
Journal of Information Security and Applications 63 (2021) 103018

A
2

B
C
U

A

K
C
M
M
S
S

1

s
g
a
r
s
T
t
p

M
a
f
o
A

C
j
C
o

b
a

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

ASECASS: A methodology for CAPTCHAs security assurance
arlos Javier Hernández-Castro1, David F. Barrero1, María D. R-Moreno ∗,1

niversidad de Alcalá, Escuela Politécnica Superior, ISG, Alcalá de Henares, Spain

R T I C L E I N F O

eywords:
APTCHA
ethodology
achine Learning

tatistical analysis
ecurity assurance

A B S T R A C T

Today, much of the interaction between clients and providers has moved to the Internet. Some tricksters have
also learned to benefit from this new situation. New improved cons, tricks and deceptions can be found on-line.
Many of these deceptions are only profitable if they are done at a large scale. In order to achieve these large
numbers of interactions, these attacks require automation.

CAPTCHAs/HIPs are a relatively new security mechanism against automated attacks. They try to detect
when the other end of the interaction is a human or a computer program (a bot). However, CAPTCHA/HIP
design is still in its initial conception as the stream of successful attacks highlight it.

This paper focuses on the design of CAPTCHAs and if there is a way in which to assess a basic level of
security for new CAPTCHA designs. To do so, we first review main attacks to different types of CAPTCHAs
and then, we describe BASECASS, a methodology that can help in avoiding some of these design pitfalls.
The application of the methodology is exemplified in three attacks to CAPTCHAs and how following the
methodology designers could have avoided them.
. Introduction

The Internet has spread to every realms of life. New generations
pend more time on-line both socializing and working. People are
etting used to the advantages of being constantly connected. Using this
mple base of both services and people, attackers have found ways to
un exploits that provide an infinitesimal reward, but could generate
ubstantial revenue by increasing the number of times they are run.
he fundamental way of protection from these attacks has been to try
o detect if at the other end of the communication there is a human
erson or a computer program.

There are many proposals for ways of remotely detecting humans.
ost of them fall into the category of asking the human to perform
task that is considered hard for computers but not too demanding

or humans. These tests are known as Human Interaction Proofs (HIP)
r Completely Automated Public Turing test to tell Computers and Humans
part (CAPTCHA) and they provide this protection mechanism.

Sometimes the name of HIPs and CAPTCHAS are misleading because
APTCHAs, as they were defined by Naor [1] and Ahn et al. [2], are

ust a specific version of this protection mechanisms. For a HIP to be a
APTCHA, it has to meet certain requirements, including being based
n a AI-hard problem, using a public algorithm, etc.

Since the first CAPTCHA used in Altavista in 1997, there have
een numerous, very varied CAPTCHA designs proposed, implemented,
nd cracked. Even though it might look like an easy problem to the

∗ Corresponding author.
E-mail addresses: david.fernandezb@uah.es (D.F. Barrero), malola.rmoreno@uah.es (M.D. R-Moreno).

1 All authors equally contributed to the work.

inexperienced, CAPTCHA design is not a straightforward problem to
solve. Summarizing, we could identify the following difficulties related
to the design of CAPTCHAs:

• CAPTCHAs are typically used to protect resources that for the
customer are not of a very high value (e.g. adding comments to a
story in the news), or to which there are other alternatives for the
customer (for services such as web-mail). This competition means
the CAPTCHA needs not to be felt as a burden by the user.

• For the same reason as above, a CAPTCHA must not require a
big commitment for its completion, even if the experience is very
playful and positive for the user. Completing a CAPTCHA is never
the reason, but a means to an end.

• CAPTCHAs should present alternatives for impaired users that
offer the same level of security. This is not straightforward, as
typically a CAPTCHA would use some human ability that is linked
to a sense of perception (visual, auditory, etc.) thus not being
valid for users with disabilities in that sense.

• The number of attacks per second against a CAPTCHA could be
augmented automatically: it is just a matter of resources. Thus,
a very small success rate could imply that for practical purposes,
a CAPTCHA is broken. This is the case as soon as the Return of
Investment (ROI) for the attacker is positive. Thus, in order to
vailable online 26 October 2021
214-2126/© 2021 Published by Elsevier Ltd.

ttps://doi.org/10.1016/j.jisa.2021.103018

http://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:david.fernandezb@uah.es
mailto:malola.rmoreno@uah.es
https://doi.org/10.1016/j.jisa.2021.103018
https://doi.org/10.1016/j.jisa.2021.103018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2021.103018&domain=pdf

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.

b
f
M
s
o
t
f
u
s
i
a

C
C
i
o
S
i

t
n
a
F
i
p
i
l

m
f
C
a

2

C
h
e
C
i
t

d
c
i
c

2

o
u
e

r

protect the most interesting resources, we need AI-hard challenges
with extremely constant hardness throughout their domain.

• For some attackers, it might be profitable to hire low-wage human
workers (what is typically called a farm) to solve a particular
CAPTCHA challenge and then proceed to do whatever they wish.
This would constitute a semi-automated attack. It is good if a
CAPTCHA has some way of preventing this from happening. Some
CAPTCHA designers consider this requirement, yet the rest do not
try to counter it [3,4].

To date, all proposals for CAPTCHAs that have been analysed have
een found not secure, typically within a short span of a few months
rom their proposal time or from when they were put into production.
ost of the attacks found against CAPTCHAs could be considered to be

ide-channel attacks. They do not try to solve the underlying problem
n which the CAPTCHA designer has created her system, nor they try
o advance the state-of-the-art in Machine Learning (ML). Instead, they
ind weaknesses in the particular design of the CAPTCHA and ways to
se them to gather enough information as to bypass the challenge a
ufficient number of times. The frequency with which this type of attack
s successful conveys the message that it is quite difficult to translate
n AI-hard problem into a secure CAPTCHA.

There have been a few proposals for design guidelines for
APTCHAs. Typically, the result of a security analysis of one or more
APTCHAs, and thus with limited scope and usability [5–8]. Nowadays,

s not unusual that a new CAPTCHA design is put into production with-
ut performing a sound security assessment nor conducting external IT
ecurity tests. These CAPTCHAs are implementations just based on an
dea though to be hard enough by its designers.

In this work we want to show whether there are some basic tests
hat we could run as to ascertain a basic level of security for a
ew CAPTCHA design, and that possibly could be automatic or semi-
utomatic. Our goal is to increase the security of CAPTCHA designs.
or that we propose a methodology called BASECASS that could help
n avoiding some of the design pitfalls. Although BASECASS does not
rovide guidance for possible mitigations of the vulnerabilities found,
t could help assessing that a new CAPTCHA proposal meets a basic
evel of security against primary and statistical side-channel attacks.

The paper is structured as follows. Next section summarizes the
ain attacks against CAPTCHAs. Then, we present a methodology

or ascertain a basic level of security. After, some state-of-the art
APTCHAS are tested against our methodology. Finally, conclusions
nd future work are outlined.

. Attacks against CAPTCHAs

The different attacks that have been successfully able to break
APTCHAs/HIPs have strongly guided their evolution. Not all attacks
ave been public, and is not unusual to see that a CAPTCHA design
volves without presenting a reason why. In general, the evolution of
APTCHAs design has followed a path to avoid known weaknesses, so it

s reasonable to assume that the main attacks, those more fundamental
o their design, have seen the light.

In the next subsections we revise some of the main attacks for
ifferent CAPTCHAs. We can further divide them into different design
ategories both based on their transport media (text, text images, audio,
mages, . . .) and in the particular problem they are based on (OCR,
lassification, understanding, . . .).

.1. Attacks to text based CAPTCHAs

Text-based CAPTCHAs pertain to two main categories: those based
n the problem of text recognition from an image (OCR), and those
sing text as a mean to ask a question. OCR CAPTCHAs will be
xplained in this subsection. Text semantic CAPTCHAs in Section 2.2.

