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A Novel Scheme of Multicarrier Modulation with
the Discrete Cosine Transform

Marı́a Elena Domı́nguez-Jiménez, David Luengo, Gabriela Sansigre-Vidal, Fernando Cruz-Roldán, Senior
Member, IEEE.

Abstract—In this work, we derive a novel multicarrier mod-
ulation based on the Type-I even discrete cosine transform
(DCT1e), which includes new procedures to carry out both the
channel estimation and the signal reconstruction. By using a small
number of training symbols, we achieve an accurate estimation
of the channel’s impulse response (CIR) using a novel mirror,
replicate and add (MIRA) procedure. The proposed scheme does
not require knowing the length of the CIR and is valid even
in the presence of spectral nulls. We provide the theoretical
results that guarantee the validity of the developed technique.
After the estimation process, the transmitted symbols are also
reconstructed by means of the DCT1e using the same novel MIRA
scheme. The conditions that ensure a perfect reconstruction in
the absence of noise are also provided in this case. Numerical
simulations illustrate the excellent behaviour of the proposed
approach, both in terms of channel estimation and recovery of
the transmitted information.

Index Terms—Multicarrier modulation; discrete cosine trans-
form (DCT); channel estimation; signal reconstruction

I. INTRODUCTION

Multicarrier modulation (MCM) is the preferred medium-
access technique in many current state-of-the-art digital com-
munication systems [1]. Instead of the discrete Fourier trans-
form (DFT), which has been adopted in most of the standards,
several authors have studied the benefits of using the discrete
cosine transform (DCT) as the basis of alternative MCM
schemes [2]–[10]. DCT-based systems exhibit excellent spec-
tral compaction and energy concentration, which lead to less
interference leakage to adjacent subcarriers [3], [11], as well
as better performance under carrier frequency offset (CFO)
[2], [4], [6], [12]. They also offer comparable complexity
to DFT-based systems for long channels and reduced power
consumption for real constellations [2].

Channel estimation is essential in digital communication
systems, especially in DCT-based transceivers that employ
a front-end pre-filter at the receiver [2], [4], [6], [13]. The
channel’s impulse response (CIR) is usually time-varying, and
thus it is necessary to re-estimate the CIR from time to time.
To this aim, some training or pilot symbols, which are known
by both the transmitter and the receiver, are frequently used.
In MCM systems, channel estimation has typically required
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the use of the DFT, both in the case of orthogonal frequency
division multiplexing (OFDM) schemes (see, e.g., [14], [15]
and references therein) and in DCT-based systems [16]–[19].

However, several works have recently addressed the channel
estimation problem using the DCT instead of the DFT. First
of all, a compressed channel sensing (CCS) method using
the DCT1e was already proposed in [20]. Unfortunately, this
technique is only valid for channels with symmetric CIR,
which is not the case in most practical applications. In order
to overcome this limitation, [12] developed a novel channel
estimator for the Type-II even and the Type-IV even DCTs
(DCT2e and DCT4e respectively). The key idea of [12] was
constructing a symmetric training signal, thus freeing the
channel’s CIR from the symmetry restriction. This estimator
has then been extended to the DCT1e in [21], as well as
the DCT3e [13], [22]–[24]. The transmission scheme of the
above systems still requires the use of redundant samples,
such as symmetric extension or zero padding, inserted at each
transmitted data symbol.

This work presents a novel scheme based on the DCT1e,
both for channel estimation and signal reconstruction, that
outperforms the ones proposed in [21], [25]. The major
contributions of this work are:

1) We derive the conditions to perform the transmission
channel partition with zeros, without using symmetric
extension into each time-domain data symbol. In addi-
tion, we show how to correct the channel effects with
only one-coefficient per subchannel equalizer.

2) We develop a novel mirror, replicate and add (MIRA)
procedure for channel estimation, with two important
advantages over the method proposed in [21]. On the
one hand, this new scheme can be applied without prior
knowledge of the maximum length of the channel’s im-
pulse response. On the other hand, the training symbols
can be chosen in a more general way: they do not need
to contain many zero coefficients in the transformed
domain. Finally, the simulations (see Section VI) also
show that the novel approach outperforms the one in [21]
in terms of normalised mean squared error (NMSE).

3) We provide theoretical results that guarantee the validity
of the proposed technique.

4) We also consider the signal reconstruction problem (i.e.,
the estimation of the transmitted symbols) by means of
the DCT1e. Unlike the approach given in [25], where
a symmetric extension was imposed, here we provide
a solution that only introduces some null components.
By exploiting the same MIRA procedure, we demon-
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strate that our novel scheme guarantees perfect signal
reconstruction in the absence of noise.

We focus on the DCT1e due to the following important
properties:

• The direct and the inverse DCT1e are defined by the
same expression except for a scaling factor that can
be normalized [26]. This characteristic simplifies the
implementation of the system, since exactly the same
hardware can be used to carry out the transform blocks
at both the transmitter and the receiver.

• The convolution of two vectors is transformed by the
DCT1e into a pointwise product of their transforms under
some symmetry conditions on one of the vectors [26],
[27]. This property is shared by other DCTs (although the
symmetry conditions may differ) and is analogous to the
circular convolution property of the DFT. This is the key
property for channel estimation and signal reconstruction
in MCM systems, since it enables the estimation of non-
symmetric channels without introducing any additional
transform in the receiver by constructing a symmetric
training signal [12].

• Signals which present whole-point symmetry (WS), a.k.a
antisymmetry, are transformed into vectors with a high
number of zero coefficients in the DCT1e transform
domain (and viceversa). This advantage ensures that the
signals obtained are sparse and can be exploited to
develop compressed channel sensing schemes, as already
done in [20] for symmetric channels.

• Regarding computational issues, in [28], [29] it is claimed
that the DCT1e of length N is equivalent to a DFT of
length 2N with real-symmetric input data. Furthermore,
the authors establish that the multiplication complexity
of the DCT1e algorithm can be saved, starting from their
new FFT with an identical approach.

The rest of the paper is organized as follows. First of all,
in Section II an overview of the novel system is provided:
the block diagram of the proposed transceiver is introduced
and a general description of the different blocks is given.
Then, some key properties of the DCT1e are reviewed in
Section III. This is followed by the two main sections from
a theoretical point of view. On the one hand, the channel
estimation problem is addressed in Section IV: the newly
proposed channel estimation procedure (MIRA) is described
in Section IV-A, and the theoretical justification is provided
in Section IV-B. On the other hand, Section V explains how
to recover any transmitted information symbol by means of
the DCT1e using the novel MIRA procedure introduced in
Section IV-A and provides the theoretical conditions for a
perfect reconstruction in the absence of noise. Finally, Section
VI contains several numerical examples that illustrate the
excellent behaviour of the proposed communications system
for several channels and subcarrier modulation schemes, and
the main contributions of this work are highlighted in Section
VII.

The notation used in this paper is as follows. Bold-face
letters indicate vectors (lower case) and matrices (upper case).
The transpose of A is denoted by AT and IN represents the

N ×N identity matrix. The subscript is omitted whenever the
size is clear from the context. J stands for the counter-identity
matrix, and 0M×N denotes an M ×N matrix of zeros.

II. SYSTEM OVERVIEW

The block diagram of the proposed DCT-based MCM
transceiver is shown in Figure 1. Note that the receiver
includes two separate parts: one for channel estimation and
another one for signal reconstruction. We consider a syn-
chronous communications system, where symbols are organ-
ised in frames of F symbols, as shown in Figure 2, with an
initial training symbol (Si,0 with i denoting the frame number)
devoted to CIR estimation and the remaining F − 1 symbols
(Si,1, . . . , Si,F−1) to data transmission.

