows to detect
changes in the energy level of the audio. It is use-
ful for detecting a quick emergence of a drone in
the environment due to rapid changes in the en-
ergy of the audio. To evaluate this measurement,
each time frame is divided into B blocks, and the
energy of each block is then measured.

• The Zero Crossing Rate (ZCR). It is one of the
most used audio features in time domain. To cal-
culate it, the number of sign changes is divided by
the total length of the frame.

• The Spectral Rolloff (SR). It is calculated in the
frequency domain and is defined as the frequency
below which c% of the magnitude distribution
of Short Time Fourier Transform (STFT) coeffi-
cients are concentrated for a frame.

• The Spectral Centroid (SC) is the center of gravity
of the magnitude spectrum of the STFT.

• The Spectral Flux (SF) measures the spectral
changes between successive frames.
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Once these features have been extracted, some statis-
tics are applied to them (the mean and the standard
deviation).

2.2 Feature Selection with Cost
Constraints

If we want to get an energy-efficient real time sys-
tem for detecting drone presence, it will have the re-
striction of consumption, as it will be implemented in
some place to work in an autonomous way. In this
scenario, computational cost is an important aspect
to consider. In order to calculate the computational
cost of our system, we have computed the resources
that each feature requires determining the number
of Floating Point Operations Per Second (FLOPS)
(Qian, 2015), which is directly related to the power
consumption of the device. The number of FLOPS of
the system will depend on the set of selected features,
so it must be taken into account which ones are used
in each case (Bautista-Durán et al., 2017).

Thus, the cost of each feature has been evaluated
and some equations are proposed with the objective
of generalizing the cost according to some parameters
that will be explained. As stated above, the feature
extraction process splits the audio frame of Nsamples
(so that T = Nsamples/ fs, being fs the sampling fre-
quency) into M frames of L samples, with an overlap
between them of S%, so that:

M =

⌊
Nsamples

S ·L

⌋
(1)

Some aspects must be taken into account for the anal-
ysis. First of all, some features will have more impact
in cost than others (e.g. MFCCs or pitch-based ones).
In addition, some features need to apply the same pro-
cessing blocks, so their computation do not have to
be repeated. Considering the measurements of Sec-
tion 2.1, four processing blocks that are shared along
more than one measurement have been identified:

• The STFT is shared by the MFCCs, the ∆MFCCs,
the SR, the SC and the SF.

• The MFCCs are shared by the MFCCs and the
∆MFCCs.

• The pitch is shared by the HNR and the RUF.

• The energy is shared by the STE and the EE.

In Table 1 the four processing blocks and their
equations are shown. Four binary variables b1, b2, b3
and b4 related to B1, B2, B3 and B4 (the number of op-
erations associated to the previous processing blocks)
will be defined to determine if the set of features se-
lected requires or not the evaluation of these blocks.

Thus, the total cost C will be calculated using Equa-
tion (2).

C =
4

∑
i=1

bi ·Bi +
11

∑
j=1

s j ·C j, (2)

where C j is the additional cost of each feature and
s j is a binary value which indicates if the feature is
selected or not. Taking into account that the proposed
system makes a decision every T seconds, the FLOPS
can be evaluated.

As there are some features which are linked and
depend on others, we have grouped the measurements
into 8 groups: G1 (including MFCCs and ∆MFCCs),
G2 (including Pitch, HNR, and RUF), G3 (STE), G4
(EE), G5 (ZCR), G6 (SR), G7 (SC) and G8 (SF). The
groups, number of features of each measurement, val-
ues of bS, bM , bP and bE , and the equations of addi-
tional cost C f associated to each measurement are de-
tailed in Table 2. There we can see a typical cost of
the problem at hand, considering each feature is se-
lected individually, so the shared blocks need to be
computed in each of them. The parameters used for
solving the equations are: B = 10 blocks, L = 512
samples, M = 31 frames, N = 25 MFCCs coefficients,
P = 10 Levinson coefficients and S = 50% overlap.

As it has been discussed, it is necessary to find a
reduced set from the 117 features that allows obtain-
ing a good performance and controlling the compu-
tational cost of the system. For this purpose, evo-
lutionary algorithms have been implemented in the
manuscript (Haupt et al., 1998). The configuration
of this algorithm includes the next parameters: 100
individuals, 10 parents, 90 regenerated sons, percent-
age of mutation of 2%, 30 generations, 10 repetitions
of the whole algorithm and minimization of the error
rate as adaptive function.

2.3 Detectors

To evaluate the results and make a decision about the
presence of drone sound, a detector has to be applied.
In the present case, two different detectors have been
used: the Least Squares Linear Discriminant (LSLD)
and a reduced version of the Least Squares Quadratic
Discriminant (LSQD). The computation of the two
detectors is shown in Equations 3 and 4. (Garcı́a-
Gómez et al., 2016). They are obtained using the
Wiener-Hopf equations. (Van Trees, 2004)

y = w0 +
L

∑
n=1

wnxn, (3)

y = w0 +
L

∑
n=1

wnxn

L

∑
n=1

n

∑
m=1

xmxnvmn, (4)
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Table 1: Cost of the shared processing blocks.

Block Cost of the block (No. operations)
STFT B1 = L(M−1)(5log2 L+2)+4L+15

MFCCs B2 = (L ·S+1)(M(2N +5)+10N +23)+N(3N +11)+N ·M(2N +7)+29
Pitch B3 = 2L ·M(5log2 L+P+3)+M

(
P(2P2 +P+2L+1)−L

)
+1

Energy B4 = M(2L+3)−4

Table 2: Details of the groups of features.

Group Caract No. feats b1 b2 b3 b4 Additional cost (No. operations) Typical cost (MFLOPS)

G1
MFCCs 50 1 1 0 0 C1 = 0 1.25

∆MFCCs 50 1 1 0 0 C2 = N(M−2)+1 1.26

G2

Pitch 2 0 0 1 0 C3 = 0 2.21
HNR 2 0 0 1 0 C4 = 9M 2.21
RUF 1 0 0 1 0 C5 = M 2.21

G3 STE 2 0 0 0 1 C6 = 0 0.03
G4 EE 2 0 0 0 1 C7 = M (b2L/Bc+3B−5)+6B+3 0.06
G5 ZCR 2 0 0 0 0 C8 = (6M+1)(L−1) 0.10
G6 SR 2 1 0 0 0 C9 = M(5N +8)+2bM(L ·S−1)/3c 0.74
G7 SC 2 1 0 0 0 C10 = M (8N +L ·S+6)+L ·S+4 0.75
G8 SF 2 1 0 0 0 C11 = M (9N +5)−3N +1 0.74

where xn and xm are the training patterns, wn and vmn
are the weights associated to them, w0 is a bias term
and y is the combination of the training patterns. A
threshold will be applied to this combination to obtain
the binary decision about drone presence.

It is important to indicate that in the beginning
more complex detectors were considered (e.g. arti-
ficial neural networks). However they were discarded
because the results were not as good as expected, due
to the fact that overtraining problems appear as the
dataset is not large enough.

3 RESULTS

To validate the system we have carried out some ex-
periments using a dataset of audio files. These audio
files have been divided in segments of T = 1 second,
which indicates how often a decision is made. All the
files have been resampled to a sampling frequency of
fs = 8,000 Hz. Each frame is divided in windows of
L = 512 length and S = 50% overlap between win-
dows, resulting in a total of M = 31 frames per seg-
ment. Then steps detailed in previous sections have
been followed, including feature extraction, feature
selection and detection.

The algorithm has been applied using a constraint
related to the computational cost. Some cost thresh-
olds measured in “Maximum number of Mega Float-
ing Operations Per Second” (MaxMFLOPS) have
been applied (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 MaxM-
FLOPS). This means that the sum of costs of the se-
lected features has to be below these values. The up-

per limit is never reached, since the cost associated to
the case of selecting all the features is below 4 MaxM-
FLOPS. Once the best features have been selected, a
trained detector makes the final decision.

The datasets used in the state of the art are not
suitable for our problem for several reasons: they just
include a model of drone, or the environmental con-
ditions do not change. Because of that, we have used
a novel dataset that was developed in a previous work
(Garcı́a-Gomez et al., 2017). In this dataset, drones
in motion and in a static position are included, as
well as different models of them (Cheerson CX10,
DJI Phantom 3, Eachine Racer 250, etc.). In order to
make the database more challenging, similar no-drone
sounds are included too (plane, helicopter, mower,
etc.). The main characteristics of the used database
are: total duration of 3671 seconds, duration of drone
sound of 1913 seconds, percentage of drone presence
of 50.08%, 36 fragments, minimum audio length of
6 seconds and maximum audio length of 316 sec-
onds. More details about the dataset can be found in
(Garcı́a-Gomez et al., 2017).

The method of validation implemented has been
a tailored version of k-fold cross-validation, since it
allows avoiding loss of generalization of the results.
The data is divided in k subsets, so that each subset is
used for testing and the remaining k− 1 are used for
training. In the case at hand, 36 folds with different
size have been used, each fold containing a different
audio file. In that way, we ensure that data from the
same model of drone or with the same environmental
conditions are not used both for training and testing at
the same time.
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3.1 Analysis of the Computational Cost
Constraints

Now we will evaluate the effect of the limits in the
computational cost available, as well as the groups of
features more selected and useful. Table 3 displays
the error rate and the percentages of appearance (se-
lection rates) of the groups, in function of the maxi-
mum cost established in MFLOPS, using the LSLD.
The error rate is the sum of the decisions where the
system says there is drone presence and it fails be-
cause there is no drone in the environment, and vice
versa. It has been considered as appearance the se-
lection of one or more features from the group. The
same is displayed in Table 4 using LSQD.

At the beginning, the system selects groups G3,
G4 and G5 in almost 100% of the cases because of
the low threshold imposed (0.5 MaxMFLOPS). When
we increase this value to 1 MaxMFLOPS, the spectral
features appear. If the restriction is established in 1.5
MaxMFLOPS, the MFCCs start to be selected. When
we reach higher values of MFLOPS (3.5), group G2
is selected, which is composed of features related to
the pitch. The case of 4.0 MaxMFLOPS allows the
algorithm to select whatever it needs, because the sum
of all the costs is lower than this value.

In general LSQD works better than LSLD, since
the error rate is lower in most cases, specially when
the cost constraint is very limiting. The importance
of some features is reflected in the table. For in-
stance, when group G1 -MFCCs and ∆MFCCs- ap-
pears (from 1.5 MaxMFLOPS onwards) its appear-
ance is 100%. In fact, the parameter that best reflects
the importance of G1 is the error rate, since it falls
significantly when that group appears (in the case of
LSLD, from 57.5% of error to 28.5%, and in the case
of LSQD, from 41.9% to 23.4%). Something simi-
lar happens when G2 -pitch, HNR and RUF- appears
(from 3.5 MaxMFLOPS onwards). Again, its selec-
tion rate is 100% and its contribution to the perfor-
mance of the system is really significant (error falls
from 30.1% to 15.7% with LSLD and from 23.8% to
15.5% with LSQD). The importance of pitch could be
directly related to the particular frequency that drones
present, which is dependent on the size of the device,
the number of blades and the speed.

With regard to the rest of features, G3 seems to
work well only when using LSLD because of its high
selection rate. The same applies to G8, but when us-
ing LSQD. Other features seem to be more robust to
changes in the detector used (G5, G6 and G7), since
they present high selection rate for both detectors.

3.2 Analysis of the Model of Drone and
Other No-drone Sounds

Then, the error obtained in each of the models in-
cluded in the drone database will be analyzed. Table
5 shows the different models of drone, the duration of
each of them and the error obtained. In these results
the best constraint and detector in terms of error have
been selected from the previous cases (13.4% of error
with 4.0 MFLOPS and LSLD).

From Table 5 it can be seen that Parrot AR is
the best detected model (0% of error rate), while the
worst one is the UDI 817 (50% of error). This could
be because of its minor presence in the database. As
it can be observed, a large proportion of the database
belongs to DJI Phantom 3, which gets an error rate of
12.2%.

As mentioned previously, the dataset was devel-
oped including no-drone sounds present in smart city
environments, which can be easily confused with the
sound of a drone. In Table 6 the no-drone sounds, the
duration of them and the error obtained are detailed.

From the results it can be observed that the most
confusing sounds are the fire siren, radial saw and
construction work (with error rates of 40.7%, 36.4%
and 22.5%, respectively). This could be because the
fundamental frequency of these sounds is in the range
of the drone frequency (one or two hundreds of Hz).
Likewise, other sounds like helicopter, excavator, mo-
torbike or plane are really well detected as no-drone
sounds, with error rates below 3%. This is especially
interesting in the case of other aerial vehicles (heli-
copter, plane), since they could be more conflicting
with drones as they share the same space of work (the
sky) and they could appear at the same time.

4 CONCLUSIONS

The aim of this work is to develop a system capa-
ble of detecting the presence of drones in real time.
To this end, different experiments related to Smart
Sound Processing (SSP) have been carried out, in-
cluding feature extraction, feature selection and de-
tectors. The objective of the algorithms is to minimize
the error rate while controlling the computational
cost. This has been reached through a constraint in
the number of operations per second (MFLOPS).

Related to the features selected, the results show
that MFCCs and features related to pitch are the best
subsets of features for the problem at hand, for both
linear and quadratic detectors. Depending on the de-
sired final error rate and on the resources of the pro-
cessing device, a compromise should be reached be-
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Table 3: Cost, error rate and probability of appearance of the features groups with LSLD.

MaxMFLOPS (MFLOPS) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Error Rate (%) 52.3 57.5 28.5 30.4 31.9 30.1 15.7 13.4

G1 (MFCC+∆MFCC) 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0
G2 (Pitch+HNR+RUF) 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
G3 (STE) 73.9 80.8 89.1 93.7 100.0 100.0 25.7 100.0

Selection G4 (EE) 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0
Rate (%) G5 (ZCR) 91.7 13.6 84.7 83.2 89.0 91.6 0.0 95.3

G6 (SR) 0.0 100.0 100.0 100.0 100.0 100.0 74.3 93.9
G7 (SC) 0.0 92.9 96.1 100.0 100.0 91.3 74.3 100.0
G8 (SF) 0.0 70.2 35.6 40.9 50.6 53.0 15.8 22.9

Table 4: Cost, error rate and probability of appearance of the features groups with LSQD.

MaxMFLOPS (MFLOPS) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Error Rate (%) 37.8 41.9 23.4 24.2 22.0 23.8 15.5 15.2

G1 (MFCC+∆MFCC) 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0
G2 (Pitch+HNR+RUF) 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
G3 (STE) 18.7 11.0 0.0 0.0 0.0 0.0 0.0 0.0

Selection G4 (EE) 78.4 46.1 100.0 100.0 100.0 100.0 0.0 100.0
Rate (%) G5 (ZCR) 100.0 100.0 95.9 96.4 95.9 100.0 0.0 88.6

G6 (SR) 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
G7 (SC) 0.0 92.9 74.0 69.9 61.4 67.1 95.4 91.3
G8 (SF) 0.0 100.0 100.0 100.0 100.0 100.0 61.2 96.6

Table 5: Error Rate of the different models of drones in-
cluded in the database.

Model of drone Duration (s) Error Rate (%)
DJI Phantom 3 1573 12.2
Cheerson CX10 284 13.0

Eachine Racer 250 171 21.6
Parrot AR 103 0.0
UDI 817 17 50.0

Table 6: Error Rate of the no-drone sound included in the
database.

No-drone sound Duration (s) Error Rate (%)
Plane 128 3.1

Helicopter 124 0.0
Hair clipper 249 14.1

Construction work 316 22.5
Excavator 147 0.0
Motorbike 150 1.3

Mower 268 8.2
Radial saw 22 36.4
Fire siren 135 40.7
Drag racer 55 7.1

tween the two parameters. On the one hand, if the sys-
tem requires high performance (13.4% of error rate),
the solution should include both the MFCCs and the
features related to pitch, with at least 3.5 MFLOPS.
On the other hand, a worst solution in terms of er-
ror rate could be reached (23.4%), but only using 1.5
MFLOPS in the system. Regarding to the detectors,

the results are better in quadratic case, specially when
the cost constraint is very restrictive.