One of the earliest examples of CAPTCHAs was an algorithm that
2

andomly generated an image of printed text with some distortions so
that OCR programs could not read it, requesting the human user to input
such text [9]. The distortions included random typefaces, rotation and
scaling, as well as the optional addition of background noise. Characters
were chosen at random, not from a dictionary. It is important to note
that by that time or shortly after, there were known algorithms able to
recognize patterns even after being rotated and scaled [10].

By those days, two researchers were also using their already devel-
oped framework for object detection to successfully break both the EZ-
Gimpy CAPTCHA in use at Yahoo! and the hard Gimpy CAPTCHA [11].
Their work is notable because of two aspects. It was the first research
paper that was peer-reviewed and published that focused on finding
weaknesses on a CAPTCHA and breaking it. The second important
aspect is that it showed some weaknesses of the hard Gimpy CAPTCHA.
These weaknesses and their exploit were not clearly applicable to any
OCR thus not improving the state-of-the-art. Contrary, these weak-
nesses were related only to the way in which these particular CAPTCHA
obfuscated the characters.

This started the arms race between CAPTCHA developers and break-
ers. An example is the work of Yan [5] that was able to successfully
attack Captchaservice.org using pixel-counting of contiguous regions
for character detection as well as vertical pixel counting for segmenta-
tion attaining a 36% success rate. Adding a dictionary look-up assisted
by a total pixel sum matching, as well as a dictionary pruning for
characters with similar pixel count, they attained a 94% success rate,
increased up to 99% with additional heuristics.

In 2008, Yan and El Ahmad published an attack on the CAPTCHA
deployed by Microsoft in services like Hotmail, MSN and Windows
Live [12]. They used a similar idea as before [5] but this time they
also detect continuity of groups of pixels by flood-filling. This idea
helps with those chunks of characters not correctly segmented by using
the vertical pixel histogram that contains more than one character.
They were able to break the Microsoft CAPTCHA on 92% of the
occasions [12].

In 2010, El Ahmad and Yan were able to break the CAPTCHA of
a popular file sharing (Megaupload.com) that used substantial over-
lapping to avoid segmentation. They did so identifying and merging
character components [13].

An important break work was the use of ML to attack both charac-
ter segmentation and recognition simultaneously, scoring hundreds of
different possible segmentation decisions [14].

In 2016, Gao et al. [15] published another generic attack for OCR
CAPTCHA based on Log-Gabor filters able to break the characters into
their different components. When they tried their attack on CAPTCHA
deployed by the top 20 most popular websites, they found that their
attack successfully broke all of them, with success rates varying from
5% for Yahoo! up to 77.2% for reCAPTCHA.

During the evolution of the research in OCR CAPTCHAs, it was
seen that distortions to characters have their limits, especially when
computers are better at recognizing single characters, and segmentation
can be solved using Neural Networks (NN) and other methods. Thus,
some researchers looked into how to still use characters, but using a
different representation that could be made harder for machines. This
is how the ideas of 3D OCR CAPTCHAs (i.e. Teabag CAPTCHA) and
animated character CAPTCHAs (i.e. HelloCAPTCHA) started. However,
several attacks have been successfully proposed in both cases [16,17].

2.2. Attacks to language/semantic CAPTCHAs

This type of CAPTCHAs asks users very simple questions as to detect
which word is different from a list of words, or solve a very simple
arithmetic problem.

We can mainly mention two CAPTCHAs, the TextCAPTCHA, a tex-
tual question generator that presents important design flaws that allow
to easily reverse-engineer it. In particular, it is straightforward to detect
which subtype of challenge it is using, and thus apply an ad-hoc solver

to each case and break it [18]. And the Egglue CAPTCHA, that uses a

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.

s
t

i
a
t
l

2

d
p
c
s
p
H
b
s

a
i
c

2

t
p
p
i
h

C
d
t
m
a
v
t

r
d
w
o
w

proprietary algorithm, accessible through a web service, that creates
two sentences that the user has to fill in with the correct verb. Its
mechanisms remained as a black-box, with no information on how
Egglue created and marked the challenges. However, it was seen that
the algorithm it is using for marking a challenge was not strong. For
example, it allowed using general verbs successfully even for sentences
for which they did not make sense. Some verbs had a success rate over
90%, which is clearly not related to the distribution of appearances of
verbs in English. This also implies that several sentences are considered
correct with many different verbs and can be easily broken [18].

2.3. Attacks to image classification CAPTCHAs

Some people started to believe that OCR/text CAPTCHA were funda-
mentally limited. Thus, they looked for different alternatives that could
lead to stronger CAPTCHAs that still had high usability. Many of these
researchers focused on the more general problem of Computer Vision
(CV). This was a natural election, given that CV was an AI field that had
several unsolved problems at that time. Then, we can mainly consider
three different types of image-based CAPTCHAs. First, those based on
image classification, that is, the ones that classify an image into a
single class that describes the main content of the image. Second, the
CAPTCHAs that use some image-related CV problem as their base. And
finally, those based on face identification, recognition, or extracting
information from faces.

In the first type, we can mention the HumanAuth CAPTCHA that
requests to distinguish between pictures depicting either a natural
object (a tree) or an artificial one (a watch). It was an Open Source
project that was shipped with 69 pictures, very lightly obfuscated using
a watermark. This obfuscation did not serve much, as each image had
assigned a textual description for the visually impaired [19]. It was
easily broken using some simple metrics from each image measured
using the ENT pseudorandom number sequence test program from the
Fourmilab and training an ML classifier on these metrics. This was
possible even when the CAPTCHA was using the watermark and the
attack did not take advantage of the textual description [20,21].

In the case of the ASIRRA CAPTCHA, the authors published an
initial security assessment and provided a training set for anyone
willing to try their ML algorithms on it. Golle [22] experimented with
similar ML methods to the ones used by the creators of ASIRRA, using
different features to train a SVM classifier. His SVM used a radial basis
kernel. The most successful features where boolean colour presence (if
a colour was or not present in a certain part of the image) and 5 × 5-
pixel texture features, selected at random and filtered to be different
enough. Golle was able to break ASIRRA with a success rate of 10.3%
(82.7% accuracy for a single image).

Related to the second type of CAPTCHAs, we can mention the
IMAGINATION CAPTCHA [23] that asks the user to click in or around
the centre of any of the images that form a mosaic. This mosaic
of images is created in a way that makes it difficult for known CV
techniques to segment it. This proposal was broken by Yan et al. [24]
using a clever algorithm to find candidates for image boundaries.

Another example is the proposal of Gossweiler et al. [25] from
Google Research. Their CAPTCHA presents rotated images to the user.
The user has to rotate them back to their original orientation. This
proposal was never implemented at large scale by Google, so a proper
analysis is pending.

Finally, in the gender recognition CAPTCHAs proposals we can
mention several works [26–29]. However, the only one that was put
into production is FunCAPTCHA [28]. FaceDCAPTCHA [30] and FR-
CAPTCHA [31] are two CAPTCHAs based on human face recognition.
FR-CAPTCHA asks the user to find matching pairs of human faces in
an image. FaceDCAPTCHA presents images of both real and fake faces,
distorted and partially occluded, and asks the user to select the images
3

containing real faces. Both were broken by Gao et al. [32]. D
Facebook also studied the use of their face identification data as
the base for a CAPTCHA. This CAPTCHA proposal was analysed by Kim
et al. [33] finding possible attacks. It was later broken using well known
classifiers kNN and SVC (with better results), but choose kNN as results
were similar and it is computationally less expensive. Optionally, they
performed a social engineering attack to reach ‘‘sensitive’’ data. They do
o using fake Facebook profiles to befriend friends of the target. With
he data collected through social engineering, they reach a 100% success

rate [34].

2.4. Attacks to game-like CAPTCHAs

In the earlier part of the decade of the 2010s, several proposals ap-
peared that tried to increase the usability of CAPTCHA by making them
appear as simple games [28,35]. This technique was termed ‘‘gamifica-
tion’’. The User Interface (UI) also improved to include techniques like
drag & drop, more user friendly, especially when using mobile (tactile)
devices. The underlying mechanisms for the CAPTCHA did not change
abruptly, but the interaction with the user was improved.