In the transmitter, the N -length pilot/training symbol in
each frame, x(ps), is stored in memory and directly in-
jected in the second block, as shown in Figure 1. For
the remaining data symbols in the frame, an inverse trans-
form (T−1a ) is applied to the original data vector, X =
[X0, X1, . . . , XN−1]

T , in order to obtain the time-domain data
vector: x = [x0, x1, . . . , xN−1]

T . Here, we use the inverse
DCT1e, implying that T−1a = C−11e = C1e, with C1e denoting
the DCT1e transform matrix, which is defined by (1) and
(2) and whose properties are detailed in Section III. Then,
in order to avoid intersymbol interference during synchronous
transmission, matrix Γ introduces guard intervals composed
of L − 1 zeros, with L denoting the maximum length of the
channel’s impulse response, at each side of the signal x:

xe = Γ · x =




0(L−1)×N
IN

0(L−1)×N


 · x.

The samples of this extended vector, xe, are transmitted
through the L−length CIR given by hch = [h0, . . . , hL−1]T ,
with L < N − 2. The central part of the received signal
(which contains the samples required for channel estimation
and signal reconstruction) is thus y = x ∗ hch + z, of length
L + N − 1, where z is the additive white Gaussian noise
(AWGN) vector and ∗ denotes the standard linear convolution
operator.

In the receiver, the first goal is to estimate the CIR, hch. In
order to achieve this aim, a known pilot/training sequence x(ps)

is transmitted in the first symbol of each frame, as previously
indicated, and the received signal is processed using the block
diagram in the upper part of the receiver (see Figure 1).
First of all, the MIRA scheme, which amounts to a linear
transformation using the matrix Υ defined in (12), is applied
to y (of length L + N − 1), thus obtaining a shortened
vector ym of length N (see Section IV for further details).
Then, an appropriate direct transform (Tc) is applied to ym
in order to obtain the transformed received symbols Ym =
[Ym,0, Ym,1, . . . , Ym,N0−1]. In this case, Tc = T−1a = C1e due
to the properties of the DCT1e discussed in Section III, so
the same transform used in the transmitter can be applied for
channel estimation in the receiver. Next, the single frequency
equalization coefficients, d(ps) = [d

(ps)
0 , d

(ps)
1 , . . . , d

(ps)
N0−1]T are

computed, using the simple procedure detailed in Section IV,
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Fig. 1. General block diagram of the DCT1e-based MCM transceiver for channel estimation and signal reconstruction.

S1,0 S1,1 S1,2 · · · S1,F−1

frame 1

S2,0 S2,1 S2,2 · · · S2,F−1

frame 2

· · ·

Fig. 2. Frame structure for the proposed DCT1e-based MCM scheme. Red boxes indicate the initial training symbol in each frame (Si,0 with i denoting the
frame number). Blue boxes indicate the remaining F − 1 data symbols (Si,1, . . . , Si,F−1).

and used to perform the frequency equalization of the infor-
mation symbols transmitted after the training stage. Finally,
the estimated CIR, ĥch = [ĥ0, . . . , ĥL−1]T , is obtained by
applying the inverse transform T−1a to the estimated channel
in the transformed domain [Ĥ0, . . . , ĤN−1]. This estimated
CIR is used both to construct the pre-filter hpf, required to
guarantee a symmetric global CIR, h = hch ∗ hpf, and to
obtain the frequency equalization (FEQ) coefficients for the
signal reconstruction stage, d̃ = [d̃0, d̃1, . . . , d̃N−1]T . The
whole process is detailed in Section IV.

After the channel has been estimated, the system is ready to
start receiving data symbols. The central part of the received
signal (which contains the samples required for signal recon-
struction), ỹ = x∗h+z of length 2L+N−2, is now processed
using the block diagram in the lower part of the receiver. As in
the channel estimation stage, we first apply MIRA in order to
obtain an N -length signal ỹr. This signal is then transformed
using Tc = T−1a = C1e and equalized using the coefficients
d̃k computed during the training stage, as shown in Figure 1.
The whole signal reconstruction process is described in detail
in Section V. Note that we use different values of N for the
channel estimation (N = N0 odd, as the transmitted signal
has to have WS) and signal reconstruction (N = N0 +1 even,
as in most MCM schemes) stages. Let us remark again that
the channel estimation (which requires an odd value of N )
is performed only once per frame, whereas the reconstruction

stage (where N = 2n and fast DCT1e algorithms can be used)
is carried out most of the time.

III. THE DISCRETE COSINE TRANSFORM TYPE-I EVEN

In this Section we recall the definition of the DCT1e matrix,
and give some properties that will be useful for the proposed
MCM scheme. The DCT1e of an N -length signal is given by
the matrix C1e:

[C1e]k,j = aj cos

(
kjπ

N − 1

)
, 0 ≤ k, j ≤ N − 1, (1)

where

aj =





1√
2(N−1)

, if j = 0, N − 1;

2√
2(N−1)

, otherwise.
(2)

This is the definition of C1e given in [26], except for the
normalization factor

√
2(N − 1), which has been introduced

here in order to ensure the involution property: C−11e = C1e,
which simplifies the numerical calculations. This way, the
inverse and direct DCT1e transforms are equal.

Notice that DCT1e also presents the following properties:
1) Property 1: The DCT1e of a vector x =

[x0, · · · , xN−1]T is related to the DCT1e of its
reversed version J · x = [xN−1, · · · , x0]

T as follows:
C1e · x and C1e · J · x have the same even-indexed
components, whereas their odd-indexed components
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have opposite signs. In other words, their m−th
components are related by:

[C1e · J · x]m = (−1)
m

[C1e · x]m , m = 0, . . . , N−1.

The reason is that

[C1e · J]m,n = [C1e]m,N−1−n

= aN−1−n cos

(
m(N − 1− n)π

N − 1

)

= an cos

(
mπ − mnπ

N − 1

)

= an (−1)
m

cos

(
mnπ

N − 1

)
= (−1)

m
[C1e]m,n .

Therefore, if C1e · x = [X0, X1, X2, · · · , XN−1], then

C1e · (x+J · x) = 2[X0, 0, X2, 0, · · · ], (3)
C1e· (x−J · x) = 2[0, X1, 0, X3, · · · ]. (4)

2) Property 2: DCT1e transforms symmetric signals into
vectors with null odd-indexed components. In fact, if V
is a vector with zero odd-indexed components,

V =[V0, 0, V2, 0, · · · ],

then Equation (3) guarantees that C−11e · V = v is
a symmetric vector (say, J · v = v). In case N is
even (N = 2M , where M is an integer), then v
presents half-point symmetry (HS), of the kind v =
[v0, · · · , vM−1, vM−1, · · · , v0]T . If N is odd (N =
2M + 1), then the symmetry of v is a whole-point
symmetry (WS), of the kind

v = [v0, · · · , vM−1, vM , vM−1, · · · , v0]T .

In the same way, from Equation (4) we derive that
DCT1e transforms antisymmetric signals into vectors
with null even-indexed components; for even length, the
signals are half-point antisymmetric (HA) and for odd
length, whole-point antisymmetric (WA).

3) Property 3 (DCT1e and diagonalization): In [27] it is
shown that an N ×N matrix A is diagonalized via C1e

if it can be split as A = G+M1e, where G is an N×N
symmetric Toeplitz matrix given by

G =




t0 t1 · · · tN−2 tN−1

t1
. . .