In conclusion, the experiments developed show
that it is feasible to implement a real time system ca-
pable of detecting drone presence in an autonomous
way. That is possible thanks to the low cost features
proposed in the manuscript, which can be supported
by nowadays microprocessors.
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This article is the first publication of this thesis where the issue of Voice Activity
Detection in Hearing Aids (VADHA) is researched. Hearing loss is a common problem
in elderly people. Nowadays, hearing aids compensate these losses and make their life
better, but they present some important issues (reduced battery life, requeriment of real-
time processing). Because of that, the algorithms implemented in these devices must
work at low clock rates. Voice Activity Detection (VAD) is one of the main algorithms
used in hearing aids, since it is useful for reducing environmental noise and enhancing
speech intelligibility. In this paper, a VAD algorithm is tested using the QUT-NOISE-
TIMIT Corpus, with different computational cost constraints and at different locations,
with the objective of reducing the error rate of the system. Results show that 100 KIPS
are enough to obtain low error rates, in line with other systems proposed in the literature.
With such low values of instructions, the latency is close to zero, so the system does not
introduce any significant delay. Besides, it has been demonstrated that the results are
quite dependent on the scenario studied.
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ABSTRACT

Hearing loss is a common problem in old people. Nowadays hearing aids compensate these losses and make
their life better, but they present some important issues (reduced battery life, requirement of real-time processing).
Because of that, the algorithms implemented in these devices must work at low clock rates. Voice Activity Detection
(VAD) is one of the main algorithms used in hearing aids, since it is useful for reducing the environmental noise
and enhancing the speech intelligibility. In this paper a VAD algorithm will be tested using QUT-NOISE-TIMIT
Corpus, with different computational cost constraints and at different locations.

1 Introduction

Hearing loss is common in older adults [1] and is as-
sociated with social isolation and depression [2, 3].
There is evidence that hearing aids can improve the
quality of life and increase the social engagement of
people who suffer from these problems [4], and there
are indications that this kind of devices may have a
positive impact on the cognitive system after a certain
time using them [5].

However, one of the problems that hearing aids involve
is the lack of intelligibility when using them in a noisy
environment. Nowadays most of these devices include
techniques to improve the hearing experience, such as
feedback cancellation, environment classification and
speech enhancement [6, 7, 8]. In order to implement
these mechanisms it is necessary to detect when conver-
sations are taking place and to distinguish them from

the environmental noise. These algorithms are included
in the field of Voice Activity Detection (VAD), which
is the main objective of this study and is defined as the
detection of presence or absence of human speech [9].

In the literature there are a lot of methods and features
capable of detecting sound sources, such as Mel Fre-
quency Cepstral Coefficients (MFCCs). However, hear-
ing aids present some issues: the reduced battery life,
the small size of the device and the need for real-time
processing [10]. These requirements limit the computa-
tional capability of the device, the number of assembled
components and the processing delay. Besides, all the
computational capabilities are not available for devel-
oping the VAD system, since a considerable part of
the DSP resources has to be used to run the algorithms
that allow to compensate the hearing losses. Thus, the
typical implementation of the MFCCs in hearing aids
is not feasible.
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Some studies of VAD in hearing aids employed features
in the time and frequency domains (maximum of the
autocorrelation of the LPCs, spectral slope, reflection
coefficients and input signal power) [11], but using
sequences with low background noise. Other studies
have solved the VAD problem, obtaining good results in
terms of error rate [12, 13, 14]. However, they have not
restricted the computational cost in their algorithms, so
it is doubtful that they could be implemented in hearing
aids.

With regard to all these considerations, the aim of the
paper is to develop a VAD algorithm for hearing aids ca-
pable of being used in multiple scenarios and restricted
to certain constraints in terms of computational cost.
With this purpose, Evolved Frequency Log-Energy Co-
efficients (EFLECs) will be implemented [7]. They are
a set of computationally limited parameters inspired
in the Mel Frequency Cepstral Coefficients. EFLECs
were used for VAD in hearing aids [10], but it was a
first approximation where the performance of the al-
gorithm according to the computational cost was not
studied, it was not tested in a standard database and the
system was not compared with other methods from the
literature.

The paper is structured as follows. Section 2 will de-
scribe the VAD system implemented, including all their
stages and the computational cost associated to them.
In Section 3, the developed experiments will be de-
tailed, including the database used, the parameters stud-
ied and the results obtained. Finally, in Section 4 the
conclusions will be presented.

2 Methods

In this section the VAD system will be described. It is
composed of several stages, including the measurement
extraction stage, the feature extraction stage and the
detection stage.

In the measurement extraction stage the system has to
obtain a set of values which contains useful informa-
tion for solving the problem at hand. Other studies
are based on features like spectral centroid, spectral
flux, voice to white or short time energy [15]. How-
ever, most of these works have developed systems that
require a great amount of resources. It is an issue
when trying to implement them in hearing aids, such as
Mel Frequency Cepstral Coefficients (MFCCs) based
ones [16]. With this in mind, a low cost version of

the MFCCs has been developed in recent years, mak-
ing feasible the implementation in hearing aids. They
are known in the literature as Evolved Frequency Log-
Energy Coefficients (EFLECs) [7]. The objective of
these coefficients is to reach a compromise between
the error classification probability and the number of
instructions per second required by the system.

First of all, the computational cost required by an
EFLEC-based VAD system will be analyzed. If the
system uses M measurements, the number of instruc-
tions per second required by the system is obtained
using equation (1) [7].

CT =
2FsM
NT

CS +
2Fs

NT
CD +

2Fs

N

M

∑
m=1

CM(m), (1)

where CM(m) is the computational cost required when
evaluating the m-th measurement, CS is the computa-
tional cost required when evaluating the statistics, CD
is the computational cost required by the detector, Fs
is the sampling frequency, T is the number of time
frames between decisions, and N is the frame size. In
this equation an overlapping factor of 50% has been
considered.

The objective of the next stage is to calculate statistics
from the M measurements. The mean, the square of
the mean, the standard deviation and the variance have
been successfully used in sound environment issues
for hearing aids [10]. Using them, the classifiers can
find solutions based on quadratic combinations of the
features, so the performance is expected to be improved
using a few more resources than using linear combina-
tions. With this in mind, and knowing that the variance
can be determined as a linear combination of the square
of the mean and the mean of the squared values, we will
use the set S5 from [7], which is composed of the sum
of the values, the sum of the squared values, the square
of the sum values, and the standard deviation. The
computational complexity associated to it is CS = 39
instructions per measurement and NS = 4 features per
measurement.

Concerning the last stage, the detection has been
planned using two classifiers: the Least Squares Linear
Detector (LSLD) and the Multilayer Perceptron (MLP),
which are feedforward artificial neural networks, as in
[10]. The number of instructions associated to them is
represented in equations (2) and (3), respectively.
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CD |LC= 12+MNS, (2)

where M ·NS is the total number of features.

CD |MLP= 12+K +K(12+(M+2)NS), (3)

where K represents the number of available neurons in
the network.

The VAD algorithm used in the experiments is based on
the EFLECs, a set of novel designed features inspired
in the MFCCs. The traditional MFCCs have some
disadvantages in terms of computational cost, like the
large number of instructions that the evaluation of the
Mel scale triangular filters and the DCT require. For
solving this problem, soft computing techniques allow
to optimize the design of the feature stage, extracting
tailored features capable of being used in hearing aids.
EFLECs might be considered as a deep learning tech-
nique, where feature parameters are determined along
the training process.

EFLECs introduce some modifications to the computa-
tion of the MFCCs: the triangular filters are replaced
by uniform filters, and the DCT block is removed. The
performance of the system does not change in terms
of error rate, but the computational cost is significantly
reduced [17]. Besides, EFLECs apply an evolutive al-
gorithm for selecting the frequency bands instead of
using the Mel scale. This way the DSP load is con-
trolled [7].

The computational cost of the VAD system is repre-
sented in equations (4) and (5) for the case of using an
LSLD and an MLP, respectively [10].

CLSLD
T =

Fs

N

(
24
T

+
M

∑
m=1

8L(m)+24+
86
T

)
, (4)

where L(m) is the number of non zero coefficients of
each uniform filter.

CMLP
T =

Fs

N

(
24
T

+
42K

T
+

M

∑
m=1

8L(m)+24+
78
T

+
8K
T

)

(5)

As was stated above, most of the computational cost of
the system is related to the frequency bands selected

by the system. Because of that, an optimization pro-
cess based on evolutionary algorithms is required for
constraining the number of instructions per second. A
tailored evolutionary algorithm has been implemented
in order to search for the set of frequency bands which
minimizes the error rate of an LSLD, but limiting the
number of instructions per second at the same time.
Once this algorithm selects the best subset of bands,
the MLP is trained. The same process as in [10] will
be used.

3 Analysis of the performance in
hearing aids

In this section the database used will be described, as
well as the relation between the parameters studied,
the relation between the error rate and the scenarios
considered, and a comparison with other methods.

3.1 QUT-NOISE-TIMIT Corpus

In order to present the results obtained in the developed
experiments, the evaluated database will be described.
There exist some datasets available for solving the VAD
problem. In our case, QUT-NOISE-TIMIT Corpus has
been chosen because it is one of the most relevant
dataset in the field of study, it includes a large variety
of environments and it is quite long [18]. It consists
of 600 hours of noisy speech sequences, which are
obtained mixing some background noises and speech
events chosen from the TIMIT clean speech corpus.

The scenarios considered in the database are: cafe,
home, street, car and reverb one. Specifically, each of
them was recorded in two different locations:

• Cafe: an outdoor cafe and an indoor shopping
centre food-court.

• Home: a kitchen and a living-room.

• Street: a roadside near inner-city and outer-city
traffic-light controlled intersections.

• Car: a car with windows down and a car with
windows up.

• Reverb: an indoor pool and an enclosed carpark.
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The mixing of the background noise audios and the
clean speech is made randomly, so that the segment
of audio selected from the noisy recorders is not fixed
by the user. The speech events are selected and in-
cluded in a similar way. Besides, effects of co-talking
are included in the database, since each speech event
is randomly combined with the previous one with a
probability of 50%, taking into account the overlap and
silence between the speakers.

The full database contains 24,000 speech sequences.
The sampling frequency FS is 16 kHz. In this study
a subset from the full dataset has been considered for
the experiments, since it was not feasible to execute
all the networks considered on such a large set of data.
Specifically, 5 noise locations (cafe-foodcourtb, home-
kitchen, street-city, car-windowb and reverb-pool), 2
SNRs considered as medium noise in the documen-
tation (0 dB and 5 dB) and 6 speech sequences per
location have been included (2 sequences have less
than 25% of speech, 2 sequences have between 25%
and 75% of speech and 2 sequences have more than
75% of speech). This way the data subset is balanced,
so that there exists an average value of 50% of speech
against the total duration of the audios. The 2 sessions
and the 2 durations from the total set have been consid-
ered, resulting in a total of 120 sequences and 3 hours
of audio.

In all the experiments detailed below a 5-fold cross
validation will be implemented, so that in each iteration
one of the locations is used as training subset and the
rest of locations are included in the test subset. The
features were computed with N = 128 DFT points and
window lengths of 256 samples. The decomposition is
performed with 65 frequency bands and the time slot
for the decision is 16 milliseconds (T = 4), being all
these values standard in typical algorithms for hearing
aids.

3.2 Results

First of all, the relation between some parameters of
the simulations will be analyzed. Specifically, we will
study the cost constraint, the number of frequency
bands selected and the number of neurons used in
the Neural Network. The cost constraint is measured
in Kilo Instructions Per Second (KIPS) and can take
19 possible values, C={10,20,...,100; 120,140,...,200;
250,300,...,400} KIPS, so that the cost steps are smaller
for low cost values and bigger for high values. These

values have been considered because in hearing aids
the computational power of the DSP usually does not
exceed 5000 KIPS, and the power consume is propor-
tional to the DSP clock frequency. In this way, consid-
ering a DSP which consumes 1 mW/MHz and C=400
KIPS (the worst case), we obtain a consume of 0.4
mW for the VAD algorithm. This value corresponds to
approximately 40% of the power consume of a typical
compression/expansion algorithm of a hearing aid [7].

The number of frequency bands selected, that is to say,
the number of features selected can take 30 values,
M={1, 2,..., 30}, while the number of neurons can take
9 values, K={0, 1, 2, 3, 4, 5, 10, 15, 20}.

In figure 1 it can be shown three color maps, where red
tones represent high error rates and blue tones represent
better results (low error rates). The map in the top is
related with C = 100 KIPS, the map in the middle is
related with C = 200 KIPS and the map in the bottom is
related with C = 400 KIPS. White color appears when
this experiment can not be implemented because the
cost associated to that number of frequency bands M
and neurons K exceeds the cost constraint C.

In the view of the results it can be observed that the
error rate obtained is lower when the cost constraint
is less restrictive. Thus, the values in the last color
map are better than in the previous ones. Likewise,
the amount of experiments that can not be carried
out (white cells) is significantly reduced, as a greater
amount of resources in terms of computational cost are
available.

Furthermore, there exists a tendency in the behavior of
the algorithm related to the number of frequency bands
M and the number of neurons K. The best results are
obtained in the three cost constraints C when choosing a
high K, but a moderate M among all the bands available.
This is due to the fact that greater amount of features
does not always mean a better result. However, a larger
cost usually means a better result, since the algorithm
can find more expensive and useful features for the
problem at hand.

Now we will study which values of M and K are related
to the best result in terms of error rate, for the different
C considered. Table 1 shows the mentioned values.

As would be expected, when the system is less restric-
tive (higher C), the values of M and K are larger. How-
ever, we can conclude that the algorithm prefers a mod-
erate number of frequency bands M. In fact, although
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Fig. 1: Error rate obtained for 100 KIPS (top), 200
KIPS (middle) and 400 KIPS (bottom), accord-
ing to the number of frequency bands and neu-
rons selected.

Table 1: Values of the parameters which optimize the
error rate for the different C.

C (KIPS) M K
10 1 0
20 2 1
30 3 2
40 3 5
50 4 5
60 5 5
70 5 5
80 6 10
90 5 10
100 6 10
120 6 10
140 6 15
160 7 20
180 12 10
200 11 10
250 17 10
300 17 15
350 16 15
400 15 15

M can take until 30 bands, 17 is the maximum selected
by the algorithm (250-300 KIPS).

As was mentioned above, different scenarios compose
the database at hand. To continue with the analysis
of the experiments, we are going to study how well
the system works depending on the environment. Fig-
ure 2 represents the error rate depending on the cost
constraint C, for the scenarios considered.

As it can be observed, the home scenario is the one
which works better in terms of error rate, reaching less
than 13% of error with high values of C. This is due
to the fact that it is the scenario where there exists less
background noise. For its part, the cafe scenario is the
worst, getting an error close to 25% in the less restric-
tive case. It happens because the cafe is an environment
where most people is having a conversation, so the di-
alogue between the main speakers is easily confused
with the rest of conversations which are taking place.

Now we will observe the general tendency of the error
curve according to C. The most significant improve-
ment in terms of error rate occurs between 10 KIPS and
50 KIPS, when the error falls from 30.2% to 22.4%. In
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Fig. 2: Error rate depending on the cost constraint.

the next segment of the curve (between 50 KIPS and
100 KIPS), the error rate decreases slowly, from 22.4%
to 20.4%. From here, the error remains almost constant,
decreasing until 19.1% when duplicating the C (200
KIPS) and until 18.2% when quadrupling the C (400
KIPS).

It therefore seems logical that a compromise between
C and performance should be reached. The final appli-
cation will run in a low-cost-microprocessor capable of
being executed in hearing aids, so we can establish a
moderate C such as 100 KIPS. This could only mean
2-3 points in terms of error, but working at a frequency
4 times lower than before.

In figure 3 the frequency bands which provide the low
error to the system are shown. Blue lines represent the
case when C=100 KIPS (6 frequency bands), red lines
represent a restriction of C=200 KIPS (11 frequency
bands) and green lines are related to a C=400 KIPS (15
frequency bands). The selected bands are very different
from those selected in the Mel scale of the traditional
MFCCs.

Now we will try to compare the results obtained in
this study with the ones obtained with other methods.
With this purpose, we will compare results consider-
ing medium noise, since we have included audios with
SNR=0 and 5 dB. It should be note that in the case at
hand a subset of the database has been employed for
training and testing the system, so it will be an approxi-
mate comparison. Nevertheless, the results should be
similar, since some experiments were developed over
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Fig. 3: Frequency bands selected for different C: 100
KIPS (blue), 200 KIPS (red) and 400 KIPS
(green).

the scenarios that are out of our subset, getting a similar
performance in terms of error rate.