One of the first production CAPTCHA to use gamification techniques
is the one created by Are You a Human, the PlayThru CAPTCHA. It
s composed of small drag & drop games. Mohamed et al. [36] were
ble to easily break this CAPTCHA by using simple heuristics to detect
he background. Similarly they detect the foreground objects as well as
earning from the objects by remembering them.

.5. CAPTCHAs based on the understanding of video

Some ideas appeared that were purely based on video. These are
ifferent from the proposal based on emergence [37] and other pro-
osals based on adding animation to OCR CAPTCHA [38]. We will
all them pure-video CAPTCHA because they are based on extracting
emantic information from the sequence of actions that the video
ortrays. Some of these proposals are the ones from Kluever et al. [39],
ernández-Castro et al. [40] or the similar ‘‘motion and interaction
ased CAPTCHA’’ [41]. They have not been implemented, so a proper
ecurity analysis is missing.

For any CAPTCHA based on video, there is the concern that the
dditional information that the video will provide will somehow make
t easier to find clues in order to break them. No proper security analysis
an be done until there is a public implementation.

.6. Audio CAPTCHAs

Most CAPTCHA proposals have been based at least partially on
he visual capacities of ordinary humans, but there is a number of
eople who have vision problems. Some CAPTCHAs that have been
ut into production have had to provide an alternative for visually
mpaired users. This is the way that most audio CAPTCHA proposals
ave appeared.

One of the most popular audio CAPTCHA was the Google audio
APTCHA, presented in 2008. Each challenge consisted on a series of
igits being spoken with background noise. Santamarta [42] showed
hat the Google audio CAPTCHA could be broken using very basic
ethods. In particular, it was possible to detect the characteristic wave

nd FFT of each digit spoken, and because they were played with higher
olume than the background noise, it was possible to easily distinguish
hem.

Another successful attack on it was based on well-known ML algo-
ithms, in particular using AdaBoost, SVM, and kNN for both letter and
igit recognition [43]. They used a static window size, and train on
ell-known features for NLP, in particular, twelve MFCC and twelfth-
rder spectral and cepstral coefficients from PLP and RASTA-PLP. They
ere able to break Google Audio CAPTCHA with a 67% success rate,

igg with a 71% success rate and reCAPTCHA with a 45% success rate.

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
This has lead to an increase in their difficulty, adding noise and
choosing audio cues that are difficult to understand. Even after im-
provements, the audio version of reCaptcha by Google was broken
again using simple speech recognition [44] and later using the speech
recognition API of Google [45]. It remains to be seen if a strong yet
usable audio CAPTCHA could be created.

2.7. Attacks to ‘‘behavioural’’ CAPTCHAs

Even though many bot detection mechanisms are marketed as ‘‘no-
CAPTCHA’’ alternatives, they are a mix of CAPTCHAs and algorithms to
decide whether to display them or not as well as with what level of dif-
ficulty. These different proposals typically resort to some conventional
CAPTCHA when they determine that there is not enough information.
They sometimes call themselves behavioural analysis, which is a fancy
term to refer to more or less typical mechanisms to automatically create
blacklists of potential attackers and/or white-lists of low-risk users.
These mechanisms associate a level of potential danger to each different
client.

NuCaptcha uses a combination of what they call a ‘‘behaviour anal-
ysis system to monitor all interactions on the platform’’ to modify the
difficulty of the CAPTCHA challenge, relying in an improved OCR/text
CAPTCHA that incorporated moving characters. Note that this did not
prevent the attacks by Bursztein et al. [46] and Xu et al. [47].

Another CAPTCHA in this category is the ‘‘No CAPTCHA
reCAPTCHA’’ by Google broken within a week after its release [48].
It used extreme obfuscation code for their Java Script client and
client–server communications. This reverse-engineering allowed to un-
derstand the local metrics that Google’s reCAPTCHA was using. Among
them were the list of plug-ins installed in the browser, the user–agent
string, screen resolution, execution time, time-zone, number of user
actions inside the CAPTCHA iframe, the behaviour of some CSS rules
and functions that are typically browser-specific, whether the browser
renders canvas elements, etc. Other security flaws of ‘‘No CAPTCHA
reCAPTCHA’’ were also soon pointed out by Homakov [49].

2.8. Attacks to CAPTCHAs based on empathy

The authors of the Civil Rights CAPTCHA (CRC) use the human
ability to feel empathy to strengthen a typical OCR/text CAPTCHA. The
CRC picks up a Civil Rights news from its database (DB) and then uses
Securimage to create three images containing words depicting possible
emotions related to the text. These images contain words describing
feelings (for instance, ‘‘upset’’, ‘‘happy’’ and ‘‘furious’’). The user has
to write down the correct one based on the emotions originated from
the news headline presented to her. Thus, the CRC is based on the
human ability to show empathy after being presented with a news
excerpt, typically containing some news about Human Rights and/or
Civil Rights around the world.

The Civil Rights CAPTCHA uses a traditional OCR CAPTCHA, to
which there are known attacks, but it is further secured by the detection
of empathy. There is currently no ML algorithm that tries to simu-
late empathy. There are ML approaches to understanding the human
languages, but they focus on detecting the feelings and opinions of
the writer through the use of adjectives and adverbs. They do not
focus on the induced feeling on the reader. However, as Hernández-
Castro et al. [50] shown, the combination of two CAPTCHAs is not
always more secure than one of them alone, as the way the CRC uses
Securimage lowers its security, and in turn allows us to break the CRC.
As well, they show that general metrics, along as some other metrics
slightly modified for the case, can give enough information about the
challenges as to allow various ML algorithms to break the CAPTCHA a
4

significant number of times.
2.9. Puzzle CAPTCHAs

A recent game-like CAPTCHA proposal are puzzle CAPTCHAs. In
them, an image is divided into parts, of which at least one is missing.
The user has to place the missing parts correctly to solve it. Other
variants have the parts shuffled and the user has to reorder them. In
any case, the user has to reconstruct the original image.

These proposals are fundamentally different, as there is no need to
recognize and interpret the different elements. Also, the puzzle pieces
are not differentiable elements by themselves, that is, a puzzle piece
is not recognized by our visual system as a ball, a lamp or a door; it
is nothing more than a puzzle piece. Thus object detection does not
serve a purpose here. These proposals are also different from image
classification CAPTCHA, as the only classification relevant here is if
the image is correct (as the original) or one of the many incorrect
possibilities, with the puzzle pieces wrongly placed.

There are many attacks on image classification CAPTCHA and other
image-based CAPTCHA, but none on puzzle CAPTCHA before we did
apply BASECASS to them. As explained, these pose a fundamentally
different problem, in which we are not interested in interpreting the
images, but on restoring it to its original state. Some of these puzzle
CAPTCHA are Capy, KeyCAPTCHA, and Garb, all of them already
broken by the same authors by using JPEG to measure the image’s
continuity [51]. After Capy was broken and the creators were contacted
with the attack info, they introduced ‘‘Capy Risk-Based Authentica-
tion’’, an ‘‘authentication system which takes into account the profile
of each user requesting access to the system to determine the (login)
history’’.

3. BASECASS: A framework for BAsic SEcurity CAPTCHA ASSess-
ment

The idea of BASECASS is to apply a series of partially-customized
steps to analyse a particular design trying to find some possible vul-
nerabilities. In that sense, it is related to a vulnerability assessment or
a penetration test. A vulnerability assessment will typically look only
for well-known vulnerabilities in a semi-automated or automated way.
In a penetration test, the testers will additionally look for variations
in these vulnerability types. The pen-testers will try to find variations
of them, using their previous knowledge of the system, the security
measures in place, and the typical vulnerability scenarios. Contrary
to these tests, BASECASS focuses on fundamental properties of each
CAPTCHA proposal, and the distribution of different values within the
challenge and the label space. BASECASS cannot be applied to a web
application or API, and it is fundamentally designed for CAPTCHA
security only.