. . . tN−2
...

. . .
. . .

. . .
...

tN−2
. . .

. . . t1
tN−1 tN−2 · · · t1 t0



, (5)

and M1e comes from a Hankel matrix whose first and
last columns have been set to zero:

M1e =




0 t1 · · · tN−2 0

0 . .
.
tN−1 0

0 tN−2 . .
.
tN−2 0

0 tN−1 . .
.

0
0 tN−2 · · · t1 0



. (6)

Moreover, the eigenvalues of A are the N components
of the vector C1e · [t0, · · · , tN−1]T [27, p. 2634].

4) Property 4: Any L×L submatrix of C1e, whose columns
have been extracted from the first L columns of C1e, is
invertible. [20, p. 3].

IV. DCT1E FOR CHANNEL ESTIMATION

A. Channel Estimation by MIRA-DCT1e procedure

We now focus on the channel estimation problem of Figure
1, by using the DCT1e at both the transmitter and the receiver:
T−1a = Tc = C1e. Let hch = [h0, . . . , hL−1]T , and let

x(ps) = [0, xM−1, · · · , x1, x0, x1, · · · , xM−1, 0]
T (7)

be the N -length pilot/training symbol to be transmitted1.
Hereinafter, let us consider without loss of generality that
N = N0 = 2M + 1, and

[
x(ps)

]
0

=
[
x(ps)

]
2M

= 0. In
this case, the (N0 + 2M)−length received data vector can be
obtained as y = x(ps) ∗ [hTch, 0, . . . , 0]T + z, which can be
rewritten as

y =




0 0 · · · 0
xM−1 0 · · · 0
... xM−1

. . .
...

x1
. . .

. . . 0

x0 x1
. . . xM−1

x1 x0
. . .

...
... x1

. . . x1

xM−1
. . .

. . . x0

0 xM−1
. . . x1

... 0
. . .

...

0
. . . 0 xM−1

0 0 · · · 0







h0
...

hL−1
0
...
0




+ z. (8)

Equation (8) can be rewritten as

y = X̃ · hzp + z, (9)

in which we have

hzp = [0,hTch, 0, . . . , 0]T , (10)

and X̃ is the Toeplitz matrix in (8) augmented with a first
column on the left equal to

[xM−1, · · · , x1, x0, x1, · · · , xM−1, 0, · · · , 0]
T
,

i.e., X̃ is an (N + 2M) × N Toeplitz matrix
with first row [xM−1, 0, · · · , 0] and first column
[xM−1, · · · , x1, x0, x1, · · · , xM−1, 0, · · · , 0]

T .
The first (N0 + 2M) components of the received data vector

can be denoted as

y = [y−M , . . . , y0, . . . , yN0−1, . . . , yN0+M−1]T .

1Observe that the symmetry of the pilot symbol can be employed for timing-
and frequency- synchronization [30].
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Now we need to define the auxiliary matrix Υ, which trans-
forms such arbitrary vector y of length N0 + 2M, into the
following N0−length vector:

ym = Υ · y = [y0, ..., yM−1, yM , ..., yN0−M , ..., yN0−1]T +

+[y0, ..., y1−M , 0, ..., 0, yN0+M−2, .., yN0−1]T .

(11)

Note that this modification, depicted in the block diagram of
Figure 3, is performed as follows: after discarding the first
and the last component of y, i.e., y−M and yN0+M−1, the
following first M components are symmetrized as in a mirror,
and added to their adjacent M components, where we have
replicated y0; in an analogous way, the last M components
are symmetrized as in a mirror, and added to their previous M
components, where we have replicated yN0−1. In other words,
it is a mirror, replicate and add procedure, so we denote it as
MIRA.

The explicit expression of the N0 × (N0 + 2M) MIRA
matrix is

Υ =
[

0N0×M IN0
0N0×M

]
+ (12)

+




0M×1 JM 0M×(N0−2) 0M 0M×1
0N0×1 0N0×M 0N0×(N0−2) 0N0×M 0N0×1
0M×1 0M 0M×(N0−2) JM 0M×1


 .

The aim of Υ is to modify X̃ in order to obtain a matrix,
namely Xequiv , such that T ·Xequiv ·T−1 = D(ps) is diagonal,
containing the eigenvalues of Xequiv . This matrix Xequiv

shares with Υ · X̃ all the columns unless first and last, as
it is shown in the next result.

Proposition 1: Let us consider the (N0 + 2M) × N0

convolution matrix X̃ and the N0×(N0 + 2M) MIRA matrix
Υ (12). There exists an N0 × N0 matrix Xequiv which is
diagonalized by DCT1e, and that verifies, for any vector b of
length N0 − 2,

Xequiv · [0,b,0]T = Υ · X̃ · [0,b,0]T .

Proof: It suffices to apply the MIRA procedure to the rows
of X̃: by discarding the first and last row, we replicate two
rows in matrix X̃ (namely the (M+1)-th and the N0-th row),
and then we reverse its first/last rows and add them to their
adjacent ones. The obtained matrix can be easily written as
Υ · X̃ = XT + X′H being XT and X′H , respectively, Toeplitz
and Hankel matrices of the kind:

XT =




x0 x1 · · · xM−1 0 · · · 0

x1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

xM−1
. . .

. . . xM−1

0
...

...
. . . x1

0 · · · 0 xM−1 · · · x1 x0




,

X′H =




x0 · · · xM−1 · · · 0
... . .

.
0 . .

. ...

xM−1 . .
.

. .
.

0

0 . .
.

. .
.
xM−1

... . .
.

. .
. ...

0 · · · xM−1 · · · x0




.

Now we simply define the Hankel-type matrix of the kind
(6)

XH =




0 x1 · · · xM−1 · · · 0 0
...

... . .
.

0 . .
. ... 0

0 xM−1 . .
.

. .
.

0 0

0 0 . .
.

. .
.
xM−1 0

...
... . .

.
. .
. ...

0 0 · · · xM−1 · · · x1 0




,

which is equal to X′H except for its first and last column.
Hence

X′H · [0,b,0]T = XH · [0,b,0]T ,

so the matrix Xequiv = XT + XH performs in the same way
that Υ · X̃ on vectors of the form [0,b,0]T . Moreover, Xequiv

is a sum of two matrices of the kind (5) and (6), so Property 3
of Section III guarantees that it can be perfectly diagonalized
via the DCT1e, and the claim holds. By using this result, we
finally get

ym = Υ · y = Υ·X̃ · hzp + Υ · z
= Xequiv · hzp + Υ · z, (13)

with the advantage that the whole transform matrix Xequiv is
diagonalized by the DCT1e:

C1e ·Xequiv ·C−11e = D(ps).

Moreover, Property 3 of Section III assures that the diagonal
entries of matrix D(ps) (eigenvalues of Xequiv) are the DCT1e
transform of the vector x(r)

ZP = [x0, . . . , xM , 0, . . . , 0]T , the
right-hand side of the pilot symbol (7) zero–padded on the
right,

d
(ps)
k =

[
C1e · x(r)

ZP

]
k
, k = 0, . . . , N0 − 1.

Thus, we have been able to find an easy solution to the channel
estimation problem by using DCT1e: Let denote Ym := C1e ·
ym, H := C1e · hzp, and Z := C1e ·Υ · z, we get

Ym = D(ps) ·H + Z.