The comparison has been made with the baseline sys-
tems of the literature. Specifically, we will compare
with the studies of Sohn et al. [12], Ramírez et al.
[13] and Wisdom et al. [14], which applies to QUT-
NOISE-TIMIT Corpus a single-channel-based voice
activity detector [19] and a two-channel-based system
[20]. The results are summarized in table 2, where
HTER represents the Half-Total Error Rate. This rate
is calculated as the average of false alarm rate and miss
rate, which at the end corresponds to the error rate
calculated in this study.

Table 2: Comparative results with VAD baseline sys-
tems.

Method HTER (%)
DSB + Sohn et al. 24.58

DSB + Ramírez et al. 19.87
CS-LDA (2ch) + Wisdom et al. 19.96
SDOI (1 ch) + Wisdom et al. 15.21

EFLEC (100 KIPS) 20.44
EFLEC (400 KIPS) 18.23

In view of the results, the system seems to have a per-
formance in line with the rest of systems proposed in
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the literature. It should be noted that the rest of meth-
ods do not provide a study in terms of computational
cost, so they are not restricted in this respect.

4 Summary

Hearing aids are devices which require algorithms con-
strained in the number of instructions per second due to
the digital signal processor in which are implemented
and the small computational resources available. The
aim of this study has been to propose an optimized im-
plementation of EFLEC for VAD in hearing aids. With
this purpose, algorithms have been optimized to keep a
balance between the error probability obtained and the
number of instructions used. With lo

Using QUT-NOISE-TIMIT Corpus the results have
shown that 100 KIPS are enough to obtain low error
rates. This value supposes around a 10% of the power
consume respect to a typical algorithm in a hearing
aid. With such low values of instructions the latency
is close to zero, so the system does not introduce any
significant delay.

Besides, it has been demonstrated that the results are
quite dependent on the scenario studied. Related to
the error rate, the results are in line with other systems
proposed in the literature, even when the comparison is
not entirely accurate because a subset of the database
has been used.
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terms of performance, especially when the environment is not very noisy. A comparison
with other methods from the literature has shown that the proposals of this study get the
best solutions when comparing with similar short-window algorithms (8-10 ms). Other
algorithms get better results when applying window lengths higher than 20 ms to VAD,
but this is not practical for hearing aid applications.
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a b s t r a c t

Hearing loss is a common issue when people become older, resulting in problems such as depression, risk
of dementia, and cognitive decline, among others. Hearing aids are computationally constrained devices
that offer the possibility of solving this issue, thus improving people’s quality of life. A typical algorithm
that should be implemented in these devices is Voice Activity Detection. In this work, cascade detectors
are applied to reduce the computational cost while maintaining the same performance or to increase the
performance while maintaining the same computational cost. This is achieved by a two-stage detector. In
the first stage, a linear system determines whether the detection can be easily carried out, or a second
stage with a more complex neural-network-based detection is required. This way, some of the decisions
are taken without using the complex detector. The results show that the system error can be reduced up
to 8.5% while using the same amount of resources. Moreover, the error is the lowest among the proposals
that are affordably implemented in hearing aids.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Older adults usually suffer from hearing impairment [1]. World
Health Organization claims that approximately one-third of people
over 65 years old have some degree of hearing loss [2], considering
it as a loss greater than 40 decibels (dB) in the ear with better hear-
ing. It makes hearing loss the third most prevalent chronic health
condition affecting elderly adults. It is a problem that affects over
5% of the world population, including both adults (432 million)
and children (34 million). Furthermore, it is estimated that by
2050 one-tenth of the population will suffer from disabling hearing
loss.

Hearing loss is an issue that has been underdiagnosed and
undertreated over time [3]. However, its health implications are
very severe, including social isolation, depression, altered physical
function, reduced activity participation, lower quality of life, falls,
greater cognitive decline, and higher risk of dementia [4]. In this
sense, hearing aids constitute a valuable tool that has demon-
strated to have a positive impact on long-term cognition, as hear-
ing aids users have shown a cognitive decline similar to elders with
no hearing loss [5].

Implementing sound signal processing algorithms in hearing
aids is not an easy task. Due to the real-time and consumption
requirements, the implemented algorithms present several con-
straints that must be considered in the design process [6]. First,
due to the battery life requirements, there are constraints in the
computational capability of the device and the number of assem-
bled components. Roughly speaking, the computational power of
a hearing aid rarely exceeds 5 million instructions per second
(MIPS), thus limiting the complexity of the algorithms that can
be implemented in them. By reducing the computational power,
energy consumption is reduced, and consequently battery life is
increased. Second, hearing aids require low-delay real-time pro-
cessing algorithms. In numerical terms, the total delay introduced
by the hearing aid cannot exceed 20 ms [7]. This fact limits the
length of the time frame in the time-frequency analysis, therefore
limiting the frequency resolution.

In the field of hearing aids, the detection of human speech,
also known as Voice Activity Detection (VAD), is essential [8].
One of the problems of hearing aids is the lack of intelligibility
in noisy environments. Thanks to VAD, it is possible to differenti-
ate between conversations and noise, and in this way the hearing
experience can be improved through techniques such as feedback
cancellation, environment classification, and speech enhancement
[9–11]. VAD has been extensively researched in the past. In [12],
the authors employed a decision-directed parameter estimation
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method for the likelihood ratio test along with a Hidden Markov
Model (HMM). Another proposal [13] measured the Long-Term
Spectral Estimation (LTSE) between speech and noise and com-
pared the envelope to the average noise spectrum for detecting
voice activity. The second-order non-circularity of speech and
noise complex subbands is used in [14]. In general, the problem
is that these proposals have not focused on hearing aid require-
ments, and therefore the computational resources have not been
adapted to them. In a recent analysis [15], the authors compared
a large number of proposals and concluded that a long temporal
context and a look-ahead are beneficial for speech detection, but
they require much more CPU consumption than the available for
off-the-shelf hearing aids [6]. This makes infeasible the imple-
mentation of these algorithms using the available resources in
digital hearing aids. In recent proposals, complex and unfeasible
algorithms for hearing aid applications have been presented: in
[16], Line Spectral Frequency (LSF) based features and extreme
learning-based classifiers were used; in [17], a real-time VAD
based on convolutional neural networks was implemented in a
smartphone app; and in [18], the authors presented a model
based on deep neural networks and an adaptive context attention
model.

The problem of VAD in hearing aids has already been studied in
the literature too. In [11], a VAD system based on neural networks
was implemented using a pattern recognition scheme, including
the typical stages of measurement extraction, feature extraction,
and neural network-based detection. The measurements consid-
ered were the Evolved Frequency Log-Energy Coefficients (EFLECs),
a less costly alternative to the traditional Mel-Frequency Cepstral
Coefficients (MFCCs), which makes their calculation feasible for
hearing aids [19]. These coefficients provide a trade-off between
error classification probability and the number of instructions
per second. Unfortunately, considering that the VAD systems must
take a decision every time frame, the computational cost that these
algorithms require to implement an efficient VAD is still relevant,
thus affecting the battery life of the devices. Less computationally
intensive VAD algorithms can be implemented using fewer EFLECs
and simpler detectors, but the performance is consequently
reduced.

In this article, a novel solution is proposed for implementing
VAD in computationally constrained hearing aids, aiming at com-
bining the benefits of a less computationally intensive VAD algo-
rithm with a more complex detector. To this end, we propose the
use of cascade-detectors, implementing a simple detector in a first
stage (linear one) followed by a second stage based on neural net-
works, which must be used when the decision of the system is not
clear. The main goal is to reduce the computational cost of the sys-
tem while maintaining the performance of a complex VAD. We will
see that it is possible to achieve the set objective so that the error
rate of the system can be reduced to a certain point by applying
classifiers with cascade configuration. We will compare the results
with other proposals that used the same dataset (QUT-NOISE-
TIMIT Corpus), concluding that our proposal outperforms the algo-
rithms with similar computational constraints.

The paper is structured as follows. In Section 2, we will review
the cost associated with EFLEC-based VAD systems in hearing aids,
including the cost related to the feature extraction and the detector
itself. Later, in 3, we introduce the concept of cascade-detectors
and how they can be applied to VAD. Then, the optimizations
applied to adjust the weights of the first part of the system will
be detailed in Section 4. In Section 5, we present the experiments
carried out, the obtained results, and a comparison with other pro-
posals from the literature. Finally, we summarize the article and its
results in Section 6.

2. Voice activity detection in hearing aids

As stated above, the objective of this paper is to combine the
benefits of simple and complex classifiers for improving the rela-
tionship between performance and computational cost. For this
purpose, this section is intended to briefly review standard
EFLEC-based VAD systems [19].

From a machine learning perspective, VAD systems are typically
composed of a feature extraction stage and a detection stage. The
objective of the feature extraction is to obtain a set of S statistics
from M measurements that contain useful information to distin-
guish speech from noise. Many features can be used to solve the
VAD problem, with MFCCs being some of the most used in litera-
ture. Unfortunately, despite the good performance that can be
achieved with their use, they require a significant amount of the
computational resources available in current hearing aids [20]. In
this regard, EFLECs have been shown to achieve equivalent perfor-
mance, but with less computational complexity [19], and for that
reason they will be used in the VAD system proposed in the paper.

The modifications that EFLECs introduce in comparison with
MFCCs are:

� They use uniform filters instead of triangular ones, and the Dis-
crete Cosine Transform (DCT) block is removed. These modifica-
tions highly reduce the computational cost without giving rise
to an increase in error rate.

� An evolutive algorithm is implemented for selecting the limits
of the frequency bands where the filters are distributed instead
of using the Mel scale. This modification allows us to obtain
lower error rates and, at the same time, to control the Digital
Signal Processor (DSP) load [19].

Regarding the detection stage, two different detectors are con-
sidered: the Least Squares Linear Detector (LSLD) [21] and the Mul-
tilayer Perceptron (MLP) [22].

The LSLD is a detector that works properly with a very low com-
putational complexity once it is trained. Considering a vector of

L ¼ S �M features x ¼ x1; . . . ; xL½ �T , the detection rule can be
obtained by thresholding y, a linear combination of the features:

y ¼ v0 þ
XL
i¼1

v ixi ?
H1

H0

0; ð1Þ

where v i are the weights of the linear combination, H0 is the deci-
sion related to the presence of noise, and H1 is the decision related
to the presence of speech. In the least squares approach, the weights
are adjusted in order to minimize the mean square error over the
design set (a set with P design vectors, each one of them corre-
sponding to a different time frame), and this minimization leads
to the Wiener-Hopf equations [23].

v ¼ t � Q T � Q � Q T
� ��1

; ð2Þ

where v is a 1� Lþ 1ð Þ vector containing the weights of the linear
combination v i (including the bias), t is a 1�P vector containing
the target values (+1 and �1) of the P design patterns and Q is a
(Lþ 1)�P matrix containing a row of ones for the bias and the L fea-
tures of the P design patterns.

On the other hand, MLPs are feedforward artificial neural net-
work models that have successfully been implemented in hearing
aids [11,24]. MLPs are typically designed to minimize the mean
squared error at the output using backpropagation algorithms
[25]. In this paper, two-layer MLPs have been trained using the
Levenberg-Marquardt optimization algorithm [26]. The design
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data has been randomly divided into two subsets, one for training
with 80% of the data and the other with the remaining 20% for
monitoring and early stopping the training process. The inputs of
the neurons of the first layer are the L available features, and the
second layer combines the outputs of these neurons to take the
decision by thresholding. The complexity of the solution imple-
mented by an MLP is controlled by the number of neurons in the
first layer.

In general, MLPs outperform LSLD for VAD in hearing aids, and
thus they have been selected as baseline detectors for the experi-
ments carried out in the paper.

The computational cost required by a systemwhich uses EFLECs
for VAD will be analyzed in the following lines. Considering that
the system uses M measurements, the number of instructions per
second required to determine these EFLEC features is obtained
using Eq. (3).

CVAD ¼ 2FsM
NT

CS þ 2Fs

NT
CD þ 2Fs

N

XM
m¼1

CM mð Þ; ð3Þ

where CM mð Þ is the computational cost related to the m-th mea-
surement, CS is the computational cost related to the evaluation
of the statistics, CD is the computational cost related to the detector,
Fs is the sampling frequency, T is the number of time frames that
separate one decision from the next one, and N is the frame length.
In Eq. (3), an overlapping factor of 50% is assumed.

The evaluation of each EFLEC measurement depends on two
terms, as shown in Eq. (4).

CM ¼ CF mð Þ þ CL; ð4Þ
where CF mð Þ is the computational cost associated with the evalua-
tion of the uniform filter, and CL is the computational cost associ-
ated with the evaluation of the logarithm. The evaluation of the
uniform filter requires CF mð Þ ¼ 3þ 4L mÞð operations per filter,
where L mð Þ is the number of non-zero coefficients of each filter.
Related to the logarithm calculation, it uses CL ¼ 9 instructions in
a typical DSP architecture.

Once we have the measurements, the features are extracted by
applying some statistics to them. The mean and the standard devi-
ation are common statistics that have been used previously in
sound issues related to hearing aids [24]. However, some classifiers
present a better performance when quadratic terms are also added
to the input features [27]. Thus, apart from the mean and the stan-
dard deviation, the square of the mean and the variance are consid-
ered too. The computational complexity associated with this step is
CS ¼ 39 instructions per measurement and S ¼ 4 features per
measurement.

Concerning CD, the computational cost of the detector, it is dif-
ferent for LSLD and MLP. The former requires the number of
instructions expressed in Eq. (5) to be implemented, while the
MLP requires the number of instructions expressed in Eq. (6), being
K the number of available neurons in the hidden layer of the MLP.

CDjLC ¼ 12þM � S ð5Þ

CDjMLP ¼ 12þ K þ K 12þ M þ 2ð ÞSð Þ ð6Þ
Combining Eqs. (3), (4) and (6), and taking into account the

above-mentioned values CS ¼ 39 instructions per measurement
and S = 4 features per measurement, we can obtain the total com-
putational cost of our VAD system using MLPs, according to Eq. (7).

CMLP
VAD ¼ Fs

N
24
T

þ 42K
T

þ
XM
m¼1

8L mð Þ þ 24þ 78
T

þ 8K
T

� � !
ð7Þ

In Eq. (7), the terms that depend on the number of measure-
ments M, that is, the number of frequency bands, have been
grouped in the summation. This parameter is a key-value if we

want to reduce the computational cost of the VAD system. To allow
the implementation of the system in hearing aids, the number of
instructions per second must be limited through an optimization
process. A tailored evolutionary algorithm has been applied to
search for the set of frequency bands whichminimize the error rate
of an LSLD, but constraining the number of instructions per second
at the same time. Once this algorithm selects the best set of bands,
the MLP is trained. This process is described in [6].

In this approach, our starting point is the system obtained in a
previous article [11] whose results were in line with the proposals
of the literature that used the same dataset but restricted in com-
putational resources terms. The question we want to answer in this
proposal is: Is it possible to use a cascade configuration so that we
maintain the performance of the best detectors while reducing the
average computational cost?.

3. Cascade-detectors for VAD in hearing aids

As stated in the introduction, the objective of the paper is to
look for VAD solutions that combine the performance of the most
complex classifiers and the computational cost of the simplest
ones.

In many applications, a significant proportion of the training
cases can be classified by a simple rule with some exceptions, as
deduced in [1]. In that work, the authors proposed using a linear
model that provides a solution for most cases, while the rest (ex-
ceptions) can be solved by a more complex model. It defines a sys-
tem based on a multistage pattern recognition approach [28], so
inputs rejected by the first stage are handled by a second stage.
This method is also known as cascade classification.

For applying a cascade configuration, it is assumed that we have
a set of pre-trained MLP based detectors from the previous
approach [11] for each of the computational costs considered,
where the number of features and the number of neurons are opti-
mized according to that. To apply the cascade configurations, we
use a two-stage system, in which the first stage uses a simple linear
combination of a subset of measurements M0 (being M0 < M) from
the more complex detectors. In this step, we use a linear system
since it involves a computational cost much lower than other
alternatives.