Our framework proposes an analysis that lies closer to a penetration
test. In it, the tester will have to apply her knowledge of previous
CAPTCHA side-channel attack techniques, but also propose the use of
possibly known useful metrics, and possibly come up with new ones
which are variants more suitably tailored to the particular CAPTCHA
being analysed. The main difference between our framework and a
typical penetration test lies in the particular steps we propose in it. In
our case, these steps are tailored specifically for analysing CAPTCHA
designs, and are generic, and thus applicable to most designs.

BASECASS can be divided in three main steps:

1. A black-box basic security analysis of the CAPTCHA.
2. An additional analysis based on Statistical Analysis (SA) and/or

ML.
3. A parameter-related SA and/or ML analysis.

Depending on the CAPTCHA type, the third step might not be possi-
ble, as it will require further insight or access into the CAPTCHA design.
If it is possible, it will typically provide more accurate information
about the minimum security level of the CAPTCHA. We will use the
same analysis tools in the steps two and three. Thus, we call each step

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.

a
i
a

a
o
r
b

Fig. 1. BASECASS generic flow chart. Continuous lines represent compulsory tasks, while dashed lines represent optional tasks.
n iteration, as the main difference between both is how much internal
nformation on the CAPTCHA design is available and thus able to be
nalysed.

Fig. 1 shows a simple depiction of the iterations of BASECASS, and
lso the relation between the definition of the metrics and later use
f them in the posterior analysis. This figure serves as a guide and
eference to understand the different iterations of BASECASS (black-
5

ox analysis, and if possible and necessary, parameter-based analysis).
It also shows the steps of BASECASS: the challenge and answer space
analysis, the black-box statistical and ML analysis and the parameter-
based analysis. Note that as soon as we find weaknesses and test that
they are strong enough to enable an attack, we can finish our analysis.
This can happen in any of the steps of BASECASS.

Next, we will give a description of the different BASECASS steps:
the challenge and answer domain analysis, the statistical/ML analysis,

and the parameter-based analysis.

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
3.1. Step 1. Black-box basic security analysis

BASECASS starts by doing a Black-Box basic, initial security analysis
of the CAPTCHA. This is an external analysis, based only on public
information. During it, we will not pay attention to possible clues about
the challenge design. In a general way, our Black-Box analysis can be
divided into the following steps:

• Phase I: Automatic interaction. The objective of this phase is to
develop a way to interact semi-automatically with the CAPTCHA.
We want to do so in order to download challenges from the
CAPTCHA, send the possible answers to the CAPTCHA server and
receive its answer, so we can grade the answers.

• Phase II: Analysis of the challenge space. In this phase, we try
to know what types and subtypes of challenges the CAPTCHA
presents. For example, a CAPTCHA can present two different
types of challenges: OCR and image-based challenges. The sub-
types that it presents can be heavily distorted words or sentences
(for OCR), and image classification and reconstruction (for the
image-based challenges). We are interested into establishing what
possible different challenge types are easily distinguishable by a
bot. We will relate these subtypes to the base problem that the
CAPTCHA is theoretically based on. Is the base domain easy to
explore for a bot? If it is possible within a reasonable cost, we
will also want to check statistically their distribution to search
for deviations from uniform. When possible, we also compare its
size to the size of the base problem of the CAPTCHA.

• Phase III: Analysis of the answer space. This phase focuses on
checking the size and distribution of the possible answers to the
challenges. Note that not always it will be possible to explore
this space automatically. We might need to solve a number of
challenges to study the distribution. This might be within rea-
sonable costs or not depending on each case. Following with the
previous example, we would like to know if all words or sentences
are possible solutions for the OCR CAPTCHA, and what classes
are used in the image-based CAPTCHA. We want to check their
distribution, both globally and per challenge type. Are there any
deviations from the uniform? If so, are they severe enough as to
allow a successful attack?

Fig. 2 represents the part of the phase I that interacts with the
CAPTCHA in order to collect the necessary data for the analysis that
takes place in phases II and III. The first part detects and downloads the
different types of challenges, and estimates their number by calculating
the percentage of them that have already been seen using statistical
methods such as Mark & Recapture [52]. The second part uses human
input to reply to a number of challenges enough to later check their
distribution. This is done for each challenge subtype that we want to
study.

This black-box basic security analysis (Step 1) would render at least
answers to the following questions:

• What types and subtypes of challenges does the CAPTCHA
present? What parameters affect when they are served to the
user?

• How many different challenges per subtype are there? If infinite,
what is their domain?

• Do all seem equally difficult both for a human and a machine?
• How many possible answers are there for each challenge subtype?
• For both the challenge space and answer space, are they uni-

formly distributed? If not, what are the deviations?
• Is it possible to automatically detect challenge subtypes? If so,

and if one of them is easier, is it possible to break the CAPTCHA
at this point?

• How is the communication with the server, regarding the grading
6

of answers?
During this analysis, other questions might rise giving further in-
sight into the CAPTCHA: even if the domain and answer sizes are big
enough, and their distribution is uniform, it is possible that we might
find hints at some weak correlations between characteristics of the
challenges and their correct answers. The next step deals with these
kind of weaknesses.

3.2. Step 2. Black-box S/ML analysis

The previous step was our ‘‘first encounter’’ with the CAPTCHA. If
it resists this basic analysis, we can move forward to the following step,
that comprises a semi-automatic analysis of the side-channel statistics
referred to the challenges.

In order to proceed, we will typically need to focus on one or a
few of the subtypes of challenges served by the CAPTCHA, if there are
many. This is so because possibly not all statistics will have sense for the
different sub-challenge types. We will nevertheless focus on a subtype
or subtypes that comprise a significant amount of the challenges served,
as it would be useless to break them otherwise.

The analysis presented in this step would render at least answers to
the following questions:

• Is there or are there a metric or metrics that are somehow
correlated with the answer of the challenge?

• Is this possible correlation linear (if the SA is successful) or not
(only ML is successful)?

• Is it possible to explain this correlation in a human understand-
able way? (Will depend on which ones are the most successful ML
techniques)

• Is it possible to predict the accuracy of our correlation? I.e., it
corresponds to some challenge subtype that can be classified by
our metrics.

• Is this correlation possibly strong enough to base an attack on it?
• Which metrics contribute more to the correlation?

This step has four clearly defined phases. In the first one, we
will prepare the challenges for processing. In the second phase, we
select and/or create metrics (statistics) that are potentially useful to
characterize the challenges. In the third phase we will use these metrics,
together with the previously saved challenges and answers, to analyse
the CAPTCHA statistically. This phase is optional. The fourth phase uses
again the same metrics to analyse the CAPTCHA using different ML
algorithms. A more detailed description of these phases follows.

• Phase I. De-noising. In some cases, a CAPTCHA designer might
try to protect the information on the challenges by adding to
them different types of noise or distortions. Sometimes, these can
affect many of the metrics we can use on them. In these cases,
we can think about de-noising techniques that might eliminate
or minimize the influence of that noise in the metrics. Note
that this phase is interrelated with the next phase, so they are
complementary and not necessarily sequential.

• Phase II. Pre-processing and transformations. In some cases,
we can think of a different domain in which the challenge might
be easier to analyse. A typical case could be transforming an audio
CAPTCHA from the time domain (wave) to the frequency domain
using a FFT, or similarly transforming an image to a 2D frequency
domain. Even though BASECASS does not emphasize to create
anything like features to later analyse the challenges and answers,
these kinds of transformations can be useful in some cases. This is
something that should be done within the constrains of a low-cost
attack.

• Phase III. Definition of metrics. For the selection and/or cre-
ation of statistics for the selected(s) challenge subtype(s), we will

proceed as follows:

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
Fig. 2. Generic flow chart for downloading the data needed for the Step 1 of BASECASS. This flow chart encompasses phase I. The data gathered will be analysed in phases II
and III.
1. Selection of basic statistics: this step is done after we have
examined a fairly broad subset of the CAPTCHA domain.
Then, we will be able to select statistics that can be ap-
plied to the challenges. These will be general, broad sense
statistics, that can be applied to the challenges in or-
der to extract some information from then. The statistics
will depend on media type, as they will be different for
CAPTCHAs based on text, images, audio, or games. As an
example of such general statistics, we can mention the
randomness metrics returned by the ENT test applied to
a binary file. These general metrics that can be applied
to a very broad type of challenges, for instance, image
challenges, to which we can also apply histogram of colour
usage, pixel count, etc. These general metrics will depend
on the media type of the CAPTCHA challenges, and on little
else.