The coefficients d(ps)
k can be computed and stored in memory

when choosing a concrete training signal x(ps), so they are
known. Finally, we obtain an estimation of H,

Ĥk = [Ym]k /d
(ps)
k , k = 0, ..., N0 − 1 (14)

and compute C−11e · Ĥ = ĥ which gives a perfect estimation
of hzp = [0,hTch, 0, ..., 0]T in absence of noise.
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Serial/
Parallel

Fig. 3. Mirror, replicate and add (MIRA) block processing at the receiver.

SUMMARY OF THE PROCEDURE:
1) Choose an N0−length pilot/training signal of the kind

X = [X0, 0, X2, 0, · · · , XN0−2] and compute C−11e ·X =
x which is a WS signal.

2) Compute d(ps) = C1e · x(r)
ZP.

3) Transmit x(ps) through the channel, get the vector y at
the receiver.

4) Modify y by the MIRA procedure (mirror the edge
components, replicate and add to their adjacent ones),
so as to get the vector ym of length N0.

5) Apply the DCT1e block: Ym = C1e · ym.
6) Compute Ĥk = [Ym]k /d

(ps)
k .

7) Finally obtain C−11e · Ĥ which is the desired estimation
of the zero padded channel filter [0,hTch, 0, ..., 0].

Notice that it is not necessary to know the length L of
the CIR, whenever it is not greater than N0 − 2; but this
requirement is fulfilled in practice, where usually the number
of subchannels is much greater than the length of the CIR. So
our algorithm is able to estimate the channel filter without prior
information of its exact or maximum length. This is another
important contribution of this work.

Let us finally remark that the computational cost of our
procedure is low: on one hand, the DCT1e of N -length vector
can be performed in 2N log2N operations [28], [29]. On the

other hand, the MIRA procedure only implies 2N additional
sums, so the whole complexity of the proposed MIRA-DCT1e
procedure remains of order 2N log2N . This is another good
property of our approach.

B. Validity of the Procedure under Spectral Zeros and Com-
pressed Channel Sensing

Note that Equation (14) cannot be applied in presence of
spectral nulls, say, if any of the coefficients d(ps)

k is equal to
0. In other words, if there are spectral nulls, then some of the
components Ĥk are unknown. Luckily, we show that, even
in this case, the proposed scheme is also valid, whenever we
know enough components Ĥk:

Proposition 2: For any set of L + 1 components
Ĥk0 , . . . , ĤkL there exists a unique (L+ 1)-length vector h̃
such that H̃= C1e · [h̃T , 0, ..., 0]T verifies H̃kn = Ĥkn for
any n = 0, ..., L.

Proof: The proof is derived from Property 4 of Section III:
let M be the submatrix of C1e extracted from its first (L+ 1)
columns, and whose (L+ 1) rows are the ones indexed as
(k0, ..., kL) ; matricially, we have

M · h̃
T

=[Ĥk0 , . . . , ĤkL ]T .

Property 4 assures that the (L+ 1) × (L+ 1) matrix M is
invertible, so there exists a unique solution h̃ which can be
perfectly recovered.

Therefore, we can reconstruct the L-length CIR hch when-
ever there is any set of L + 1 nonzero coefficients d(ps)

k : In
effect, for these L + 1 indexes k such that d(ps)

k 6= 0, we
apply Equation (14) and obtain L+ 1 components Ĥk; then,
Proposition 2 guarantees that it suffices to know any L + 1
components of Ĥ in order to perfectly obtain h̃ =[0,hTch]T .
This result can also be derived from a more general theorem
[31], but in the present work we provide a simple and direct
proof for DCT1e.

Remark: Thanks to this good property of the DCT1e, we
can estimate the channel filter by means of a small number
of measurements, so our procedure can also be considered a
new technique for Compressed Channel Sensing.

C. Proposed sparse training signal

In this Section we propose a specific training signal which
has good properties when using the DCT1e channel estimation
scheme proposed in the previous Section. We have used it in
our simulations that will be presented in Section VI.

Recalling the properties of the DCT1e obtained in Sec-
tion III, we easily see that, for odd N0, the WS signal
[1, 0, 0, 0 . . . , 0, 1] is transformed by DCT1e into the vector

[1, 0, 1, 0, . . . ]
√

2/(N0 − 1).

In other words, if we choose the original training signal as

X = [1, 0, 1, 0, . . . ]
T

then C−11e ·X = x = [1, 0, 0, . . . , 0, 1]
T
√

(N0 − 1)/2 which
is WS. Its half-right vector, zero padded up to length N0
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is x(r)
ZP =

√
(N0 − 1)/2 [0, . . . , 0, 1, 0, . . . , 0]

T
. As it has a

unique nonzero coefficient which is the central one (at the
n = (N0 − 1) /2 position) then

[
C1e · x(r)

ZP

]
m

=

√
(N0 − 1)

2
a (N0−1)

2

cos

(
m(N0 − 1)π

2 (N0 − 1)

)

= cos
(
m
π

2

)
=

{
(−1)

m/2 if m is even,
0 if m is odd.

Therefore,

d(ps) = C1e · x(r)
ZP = [1, 0,−1, 0, 1, 0,−1, 0, . . . ]

T

and its components are the coefficient d(ps)
k . Notice that half

of them are null, and the others are alternating 1′s and −1′s.
Thus, when using the training signal as X = [1, 0, 1, 0, . . . ]

with the DCT1e, our channel estimation procedure is very
simple. In summary, the estimation has even coefficients of
the kind

Ĥ2k = [Ym]2k /d
(ps)
2k = (−1)

k
[Ym]2k , 0 ≤ k ≤ N0 − 1

2
.

Now the remaining question is: how to estimate the whole filter
ĥ, if we only know half of the coefficients of its DCT1e trans-
form Ĥ? To answer this question, we provide two methods: On
one hand, in the previous section we have guaranteed that the
reconstruction is possible whenever at least L+ 1 coefficients
d
(ps)
k are nonzero (and this is possible if L ≤ (N0−1)/2). On

the other hand, we give another method by recalling Properties
1 and 2: if we set all odd components equal to 0,

Ĥ2k−1 = 0, k = 1, . . . , (N0 − 1)/2.

Then we have a vector of the kind Ĥ = [Ĥ0, 0, Ĥ2, 0, ...]
T

which has odd null components, so by (3), ĥ = C1e · Ĥ is a
WS vector that, in absence of noise, can be written as

ĥ = (hzp + J · hzp)/2.

Moreover, if L ≤ (N0 − 3)/2 (condition usually met in
practice), then we obtain the following expression:

ĥ = [0,hTch, 0, ..., 0, (J · hch)T , 0]T /2.

This way, the vector that appears in the first half is the CIR
hch, whereas in the right half we find its mirror version J ·hch,
with eventual zeros appended at both edges, and a factor of
1/2.

V. SIGNAL RECONSTRUCTION VIA DCT1E

Let us suppose we have already estimated the channel and,
if necessary, it has been symmetrized by means of a pre-filter2.
So, we can consider the impulse response of the channel as

h = [hL−1, . . . , h1, h0, h1, . . . , hL−1] .

Now the problem is to recover the data symbol X at the
receiver as in Figure 1. Now the transmitted data needs to
be of even length, so N is supposed to be N = N0 + 1. In a
previous work [25] the DCT1e was applied for single-carrier
modulation; there, the problem was addressed by appending at

2It can be easily implemented using hpf = J · ĥ.

least L−1 redundant data as prefix and also L−1 samples as
suffix to the each data symbol, by enforcing a WS symmetry.
As a result, each transmitted data could be reconstructed at
the receiver.