Considering these two stages of the cascade configuration, the
process of classification is as follows: first, a simple LSLD will use
M0 measurements to either decide or pass the decision to the sec-
ond detector. If this first system is not able to take a clear and firm
decision, then the more complex MLP based detector will take a
more precise one in the second stage. The reason for using this
structure is that it provides some advantages that can be under-
stood in two ways. On the one hand, the computational cost is a
critical factor in hearing aids, so a significant saving in these terms
while maintaining the same performance could prove interesting.
On the other hand, an improvement in the system performance
could be obtained without the need to increase the computational
requirements of the system.

In order to understand the proposed approach, we will consider
the operations carried out by the linear detector showed in Eq. (8).

y1 ¼ w0 þ
XL
i¼1

wixi; ð8Þ

where xi are the used features, wi are the weights associated with
them, and w0 is a bias term. Please note here that this first system
is not only used as a detector, but also used to determine whether
the second classifier must be used. Therefore, once we have the out-
put of the linear system y1, a double threshold will be applied in
order to decide if the pattern just contains noise (H0), if it can be
considered as speech (H1) or if the decision is not clear and the sec-
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ond detector must be used (H2). We can denote these thresholds as
Q1 and Q2, so that Q1 < Q2. These values will be related to the num-
ber of patterns that are classified in the first stage and the number
of patterns that need to be classified in the second stage. So, the
decision associated to the first system D1 is expressed according
to (9).

D1 ¼
if y1 < Q1 then D1 ¼ H0

if y1 > Q2 then D1 ¼ H1

if Q1 6 y1 6 Q2 then D1 ¼ H2

8><
>: ð9Þ

Now for the sake of simplicity and considering that y1 comes
from a linear combination of the training features xi, we shift the
decision by subtracting Q1 þ Q2ð Þ=2 from all terms in the inequal-
ities, obtaining expression (10).

D1 ¼
if y1 � Q1 þ Q2ð Þ=2 < Q1 � Q1 þ Q2ð Þ=2 then D1 ¼ H0

if y1 � Q1 þ Q2ð Þ=2 > Q2 � Q1 þ Q2ð Þ=2 then D1 ¼ H1

if Q1 � Q1 þ Q2ð Þ=2 6 y1 � Q1 þ Q2ð Þ=2 6 Q2 � Q1 þ Q2ð Þ=2 then D1 ¼ H2

8><
>:

ð10Þ

After simplifications we get expression (11).

D1 ¼
if y1 � Q1 þ Q2ð Þ=2 < � Q2 � Q1ð Þ=2 then D1 ¼ H0

if y1 � Q1 þ Q2ð Þ=2 > Q2 � Q1ð Þ=2 then D1 ¼ H1

if � Q2 � Q1ð Þ=2 6 y1 � Q1 þ Q2ð Þ=2 6 Q2 � Q1ð Þ=2 then D1 ¼ H2

8><
>: ð11Þ

Now we can identify a new variable y01 ¼ y1 � Q1 þ Q2ð Þ=2 (we
will now have a modified bias value w0

0 ¼ w0 � Q1 þ Q2ð Þ=2) and
we denote Q ¼ Q2 � Q1ð Þ=2, which will be always a positive value
(Q > 0) since we stated that Q1 < Q2. Considering these two new
variables, expression (11) becomes into expression (12).

D1 ¼
if y01 < �Q then D1 ¼ H0

if y01 > Q then D1 ¼ H1

if � Q 6 y01 6 Q then D1 ¼ H2

8><
>: ð12Þ

Thus, if the computational cost is very restricted, the value of Q
will be small, so that most of the patterns will be processed by this
first linear system. On the contrary, when the computational cost is
less restricted, the value of Q will be higher, and many other pat-
terns will be given to a more complex classifier (MLP based one).

After normalizing with Q, expression (13) is obtained:

D1 ¼
if y01

Q < �1 then D1 ¼ H0

if y01
Q > 1 then D1 ¼ H1

if � 1 6 y01
Q 6 1 then D1 ¼ H2

8>>><
>>>:

ð13Þ

We can denote a new variable y001 as:

y001 ¼ y01
Q

; ð14Þ

so that the decision is taken using expression (15).

D1 ¼
if y001 < �1 then D1 ¼ H0

if y001 > 1 then D1 ¼ H1

if � 1 6 y001 6 1 then D1 ¼ H2

8><
>: ð15Þ

If we combine Eq. (8) and Eq. (14) we obtain the following:

y001 ¼ w0 � Q1þQ2
2

Q
þ
XL
i¼1

wixi
Q

; ð16Þ

where y001 is the normalized output of the linear detector, according
to the variable Q, which scales the weights of the detector to fulfill
the computational cost requirement.

At this point we can define the normalized bias w00
0 and the nor-

malized weights w00
i according to Eq. (17) and Eq. (18).

w00
0 ¼ w0=Q � Q1 þ Q2ð Þ= 2Qð Þ ð17Þ

w00
i ¼ wi=Q ð18Þ
Thus, y001 can be expressed as follows:

y001 ¼ w00
0 þ

XL
i¼1

w00
i xi ð19Þ

In the end, we can always properly select the normalized
weights w00

i of the linear combination so that the decision in the
first stage is implemented using expression (15). Later we will refer
to different optimizations of the system, including the optimiza-
tion of these weights w00

i .
Being y001 the normalized output of the linear system and y2 the

output of the MLP-based detector trained according to [11], then
the scheme followed by the system to take the decision D can be
expressed using expression (20).

D ¼

if y001 < �1 then D ¼ H0

if y001 > 1 then D ¼ H1

if � 1 6 y001 6 1 then
if y2 < 0 then D ¼ H0

if y2 > 0 then D ¼ H1

�
8>>><
>>>:

ð20Þ

Considering that a part of the decisions will need the imple-
mentation of the second detector, the average computational cost
C is calculated according to Eq. (21).

C ¼ a � C1 þ 1� að Þ � C1 þ C2ð Þ; ð21Þ
where C1 and C2 are the computational costs associated with the
first system (linear) and the second detector (MLP), respectively, a
is a value between 0 and 1 that indicates the proportion of decisions
which are classified just using the first system, while 1� að Þ indi-
cates the proportion of decisions which require the second detector.
We will describe C1 and C2 in the following lines.

As stated in the previous section, the cost of a VAD classifier
includes three terms: the cost related to the calculation of the mea-
surements CM , the cost related to the computation of the statistics
CS and the cost related to the detectors CD. In the following opti-
mization process, the terms CS and CM do not have to be consid-
ered, as the features have been previously computed. In the
following optimization process, the terms CS and CM do not have
to be considered, as the features have been previously computed.
Applying these considerations to Eq. (3) we obtained C1 in Eq. (22).

C1 ¼ 2Fs

NT
CLIN
D ð22Þ

Taking into account that the computational cost of the linear
detector is CLIN

D ¼ 12þM0 � S, where M0 is the new number of mea-
surements considered, and S = 4 features per measurement, the
computational cost associated to C1 is shown in Eq. (23).

C1 ¼ 2Fs

NT
12þ 4M0� � ð23Þ

The cost C2 is equal to CMLP
VAD from Eq. (7), so we can obtain the

average computational cost of the cascade configuration C combin-
ing previous equations:

C ¼ Fs

N
a

24
T

þ 8M0

T

� �
þ a� 1ð Þ 24

T
þ 42K

T
þ
XM
m¼1

8L mð Þ þ 24þ 78
T

þ 8K
T

� � !" #
ð24Þ

Now we will calculate which value of a allows us to get an aver-
age computational cost C equal to the total cost available CT . With
this purpose, we must equal these two values. Replacing C by CT in
Eq. (21):

CT ¼ af � C1 þ 1� af

� � � C1 þ C2ð Þ; ð25Þ
where af is a new value of a that represents a frontier value. Thus,
when a is upper than af , the cascade system is worthwhile and
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computational resources used are lower than the available
resources (i.e., C < CT). We can obtain af from Eq. (26):

af ¼ C1 þ C2 � CT

C2
ð26Þ

If af is upper than 1, it is not possible to apply the cascade-
detectors because there are not enough computational resources
in the system.

We will resume the proposed system following the scheme
shown in Fig. 1, where the cascade configuration is shown. The sys-
tem follows the steps described below:

1. The system requires an average computational cost C, so we
select a subset of features (M0) from the full set (M) that allows
us to fulfill that requirement.

2. Once the linear detector has been applied, we evaluate if the
value of the output y001 is clear or not to take a decision, accord-
ing to Eq. (20).
� If the decision is clear, it is taken.
� If the decision is not clear, we apply the original detector

based on an MLP, which will take the decision through the
output y2.

4. Determining the weights of the first linear system

As demonstrated in the previous section, the computational
cost of the cascade configuration can be controlled, once we choose
the MLP based detector in the second stage, but several parameters
must be fitted in order to make the system work properly. In this
sense, we must define a methodology to determine these parame-
ters and the configuration, so that the global performance of the
cascade system is optimized.

Two parameters need to be determined: firstly, we should
determine how many measurements (M0) and which of the avail-
able measurements (M) should be used so that the performance
is optimized. Secondly, the normalized weights of the linear com-
bination in the first system (w00

i ) must be determined.
Concerning the selected measurements, the VAD systems

explored in [11] did not use a large number of features. As a refer-
ence, the best configuration using 0.2 MIPS selected 11 EFLEC
bands (that is 11 measurements). Since the number of combina-
tions selecting subsets of 11 measurements is not very high, all
the possible combinations were explored in the experiments.

The weights of the linear system (w00
i ) must be determined for

each combination. Considering Eq. (18), we can see that these coef-
ficients have a common term Q, which will be related to a, the
number of patterns that are classified in the first stage of the cas-
cade system. So, taking into account that the value of a can be
determined from the costs of each stage and the average cost, then

for a given set of weightsw00
i we can determine the associated value

of Q.
This fact leaves us with the problem of determining the original

weighting coefficients wi. In a first approach, we explored the pos-
sibility of optimizing these values using a heuristic algorithm (such
as a genetic algorithm). However, the obtained results were not
very satisfactory since there were many convergence problems
and many local minima in the optimization process. We then opted
for starting the optimization from a set of approximated
coefficients.

To analyze the effectiveness and the importance of this opti-
mization in the final performance of the cascade-based detector,
we explored three different optimization processes.

1. Optimization 1. One of the tasks of the linear system is to be
able to separate speech from noise, that is, to implement a
VAD system. So, as a first approach, we considered obtaining
the coefficients v i of an LSLD system trained using a subset of
features from the original set with Eq. (2), and directly assigning
them to the coefficients of the linear system in the first stage of
the cascade solution, that is, wi ¼ v i;8i ¼ 0; . . . ; S �M0. Regarding
the thresholds, in this optimization it is assumed that
�Q1 ¼ Q2 ¼ Q , that is to say, w0

0 = w0, and the value of the out-
put of the LSLD y1 is considered approximately symmetric
around zero. The idea here is that if the classifier is correctly
designed, the probability that a pattern with an output value
close to 0 is well classified will be low, and thus these values
will be more accurately classified in the second stage of the cas-
cade system.

2. Optimization 2. It is assumed that the best linear combination
for solving the tasks of the first stage is a rough one. We are
neglecting that the objective of the first stage is not only to clas-
sify properly, but also to determine whether the second stage of
the cascade system must be used. So, as a second approach, we
studied the possibility of determining the best bias of the linear
combination independently of the weights assigned to each fea-
ture. Thus, in this second case wi ¼ v i;8i ¼ 1; . . . ; S �M0. In this
optimization, the equation �Q1 ¼ Q2 ¼ Q is not assumed, and
therefore the value of w0

0 must be estimated. This optimization
implies an increase in the computational time of the design pro-
cess, but since it implies the estimation of a unique parameter
(w0

0), we can make a full sweep of this value to look for the best
case.

3. Optimization 3. As a third and more general case, we considered
also modifying the remaining weights of the linear combina-
tion. In addition to the optimization carried out with the
cascade-detector in the last case, an additional enhancement
based on the free-derivative method is applied to the weights
of the linear discriminant. The weights wi;8i ¼ 1; . . . ; S �M0 of
the first detector are now modified using the Nerled-Mead sim-
plex method to directly minimize the average error rate of the

Fig. 1. Cascade configuration with a linear detector and an artificial network.
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global system (that is, considering both detectors) over the
design set. This additional optimization is applied to minimize
the probability of converging to a local minimum.

5. Experiments and results

In this section, we will detail the dataset used in the proposal
(Section 5.1) along with the experiments carried out and the
results obtained (Section 5.2).

5.1. Dataset

Before detailing the different experiments carried out, it is
worth looking at the acoustic dataset we have used. There exist
various datasets available in the literature for testing VAD algo-
rithms. In our case, the QUT-NOISE-TIMIT corpus has been chosen
[29], as it is one of the most important in the field of study, so as to
compare the proposed VAD with other proposals tested with the
same dataset. Furthermore, the size of the dataset (number of sce-
narios and length of the signals) is large enough to avoid problems
of generalization during training.

The dataset was developed by mixing some background noises
and speech events, which were part of the TIMIT clean speech cor-
pus [30]. In addition, the reverberant response of the environment
was added to locations that required such effect. As a result, this
dataset presents approximately 600 h of noisy speech sequences.
In Table 1 the different scenarios (5 in total) and specific locations
of each one are detailed.

It must be kept in mind that the recorders with both voice and
noise are not fixed previously. The mixing of the background noise
audios and the clean speech is executed randomly to allow each
user to generate its own dataset. Effects of co-talking are also
included, since each speech event is combined with the previous
one with a probability of 50% (if not, silence appears), so it suc-
ceeds in simulating a hypothetical conversation between speakers.

The sampling frequency of the audios is Fs ¼ 16 kHz. It contains
24,000 speech sequences. The large amount of time and resources
required for the full processing of the data has forced us to select a
reduced subset from the full dataset. We have tried to include in
the subset all the variety of signals that the dataset provides, as
it is detailed below:

� The ten noise locations are included.
� Four Signal-to-Noise Ratios (SNRs) are included: 0 dB and 5 dB
(considered as medium noise level), and �5 dB and �10 dB
(considered as high noise level). We do not include the low
noise case (10 dB and 15 dB) since it is the least problematic
and the least realistic one.

� The three types of conversations provided by the dataset are
included. The first type of conversation has less than 25% of
speech in relation to the whole sequence, the second one has
between 25% and 75% of speech, and the third one has more

than 75% of speech. This way, the data subset is balanced, so
that there exists an average value of 50% of speech in the total
duration of the audios.

� Sequences with the two possible durations are included: 1 and
2 min.

� In the full subset, each noise record was repeated in the same
scenario. This eliminates the possibility of particular one-day
sound effects. Both the sequences of the first and the second
record have been included.

This results in a subset with a total of 240 sequences. If half the
audios last 1 min and the other half last 2 min, it results in a data-
set of 360 min (6 h).

A 10-fold cross-validation has been implemented in all the
experiments. One of the locations is used as the training subset
and the remaining locations are part of the test subset. The features
were calculated with N ¼ 128 Discrete Fourier Transform (DFT)
points (8 ms) with an overlapping of 50% (one time frame every
4 ms). The detection is performed every 16 ms, that is, every four
time frames (T ¼ 4). All these values are standard in algorithms
for hearing aids [31,32].

5.2. Experiments and results

In this study, we try to reduce the probability of error when
detecting voice activity in noisy conversations, as it has been
detailed previously. The behavior and importance of some param-
eters have been tested, with computational cost being the most
important one. Because of that, a cost constraint related to the
required operations, C, has been included. It can take 15 possible
values: from 10 to 100 KIPS, in steps of 10 KIPS, and from 120 to
200 KIPS, in steps of 20 KIPS, being KIPS equal to thousands of
instructions per second. To determine this range of values, we have
compared the power consumption of the hearing aid in a simple
case in which only the compression and the VAD algorithms are
implemented. Using a real hearing aid with a DSP working at
1.92 MHz, we estimated an average power consumption of 0.87
mW in the case of only implementing the main compression algo-
rithm, which required 1100 KIPS, and an average power consump-
tion of 0.90 mW in the case of also implementing the proposed
VAD algorithm running with 200 KIPS. Thus, it is clear that the con-
sumption associated with the selected range of KIPS values will be
suitable for the processor of a typical hearing aid.