2. Selection of tailored statistics: in this step we select addi-
tional statistics that are more related to the CAPTCHA
contents. For example, if it is a CAPTCHA based on images,
then a statistic showing the quantity of image information
can be useful. These statistics should be well-known for the
7

CAPTCHA type or low-cost to obtain, having been previ-
ously defined. We are not interested in performing a full-
blown CAPTCHA analysis here that will extract extremely
significant, high-level information.

3. In-challenge relational statistics: (optional) in challenge re-
lational statistics are those that relate different metrics
obtained for different answers. If, for example, a challenge
has 105 possible answers, instead of (or additionally to)
giving the value of one of the metrics for those 105 possible
answers, we can give the (for example) relative order of
those values, so that way the statistical or ML algorithm
will know if this solution has the lower (or top) value
among the possible solutions for that challenge. These
statistics are useful to relate the possible solutions of a
single challenge among themselves. This might be useful
or not depending on the CAPTCHA type. For example, a
value of a metric of 155 might be good for an answer to
a challenge but bad for another challenge. But knowing
that value is the lowest among all possible answers (or
highest, depending on what we are looking for) might
provide much more information. As explained, a typical

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.

o
r
a

u
t
L
s
b
s
o

way of doing this would be by ordering some of the pre-
viously extracted statistics within the possible answers to
a challenge, and then registering this relative order, either
absolutely or by percentiles.

• Selecting and/or creating the metrics is a phase that requires some
experience, as it is not fully automatic. Yet, in this phase we will
use some general guidelines, which broadly speaking can be:

– Previous literature about well-known side-channel attacks.
– Randomness metrics that can be applied to the challenge

type. Among these, and of special interest, are cryptographic
tests of randomness.

– Low-cost metrics: metrics that are already implemented and
easy to use. These are typically extracted from libraries
that can manipulate the media formats that contain the
challenges (text, images, audio, ⋯).

• This is an important phase, as the efficiency of the following
S/ML analysis depends on it, so it is worth investing some time.
If we cannot come up with any possible metric, we can just
use the well-known ones for a basic security check. If possible,
trying new metrics (always based on readily available software
or procedures) can lead to interesting results.

• Normally, there will no be a need for feature selection, given than
the number of applicable metrics will not be very high. If this is
a problem, some Exploratory Data Analysis can be performed to
select the most promising metrics. This can also be done using
L1 or Lasso regularization, correlation analysis, or using Linear
Discriminant Analysis for dimensionality reduction. The label will
be whether the answer is correct, for the set of possible answers.

• When we have both the metrics and some correctly and wrongly
solved challenges, we can proceed to the Statistical and ML
analysis phases, which constitute the first iteration of BASECASS.

• Phase IV: Statistical analysis (optional) and ML analysis: we
will try to find correlations among challenge data extracted using
our metrics and the solutions. To do so, we will apply statistical
analysis techniques. If we skip this analysis or if we do not
obtain positive results, ML techniques might be suitable. From an
attacker point of view, we can skip the statistical analysis and
proceed directly to a ML analysis, that renders more powerful
tools than the statistical analysis, as some ML algorithms are
able to automatically cope with non-linear classification and/or
heavily unbalanced data sets.

• From an attacker point of view, a ML analysis has the potential
to provide for the most interesting results. For the ML analysis,
we use the previously solved challenges, and the metrics data
extracted from them to try to find a relation among the challenges
and their correct answers. We do so using ML algorithms to
look into the data trying to find significant patterns. We will
try different families of ML algorithms with default parameters
to search for the one that finds stronger relationships among
challenges and their answers. In a second step, we can grid-walk
its parameters to fine-tune the ML algorithm to obtain the best
possible result. During this step, we will use either different test
and training sets, or Cross Validation.

It is possible that, after this analysis, we will focus more on a subset
f the metrics, and maybe come up with additional metrics that will
equire a re-run of this iteration. This is ok, as this iteration is fully
utomatic.

An important aspect of an attack is the cost. Given the lower cost of
sing Deep Learning, and the availability of models that can be used for
ransfer learning using a few hundred labelled samples, the use of Deep
earning to see whether the CAPTCHA is resilient or not to basic attacks
hould be considered here. This applies mostly to image and audio-
ased CAPTCHAs. Although a DL-based attack cannot be considered a
ide-channel attack, given its availability, it should be considered part
f a basic testing process whenever it applies.
8

3.3. Step 3. Parameter-related S/ML analysis

This step explores possible weaknesses and correlations between the
challenges and their correct answers, but does so taking into account
the values of the different parameters that are used when creating a
challenge. Note that these values are not always accessible nor easy
to deduct from a produced challenge. Thus, this step is not always
possible. Next, we will comment when this step is applicable, as well
as its utility: what additional information we want to extract.

This step will typically only be possible if either the CAPTCHA
designer is collaborating with the analysis, if the CAPTCHA is open-
source, or when the value of the main parameters affecting the gen-
eration of the CAPTCHA challenges are evident given a particular
challenge. If these circumstances are not met, then it is in general
impossible, or costly, to learn the value of the challenge creation
parameters from a particular challenge. This analysis itself can be more
costly than the attack we are looking for.

For example, let us imagine a CAPTCHA shows synthetic images
of people from different professions that the user has to categorize by
social status or perceived income. When the CAPTCHA wants to create
an image to be used in a challenge, it has to decide (typically randomly)
the value of some parameters: the profession (among a certain number
and type of professions), a particular 3D model (among a number of
models of different types), what colours to use, the field of view of the
image, what additional elements to use (number of clothing, tools, etc.),
lightning conditions, etc. The value of all these parameters affects the
challenge created. Their particular value might affect also the difficulty
of the challenges created, and that is precisely what we are trying to
discover.

The type of questions that this part of our analysis wants to answer
are such as if given different values of parameters of the CAPTCHA
generation algorithm, some of them especially weak and thus should
be avoided, or if there are factors or measures that contribute more to
the strength of the CAPTCHA, or what parameters are more sensible
towards the CAPTCHA security. In a way, what we want to know is
whether the CAPTCHA design seems to be correctly using the base
problem to its full strength, or at least, be certain that it is avoiding
specially weak cases.

Typical questions asked during this phase could be: is it possible for
an attacker to identify identical elements (backgrounds, sprites, etc.)? Is
it possible to automatically deduct some of the values of the parameters
affecting the generation of a given challenge? How do the different
design elements affect the strength of the CAPTCHA? The tools for this
second iteration are the same used in the earlier analysis. Now, we will
use them with restricted parameter values and study how they perform
in these cases.

If we do not have access to the CAPTCHA source code or the
collaboration of its designer, in some cases we still can separate the
correctly and wrongly solved challenges in sets depending on the
different parameter values with which they were generated. If we have
access to the challenge creation mechanism, we can generate challenges
automatically using different parameter values.

During the exam of these questions, we forget about the user
friendly aspect of the CAPTCHA. What we want to know is only how
they affect its security. To measure how these different design decisions
affect the CAPTCHA security, we will use the same analysis tools as we
used in the previous step. If during that analysis we find that certain
tools are more promising than others, we will focus our efforts in those,
but we will use in any case all of them, as a different parameter set for
the CAPTCHA can render it susceptible for a different type of attack.

This analysis would render at least answers to the following ques-
tions. If we found a correlation in the previous step or in this one:

• Does this correlation affect to all challenges uniformly, or does it
depend on some parameter values?

• How does each parameter and parameter value affect this corre-

lation?

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
• Is it possible to invalidate this correlation, using some parameter
values?

• Is there one or different correlations, depending on the parameter
values?

If we have not found any strong correlation.