In this section we propose a new and simple approach
with zero padding and that avoids the use of symmetric
extension. The key idea is that the commutative property of
the convolution product allows us to interchange the roles of
the signal and the channel. By using the MIRA procedure, it
will be able to reconstruct an arbitrary signal of even length,
just by using N − 2 subchannels for data, and enforcing the
remaining 2 at each edge with a predetermined value obtained
from the rest of data, as we explain next.

The transmitted data vector in the transform domain is
X = [X0, X1, . . . , XN−2, XN−1]. Based on Proposition 1, we
are able to transmit the time-domain information data without
using symmetric extension provided that the vector x is of the
form x = [0,xTc , 0]T . As x = C−11e ·X (see Figure 1), we must
choose X0 and XN−1 such that the first and last components
of C−11e ·X are null. Taking into account first and last rows of
C−11e (for N even) are respectively proportional to

[
1 2 2 . . . 2 2 1

]
,[

1 −2 2 . . . −2 2 −1
]
,

the equations that must be fulfilled are

X0 + 2

N−2∑

j=1

Xj +XN−1 = 0,

X0 − 2

N−2∑

j=1

(−1)jXj −XN−1 = 0.

Adding and subtracting these two equations, one gets the
the conditions that must be satisfied by the first and the last
components of vector X:

X0 = −2

N/2−1∑

j=1

X2j−1, (15a)

XN−1 = −2

N/2−1∑

j=1

X2j . (15b)

The central part of the received vector,

ỹ = h ∗ x + z,

has length N + 2L and may be written as

ỹ = H · x + z,

which corresponds to (8), by changing the roles of signal and
CIR. The transmission matrix, H, of size (N + 2L) × N ,
is Toeplitz with first row [hL−1, 0, . . . , 0] and first column
[hT , 0, . . . , 0]T . This matrix H can be folded by using the
MIRA procedure described on Figure 3, i e., multiplying it by
Υ, defined in (12) with dimensions N×(N+2L). As a result,
we get an N ×N matrix Hequiv which is diagonalizable by
the DCT1e.
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As shown in the lower part of Figure 1, the modified
received vector is given by

ỹr = Υ · ỹ = Hequiv · x + z̃, (16)

where Hequiv = C−11e · D̃ ·C1e, being D̃ a diagonal matrix.
Now, we apply the DCT1e to both sides of (16):

C1e · ỹr = C1e ·Hequiv · x + C1e · z̃.

By denoting Ỹr = C1e · ỹr, Z̃ = C1e · z̃, and noting that
C1e ·Hequiv = D̃ ·C1e, we have

Ỹr = D̃ ·C1e · x + Z̃. (17)

It suffices to recall X = C1e · x, and we finally express (17)
as

Ỹr = D̃ ·X + Z̃.

Thus, we obtain an estimate of the extended vector as:

X̂ = D̃−1 · Ỹr − D̃−1 · Z̃, (18)

where the entries of the diagonal matrix D̃ are the components
of

C1e · [h0, h1, . . . , hL−1, 0, . . . , 0]
T
.

By discarding both the first and last components in (18)
we obtain the reconstructed data X̂i = [X̂1, . . . , X̂N−2].
Therefore, in the absence of noise, the central components
of X̂ = D̃−1 · Ỹr provide a perfect reconstruction of the
information vector Xi = [X1, . . . , XN−2] without using any
symmetric extension. The performance of the method in the
noisy case is also excellent, as shown in Section VI.

VI. NUMERICAL RESULTS

In this section, we analyse the behaviour of the proposed
transceiver, both in terms of channel estimation and signal
reconstruction, by testing it on several channels. First of all,
in Section VI-A we test it on a fixed channel of length L = 11.
Then, in Section VI-B we test it on several standardized ITU-R
M.1225 channels [32].

In order to test the channel estimation, a sparse signal
is constructed in the DCT1e domain by setting Xk = 1 if
k = rK (for some given value of K, which acts as a sparsity
parameter for the transmitted signal in the DCT1e domain)
and Xk = 0 otherwise. The inverse DCT1e is performed and
the extended time-domain transmitted signal (xe) is passed
through the filter with impulse response hch. Then, zero-mean
additive white Gaussian noise (AWGN) with variance σ2

z is
added, resulting in a received signal whose central part is y =
x ∗ hch + z, where zn ∼ N (0, σ2

z) with N (µ, σ2) denoting a
univariate Gaussian density with mean µ and variance σ2. The
MIRA process is applied on the length L + N − 1 sequence
y, resulting in a length N = N0 sequence ym. The N -th
order DCT1e of ym (Ym) is computed and then it is used to
estimate the DCT1e of the channel’s impulse response (Ĥk)
as indicated in the text. Note that only one out of P (P = 2
or P = 4) coefficients is reconstructed. Finally, the length
N inverse DCT1e of Ĥk is obtained and the relevant central
samples are extracted to obtain the estimate of the channel’s

impulse response, ĥ. The performance measure used is the
normalized mean squared error (NMSE) in the reconstruction
of the CIR:

NMSE(dB) = 10 log10

Pe
Ph
,

with Pe = 1
L (hch−ĥ)T (hch−ĥ) = 1

L

∑L−1
n=0 |hch(n)− ĥ(n)|2,

Ph = 1
LhTchhch = 1

L

∑L−1
n=0 |hch(n)|2 and L denoting the

CIR’s length. All of the system’s parameters (the transmitted
signal power to noise ratio, the length of the DCT1e, the
number of pilot subcarriers used in the transmitter and the
number of reconstruction coefficients used in the receiver)
are changed in order to see their effect in the quality of
the estimated channel’s impulse response. In our simulations,
we make the reasonable assumption that the errors due to
channel estimation and time variation are uncorrelated; the
channel is relatively stationary over the short duration of
the training symbol. We consider that channel estimation is
developed under the assumption of slow fading channel, where
the channel is assumed to be constant within a frame, but
varies from frame to frame. Hence, one pilot symbol should
be inserted at the beginning of each frame to estimate the
channel, as shown in Figure 2.

For the signal reconstruction, we generate a sequence of
N − 2 (with even N = N0 + 1) independent binary symbols
[X1, . . . , XN−2], constructing X0 and XN−1 as described in
Section V. The inverse DCT1e is performed and the extended
time-domain transmitted signal (xe) is passed through the
global channel’s impulse response, h = hch ∗ hpf. Both
the ideal pre-filter (which corresponds to the time-reversed
CIR hch) and the estimated pre-filter (constructed from the
estimated ĥ) are considered. In the receiver, MIRA is applied
on the length 2L+N−2 signal ỹ in order to obtain a length N
sequence ỹr. The DCT1e of this sequence is performed, and
the stored channel equalization coefficients used to recover the
transmitted information. The performance measure in this case
is the bit error rate (BER),

BER =
1

NNs

Ns∑

i=1

N−2∑

k=1

JX̂(i)
k 6= X

(i)
k K, (19)

where Ns is the number of MCM symbols used in the
simulations, and JLCK = 1 if the logical condition LC is
fulfilled and JLCK = 0 otherwise.