The main objective of this proposal is to present the effect that
cascade-detectors have on the performance of VAD algorithms. As
mentioned previously, the idea is to keep the same average cost as
in the non-cascade detectors but with a better performance of the
system. This is achieved by taking the features from the MLP based
detector and reducing the average computational cost C, forcing
the linear system to take some of the decisions.

Five previous values of C have been considered concerning the
value of C2, except in the first configurations, where it was possible
to consider between 1 to 4 previous values. The reason for limiting
the number of previous average costs C is that in the preliminary
experiments we noted that the performance decreases if we force
the system to use very complex features with a low number of
resources. That is, the cascade configuration does not work prop-
erly if the number of features used in the first stage is too high
(a close to 1). In total, 14 cascade configurations have been tested
in the experiments. The parameters that characterize each of them
are shown in Table 2.

This way, in configuration A the features from the original MLP-
detector with C2 = 20 KIPS are taken into account, and average
computational costs of C = 10 and 20 KIPS are considered. In the
case of configuration B, the features from the original MLP-

Table 1
Scenarios and locations where the dataset was recorded.

Scenario Location A Location B

Cafe Outdoor cafe Indoor shopping center food-court
Home Kitchen Living room
Street Roadside near inner-

city
Outer-city traffic-light controlled

intersections
Car Car with windows

down
Car with windows up

Reverb Indoor pool Enclosed carpark
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detector with C2 = 30 KIPS are taken into account, and average
computational costs of C = 10, 20 and 30 KIPS are considered.
The same applies to the rest of the configurations.

To explain clearly the obtained results, we will focus at the
beginning in the case of having audios with a medium SNR (0 dB
and 5 dB), in Section 5.2.1. This way, we will appreciate the effect
of applying the new proposal in a case that is neither ideal nor very
noisy. Later, we will study how the values change when having a
complex environment, that is, when the SNR is lower (-5 dB and
�10 dB). It will be explained along Section 5.2.2. Lastly, a compar-
ison with other proposals from the literature is included in
Section 5.2.3.

5.2.1. Medium noise environment
In order to analyze the behavior of these configurations, we will

show the most significant results in Table 3. In this table, the main
parameter is the probability of error Pe, which can be defined as the
number of detections that predict an incorrect result (e.g., these
predictions which predict voice activity when there is not it, and
vice versa) divided by the total number of time slots analyzed.
The probability of error of the regular detector Pe;r , the lowest
probabilities of error of the optimizations 1, 2 and 3 (Pe;c1 ; Pe;c2

and Pe;c3 ) and the computational cost of the simple MLP based
detector C2 associated to those results, for each average computa-
tional cost C, are represented. For each configuration, the optimiza-
tions which get the best results are shown in bold.

First of all, it can be shown that in almost all the configurations
there are some improvements in terms of error. One of the most
relevant improvement is presented when applying C = 20 KIPS
and optimization 2 with C2 = 30 KIPS, where the error is reduced
from 27.96% to 26.07%. The detection is improved almost 2% in
absolute terms, turning into 6.72% in relative error. Another
remarkable improvement can be found when using C = 70 KIPS
and optimization 3 with C2 = 100 KIPS, where the error falls from
21.76% in the original detector to 20.91%. This means a reduction
of almost 1%, which in relative terms means 3.91% of improvement
in the system.

Furthermore, this system could provide a reduction in terms of
cost but keeping the same probability of error. For instance, instead
of using the original detector with C = 60 KIPS, which provides an
error of 21.77%, we could obtain practically the same result with
optimization 3. Using C = 50 KIPS, we get an error of 21.84% (just
0.07% worse) but reducing the cost in 10 KIPS (16.67% of relative
saving). Another example is found when we have an average com-
putational cost of C = 120 KIPS. While the original detector gets
19.95% of error, we obtain 20.17% of error applying the optimiza-
tion 3 with C = 90 KIPS. It represents a relative reduction of 25%
in terms of cost, at the expense of a performance loss of 0.22%.

Now we will try to extract some conclusions about the three
different optimizations applied to the original detector. As men-
tioned before, in Table 3 the optimizations which get the best
results in each configuration are shown in bold. Looking at this,
we can study if any optimization works better than the others.
The last value of C (200 KIPS) does not allow us to obtain any con-
clusion, as no improvement has been reached with the limits con-
sidered in the experiments. It can be seen that optimization 3 gets
the best results (10 of 14) in most cases, followed by optimization
2 (3 of 14). In two of them there are one or more ties. In conclusion,
the application of additional optimizations to optimization 1 seems
to be useful. It can be deduced that the optimization based on the
free-derivative method can provide us some additional improve-
ment without increasing the cost.

In Fig. 2 the probability of error Pe as a function of the average
computational cost C (in KIPS) is represented graphically. The solid
black line represents the performance when cascade-detectors are
not applied (single MLP based approach). Thus, a regular detector
based on MLPs with some cost constraints is applied. On the other
hand, colored lines represent the different configurations included
in Table 2 when using optimization 3 from the algorithm, which
has proved to be the best. The final result when using this approach

Table 2
Computational cost values of the different cascade configurations considered.

Configuration C2 (KIPS) C (KIPS)

A 20 10, 20
B 30 10, 20, 30
C 40 10, 20, 30, 40
D 50 10, 20, 30, 40, 50
E 60 10, 20, 30, 40, 50, 60
F 70 20, 30, 40, 50, 60, 70
G 80 30, 40, 50, 60, 70, 80
H 90 40, 50, 60, 70, 80, 90
I 100 50, 60, 70, 80, 90, 100
J 120 60, 70, 80, 90, 100, 120
K 140 70, 80, 90, 100, 120, 140
L 160 80, 90, 100, 120, 140, 160
M 180 90, 100, 120, 140, 160, 180
N 200 100, 120, 140, 160, 180, 200

Table 3
Most significant results obtained for the different average computational costs C, including the lowest probabilities of error in each of the optimizations and the values of C2

associated with them; SNR = 0 and 5 dB (medium noise environment).

Opt. 1 Opt. 2 Opt. 3

C Pe;r (%) C2 Pe;c1 (%) C2 Pe;c2 C2 Pe;c3 (%)

10 30.16 30 30.27 30 30.00 40 30.00
20 27.96 40 26.30 30 26.07 30 26.09
30 24.90 30 24.68 40 24.29 40 24.72
40 23.61 50 23.19 50 22.66 50 22.58
50 22.44 60 21.99 60 21.99 60 21.84
60 21.77 80 21.60 60 21.76 80 21.44
70 21.76 90 21.08 90 21.17 100 20.91
80 21.22 100 20.56 100 20.55 100 20.54
90 20.81 120 20.39 100 20.45 120 20.17
100 20.44 120 20.05 120 20.04 120 20.02
120 19.95 160 19.69 160 19.68 160 19.70
140 19.79 160 19.48 160 19.48 200 19.48
160 19.44 200 19.29 200 19.29 200 19.21
180 19.39 200 19.16 200 19.17 200 19.19
200 19.12 200 19.13 200 19.13 200 19.18
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is shown in the bottom chart, where the grey area represents the
improvement in system performance when configuration 3 is
applied. As it can be seen at a glance, the probability of error is
lower when using them.

However, a general trend in the results is that the performance
typically improves more stably for values of C close to the value of
C2 considered. It can be clearly seen in Fig. 2, where the perfor-
mance of the system decreases when values of C are far away from
the original value of C2. At this point, we must think about how
much the value of the average cost C should be reduced with
respect to the value of the original detector C2, because the results
can fall if this difference is huge. With this purpose, we define the
Relative Cost Reduction (RCR) as the relative difference between
costs. This parameter is defined in Eq. (27).

RCR ¼ C2 � C
C2

� 100 %ð Þ ð27Þ

Now the idea is to take the points that have obtained better
results in the previous configurations to find a value of RCR that
ensures us it is well worth applying cascade-detectors. These
results are detailed in Table 4, where min Pe;cð Þ represents the min-
imum error from the three optimizations.

We can define the limit value of RCR (in bold in Table 4) for a
given configuration as the value until which this configuration gets
better results than the others. It can be seen that in the cascade-
detector with C2 = 200 KIPS, results are improved from C = 160
until 200 KIPS, since this detector has proved to be the best at this
range. The resulting RCR is 20%. In the case of the cascade-detector
with C2 = 160 KIPS, results are improved from C = 120 until 140
KIPS, resulting in a limit value of RCR = 25%.

These mentioned limit values of RCR give us an idea of how
these cascade-configurations must be applied to get better results
in our experiments. The reduction of the average cost C should not
reach 20–25% of the original cost C2. It means that in other exper-
iments, it seems reasonable to place more cascade configurations
in low values of C than in higher ones, so that they will be spaced
in a non-linear way. Thus, we ensure that with reductions in cost
around 20–25% the results are improved, and additional useless
configurations are not simulated.

5.2.2. High noise environment
Now we will see how the system works when the SNR is worse

than before, taking values of �5 dB and �10 dB, depending on the
tested audio. In Table 5 the best results for each computational cost
C are shown, similarly to Table 3.

As could be expected, the values of the probability of error are
worse as the voice of the conversation is more masked by the back-
ground noise. However, the most important issue in this proposal
is to see if the cascade configuration continues improving the
results that we would get without applying it. As shown in the
table, the performance generally improves when using any of the
three optimizations. One of the most relevant improvement
appears when applying C = 30 KIPS and optimization 1 with C2 =
80 KIPS, where the error is reduced from 40.88% to 37.40%. The
detection is improved by almost 3.5 points in absolute terms,
which means an improvement of 8.51% in relative error.

Furthermore, it is possible to reduce the computational cost of
the system while keeping the prior probability of error, as it hap-
pened in Section 5.2.1. For example, when using the original detec-
tor with C = 140 KIPS, we get an error of 35.70%. We could get the
same value using optimization 1 and C = 70 KIPS, which reports an
error of 35.69%. This way, it is feasible to save half of the instruc-
tions per second and obtain the same error.

Table 4
Values of the parameter RCR for each value of C.

C (KIPS) min(Pe;c) (%) C2 (KIPS) RCR (%)

10 30.00 30 67
20 26.07 30 33
30 24.29 40 25
40 22.58 50 20
50 21.84 50 0
60 21.44 80 25
70 20.91 100 30
80 20.54 100 20
90 20.17 120 25
100 20.02 120 17
120 19.68 160 25
140 19.48 160 13
160 19.21 200 20
180 19.16 200 10

Fig. 2. Probability of Error obtained using a detector without cascade implemen-
tations (bold black line) and applying the optimization 3 of the cascade-detectors
(colored lines), as a function of the average computational cost. In the top chart, the
results obtained in each configuration (A, B, . . ., N) are shown, while the bottom one
shows an approximation to the final improvement if we take into account the best
results from the different configurations applying the optimization 3. Medium SNR
(0 dB and 5 dB) is tested in this figure.
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Regarding the different optimizations applied, it is not easy to
determine which one works better in this case. From Table 6, it
can be seen that Optimization 1 seems to work better when having
low values of computational cost, while Optimization 3 provides
better results when the available resources are higher. However,
it could be concluded that applying additional optimizations
(opt. 2 and 3) is useful when the noise is medium or low, but it
might not be advantageous when the background noise is higher
(low SNR).

Fig. 3 shows a graph similar to the one represented in Fig. 2 but
testing low values of SNR. It can be seen that the scope for
improvement is bigger than before, as the error is worst too. The
usefulness of the configurations is noticeable, given the reduction
of error achieved (the grey area in the bottom graph).

In Table 6, we have summarized the best result obtained in each
computational cost, as well as the value of RCR defined in the pre-
vious section. With the exceptions of the lowest computational
costs, it is shown that a suitable value for RCR could be between
20% and 30%, as it was previously deduced.

5.2.3. Comparison with other proposals
To conclude with this section, we compare the results with pre-

vious approaches. Table 7 includes the results obtained with differ-
ent methods found in the literature applied to the same database.
Specifically, we compare our results with three different proposals
[12–14], in terms of the error rate for the same SNR. In [12] the
authors tested a system based on a Hidden Markov Models
(HMM), in [13] Long-Term Spectral Estimation (LTSE) was applied,

Table 5
Most significant results obtained for the different average computational costs C, including the lowest probabilities of error in each of the optimizations and the values of C2

associated with them. SNR = �5 and �10 dB (high noise environment).

Opt. 1 Opt. 2 Opt. 3

C Pe;r (%) C2 Pe;c1 (%) C2 Pe;c2 C2 Pe;c3 (%)

10 42.82 30 41.78 20 42.27 30 41.97
20 41.86 60 38.47 50 38.43 60 38.53
30 40.88 60 37.40 80 37.49 80 37.53
40 39.54 80 37.07 80 37.01 80 37.12
50 38.45 60 36.48 80 36.55 80 36.36
60 37.40 80 35.93 80 35.99 80 36.15
70 37.05 100 35.69 100 35.76 100 35.75
80 36.87 90 35.40 90 35.47 100 35.73
90 36.50 100 35.50 120 35.45 100 35.55
100 36.20 120 35.40 120 35.42 120 35.41
120 36.03 140 35.29 140 35.30 140 35.27
140 35.70 160 35.20 160 35.22 160 35.10
160 35.33 200 34.80 200 35.09 200 34.99
180 34.71 200 34.27 200 34.33 200 34.17
200 34.30 200 34.13 200 34.25 200 34.10

Table 6
Values of the parameter RCR for each value of C.

C (KIPS) min(Pe;c) (%) C2 (KIPS) RCR (%)

10 41.78 30 67
20 38.43 50 60
30 35.40 60 50
40 37.01 80 50
50 36.36 80 37
60 35.93 80 25
70 35.69 100 30
80 35.40 90 11
90 35.45 120 25
100 35.40 140 28
120 35.27 160 25
140 35.10 200 30
160 34.80 200 20
180 34.17 200 10

Fig. 3. Probability of Error obtained using a detector without cascade implemen-
tations (bold black line) and applying the optimization 3 of the cascade-detectors
(colored lines), as a function of the average computational cost. In the top chart, the
results obtained in each configuration (A, B, . . ., N) are shown, while the bottom one
shows an approximation to the final improvement if we take into account the best
results from the different configurations applying the optimization 3. Low SNR (-
5 dB and �10 dB) is tested in this figure.
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and in [14] Circularity Spectrum with Linear Discriminant Analysis
(CS-LDA) was used, as well as an analysis based on the Summed
Degree of Impropriety (SDOI). Some of the results obtained in pre-
vious approaches have been found in [14]. From this comparison,
we can highlight the following issues:

� The method that performs better under this database is the
SDOI when having a medium value of SNR, and the CS-LDA
when testing a low value of SNR. Unfortunately, these methods,
as many of the other methodologies, suppose the use of consid-
erably large time windows (128 ms, and a high level of overlap-
ping). Implementing these methods implies that the VAD
process might use a time-frequency analysis different from
the main one used to implement the algorithm that overcomes
the hearing losses, highly increasing the computational cost and
making the method unpractical for hearing aid applications.
Please, note here that the maximum delay of the hearing aid
device cannot exceed 20 ms [7], which implies using window
lengths typically shorter than 10 ms.

� The method in [12] is computationally efficient for being imple-
mented in hearing aids since it fulfills the short window length
requirement. To ensure a fair comparison, we have followed a
similar process for counting the number of instructions to the
one used in this approach. Considering the evaluation of the
maximum likelihood (ML) criterion and the update of the level
of energy for noisy frames, this system requires around 290
KIPS. This value is greater than the computational cost required
by our system.

� The proposed methods represent the best solution among those
with short windows. In the case of low SNR values, the LTSE
method works better than the cascade system, but it is still
using windows of 32 ms length, which is not a suitable value
in hearing aids. The cascade system reduces the required com-
putational resources by 20% compared with an MLP based VAD.

6. Conclusions

In this approach, we have tried to investigate the effect that a
set of cascade-detectors has on the performance of a VAD system.
It is a system thought to be used in hearing aids, and in this way,
the computational cost has been adapted to the typical values of
that field.

The results yield some interesting conclusions. First of all, the
usefulness of the new configuration has been proved, as we have
succeeded in reducing the probability of error of the system while
maintaining the same computational cost. Numerically it has
reached a typical value of 2–3% of relative improvement, reaching
7% in some cases for medium SNR values, while an 8.5% of relative
improvement has been reached when using low SNR values.

Regarding the different configurations proposed, it seems that a
cascade configuration can be useful, but extra optimizations can

provide improvements in terms of performance, especially when
the environment is not very noisy.