• Is there any sub-domain of parameters that shows a hint at a
correlation, and should be further explored with more examples
or values?

• What parameter values seem to give the most uniform distribu-
tions in the metrics used?

3.4. BASECASS summary table

The procedures used in each application of BASECASS can be sum-
marized in a table, along with the results found. If, during the distinct
phases of the analysis, BASECASS finds vulnerabilities that might be
sufficient enough for a side-channel attack, and if such attack is feasible
and within the ethics of each particular case, then we can also include
the results of such attack. Depending on them, it might not be necessary
to continue with the application of BASECASS, if the CAPTCHA is
considered broken beyond a reasonable effort of correction.

The findings that result out of the different BASECASS steps can be
summarized in a template table. This table is divided in different types
of analysis, and at the end of each one we present the main findings.
Each section of the table represents one analysis type of BASECASS.
Some sections of the table are optional and dependent on the result of
the previous sections. Next section shows examples of the BASECASS
table applied to different CAPTCHAs attacks.

3.5. Design guidelines

Although it is difficult to offer a general design guideline that will
apply to every CAPTCHA design, what we can learn from the appli-
cation of BASECASS to several CAPTCHAs, and also other published
side-channel attacks to CAPTCHAs, is that it is important to have in
consideration, while designing the CAPTCHA, how to prevent correla-
tions that can, somehow, be measured just accessing the challenge —
and after implementing it, measure them.

4. Cases of study

In this section we provide three examples on the application of
BASECASS. More examples can be found in the PhD of Hernández-
Castro [53].

We want to stress that BASECASS does not claim to be able to check
the security of any CAPTCHA type. It aims though to be general enough
to be applicable to many different CAPTCHA types. And this is what we
tried to prove by selecting the three CAPTCHA types that were regarded
as secure, had earned a strong reputation, offered an original proposal
and were previously not broken when we analysed them.

The reader may wonder if BASECASS can be applied on
reCAPTCHA, one of the leaders in the CAPTCHA market. In 2014,
Google decided to add an additional security layer to it. They called
it ‘‘v2’’ and determined publicized it as being much more intelligent
and robust, avoiding most bots automatically, and only showing the
CAPTCHA on very few occasions. However, this type of security, based
on an algorithm that is private, and in principle only known to Google,
is what is called Security by Obscurity. This extra layer of security
is not really part of the reCAPTCHA CAPTCHA and should not be
considered as such. The P in the acronym CAPTCHA stands for a Public
algorithm: thus the key security point of the CAPTCHA should reside
on the strength of the algorithm, not on its secrecy. Then, BASECASS
does not try to address the extra layers of security one might add to a
security mechanism, but the CAPTCHA security mechanism itself.

Besides, reCAPTCHA has been at least broken once that we know
9

before BASECASS was conceived.
Table 1
BASECASS description section for Capy.

4.1. BASECASS analysis of Capy CAPTCHA

Here we will briefly comment some of the aspects of applying
BASECASS to the Capy CAPTCHA and present the result summary table
of its application. See Section 2.9 for a detailed description of puzzle
CAPTCHAs.

In the first step of BASECASS, we analyse the interaction of Capy
with its server. A whole PNG image is transmitted that contains a sub-
image of 400 × 267 pixels (the challenge image) and, in its right part,
a puzzle piece of approximately 76 × 87 pixels, that is present to the
user below the challenge image. This size might vary as the puzzle piece
shape could change. The user answer is sent as a string containing the
succession of drag & drop coordinates that the user’s pointer crosses in
order to put this puzzle piece in place, coded using base 32.

Following Phase II, we analysed the challenge domain and we
determined that Capy was using four background images, and that the
puzzle piece could have different shapes and be from any of these
images. Also, the puzzle piece void inside the background image is
filled with a portion from any of the four backgrounds available. As we
wanted to know whether the base problem Capy is based on could be
good enough for a CAPTCHA, we assumed from now own that Capy
authors could easily augment the number of background images to
thousands or millions, and proceeded assuming this.

BASECASS encourages us to compare the base problem space with
the challenge problem space to have a basic understanding of their
relative difficulty. To measure the base problem space size, we assumed
that we limit the image size to that used by Capy. In that case, there
are (400 × 267)83 maximum images. For each one, we can select up
to (76 × 87)83 −1 fillings for its puzzle piece (the size varies, but it is
around 76 × 87 pixels). Each one, we can position in 400

10 × 267
10 different

positions. This is so because Capy restricts the movements to a 10 × 10
grid, to make it easier for the human users to find the correct position.
This makes a total of (400 × 267)83 × (76 × 87)83 − 1 × 40 × 26 ≈ 10219

images.

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
Table 2
BASECASS metrics definition section for Capy.

Table 3
BASECASS results and conclusion sections for Capy.

To measure the size of the challenge problem, we perform a similar
calculation, but now with the real number of images, four. The number
of possible puzzle fillings is then ≈ 4×(400−76)×(267−87)−1 = 233279.
10
Table 4
BASECASS description section for CRC CAPTCHA.

The number of positions to place the puzzle piece is 40 × 26. Thus, the
total size: 970 millions.

BASECASS encourages us to consider calculating the distribution of
challenges. In this case, the only parameters we could consider are
the background, the puzzle piece shape, its position, and the filling
used for the puzzle piece void on the background image. Although the
parameters could be reconstructed once all the backgrounds are known,
the cost of this analysis is out of scope for a low cost attack, so it is not
produced in this case.

BASECASS also compares the possible answer space with the real
answer space used in the CAPTCHA. The answer space is easier to
calculate if we restrict ourselves to an image of the size of Capy, the
maximum possible should be (400 − 76) × (267 − 87) = 58320. As Capy
restricts movements to a 10 × 10 grid, this is instead 100 times smaller,
that is, (400 − 76) × (267 − 87) ≈ 583. That means that a random brute-
force attack has a success rate of 0.17%, slightly high, but possible for
a CAPTCHA according to some authors.

BASECASS recommends to determine if the distribution of answers
is uniform or is instead skewed. As the answer space is not small, for
this test to be significant we should collect a very large number of
examples and their solutions, at least in the order of 25 000. This test is
again too costly, and in this particular case was not performed.

Now, we have some basic data about Capy, and we proceed with the
second step of BASECASS and define the requirements and metrics for
the S/ML analysis. Some of the possible metrics are:

• General purpose metrics:

– Histogram of colours used: as Capy fills the space where the
puzzle piece should go with a sub-image, we could try to see
if it adds colours to the image and if the colour histogram
could be modified.

– Number of pixels detected as borders: we will use differ-
ent border detection algorithms and count afterwards what
percentage of the pixels are detected as borders.

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
Table 5
BASECASS metrics definition section for CRC.

– Results of the ENT test: a number of general metrics, includ-
ing the entropy, serial correlation, lossless compression rate,
Monte-Carlo estimation of 𝜋, etc.

• Ad-hoc metrics:

– Size after compression: an original image will typically be
more regular than the same image with a puzzle piece
filled with some other image. We could use compression
algorithms, like JPEG, to verify if the size of the resulting
compressed image has been affected.

• Comparative metrics:

– Order in size after compression: if the size after compression
is a measure of goodness of the solution, an ML algorithm
could know which is the smallest/largest one (or n) of the
set of possible solutions to a challenge.

– Order in number of pixels detected as borders: in a similar
fashion, this would possibly serve an ML algorithm to im-
prove the accuracy while classifying among a set of possible
solutions.

BASECASS includes a step to test the performance of the different
metrics. In particular, the metric that analysed the resulting file size
after JPEG lossy compression seemed well able to break the Capy
CAPTCHA. According to BASECASS, we performed an attack based
on this result and we did not need to use a ML classifier in order to
completely break the Capy CAPTCHA. Tables 1–3 summarize the results
obtained.
11
Table 6
BASECASS ML analysis and conclusion sections for CRC.

4.2. BASECASS analysis of the Civil Rights CAPTCHA

In this section we describe the BASECASS analysis to the CRC
CAPTCHA (go to Section 2.8 for a detailed description of the
CAPTCHA).