A. Fixed Channel

As a first example, we select the following L = 11
sparse channel that has only 4 non-null coefficients: h =
[1, 0, 0,−0.5, 0, 0, 0, 0.25, 0, 0, 0.05]T . In this case, we set the
length of the DCT1e to N = N0 = 511 and check the
behaviour of the channel estimation and signal reconstruction
schemes as the SNR increases (from -10 dB to 30 dB) for a
varying number of pilot subcarriers in the transmitter (from
Np = 2 to Np = 256) and reconstruction coefficients in the
receiver (128 or 256). Ns = 2000 simulations (i.e., MCM
symbols) are used for each case.
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1) Channel Estimation: Figure 4 shows three examples
of the estimated channel’s impulse and frequency responses
for three signal to noise ratios (SNR = 0 dB, SNR = 10
dB and SNR = 20 dB) using Np = 256 pilot subcarriers
in the transmitter and 256 reconstruction coefficients in the
receiver. The channel’s impulse response is displayed on the
top row (central dot with the true values and bar spanning
the range from the minimum to the maximum recovered val-
ues), whereas the bottom row shows the channel’s frequency
response (true value in black line and shaded area showing
the range from the maximum to the minimum values). Note
the substantial decrease in the variation of the coefficients of
the channel’s impulse response as the SNR increases (indeed,
for SNR = 20 dB the bars cannot be appreciated, since
the recovered coefficients are always virtually identical to
the true coefficients) and the corresponding improvement in
the estimation of the channel’s frequency response (with a
substantial decrease in the shaded area).

Figure 5 shows the effect, on the recovered channel’s
frequency response, of changing the number of subcarriers
in the transmitter and the reconstruction coefficients in the
receiver. In all cases an SNR = 20 dB is used and Ns = 2000
simulations are performed again, and we compare the quality
of the recovered Ĥ(ω) using Np = 127 (Figs. 5(a)&(d)),
Np = 17 (Figs. 5(b)&(e)) and Np = 3 (Figs. 5(c)&(f)). For
figures on the top row 256 coefficients are used to reconstruct
the channel in the receiver, whereas only 128 coefficients are
used for figures on the bottom row. First of all, let us remark
that using only 128 coefficients does not degrade substantially
the performance of the proposed approach. Note also that
the performance decreases as less subcarriers are used (using
256 coefficients in the receiver, the NMSE increases from
−69.81 dB for Np = 129 to −25.34 dB for Np = 3).

TABLE I
SNR GAIN IN THE ESTIMATION OF THE CHANNEL FOR N = N0 = 511.
K : SPARSITY PARAMETER FOR THE DCT1E OF THE TRANSMITTED

SIGNAL; Np = (N + 1)/K : TOTAL NUMBER OF PILOT SUBCARRIERS
USED IN THE TRANSMITTER (IN PARENTHESIS THE TOTAL NUMBER OF

PILOTS USING AN ADDITIONAL CENTRAL PILOT, Np = (N + 1)/K + 1);
P : SPARSITY PARAMETER FOR THE RECONSTRUCTION OF THE SIGNAL;

Nr : NUMBER OF COEFFICIENTS USED TO RECONSTRUCT THE CHANNEL IN
THE RECEIVER (Nr = (N + 1)/P ); ∆SNR(DB): SNR GAIN IN EQ. (20)
(IN PARENTHESIS THE GAIN USING THE ADDITIONAL CENTRAL PILOT).

K Np P Nr ∆SNR(dB)
2 256 2 256 15.05
4 128 (129) 2 256 10.25 (10.30)

4 128 8.08 (8.09)
8 64 (65) 2 256 6.55 (6.62)

4 128 4.59 (4.64)
16 32 (33) 2 256 3.16 (3.31)

4 128 1.31 (1.43)
32 16 (17) 2 256 −0.14 (0.14)

4 128 −1.93 (−1.68)
64 8 (9) 2 256 −3.49 (−2.90)

4 128 −5.27 (−4.73)
128 4 (5) 2 256 −7.20 (−5.94)

4 128 −8.98 (−7.74)
256 2 (3) 2 256 −11.99 (−8.97)

4 128 −13.75 (−10.77)

However, an accurate estimation of the channel can be
provided, if the SNR is large enough, even when only Np = 3

pilot subcarriers are used. This is shown in Figure 6, where the
performance as a function of the SNR is shown for different
values of Np and Nr. In all cases the NMSE(dB) decreases
linearly (i.e., the −NMSE(dB) shown in Figure 6 increases
linearly) as the signal power to noise ratio increases. Indeed,
the following relationship can be established:

−NMSE(dB) = SNR(dB) + ∆SNR(dB), (20)

where SNR(dB) = 10 log10
Px

σ2
z

with Px = 1
N xTx =

1
N

∑N−1
n=0 |x(n)|2, and ∆SNR(dB) is given in Table I. Note

that there is a large difference in performance between the
best case (Np = 256 and Nr = 256) and the worst case
(Np = 2 and Nr = 128), but in all cases a fixed NMSE can be
attained if the signal power to noise ratio is large enough. For
instance, if NMSE = −40 dB is sought, this can be achieved
using only SNR = 24.95 dB in the best case (Np = 256
and Nr = 256), but it can also be achieved in the worst
case (Np = 2 and Nr = 128) if we have SNR = 53.75 dB.
Hence, the sparsest transmission/reconstruction scheme can be
applied when the noise is low enough. Figure 6 also shows the
NMSE attained when the DFT is used to estimate the channel
in the receiver. Once more, the linear relationship given in
(20) among the −NMSE(dB) and the SNR(dB) is obtained,
but ∆SNR = −1.60 dB now (i.e., similar to the ∆SNR(dB)
obtained using our proposed approach with K = 32 and
P = 4 shown in Table I). This shows that, using the MIRA-
based procedure proposed in this paper, we can achieve a
much better performance in terms of channel estimation than
other DCT-MCM methods which use the DFT to estimate the
channel (e.g., [16]–[19]).

2) Signal Reconstruction: In order to test the signal
reconstruction capability of the proposed approach (i.e.,
its ability to recover the transmitted information symbols),
we consider again the fixed channel with CIR hch =
[1, 0, 0,−0.5, 0, 0, 0, 0.25, 0, 0, 0.05]T . We test the BER us-
ing a variable order of the DCT1e, N = N0 + 1 ∈
{128, 256, 512, 1024, 2048}, and two modulation schemes in
the subcarriers: binary phase shift keying (BPSK) and 64
quadrature amplitude modulation (64-QAM). Figure 7 shows
the BER, as a function of the SNR (using a range from
-10 dB to 40 dB with a step of 1 dB), for N = 128.
The performance obtained using the true channel’s impulse
response (in blue dotted line) to construct the prefilter is
compared to the performance obtained using the estimated CIR
(in red solid line) using the procedure described in Section
V. The performance using the DFT to estimate the CIR
and construct the prefilter is also included (in green dashed
line). For each SNR, Ns = 100 simulations are performed,
transmitting Nb = 1000 blocks (i.e., MCM symbols) through
the channel in each case. This results in a total number of
transmitted BPSK/64-QAM symbols equal to 105 × (N − 2)
for each SNR to estimate the BER. From Figure 7(a), it can
be seen that the performance of the realistic system (i.e., the
one which uses the estimated CIR) is almost identical to that
of the ideal system (which assumes the CIR known and uses
it to construct the prefilter) when using the BPSK modulation
in the subcarriers (e.g., an SNR = 32.4 dB is required in both
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Fig. 4. (a)–(c): Estimated channel’s impulse response: (a) SNR = 0 dB, (b) SNR = 10 dB, and (c) SNR = 20 dB. (d)–(f): Estimated channel’s frequency
response: (a) SNR = 0 dB, (b) SNR = 10 dB, and (c) SNR = 20 dB. In all cases the length of the DCT1e is N = N0 = 511, Np = 256 pilot subcarriers
are used in the transmitter and Nr = 256 reconstruction coefficients are used in the receiver.
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Fig. 5. Estimated channel’s frequency response for an order N = N0 = 511 DCT1e and SNR = 20 dB. (a) & (d): K = 4 with a central pilot (Np = 129
pilot subcarriers overall) using 256 and 128 reconstruction coefficients respectively. (b) & (e): K = 32 with a central pilot (Np = 17 pilot subcarriers overall)
using 256 and 128 reconstruction coefficients respectively. (c) & (f): K = 256 with a central pilot (Np = 3 pilot subcarriers overall) using 256 and 128
reconstruction coefficients respectively.
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Fig. 6. Normalised mean squared error (NMSE(dB)) as a function of the
signal power to noise ratio (SNR(dB)) for different values of K (sparsity
parameter for the DCT1e of the transmitted signal) and P (sparsity parameter
for the reconstruction). The NMSE using the DFT to estimate the channel
is also shown. In all cases, the length of the DCT1e is N = N0 = 511
and Ns = 2000 simulations have been performed. Note that −NMSE(dB)
is actually plotted in the figure, so higher values correspond to a better
performance.