We have estimated that the average computational cost C of the
system should not be reduced by more than 20%-30% of the origi-
nal value of the more complex detector C2, as the results are worse
if the same number of features continues to be used for lower com-
putational costs.

A comparison with other methods from the literature has
shown that the proposals of this study get the best solutions if
we compare with similar short-window algorithms (8–10 ms).
Other algorithms get better results when applying window lengths
higher than 20 ms to VAD, but this is not practical for hearing aid
applications.
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Contribution to the scope of the thesis

In this publication, the issue of Pipeline Defect Assessment (PDA) is addressed.
Pipeline inspection is a topic of particular interest to the companies. Defect sizing is espe-
cially important, since it allows them to avoid subsequent costly repairs in their equipment.
A solution for this issue is using ultrasonic waves sensed through Electro-Magnetic Acous-
tic Transducer (EMAT) actuators. The main advantage of this technology is the absence
of the need to have direct contact with the surface of the material under investigation,
which must be a conductive one. Specifically interesting is the meander-line-coil-based
Lamb wave generation, since the directivity of the waves allows a study based in the
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circumferential wrap-around received signal. However, the variety of defect sizes changes
the behavior of the signal when it passes through the pipeline. Because of that, it is
necessary to apply advanced techniques based on smart sound processing. These meth-
ods involve extracting useful information from the signals sensed with EMAT at different
frequencies to obtain nonlinear estimations of the depth of the defect, and to select the
features that better estimate the profile of the pipeline. The proposed technique has been
tested using both simulated and real signals in steel pipelines, obtaining promising results
in terms of Root Mean Square Error (RMSE). Furthermore, it has been demonstrated the
importance of applying a multi-frequency study for defect sizing problem, the relevance
of some features from the signals (e.g., energy and amplitude), and the absence of the
need to increase significantly the complexity of the classifiers to get a good estimation in
the problem at hand.
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Abstract: Pipeline inspection is a topic of particular interest to the companies. Especially important is
the defect sizing, which allows them to avoid subsequent costly repairs in their equipment. A solution
for this issue is using ultrasonic waves sensed through Electro-Magnetic Acoustic Transducer (EMAT)
actuators. The main advantage of this technology is the absence of the need to have direct contact
with the surface of the material under investigation, which must be a conductive one. Specifically
interesting is the meander-line-coil based Lamb wave generation, since the directivity of the waves
allows a study based in the circumferential wrap-around received signal. However, the variety of
defect sizes changes the behavior of the signal when it passes through the pipeline. Because of that, it
is necessary to apply advanced techniques based on Smart Sound Processing (SSP). These methods
involve extracting useful information from the signals sensed with EMAT at different frequencies to
obtain nonlinear estimations of the depth of the defect, and to select the features that better estimate
the profile of the pipeline. The proposed technique has been tested using both simulated and real
signals in steel pipelines, obtaining good results in terms of Root Mean Square Error (RMSE).

Keywords: EMAT actuators; Lamb waves; pipeline inspection; defect sizing; smart sound processing

1. Introduction

Ultrasonic techniques have demonstrated over the years to be really useful for Non-Destructive
Testing (NDT) examinations [1–3]. Conventional ultrasounds are primarily generated taking advantage
of the piezoelectric effect. Although it is an efficient way of generating ultrasounds, a proper coupling
between the transducer and test specimens is needed, which is a disadvantage. Therefore, materials
inspected by conventional ultrasounds are covered with a thin layer of fluid. EMAT (Electro-Magnetic
Acoustic Transducer) actuators are able to generate and receive ultrasonic waves without the need
to have thorough contact with the surface of the material under investigation [4]. This technology is
capable of generating multiple types of waves: Lamb, shear, longitudinal and Rayleigh. Besides, when
EMAT technique is implemented with a meander-line-coil, the waves are generated in a directional
way [5,6]. This fact is interesting since it allows differentiating between circumferential and axial scans.

A highlighted application of this technology is the pipeline inspection [7]. On the one hand, some
manuscripts have focused on the defect detection and location in its circumferential path, mainly using
shear waves [8–10]. However, it is important to obtain not only the position of the defect, but also
its residual thickness. For the companies it is interesting to know this parameter, since it is a vital
factor to make the decision to replace a section of the pipeline [11]. On the other hand, there have
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been some proposals of sizing techniques applied to pipeline inspection, mainly based on the analysis
of the physical mode [12], but the distortion caused by the defects over the different modes strongly
varies with the shape of the defect [12–14]. Smooth defects usually reflect less energy than abrupt ones,
independently of the residual thickness of the pipe caused by the defect. Thus, the amplitude of the
received echo is strongly related not only to the depth of the defect but also to its hardness, and both
the amplitude and the time of arrival of the wrap-around signal vary with the length of the defect.

In general, the studies have followed the same line with regard to the information extracted from
the wave modes. The most relevant and used parameters are the amplitude and the phase from the
received signal [14,15]. Once this information is obtained, the use of Smart Sound Processing (SSP)
techniques is suitable for solving sizing problems using EMAT guided waves. These methods involve
extracting useful information from the sensed acoustic signals and applying nonlinear techniques
to obtain estimations of useful parameters. Other proposals have applied this type of techniques
in their studies, including: Artificial Neural Networks [16], Neural Networks with large number of
neurons [17] or Adaptive Neuro-Fuzzy Inference Systems [18]. Using this type of methods is interesting
to excite the coil at multiple frequencies, as the behavior of the Lamb modes is different depending on
this parameter, and SSP allows to combine all this information and get better defect estimation results.

In this sense, this paper studies pipeline inspection mixing both the EMAT and SSP techniques.
Specifically, EMAT-based Lamb waves will be generated at multiple frequencies. Axial scans will be
developed and the circumferential path followed by waves will allow the analysis of the wrap-around
signals received. These ultrasound signals will be related to the behavior of the pipeline depending on
its profile, conditions and damage. Once these signals are measured, it will be possible to apply SSP
techniques in order to get useful information from the amplitude and phase of the multi-frequency
signals. In particular, feature selection techniques and Neural Networks-based estimators will be
applied. Following this process, it will be feasible to obtain an approximated characterization of the
residual thickness along the pipeline.

2. Materials and Methods

In this section the sensorization of Lamb waves through EMAT actuators will be described.
Initially, EMAT technology and the fundamentals of Lamb waves will be introduced. A brief hardware
description will be made at the end of the section as well.

2.1. Lamb Wave Generation Using EMAT Actuators

EMAT transducers consist of a coil wire and a magnet. The alternating electrical current flowing
through the coil wire placed in a uniform magnetic field (B) near the surface of a ferromagnetic
material, induces surfaces currents (Eddy Currents, J) in the material. The field generated by electrical
coils interacts with the field generated by the magnet producing a Lorentz force (F) according to
Equation (1).

F = J × B (1)

The disturbance is applied to the lattice of the material, producing an elastic wave. In a reciprocal
process (reception of an ultrasonic wave), the interaction of elastic waves in the presence of a magnetic
field induces currents in the EMAT receiver coil circuit. In Figure 1 a comparative between the
generation of ultrasonic waves using conventional ultrasound methods and using EMAT technology
is represented.

The advantages of using EMAT over piezoelectric transducers are: as the transduction process
occurs within an electromagnetic depth skin, it is a couplant free technique; it is insensitive to surface
conditions, being capable of inspecting rough, dirty (oily/wet), oxidized or uneven surfaces; inspection
can be carried out on flat, curved or complex surfaces; it allows high speed inspections (up to 60 m/s),
high temperature inspections and low temperature inspections, and it can generate Lamb, Shear
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Horizontal (SH), Shear Vertical (SV), Longitudinal and Rayleigh waves due to its good selectivity
in frequency. On the other hand, the challenges of EMAT are the high level of power required, the
bigger size of the transducers and the lower Signal to Noise Ratio (SNR). Besides, the material under
inspection needs to be conductive.

Magnet
Piezoelectric

    EMAT
CircuitCouplant

Figure 1. Conventional Ultrasound vs EMAT.

Guided Wave Testing is a NDT technique that employs ultrasonic stress waves that propagate
along a structure while guided by its boundaries. Guided waves permit covering long distances from
a single point with a limited number of sensors, being very effective for rapid scanning of pipelines
and tanks. On relatively thin structures, it is possible to generate volumetric guided waves that fill up
the material and permit a complete, volumetric inspection. The most common types of volumetric
waves are SH and Lamb.

Lamb waves travel throughout the material with both vertical and forward motion in an elliptical
pattern. These waves are dispersive by nature, and very sensitive to thickness variations. They can be
classified in symmetric (also known as longitudinal) and asymmetric (also known as flexural) modes.
The introduction of boundary conditions makes Lamb wave problems inherently more difficult than
the more conventional bulk waves. Unlike the finite number of modes present in a bulk wave problem,
there are an infinite number of modes associated with a given Lamb wave application. That is, a finite
body can support an infinite number of different Lamb wave modes. Now the generation of the Lamb
wave modes will be described. With this purpose, Lamé parameters will be defined. Lamé parameters
are two material-dependent quantities denoted by λ (Lamé’s first parameter) and µ (Lamé’s second
parameter). They are defined by Equations (2) and (3).

λ =
Eν

(1 + ν)(1− 2ν)
(2)

µ =
E

2(1 + ν)
(3)

where E is the Young’s modulus, which measures the stiffness of a material, and ν is the Poisson’s ratio,
which is an elastic constant that measures how an elastic, linear and isotropic material is narrowed
when it is longitudinally stretched.

Then the elastic wave equation needs to be taken into account.

µ∇2u + (λ + µ)∇∇ · u = ρ

(
∂2u
∂t2

)
, (4)
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where ρ represents the density of the material under inspection. Applying the Helmholtz
decomposition, the displacement field u can be split into a rotational component ∇xH and an
irrotational component ∇φ:

u = ∇φ +∇xH (5)

Then, the system of partial differential equations can be rewritten as:

cL∇2φ =
∂2φ

∂t2 (6)

cT∇2H =
∂2H
∂t2 , (7)

where cL =
√
(λ + 2µ)/ρ and cT =

√
µ/ρ represent the sound velocity for the longitudinal and

transversal modes, respectively.
To continue with the analysis, an infinitely plate extended in the x and y directions will be

assumed. Furthermore, it is considered that the wave propagates in the x direction, the fields are
uniform in the y direction and boundary conditions at z = −h/2 and z = +h/2, where h is the
thickness of the plate, are considered traction free.

Assuming that the particle displacement is zero in the y direction (uy = 0) and the only rotation
is about the y axis (Hx = Hz = 0) in Equation (4), the Lamb wave equations are obtained [19,20].

µ

(
∂2

∂x2 +
∂2

∂z2

)
ux + (λ + µ)

∂

∂x

(
∂ux

∂x
+

∂uz

∂z

)
= ρ

(
∂2ux

∂t2

)
(8)

µ

(
∂2

∂x2 +
∂2

∂z2

)
uz + (λ + µ)

∂

∂z

(
∂ux

∂x
+

∂uz

∂z

)
= ρ

(
∂2uz

∂t2

)
(9)

Applying the restriction in the frontiers:

µ

(
∂ux

∂z
+

∂uz

∂x

)∣∣∣∣
z=± h

2

= 0 (10)

λ
∂ux

∂x
+ (λ + 2µ)

∂uz

∂z

∣∣∣∣
z=± h

2

= 0 (11)

Focusing on Lamb waves, they are composed of two waves (one longitudinal and one transversal)
traveling at different angles θL and θT , where the first one represents the longitudinal angle and the
second one the transversal one. Therefore, the wave number k is related to the component of the waves
that propagates in the x direction at velocity cp:

kL cos θL = kT cos θT = k =
2π f
cp

=
ω

cp
, (12)

where kL = 2π f /cL, kT = 2π f /cT , ω is the angular velocity, cL is the longitudinal component of the
velocity and cT is the transversal component of the velocity.

On the other hand, the displacement of each independent wave in the z axis can be obtained
using Equations (13) and (14).

αL = kL sin θL = kL
√

1− cos2 θL =
√

k2
L − k2 =

√
ω2

c2
L
− k2 = ω

√
1
c2

L
− 1

c2
p

(13)

αT = kT sin θT = kT
√

1− cos2 θT =
√

k2
T − k2 =

√
ω2

c2
T
− k2 = ω

√
1
c2

T
− 1

c2
p

(14)
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where αL and αT represent the longitudinal and transversal displacements of the wave, and θL and
θT are the angles related to these displacements. Taking into account that the wave is reflected in the
surfaces, applying the boundary conditions and simplifying the equations, the dispersion equation of
the Lamb modes is obtained. Equation (15) refers to the symmetric modes and Equation (16) refers to
the asymmetric ones.

4k2αLαT sin
(

αLh
2

)
cos

(
αLh

2

)
+ sin

(
αLh

2

)
cos

(
αLh

2

)(
α2

T − k2
)2

= 0 (15)

4k2αLαT cos
(

αLh
2

)
sin
(

αLh
2

)
+ cos

(
αLh

2

)
sin
(

αLh
2

)(
α2

T − k2
)2

= 0 (16)

From the previous equations, it can be figured out that there exists a relation between the excited
frequency f , the thickness of the pipe z and the phase velocity cp. More specifically, each mode will
move at different cp depending on the other above-mentioned parameters. A similar relation can be
obtained using the group velocity cg, which is defined in Equation (17).

cg =
∂ω

∂k
(17)

Graphs showed in Figure 2 were obtained by means of the previous equations for different values
of the product frequency by thickness, where phase velocity is represented in Figure 2a and group
velocity in Figure 2b. As it can be observed, the relation between the velocities and the frequency is
non-linear, so there exists dispersion in the Lamb wave propagation.
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(a) Phase velocity of the Lamb wave modes.
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Figure 2. Phase velocity and group velocity depending on the product frequency by thickness.

In Figure 2, black lines increasingly represent symmetric modes from left to right (S0, S1, S2...),
while red lines represent in the same way antisymmetric modes (A0, A1, A2...). These graphs
correspond to a steel pipe with the following parameters: Young’s modulus E = 200 · 109 N/m2,
Poisson’s ratio ν = 0.3 and density ρ = 7700 kg/m3.

Now the methodology followed to generate and receive signals in the pipeline will be described.
The transducer consists on a meander-line-coil which generates two signals per loop in the test piece
(one per meander). These waves will be characterized by the wavelength which depends on the
separation of the meanders.

The following equations are valid for one mode and then the same procedure will be applied
iteratively for all the modes which appear at a set frequency. Thus, wave equation is set depending on
the group and phase velocities. Considering f as the excited frequency, the transmitted signal s(x, t)
will be generated according to Equation (18).
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s(x, t) = sin
(

2π f
(

x
cp
± t
)
+ φ

)
, (18)

where φ is a phase term that controls the phase of the transmitted signal.
In a real case, the transmitted signal includes an envelope w(t) that generates the transmitted

wave packet p(x, t). This envelope limits the transmission time, and allows controlling the length of
the transmitted pulse. Typically, the length of this envelope is described in function of C, the number
of cycles included in the wave packet. That is, the length of w(t) will be C/ f , where 1/ f is the time
period corresponding to the excited frequency. This envelope will travel at an average velocity of cg,
and in general its shape will change with the distance due to dispersion effects.

The inclusion of the time envelope w(t) in the transmitted signal causes the signal to be wider in
the frequency domain. Thus, the number of cycles C is related to the transmitted bandwidth, so that
the lower the number of cycles, the wider the transmitted bandwidth. For instance, if a signal with
f = 300 kHz and C = 4 cycles is transmitted, the 3 dB transmission bandwidth ranges from 252 kHz
to 345 kHz. This must be taken into consideration, since the phase velocity at these frequencies might
not vary linearly, causing dispersion in the wave packet.

Therefore, once the envelope is considered, the transmitted wave packet p(x, t) will be expressed
using Equation (19).

p(x, t) = s(x, t) · w
(

x
cg
± t
)
= sin

(
2π f

(
x
cp
± t
)
+ φ

)
· ŵ
(

x
cg
± t
)

(19)

Please note there that instead of using the transmitted envelope w(t) we are using ŵ(t), which
changes its shape in function of the distance due to dispersion effects.