The first step of BASECASS requires to analyse and create a way
to interact automatically with it. In the case of the CRC, we need
to download enough data for this analysis. After downloading 1000
challenges, we only found 21 news items. This number is insufficient
and could be easily identified by a bot allowing us to do a brute-force
attack in which a program would learn the possible correct answers just
by trial and error. BASECASS also recommends that we analyse these
21 news: both how many times they are actually presented to the user,
and in answer space (positive and negative news). We find them to be it
strongly biased towards negative news. Their appearances distribution
remains similarly biased.

At this point we find that this part of the challenge is solvable by
a brute-force attack, if the answers to each news excerpt are coarsely
divided into positive and negative. As we do not know whether this is
the case, we proceed to do some analysis of how the CAPTCHA server
validates the answers. Apparently, the answer has to actually come
from the set of three answers presented to the user. In any case, this
part of the challenge is to be considered broken, that is, it does not add
security to the CAPTCHA, because if the emotional answers could be
read and classified into positive or negative, it would be straightforward
to solve the challenges.

Phase III of step I recommends to analyse the answer space, both
theoretical and the real one used in the CAPTCHA. Note that, if we
restrict the answers to one word, the potential answer space is not
very large: according to some word lists, there are around 167 1-word

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
Table 7
BASECASS description section for HumanAuth CAPTCHA.

emotions, so adding a few of the modifiers ‘‘very’’, ‘‘a bit’’, ‘‘totally’’ as
the CRC does, we can get to 668 words and two words combinations.

After some initial interactions, we start seeing repetitions on the set
of possible answers. This is expected, given that the amount of possible
emotions that can be described with one or two words is limited. We
download a set of 1989 challenges and manually classify the possible
answers, which are 133. Most of them appear with more than one
repetition, so we consider this to be the total set of possible answers (or
a good approximation to it) for our further analysis. The distribution
of their appearance is not uniform, with a Pearson’s 𝜒2

132 value of
482.12. This allows for a potential brute-force attack in which we will
repeat the most frequent five answer (to avoid possible detection by
repetition), that can pass the CAPTCHA with a 1.2% success rate.

Then, we can now proceed to the second step of BASECASS, the
S/ML analysis of the CRC. The answers of the CRC are protected using
Securimage that offers many configuration parameters. In this case,
Securimage is used with a static configuration, that includes two or
three lines over the text.

In order to proceed with the S/ML analysis, we want to define what
metrics to use. Initially, we choose quite simple metrics: the total pixel
count, as some characters use more pixels than others, could give us
an idea of the size (in pixels) of the characters used; we measure in
relatively to the maximum. To be more precise, we also use the pixel
count per column, and per groups of three and five columns.

When we decided to use these metrics, we realized that the lines
introduced by Securimage might influence their result. A way in which
we could minimize their impact is if we consider instead the differential
in pixels, because a line that has approximately the same width and
an horizontal component (that is, is not purely vertical) would use
approximately the same number of pixels per column during its length.
Of course, this still would alter the results of our metrics when the lines
start and end, and also when they occlude parts of a character. But still,
this might be a good way to, in general, decrease the influence of the
lines over our metrics. Thus, we decide to add these differential metrics.
12
Table 8
BASECASS metrics definition section for HumanAuth.

In order to read the text of each of the three images in each
challenge, we define these metrics to extract from every image, and
proceed to train a set of classifiers on them. We obtained the best
classification results with Linear Regression and Linear Support Vector
Machines (LibLINEAR) [54], attaining 59.3% accuracy. This means that
in a challenge composed of 3 possible answers, we have 28.8% of
correctly reading the three possible answers and 35% of reading two
of them.

The metrics to use for the classification of the news bits are taken
from basic NLP techniques. In particular, after some data cleaning
removing country names, stop-words, etc., we transform the words to
their WordNet synset representations and to TF-IDF normalized vectors
with a cut-off of two. In order to train our classifiers, we use 622
manually downloaded and classified news bits from the Civil Rights
Defenders. We test different classifiers and different syset representa-
tions. Finally, we choose SVM Lineal, translating the texts to chains of
WordNet hypernyms, which obtained 1.00 precision during our tests.

Following BASECASS, we put together a program that automati-
cally downloads and answers CRC challenges, testing if its answer is
classified as correct or not by the CRC CAPTCHA server. After 1000
challenges, we obtained a success rate of 16.5% challenges correctly
solved. Using an slightly improved version that memorizes previous
results, we soon obtained a success rate of 20.7%.

Tables 4–6 summarizes the application of BASECASS for the CRC
CAPTCHA to its OCR/text sub-challenge.

4.3. BASECASS partial analysis of the HumanAuth CAPTCHA

In this section we will present the application of BASECASS to
another CAPTCHA proposal that has already been analysed from a

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
Table 9
BASECASS ML analysis and conclusion sections for HumanAuth.

security standpoint. The application of BASECASS will be partial, based
on the publicly available data of its security analysis by Hernández-
Castro [20]. At the end of our partial application, we will check if
BASECASS is able to find whichever weaknesses have been reported.

The HumanAuth CAPTCHA is an Open Source CAPTCHA that asks
users to distinguish between images with natural and non-natural
contents. The HumanAuth application comes with an image repository
consisting of 45 nature images and 68 non-nature ones in JPEG format.

The first step of BASECASS strongly recommends to create a way
to interact automatically with the CAPTCHA being studied. We could
analyse the HumanAuth CAPTCHA as either a text-based CAPTCHA or
an image CAPTCHA. Hernández-Castro et al. [20] decided to do the
second, so we will follow this route.

BASECASS recommends to estimate the size of the base problem
and the size of the real problem being posed by the CAPTCHA and
then compare them, in a way to estimate its strength compared to the
base problem. The size of the images is 100 × 75 pixels, using 3 RGB
channels with 8-bits per channel. The size of the set of all possible
images is equal to 100 × 75 × 28 × 3 = 125829120000 possible images,
even though this includes all images that differentiate from another in
just a pixel and a bit that is, many would look the same to the human
eye. The size of the challenge problem is much smaller though, as it
includes 45 nature images and 68 non-nature images, that are protected
with the addition of a watermark. The watermark does not change, it
just changes the position in which it within the image. The original
watermark has a size of 16 × 16 pixels.

Then, there are (100 − 16) × (75 − 16) = 4956 positions for it. Thus,
the size of the challenge problem is equal to (68 + 45) × 4956 = 560 028
total possible images different at pixel level, although their differences
are typically less than 100 × (100−16)×(75−16)

100×75 = 66% different from many
others, and as little as 16 pixels different (or less) than the closest one.

Phase II of the first step also recommends to estimate the answer
space of the CAPTCHA and its distribution, in a way to estimate its
13
strength against brute-force attacks. The answer space of the Huma-
nAuth CAPTCHA is reduced: we need to pick a number of elements
from a set of 9. Thus, theoretically the number of answers could be
9
∑

𝑖=1

(9
𝑖
)

= 29 = 512

Yet HumanAuth presents always just 3 images to select, thus the
answer space is the smaller

(9
3
)

= 9!∕3! × 7! = 8 * 9/3 * 2 = 12 only
different answers.

According to the source code, their distributions should be uniform.
Given the small answer space, and the fact that many challenges could
be identified as having a similar image, as they are quite similar at
pixel level, it might be possible to perform a learning attack against
HumanAuth. This is not the attack that Hernández-Castro et al. [20]
performed, as they want to know whether the idea behind HumanAuth
was sound, even if their image database was bigger.

After completing the first step of BASECASS, we proceed to the
second step, BASECASS S/ML analysis. To do so, it is necessary to
choose some metrics that we will use to extract information from the
challenges. Hernández-Castro et al. decided to use the ENT test for
this. This test provides several numerical values for each image: the
numerical value of the entropy, as measured by ENT in bits per byte;
the 𝜒2 value for the corresponding degrees of freedom (width x height
in pixels); the mean value of each byte; the value of 𝜋 obtained using a
Monte-Carlo algorithm that is supplied with the image data instead of
a random stream; and the correlation of one byte against the next one.