cases to attain a BER = 10−4). However, there is a substantial
loss in performance when the CIR is estimated using the DFT
in the receiver. When 64-QAM is used in the subcarriers, the
performance degrades as expected (e.g., an SNR = 36.4 dB is
required in the ideal case for a BER = 10−4) and the distance
between the ideal and the realistic systems increases (e.g., an
SNR = 37.8 dB is required for a BER = 10−4), as the 64-
QAM demodulator is more sensitive to errors in the CIR’s
estimation, but a good performance is still attained. Using
the DFT to estimate the CIR results in a larger difference
w.r.t. the ideal system and a substantial loss in the system’s
performance. The situation is similar for all the other values
of N . Indeed, as the value of N increases the difference
becomes smaller and smaller, as shown in Table II and Table
III for a BPSK and 64-QAM in the subcarriers, respectively.
This confirms the good performance of the channel estimation
procedure and the robustness of the proposed approach w.r.t.
errors in the construction of the prefilter.

B. ITU-R M.1225 Channels

1) Channel Estimation: As a second example, we consider
several of the channels standardized by ITU-R for the evalu-
ation of radio transmission technologies for IMT 2000 [32].
Table IV shows the SNR gain, ∆SNR(dB), in the estimation
of the ITU-R M.1225 pedestrian channel A for an increasing
length of the DCT1e (from N = 127 to N = 1023) and
different values for the total number of pilot subcarriers used
in the transmitter. In all cases, Ns = 2000 simulations were
performed for an SNR ranging from -10 dB to 30 dB and
Nr = 256 coefficients were used for the reconstruction in the
receiver. The channel was generated using Matlab’s stdchan
function using a carrier frequency fc = 2 GHz and a sampling
period Ts = 10 ns. The resulting channel’s impulse response
has length L = 42 but only 4 non-null coefficients located
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Fig. 7. Comparison of the BER attained using the ideal known channel
to construct the prefilter (dotted blue line) the estimated channel using the
MIRA procedure proposed in the paper (solid red line) and the DFT as
in [16]–[19] (dashed green line), for the fixed channel with CIR h =
[1, 0, 0,−0.5, 0, 0, 0, 0.25, 0, 0, 0.05]T , using an order N = 256 DCT1e.
(a) Using BPSK modulation in the subcarriers. (b) Using 64-QAM in the
subcarriers.

at n ∈ {0, 11, 19, 41} with amplitudes following a Rayleigh
distribution. Therefore, given the high sparsity of the channel
(less than 10% non-null coefficients), comparing Table I and
Table IV we can see that the results are even better than
for the shorter channel considered in the previous section.
Figure 8 shows the NMSE(dB) as a function of the signal
power to noise ratio (SNR(dB)), both for different values of
N and Np, comparing it to the the NMSE(dB) obtained using
the scheme proposed in [21]. Note the large increase in the
attained NMSE(dB) (up to 15 dB when N = 127) for a given
SNR(dB) in all cases.

The same experiment (fc = 2 GHz, Ts = 10 ns,
Ns = 2000 simulations, Nr = 256 coefficients and N ∈
{127, 255, 511, 1023}) has been performed for two other ITU-
R M.1225 channels: indoor office channel A (L = 32, 6
non-null coefficients) and indoor office channel B (L = 71,
6 non-null coefficients). The results (not shown) are almost
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TABLE II
ESTIMATED BER AS A FUNCTION OF THE SNR (DB) AND THE ORDER OF THE DCT1E USED (N ) FOR THE FIXED CHANNEL WITH CIR

h = [1, 0, 0,−0.5, 0, 0, 0, 0.25, 0, 0, 0.05]T USING BPSK MODULATION IN THE SUBCARRIERS. IN EACH COLUMN, THE FIRST RESULT CORRESPONDS TO
ASSUMING A KNOWN CHANNEL AND THE SECOND ONE (IN PARENTHESES) TO THE ESTIMATED CHANNEL.

SNR (dB) 128 256 512 1024 2048
0 0.1539 (0.1731) 0.1536 (0.1601) 0.1534 (0.1578) 0.1533 (0.1561) 0.1533 (0.1538)
5 0.0848 (0.0942) 0.0845 (0.0883) 0.0844 (0.0866) 0.0843 (0.0857) 0.0843 (0.0848)

10 0.0435 (0.0460) 0.0435 (0.0446) 0.0435 (0.0440) 0.0435 (0.0436) 0.0434 (0.0436)
15 0.0206 (0.0219) 0.0208 (0.0214) 0.0208 (0.0209) 0.0208 (0.0208) 0.0208 (0.0209)
20 9.71 (9.97) × 10−3 9.73 (9.89) × 10−3 9.77 (9.73) × 10−3 9.78 (9.86) × 10−3 9.78 (9.76) × 10−3

25 3.49 (3.57) × 10−3 3.53 (3.56) × 10−3 3.52 (3.52) × 10−3 3.52 (3.51) × 10−3 3.53 (3.53) × 10−3

30 4.96 (5.21) × 10−4 4.90 (5.05) × 10−4 4.88 (4.93) × 10−4 4.95 (4.99) × 10−4 4.97 (5.00) × 10−4

35 5.20 (5.28) × 10−5 4.40 (4.63) × 10−5 5.64 (5.70) × 10−5 4.59 (4.61) × 10−5 4.87 (4.80) × 10−5

TABLE III
ESTIMATED BER AS A FUNCTION OF THE SNR (DB) AND THE ORDER OF THE DCT1E USED (N ) FOR THE FIXED CHANNEL WITH CIR

h = [1, 0, 0,−0.5, 0, 0, 0, 0.25, 0, 0, 0.05]T USING 64-QAM IN THE SUBCARRIERS. IN EACH COLUMN, THE FIRST RESULT CORRESPONDS TO ASSUMING
A KNOWN CHANNEL AND THE SECOND ONE (IN PARENTHESES) TO THE ESTIMATED CHANNEL.