It is necessary to consider that under EMAT technology the excitation signal is generated in a set
of N loops of a coil, separated by a distance L, which will generate the propagation wave y(x, t) using
Equation (20).

y(x, t) =
2N

∑
m=1

(−1)m p(x−m · L/2, t) (20)

Please note here that each loop generates two signals (one per meander), and that the sign of their
contribution to the propagation wave y(x, t) is included in the term (−1)m. Besides, the measure is
sensed at a distance D, in another set of N loops separated by a distance L. Therefore, the received
signal z(t) will be expressed using Equation (21).

z(t) =
2N

∑
n=1

(−1)ny(D− n · L/2, t) (21)

Again, the sign of each meander is represented by the term (−1)n. Going back to the previous
equations, the total signal sensed from each mode z(t) is obtained.

z(t) =
2N

∑
m,n=1

(−1)m+n p(D− (m + n) · L/2, t) (22)

z(t) =
2N

∑
m,n=1

(−1)m+n sin
(

2π f
(

D− (m + n) · L/2
cp

± t
)
+ φ

)
· ŵ
(

D− (m + n) · L/2
cg

± t
)

(23)

The signal received from each mode z(t) has different values of cp and cg, as it was concluded from
Figure 2. Thus, each mode arrives at the receiver with different amplitude and envelope, depending
on the attenuation of each mode and the difference of phase when the signal is received in the coil.
Therefore, the amount of energy of the received signal can vary at different frequencies.
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In order to find out more about the behavior of the modes in a set frequency range, a frequency
sweep was made between 0 and 600 kHz with one coil and C = 4 cycles per wave packet. Figure 3
shows the phase velocity (Figure 3a) and group velocity (Figure 3b), where black color means the
energy is maximum at that frequency. It is important to indicate that dispersion has been taken into
account to carry out the experiments, since the signal has been decomposed with the envelope window
ŵ(t) through the Fourier Transform. Thus, the velocities and delays of the different frequencies which
are part of the same pulse have been considered. As an example of the effects of dispersion over the
wave packet, Figure 4 shows the dispersion suffered by the wave packet when traveling 0.8 m in the
pipe (S0 mode, f = 300 kHz, C = 4 cycles).

(a) Energy of the phase velocity. (b) Energy of the group velocity.

Figure 3. Phase velocity and group velocity of the different modes represented according to the energy
in a range of frequencies.
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Figure 4. Dispersion suffered by the wave packet when traveling 0.8 m in the pipe (S0 mode,
f = 300 kHz, C = 4 cycles).

The coil used in the experiments has the following parameters: distance between loops
L = 16.26 mm and N = 3 loops. It can be observed in the graphs that the maximum energy appears in
f = 158 kHz and mode A0. However, there exists a certain periodicity in the energy of the received
signals. It implies that the same coil could be used to excite other frequencies, even if it has been
designed to get the maximum energy in a set frequency. In fact, different frequencies will be excited in
the experiments. Specifically, the frequencies indicated with red dashed lines in Figure 3 will be used,
because the energy and the excited modes are different in each of them.
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2.2. Hardware Description

The technology (Innerspec PowerBox H and the MRUT PMX scanner) and the pipe mock-ups
needed to perform the empirical validation of the modeling results were provided by Innerspec
Technologies S.L [21], a company which provides NDT solutions using EMAT technology.

The inspection instrument used is the Innerspec PowerBox H, a hand-held battery operated
instrument. It is designed for ultrasonic applications that require very high voltages and/or long bursts
of energy such as non-contact techniques (EMAT, Air-Coupled) and inspection of highly-attenuating
materials. The instrument is capable of generating up to 1200V or 8kW of peak power at speeds of up
to 300 Hz.

Guided waves can be used to cover distances ranging from a few millimeters to tens of meters.
The two most common techniques for in-service inspections with guided waves are Long Range UT
(LRUT) and Medium Range UT (MRUT). All the results showcased within this manuscript were
obtained with the MRUT PMX scanner, which is used in both attenuation and reflection mode to cover
shorter distances (0.1–5 m). The sensors are mounted on scanners to inspect long stretches of pipes or
tanks. It typically works with frequencies from 100 kHz to 1 MHz, and can detect small pits (×10 more
sensitivity than using LRUT).

The MRUT PMX scanner allows to scan axially with a single or double sensor on the pipe to
measure attenuation and/or velocity changes in the signal due to corrosion, cracks or other defects
around the circumference of the pipe. It is ideal for quick inspections of exposed pipe at speeds up to
150 mm/s (6 in/s).

Figure 5 shows the hardware equipment used in the manuscript.

(a) Innerspec Powerbox H. (b) Innerspec MRUT PMX scanner.

Figure 5. Measuring equipment used in the experiments.

3. Effects of the Defect Over the Lamb Waves

The modeling of the pipe by means of the ultrasonic waves is a non-trivial problem. The changing
shape of the defects makes difficult to draw general conclusions about the relation between the defect
and the received signals. The distortion caused by the defects over the different modes strongly varies
with the shape of the defect [12,13]. For instance, the amplitude of the signal, the time of arrival (group
velocity cg) and the phase velocity cp of the wrap-around signal vary with the dimensions of the defect.

To study the relation between these parameters and the shape of the defects, the Finite Element
Method (FEM) included in the Partial Differential Equations Toolbox of Matlab has been used.
A database of 418 defects has been generated using this simulation tool. The defects have been
characterized with three parameters: length (l), depth (d) and slope (s). Figure 6 depicts the defect
dimensions using the three aforementioned parameters. If s > l the defect is discarded. In the case
studied, the thickness of the pipe is z = 9.27 mm. Table 1 shows the range of values that the parameters
can take.
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Likewise, the simulated coil has the following parameters: distance between loops L = 16.26 mm,
N = 3 loops and distance to the receiver D = 0.7 m. Besides, each pulse of the signal contains 4 cycles
in all the experiments.

l

s

d

h

Figure 6. Model of the simulated defects.

0 1 2 3 4 5 6 7 8 9
Depth of the defect (mm)

-4

-3

-2

-1

0

1

2

3

4

Ph
as

e 
de

la
y 

(
s)

f = 158 kHz

l=100mm
l=50mm
l=20mm
l=10mm

(a) Group delay values at 158 kHz.
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Figure 7. Feature values depending on the depth of the defect.
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Figure 7 shows how the depth of the defect affects to the values of group delay (Figure 7a,b),
average energy (Figure 7c,d) and phase delay (Figure 7e,f), at two frequencies: f = {158, 548} kHz.
For simplicity, the width of the defect was not modeled, that is to say, that dimension of the pipe was
not considered. Each case has a few points since defects with different slope have been considered.

Table 1. Range of values for the different parameters of the defects.

Parameter Number of Possible Values Values

Frequency (kHz) 5 158, 250, 350, 450, 548
Length (mm) 4 10, 20, 50, 100
Depth (mm) 19 0, 0.5, 1,..., 9
Slope (mm) 7 1, 3, 5, 10, 50, 100

As it can be shown in the graphs, there exists a tendency in some of the considered features.
Focusing on the average energy, calculated in f = 548 kHz, it is clear to see that, as the length of the
defect increases, the average energy decreases drastically, especially between 2 and 6 mm of defect
depth. This is exactly what would be expected when there exists a leak in the pipeline and the energy
of the signal is scattered through it.

In the case of the group delay, considering the measurement taken at f = 158 kHz, it can be
observed that the signal tends to be delayed (positive delay) when the defect increases. This does not
happen when the length of the defect is very small (l = 10–20 mm), since the signal arrives earlier than
in the non-defect case. In any event, the aim of this modeling work was to evaluate whether these
features contain useful information to tackle the problem addressed.

There exists a difficulty of reaching a conclusion about the relation between the calculated features
and the profile of the pipe. Because of that, it is necessary to apply advanced techniques which bring
more information about what are the best features or how they should be mixed.

4. Smart Sound Processing (SSP) for Defect Sizing

It is necessary to apply SSP methods to solve the defect sizing problem in pipes that is being coped
in the current manuscript. This type of methods usually follows the process described in Figure 8. First
of all, it is important to extract useful information from the signals on the form of features. Once this is
done, the next step is to select the ones that best work to solve the problem at hand. Finally, a predictor
will construct a model capable of predicting the solution in an unknown case, such as a new pipeline.

Feature 
Extraction

Feature 
Selection PredictorReceived 

Signal

Figure 8. Scheme of an SSP system.

It is important to extract useful information from the received signal in order to be capable of
detecting and sizing defects present in the pipes under inspection. With this purpose, different features
were elicited:

• Maximum Amplitude (dB). This measure indicates the value of the maximum peak received from
the signal. It is determined by looking for the value of the maximum peak around the expected
point, which is the position of the maximum of the reference signal form in case of absence of any
defects, t0).

• Phase Delay (µs). This measure represents the time taken between the pulse shipment and its
reception at the same pipe location. It is determined measuring the time difference between
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the position of the maximum of the reference signal (signal without defect) t0 and its closest
maximum in the sensed signal. There may be considerable uncertainty in this feature if the delay
is higher than half the period, since the nearest peak becomes the maximum of the signal.

• Average Energy (dB). It represents the average energy of the pulse. The interval considered for its
calculation started 30 µs before t0 and ends up 30 µs after it.

• Group Delay (µs). In order to calculate this measure, the centroid of the average energy of the
pulse has been considered. It has been estimated using the centroid of the pulse around the
expected maximum (t̂g), with Equation (24).

t̂g =
∑t0+3·10−5

t=t0−3·10−5 tz(t)2

∑t0+3·10−5

t=t0−3·10−5 z(t)2
(24)

All these features have been extracted directly from the received signal at D = 0.7 m. Two
additional features, extracted from the reflected signal, where included to study the importance of the
analysis of the echos in the sizing problem.

• Maximum Amplitude of the echo (dB).
• Average Energy of the echoes (dB).

It is remarkable the fact that the reflected echoes are not always depicted in the gathered signals,
since the position of their contribution depends on the relative position of the defect in the pipeline with
respect to the EMAT actuator. Therefore, in some cases the echo is overlapped with the transmitted
signal, and cannot be clearly identified. In the simulations two scenarios would be modeled: on the
one hand, the case where the reflected echoes are present and on the other hand, the case where
they are not, to study the importance of these echo dependent features in the performance of the
sizing estimator.

In the problem at hand, 5 excitation frequencies were used. In total, 30 features were extracted
taking into account that 6 features were obtained for each excitation frequency. Some of them will
work better than others, so it is important to select the best ones and reduce the total amount of them,
in order to properly estimate the size of the defect.

To select the features which better work in this experiment, a feature selection process was applied
through evolutionary techniques. Evolutionary Algorithms (EAs) are inspired in natural evolution
laws and allow to find the optimum solution from the solutions (denoted individuals) obtained in
previous iterations [22]. In this paper, a tailored EA has been applied, searching for the best subset
of features and trying to minimize the Root Mean Square Error (RMSE) of a Least Squares Linear
Discriminant (LSLD). The use of more complex prediction methods has been avoided in the feature
selection process, since the EA requires training and testing the predictor a large number of times.
The considered constrains are to limit the number of frequencies used as well as the number of
features selected.

The EA, which is described schematically in Figure 9, is composed of several steps:

1. A population of Np individuals is generated. Each solution consists of a binary vector with a
length equal to the total number of features. Thus, ones indicate the features which are selected in
the individual, while zeros indicate the features which remain outside.

2. The candidates of the population are restricted to the considered constrains. All of them are
modified in order to randomly change the value of some bits until one or the two constrains are
fulfilled, depending on the case.

3. A LSLD is designed with the subset of features of each candidate solution. The RMSE of the
defect depth is calculated, which is the fitness function in this experiment. With this value, the
population is ranked, keeping the best individuals in the top of the ranking.

4. After that, a selection process is applied, which consists in keeping the best 10% of the solutions,
removing the remaining ones.
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5. The removed solutions (90% of the population) are regenerated by crossover between the
best candidates.

6. Mutations are applied to the new population. With this step, 1% of the bits is changed.
Furthermore, this step is not applied to the best solution in order to ensure the convergence
of the algorithm.

7. This process is repeated from step 2 during Ng generations. The final best solution will be the
best solution obtained in the last iteration.

Generation of 
population

Constrain 
Restrictions 

(Frequencies / 
Features)

Ranking and 
selection 

according to 
RMSE

Regeneration 
through 
crossover

Mutation of 
the population 

Number of 
generations is 

reached?

SOLUTION

YES

NO

Figure 9. Scheme of the evolutionary algorithm applied in the experiments.

Sometimes the EAs do not reach a high convergency. In order to improve it, an elimination
tournament of small EAs has been implemented. It consists in joining the winners of the EAs in pairs
during several rounds (Nr = 6 in our case), until the best individual reaches the end and, consequently,
it becomes the best solution to the problem. 32 small EAs were considered with a population of
100 individuals and 8 generations each, except for the last EA, where 16 generations are configured for
convergency [22].

Once the best features have been selected for this specific problem, a non-linear predictor needs to
be applied to get the final profile of the pipeline and to know the performance of the developed model.
Neural Networks were applied, specifically the Multi Layer Perceptron (MLP) [23]. A perceptron is a
neuron with a set of adjustable weights and an activation function by steps [24]. Levenberg-Marquardt
algorithm, a method where the minimization function is a sum of quadratic terms [25], was applied
for training purposes. The number of hidden neurons was a parameter in the experiments.

A k-fold cross validation has been applied in the generated database, being k = 12 [26].
This method allows to divide the database in k groups so that the full process is repeated k times, using
one group as test subset and the remaining k− 1 groups as training subset. The advantage of this
method is that the obtained results are more generalizable. It has been applied in both the feature
selection process and the training of the neural network-based predictor.

5. Results

The research work showcased in this manuscript was carried out using both real and simulated
measurements. This section of the paper will be opened discussing the results obtained during the
simulation experiments.

5.1. Defect Sizing in Simulated Pipelines

An experiment was developed using the synthetic database described in Table 1. In this case, the
RMSE was computed to evaluate the performance of the predictors. The objective is to know how
well the received signal is estimated at different frequencies. The k-fold cross validation described in
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Section 4 has been applied in this experiment, so all the results presented here have been obtained
with this method.

It is important to indicate that noise from the real measurements was introduced to the signal,
the amplitude and the temporal resolution in order to make the experiments as real as possible. A real
pipe free from defects was taken in order to study the measuring system tolerance to noise. It was
obtained an SNR of 32.93 dB, a variation in time with an standard deviation of 2.1434 samples at
10 MHz (0.2 µs) and a variation in scale of 0.80 dB.

As stated above, the relevance of extracting features from echoes related to reflections has been
also studied. Figure 10 shows the RMSE obtained by the different predictors, depending on the number
of selected features. The different curves show the performance depending on the combination of
frequencies considered, in the case of only using features from the wrap-around echo, and in the case
of including features from the reflected echo. The combination of frequencies and the classifier used
in each case are those that provide the best results in terms of RMSE. It can be seen that the results
improve (less RMSE) as the number of evaluated frequencies is increased. It happened especially
until 158, 350 and 548 kHz frequencies were evaluated. The results slightly improve when the number
of frequencies studied is increased, so there would be no need to make the system more complex to
reduce a few millimeters the final rate.
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Figure 10. RMSE obtained with neural networks predictor depending on the number of features
selected at different frequencies.

In terms of the reflected echo features, if they are not used (dashed lines) the tendency of the
graphs is similar to the previous one. In general, the results are not significantly different from those
using echo features, especially when all frequencies are used. Because of that, the features extracted
from the echo signals are not essential to evaluate the problem and it is possible to get a good result in
case the return of the signal cannot be evaluated.

With regard to the used predictors, Figure 11 shows the RMSE depending on the number of
features employed and the number of neurons configured in the MLP (1, 2, 3, 4 and 5). Although the
results are good using just one neuron, they can be improved by using two. However, if the number of
neurons is further increased (3–5), the result is not much better than before.
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Figure 11. RMSE obtained depending on the number of selected features considering different number
of neurons in the MLPs.

In all the cases above it is clear that as the number of features is higher, the results improve.
It happens especially in the range between 1 and 5 features, where the error falls considerably in
Figures 10 and 11.

Now the features selected at different frequencies from the proposed ones are going to be studied.
With this purpose the manuscript will focus on the case of mixing eight features from three frequencies:
158, 350 and 548 kHz (dark blue line). The results do not improve substantially when more frequencies
are added or when the number of features is increased. In Tables 2 and 3 the ratios of selection of the
features are shown. The first one includes the case of considering the reflected echo features and the
second the case of not considering them. The RMSE associated to these two cases are 0.79 mm and
0.87 mm, with and without reflected echo features, respectively.