SNR (dB) 128 256 512 1024 2048
0 0.1372 (0.2197) 0.1203 (0.1832) 0.1076 (0.1452) 0.0992 (0.1213) 0.0958 (0.1058)
5 0.0798 (0.1325) 0.0676 (0.0997) 0.0589 (0.0782) 0.0536 (0.0640) 0.0514 (0.0564)
10 0.0421 (0.0683) 0.0351 (0.0522) 0.0302 (0.0388) 0.0271 (0.0319) 0.0258 (0.0281)
15 0.0209 (0.0346) 0.0171 (0.0243) 0.0144 (0.0182) 0.0127 (0.0150) 0.0119 (0.0128)
20 9.45 (14.62) × 10−3 7.54 (10.50) × 10−3 6.20 (7.69) × 10−3 5.38 (6.15) × 10−3 4.99 (5.46) × 10−3

25 3.85 (6.20) × 10−3 2.95 (4.53) × 10−3 2.30 (3.06) × 10−3 1.89 (2.23) × 10−3 1.65 (1.81) × 10−3

30 1.22 (2.10) × 10−3 0.82 (1.32) × 10−3 0.54 (0.77) × 10−3 0.37 (0.46) × 10−3 0.27 (0.32) × 10−3

35 2.03 (4.53) × 10−4 0.95 (1.76) × 10−4 0.42 (0.66) × 10−4 0.18 (0.25) × 10−4 0.08 (0.11) × 10−4

TABLE IV
SNR GAIN IN THE ESTIMATION OF THE CHANNEL FOR THE ITU-R

M.1225 PEDESTRIAN CHANNEL A. Np = (N + 1)/K : TOTAL NUMBER OF
PILOT SUBCARRIERS IN THE TRANSMITTER; N : TOTAL NUMBER OF

SUBCARRIERS; ∆SNR(DB): SNR GAIN IN EQ. (20).

K ∆SNR(dB)
N = 127 N = 255 N = 511 N = 1023

2 18.02 21.05 24.08 27.09
4 12.96 15.86 18.87 21.83
8 9.38 12.31 15.29 18.29
16 6.19 9.14 12.12 15.12
32 3.14 6.09 9.07 12.06
64 0.11 3.07 6.04 9.05

identical to those in Table IV. Finally, a similar experiment has
also been performed for two much longer channels: pedestrian
channel B (L = 371, 6 non-null coefficients) and vehicular
channel A (L = 252, 6 non-null coefficients). Once more,
the results (not shown) are almost identical to those in Table
IV for those cases where N > 2L − 1 (N = 1023 in the
first case; N = 511 and N = 1023 in the second case).
This confirms the good performance of the proposed scheme,
regardless of the length of the channel’s impulse response, as
long as N > 2L− 1.

2) Signal Reconstruction: Once more, we consider the
pedestrian channel A of ITU-R M.1225 with fc = 2 GHz
and Ts = 10 ns. We test again the BER using a variable
order of the DCT1e, N ∈ {128, 256, 512, 1024, 2048}, and
a BPSK modulation in the subcarriers. Figure 9 shows the
BER, as a function of the SNR, for N = 128, N = 512 and
N = 2048. The performance obtained using the true channel’s
impulse response (in blue dotted line) to construct the prefilter
is compared to the performance obtained using the estimated
CIR (in red solid line) using the procedure described in Section

V. For each SNR, Nb = 1000 blocks (i.e., MCM symbols)
are transmitted through each of the Nc = 100 randomly
generated channels according to the ITU-R M.1225 model.
This results in a total number of transmitted BPSK symbols
equal to 105 × (N − 2) for each SNR to estimate the BER.

From Figure 9, it can be seen that there is a small gap
in the performance of the realistic system w.r.t. the ideal
system, but this gap decreases as N increases and both curves
become virtually identical for N = 2048. This situation can
be appreciated more clearly in Table V, where the numerical
values corresponding to all the tested values of N are provided.
Once more, these simulations confirm the good performance
of the channel estimation procedure and the robustness of the
proposed DCT1e MCM scheme. Similar results (not shown
here) have been obtained for the other channels considered
in the previous section: indoor office channel A (L = 32, 6
non-null coefficients), indoor office channel B (L = 71, 6 non-
null coefficients), pedestrian channel B (L = 371, 6 non-null
coefficients), and vehicular channel A (L = 252, 6 non-null
coefficients).

VII. CONCLUSIONS
In this work, we have introduced a novel DCT1e-based

MCM transceiver which does not require the use of symmetric
extension and any other transform (like the DFT) for the chan-
nel estimation and signal reconstruction stages. The general
procedure for the estimation of an arbitrary channel’s impulse
response, without prior knowledge of its length, by means of
the DCT1e has been described. In the transmitter, we have
designed specific sparse training signals which are transformed
in the receiver, using the so called MIRA procedure (a simple
and efficient linear transformation), in order to estimate the
channel. The theoretical conditions that guarantee perfect
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TABLE V
ESTIMATED BER AS A FUNCTION OF THE SNR (DB) AND THE ORDER OF THE DCT1E USED (N ) FOR ITU-R M.1225 PEDESTRIAN CHANNEL A. IN

EACH COLUMN, THE FIRST RESULT CORRESPONDS TO ASSUMING A KNOWN CHANNEL AND THE SECOND ONE (IN PARENTHESES) TO THE ESTIMATED
CHANNEL.

SNR (dB) 128 256 512 1024 2048
-10 0.4637 (0.5252) 0.4631 (0.5122) 0.4636 (0.5007) 0.4637 (0.4884) 0.4639 (0.4790)
-5 0.3881 (0.4639) 0.3813 (0.4343) 0.3828 (0.4185) 0.3790 (0.4014) 0.3848 (0.3985)
0 0.2854 (0.3570) 0.2861 (0.3310) 0.2810 (0.3082) 0.2766 (0.2931) 0.2851 (0.2955)
5 0.1909 (0.2453) 0.1922 (0.2247) 0.1887 (0.2083) 0.1835 (0.1956) 0.1857 (0.1910)

10 0.1133 (0.1469) 0.1139 (0.1342) 0.1123 (0.1250) 0.1166 (0.1230) 0.1105 (0.1135)
15 0.0652 (0.0843) 0.0620 (0.0732) 0.0687 (0.0755) 0.0634 (0.0670) 0.0679 (0.0704)
20 0.0366 (0.0487) 0.0369 (0.0428) 0.0404 (0.0437) 0.0341 (0.0361) 0.0401 (0.0411)
25 0.0221(0.0285) 0.0214 (0.0252) 0.0221 (0.0242) 0.0223 (0.0235) 0.0217 (0.0222)
30 0.0129 (0.0166) 0.0117 (0.0140) 0.0116 (0.0128) 0.0140 (0.0147) 0.0116 (0.0120)
35 0.0061 (0.0079) 0.0071 (0.0083) 0.0072 (0.0079) 0.0068 (0.0072) 0.0068 (0.0070)
40 0.0043 (0.0055) 0.0040 (0.0047) 0.0040 (0.0044) 0.0046 (0.0048) 0.0039 (0.0040)
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Fig. 8. Normalised mean squared error (NMSE(dB)) as a function of the
signal power to noise ratio (SNR(dB)). (a) NMSE(dB) using K = 2 (i.e.,
Np = (N + 1)/K) for different values of N using the proposed approach
and the scheme proposed in [21]. (b) NMSE(dB) using N = 511 for different
values of K using the proposed approach. Note that −NMSE(dB) is actually
plotted in the figure, so higher values correspond to a better performance.

estimation of the channel’s impulse response in the absence of
noise have also been formulated. After the training stage, the
signal reconstruction, i.e., the recovery of the transmitted zero–
padded information symbols, is possible by applying again the
MIRA procedure and performing channel equalization in the
frequency domain. Numerical simulations show the excellent
performance of the proposed approach, both in terms of
channel estimation (measured by the reconstruction SNR) and
signal reconstruction (measured by the BER). In future works
we plan to carry out a detailed analysis of the performance of
the proposed scheme in CFO, following the works of [3], [11]
for the DCT2e and DCT4e, as well as the achievable data rate,
following the works of [9], [33], [34], again for the DCT2e
and DCT4e.
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