Table 2. Ratios of selection of the features, including echo features.

Feature Frequency (kHz)
158 350 548

Maximum Amplitude 0% 92% 0%
Phase Delay 0% 0% 0%

Average Energy 100% 100% 100%
Group Delay 0% 0% 58%

Maximum Amplitude of Echo 8% 50% 0%
Average Energy of Echos 92% 100% 100%

Table 3. Ratios of selection of the features without echo features.

Feature Frequency (kHz)
158 350 548

Maximum Amplitude 100% 100% 92%
Phase Delay 0% 0% 0%

Average Energy 100% 100% 100%
Group Delay 8% 100% 100%
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The results show that the most important feature is the average energy of the received pulse of
the signal, since it is selected in all the frequencies considered. It confirms that the energy is the most
affected parameter when the signal travels through a defect. This reasoning applies for both the wrap
around echo and the reflected echo.

Other features which work properly are the maximum amplitude and the group delay, but mainly
when the features extracted from the reflected echo are not taken into consideration. It means that
they are good features, but not as much as the energy from the reflected echo. Furthermore, features
like phase delay are not relevant for the study, because they are not selected to get a better result.
In fact, this feature has 0% of selection in all cases of study. This is caused by the problems with the
uncertainty in measuring this parameter.

These results demonstrate again that the reflected echo features are not essential for the problem.
Using them the model fits just 0.1 mm better with the target.

5.2. Defect Sizing in a Real Pipeline

Now the results obtained during the experimental trials in a pipe mock-up are presented. Data
has been collected using MRUT PMX scanner on a pipe, as mentioned before. The inspection
was performed moving the sensor axially (sending the waves circumferentially) on a pipe which
includes three flat defects with different depths. An image of the pipe is shown in Figure 12, while its
specifications are shown in Table 4.

Figure 12. Image of the real pipe.

Table 4. Specifications of the real pipe.

Parameter Value

Material Structural Steel S355NH
Thickness (mm) 9.27

Depth of Defect 1 (mm) 6.18
Depth of Defect 2 (mm) 4.63
Depth of Defect 3 (mm) 1.85

The inspections were carried out at different frequencies. The distortions introduced by the defect
over the analyzed signals are shown in Figure 13. Axial scans sending the waves circumferentially have
been carried out every millimeter of the pipeline, and the main wave packages of the wrap-around
echos have been stored. Different behaviors are depicted depending on the depth of the defects and
the excited frequency, f = 158 kHz (Figure 13a) and f = 548 kHz (Figure 13b).

The graphs included in Figure 13 show that the defects change the amplitude and the phase of
the received signals. Furthermore, these distortions are different depending on the size of the defects
and the excited frequency f .

93



Sensors 2018, 18, 802 16 of 18

f = 158 kHz

250 260 270 280 290 300
Time ( s)

100

200

300

400

500

600

700

Po
si

tio
n 

(m
m

)

0 5 10
Thickness (mm)

100

200

300

400

500

600

700

(a) Scan at 158 kHz.
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(b) Scan at 548 kHz.

Figure 13. Axial scan of the real pipeline at two frequencies.

The profile of the real pipe will be modeled using the features explained above. In this experiment,
the predictor trained was used along with the synthetic database and it was also tested with the
signals sensed in the real laboratory trials. Therefore, it has not been necessary to apply the cross
validation technique, as the training and test subsets were clearly defined. Three cases were developed:
considering 4 features at 158 kHz, 4 features at 548 kHz and mixing all of them. The 2 features from
the reflected echo (maximum amplitude of the reflected echo and average energy of the reflected echo)
have not been considered because the return from the signal was sometimes overlapped with the
excitation pulse, so it was not posible to extract any information from it.

In Figure 14 and Table 5 the results of the described experiments are shown. The model that
better fits with the pipeline is the predictor which considers eight features and the two frequencies.
It is the one which better distinguishes between defect and non-defect areas, since the estimation of
the defect depth is very close to zero in non-defect areas. In fact, the RMSE is the best of the three
predictors (1.48 mm). When mixing the information from the two frequencies the results are quite
improved. With the other models the estimation was not so good, especially when there were no
defects in the profile.
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Figure 14. Estimation of the real pipeline model.
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Table 5. Results of real database.

Predictor Number of feats Frequency (kHz) RMSE (mm)

MLP 2 neurons
4 158 1.84
4 548 1.80
8 158, 548 1.48

6. Discussion

In this work the defect detection and sizing in steel pipelines have been studied. With this purpose,
Lamb waves have been generated with EMAT-based techniques. These have been analyzed with SSP
methods, in order to try to model the pipeline. After the experiments described above have been
carried out, the following conclusions have been drawn:

• The shape of the defect causes differences in the received signal. It is not feasible to obtain an
analytical solution for all the cases.

• The extracted features are useful for the pipeline sizing problem, since the results are good in
terms of RMSE. The average energy and the maximum amplitude from the signals are particularly
relevant for the study.

• It is important to excite the waves at several frequencies because the behavior and velocity of the
Lamb modes is totally different depending on this parameter.

• Related to the predictors, a large number of neurons in the MLPs is not required. When it is
increased above two or three neurons, the results do not improve significantly.

In the future it would be possible to increase the amount and variety of defects in real pipelines.
Besides, more features could be applied, such as some from the signal in successive wrap-arounds.

7. Conclusions

Pipeline inspection problem can be approached in many different ways. Lamb wave generation
through EMAT actuators proves to be a very effective and useful one. However, the amount of
information provided by the wrap-around signals needs to be processed by advanced techniques, such
as smart sound processing algorithms. Thanks to them, it is feasible to get good estimation results of
the pipeline defects, in both real and simulated signals. In the manuscript it has been demonstrated
the importance of applying a multi-frequency study for defect sizing problem, the relevance of some
features from the signals (e.g., energy and amplitude) and the absence of the need to greatly increase
the complexity of the classifiers to get a good estimation in the problem at hand.
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Chapter 7

Conclusions

On the basis of the results obtained along the experiments of this thesis, the main contri-
butions and conclusions are summarized and analyzed in this chapter. The more general
contributions are summarized in Section 7.1, while the specifics of each application are ex-
plained in Sections 7.1.1 (Violence Situation Detection), 7.1.2 (Drone Presence Detection),
7.1.3 (Voice Activity Detection in Hearing Aids), and 7.1.4 (Pipeline Defect Assessment).
Later, future lines of research that remain open are presented in Section 7.2. Finally, a
list of the publications produced during this thesis is presented in Section 7.3.

7.1 Summary of the conclusions

In this thesis, we have tried to solve different issues that are present in societies nowadays,
and that will undoubtedly require a solution in future projects for smart cities. Studies
in the literature have faced these issues before, but in general they have not limited the
complexity of their methodologies and the source of data to process, so it is difficult
to determine if they would fulfill the requirement of sustainability that must be present
in these spaces of the future, where systems must consume as less amount of energy as
possible and provide a great autonomy. Along this thesis, sound sources (including both
acoustic and ultrasonic signals) combined with energy-efficient systems have proved to be
useful, delivering promising results. In the following lines, the conclusions obtained for
each of the applications are presented.

7.1.1 Conclusions for VSD

The main contributions of this thesis regarding VSD are:

• A dataset composed of audios from different platforms has been created. In these
signals, the mild signs of violence (shouts, increase in the volume of the conversation,
etc.) have been added, so it is possible to detect these situations before more severe
consequences appear (e.g., gunshots, the appearance of blood in scene, fatalities,
etc.). This fact partially answers RQ1.

• A study related to the number of FLOPS required for computing different acoustic
features in both frequency and time domains has been carried out. From the set
calculated in this thesis, the pitch, the Harmonic Noise Rate and the Ratio of Un-
voiced Time Frames are the most computationally costly. With this study, RQ3 is
partially answered.

• The MFCCs are the best features for VSD, since the probability of detection im-
proves around 10 points when the system includes them in the feature selection
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process (from 64% to 74% using LSLD, and from 67% to 76% using LSQD). It does
not happen when pitch and its related features are part of the subset of features,
since the probability of detection barely increases when using LSQD (from 76% to
78%), and it is even worse when using LSLD (from 76% falls to 69%). Therefore,
high costly features do not necessarily provide better results.

• Regarding the detectors, LSQD always works better than LSLD (between 2 and 9
points).

• In general, higher cost implies better results, but in this application a compromise of
4-5 MFLOPS could be reached as the results do not improve much from this point.
This result partially answers RQ2.

7.1.2 Conclusions for DPD

Regarding DPD, the contributions provided by this thesis are the following:

• Sounds from five different models of drones and other no-drone sounds present in
any city have been included in a new dataset. This way, a challenging dataset has
been created and can contribute to further researches. This fact partially answers
RQ1.

• Applying a similar computational cost study to the VSD one (RQ3), the pitch and
its related features seem to be useful for the problem at hand, as the error rate is
significantly reduced when they are selected by the system (from 30.1% to 15.7%
using LSLD, and from 23.8% to 15.5% using LSQD). The reason why these features
are more useful in the DPD issue than in VSD is that pitch is directly related to
the frequency of the sound wave, so it allows the system to differentiate between
the frequency of the drones and the frequency dominant in the rest of the sounds of
the dataset. In the case of drones, its frequency is in the range of hundreds of Hz,
depending on its size, the number of blades and the speed.

• Regarding the detectors, LSQD almost always works better than LSLD, especially
when computational restrictions are high.

• With a compromise of 3.5-4 MFLOPS, satisfactory results are obtained in this ap-
plication. This result answers RQ2.

• The system makes a very clear distinction between drone sounds and other no-drone
sounds like helicopter (0.0% of error), excavator (0.0%), motorbike (1.3%), plane
(3.1%), or mower (8.2%). It gets worse results with other sounds included in the
dataset, such as fire siren (40.7% of error), radial saw (36.4%), or construction work
(22.5%).

7.1.3 Conclusions for VADHA

In the field of VADHA, the most remarkable contributions of this thesis are:

• Novel EFLECs have proved to be an attractive alternative to MFCCs for VADHA in
the widely used dataset QUT-NOISE TIMIT (RQ1), as the results are in line with
other proposals from the literature, but highly reducing the resulting computational
cost of the system in comparison with the traditional coefficients.
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• During the optimization process, in which a balance between the number of features
(frequency bands) and the number of neurons of the MLPs has to be reached (RQ3),
it has been observed that the system chooses a moderate number of features and
a high number of neurons, even selecting the maximum of 20 neurons for some
computational cost constraints. This is because a higher number of features does
not always imply a better result, while a higher number of neurons can improve the
performance, especially in such a large dataset like this.

• From the different scenarios provided in the dataset, the worst results are obtained
in the café. This is because it is the environment where most people are having a
conversation simultaneously in an enclosed area, so the discussion between the main
speakers is easily confused with the rest of the conversations that are taking place.

• The use of cascade-detectors can be useful in algorithms for hearing aids, whose
computational resources are very limited, since the performance can be improved
while keeping the same computational cost. Using a LSLD in cascade with MLPs,
a 2–3% of relative improvement has been obtained, reaching 7% for medium SNR
values and 8.5% when using low SNR values. This fact partially answers RQ4.

• In addition, cascade-detectors allow us to keep the same performance, but obtaining
some computational cost savings, a very precious resource in the field of hearing
aids. Thanks to this system, relative cost reductions up to 25% can be reached
when testing medium SNR values, and up to 50% when using low SNR values. RQ4
is fully answered with this result.

• A limit must be set concerning the reduction of the average computational cost of the
system, since forcing it to use the original number of features of the more complex
MLP detector can carry a reduction in the performance of the whole system. The
average computational cost of the system should not be reduced by more than 20–
30% of the original cost.

• The proposed method gets the lowest error rate among the methods from the lit-
erature that use short window lengths (lower than 20 ms) and that, therefore, are
suitable for hearing aids. When the cascade-detector system is restricted to 160
KIPS, it obtains 19.21% of error for medium SNR values and 34.80% for low SNR
values. This fact partially answers RQ2.

7.1.4 Conclusions for PDA

The main conclusions of this thesis regarding PDA are:

• The received signal when inspecting a pipeline with ultrasonic guided-waves is dif-
ferent depending on the shape of the defects. In general, it is difficult to obtain an
overall solution for all the cases. This has been observed after creating an experi-
mental dataset with the Finite Element Method (FEM) included in Matlab. More
than 400 defects have been characterized according to three parameters: length,
depth and slope (RQ1).

• In general, the proposed features are useful for addressing PDA, as the results are
promising in terms of RMSE. While the average energy and the maximum amplitude
seem to be the most relevant ones, the features obtained from echoes when reflections
of the signal take place slightly improve the results. Hence, the latter are not essential
for solving the problem. This conclusion partially answers RQ5.
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• In this field, researchers do not always share the features applied in their systems, as
it is a very competitive industry. However, in this thesis six different features have
been proposed and explained: maximum amplitude, phase delay, average energy,
group delay, maximum amplitude of the echo and average energy of the echoes.
This fact also answers RQ5.

• The results in simulated pipelines show that the performance of the system improves
as the number of evaluated frequencies is increased. The RMSE decreases from
1.02 mm when using only one frequency (548 kHz) to 0.71 mm when using three
frequencies (158, 350 and 548 kHz). Thus, it is important to excite the waves at
several frequencies. However, the inclusion of more than three frequencies does not
improve the results, quite the opposite. Regarding the number of neurons used in
the MLPs, the system works properly when the predictor is simple (1 or 2 neurons),
but the results do not improve or even worsen when this predictor is more complex
(3 to 5 neurons).

• Three different defects from a real pipeline with 9.27 mm of thickness have been
estimated adequately through machine learning (RQ5), getting a RMSE of 1.48 mm.
This result has been obtained using a MLP with 2 neurons, 8 computed features (no
echo ones) and 2 excited frequencies (158 and 548 kHz).

• There is a clear correspondence between the results obtained in simulated and real
pipelines. With the same parameters, in the experimental measurements the RMSE
was 0.98 mm, which is not far from the 1.48 mm got in the real situation. That
gives an idea of the usefulness of simulation software in PDA when the number of
available real measurements is not large.

7.2 Future lines

After the study carried out along this thesis, some attractive solutions have been provided
in the different issues. However, systems are always capable of being improved, and new
challenges arise. Taking into account the goals achieved in this thesis, several research
lines could be addressed in the future:

• The next natural step would be to implement the different systems proposed in a
real-time environment. In the PDA, the system has already been implemented in
the hardware used by the collaborating company, but it would also be interesting
to do something similar in the VSD and the DPD issues, whose systems could be
tested in an autonomous node using a low-cost solar-powered microprocessor (e.g.,
Raspberry Pi), and in the application of VAD, where the algorithms of detection
could be implemented in a real hearing aid.

• Expanding the created datasets, or testing the systems with new state-of-the-art
datasets that could be uploaded in the following years, would be interesting future
lines of research. In general, the more data are tested, the more generalizable and
robust the system becomes. In the PDA application, it began to be made as it was
developed a software where other users could expand the dataset with the measure-
ments of their pipelines, and even label them by manually correcting the obtained
profile. This feedback is very useful to the final system, as the algorithm continues
learning when new labeled data is provided.

• Some systems could be tested together in a multi-class classification task. If the
VSD and DPD datasets are merged, we could convert the detection approach into
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a classification approach, and it could be tested if the same microprocessor could
solve correctly both issues at the same time, thus reducing the final implementation
costs.

• It would also be appealing to improve the performance of the systems with a more
specific methodology in each field. In VSD, it would be interesting to introduce a
word detector system capable of identifying insults and rude language, which can be
directly related to violent situations. In the field of DPD, it would be useful to find
new features that allow the system to better differentiate between the drone sound
and the no-drone sounds with which the system is often confused (fire siren, radial
saw, construction work, etc.). Related to VADHA, it would be interesting to make
the system more effective and robust to noisy environments. In PDA, other guided-
waves with different behavior in their modes could be tested apart from Lamb waves,
such as SH waves.

• Furthermore, the use of computationally restrictive deep learning techniques could
be another future line of research. Similarly to the cascade-detectors in VADHA,
the viability of computing deep learning features and later reducing the average
computational cost of the system could be explored.

7.3 List of publications
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