Hernández-Castro et al. [20] apparently used the whole set of
HumanAuth as training images, checking them using CV. They obtained
a 78% accuracy using Random Forests. This indicates that an attack
might be possible. In this situation, BASECASS encourages us to test
our findings performing an attack. In order to test an attack, they
create a set of 20,000 images using the provided watermark. They do
so using the public source code available. The accuracy of the same
classifier drops to 72%, but attain 91% using J48. Although they do
not implement an attack, it is expected that with such accuracy, an
attack would be successful on 0.918 = 47% of occasions.

Tables 7–9 summarizes the partial application of BASECASS to the
HumanAuth CAPTCHA and the results found.

5. Conclusions

In this paper we have summarized the main CAPTCHAs design and
their attacks. We have also presented a framework to assess a basic
level of security for new CAPTCHA designs called BASECASS and some
examples where BASECASS has been applied.

BASECASS could be implemented as a software tool. The parts of
it that depend on the specific CAPTCHA could be implemented as
plug-ins. The part of it that needs a few labelled examples could be
implemented through third-party CAPTCHA solving services. If imple-
mented as Open Source, we hope that the research community would
find it useful and that new CAPTCHA designers would use it to assess
a basic security level for their designs.

BASECASS is able to detect common weaknesses in a number of
cases. More so, it is able to do so in a methodological way. The
heavyweight lifting of the analysis is left to ML algorithms. In any case,
we find BASECASS successful, even when using generic metrics.

Although BASECASS does not provide guidance for possible
workarounds or mitigations of the possible vulnerabilities found, it is a
framework for assessing that a new CAPTCHA proposal meets a basic
level of security against primary and statistical side-channel attacks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
Acknowledgements

This work is funded by the JCLM project SBPLY/19/180501/
000024 and the Spanish Ministry of Science and Innovation project
PID2019-109891RB-I00, both under the European Regional Develop-
ment Fund (FEDER).

The work of María D. R-Moreno was partly supported by the
Spanish Ministry of Sciences and Innovation under the grant number
PRX18/00563.

All the vulnerabilities discovered have been responsibly disclosed to
the CAPTCHA authors.

Compliance with ethical standards

This article does not contain any studies with human participants
or animals performed by any of the authors.

References

[1] Naor M. Verification of a human in the loop or Identification via the Turing
Test. Tech. rep., 1996.

[2] Ahn LV, Blum M, Hopper NJ, Langford J. CAPTCHA: using hard AI problems
for security. In: Proceedings of the 22nd international conference on theory
and applications of cryptographic techniques. Eurocrypt’03, Berlin, Heidelberg:
Springer-Verlag; 2003, p. 294–311.

[3] Athanasopoulos E, Antonatos S. Enhanced CAPTCHAs : using animation to tell
humans and computers apart. Ifip Int Fed Inf Process 2006;4237:97–108.

[4] Mohamed M, Gao S, Saxena N, Zhang C. Dynamic cognitive game CAPTCHA
usability and detection of streaming-based farming. In: Usable Security (USEC
2014). San Diego, CA, USA: Internet Society; 2014.

[5] Yan J, Ahmad aE. Breaking visual CAPTCHAs with naive pattern recognition
algorithms. In: Twenty-third annual computer security applications conference
(acsac 2007). Miami Beach, Florida, USA: IEEE; 2007, p. 279–91.

[6] Hindle A, Godfrey MW, Holt RC. Reverse engineering captchas. In 2008 15th
working conference on reverse engineering, Antwerp, Belgium, 2008.

[7] Bursztein E, Martin M, Mitchell J. Text-based CAPTCHA strengths and
weaknesses. In: Proceedings of the 18th acm conference on computer and
communications security. Ccs ’11, New York, NY, USA: ACM; 2011, p. 125–38.
http://dx.doi.org/10.1145/2046707.2046724.

[8] Nguyen DV. Contributions to text-based captcha security (Ph.D. thesis),
University of Wollongong; 2014.

[9] Lillibridge M, Abadi M, Bharat K, Broder A. Method for selectively restricting
access to computer systems. Tech. rep., 2001, US Patent 6, 195, 698.

[10] Leung TK, Burl MC, Perona P. Probabilistic affine invariants for recognition. In:
Proceedings of the 1998 ieee computer society conference on computer vision
and pattern recognition. Santa Barbara, California, USA: IEEE; 1998, p. 678–84.

[11] Mori G, Malik J. Recognizing objects in adversarial clutter: breaking a visual
CAPTCHA. In: Proceedings of the 2003 ieee computer society conference on
computer vision and pattern recognition, Vol. 1. Madison, Wisconsin, USA: IEEE;
2003, p. I–134–I–141.

[12] Yan J, Ahmad ASE. A low-cost attack on a microsoft CAPTCHA. In: Proceed-
ings of the 15th acm conference on computer and communications security.
Alexandria, VA, USA: ACM; 2008, p. 543–54.

[13] El Ahmad AS, Yan J, Marshall L. The robustness of a new CAPTCHA. In: Pro-
ceedings of the third european workshop on system security. Eurosec ’10, Paris,
France: ACM; 2010, p. 36–41. http://dx.doi.org/10.1145/1752046.1752052.

[14] Bursztein E, Aigrain J, Moscicki A, Mitchell JC. The end is nigh: generic solving
of text-based captchas. In 8th usenix workshop on offensive technologies (woot 14),
San Diego, CA, USA, 2014.

[15] Gao H, Yan J, Cao F, Zhang Z, Lei L, Tang M, Zhang P, Zhou X, Wang X, Li J. A
simple generic attack on text captchas. Netw Distrib Syst Secur Sympos (NDSS)
2016;1(February):21–4.

[16] Nguyen VD, Chow Y-W, Susilo W. On the security of text-based 3D CAPTCHAs.
Comput Secur 2014;45:84–99.

[17] Nguyen VD, Chow Y-W, Susilo W. Attacking animated CAPTCHAs via character
extraction. In: Pieprzyk J, Sadeghi A-R, Manulis M, editors. Proceedings of
the 11th international conference cryptology and network security (cans 2012).
Darmstadt, Germany: Springer Berlin Heidelberg; 2012, p. 98–113. http://dx.doi.
org/10.1007/978-3-642-35404-5_9.

[18] Hernandez-Castro C, Ribagorda A, Hernandez-Castro J. On the strength of egglue
and other logic captchas. In International conference on security and cryptography
(Secrypt 2011), Seville, Spain, 2011, p. 157–67.

[19] Gigoit. HumanAuth. Tech. rep., 2006.
[20] Hernandez-Castro CJ, Ribagorda A, Saez Y. Side-channel attack on the Huma-

nAuth captcha. In International conference on security and cryptography (secrypt
2010), Athens, Greece, 2010.
14
[21] Fritsch C, Netter M, Reisser A, Pernul G. Attacking image recognition CAPTCHAs.
In: International conference on trust, privacy and security in digital business.
Bilbao,Spain: Springer; 2010, p. 13–25.

[22] Golle P. Machine learning attacks against the asirra CAPTCHA. In: Proceedings
of the 5th symposium on usable privacy and security, soups 2009. ACM
international conference proceeding series, Mountain View, California, USA:
ACM; 2009.

[23] Datta R, Li J, Wang JZ. Imagination: a robust image-based CAPTCHA generation
system. In: Multimedia ’05: Proceedings of the 13th annual acm international
conference on multimedia. New York, NY, USA: ACM; 2005, p. 331–4. http:
//dx.doi.org/10.1145/1101149.1101218.

[24] Zhu BB, Yan J, Li Q, Yang C, Liu J, Xu N, Yi M, Cai K. Attacks and design of
image recognition CAPTCHAs. In: Proceedings of the 17th acm conference on
computer and communications security. Ccs ’10, Chicago, Illinois, USA: ACM;
2010, p. 187–200, doi: http://doi.acm.org/10.1145/1866307.1866329.

[25] Gossweiler R, Kamvar M, Baluja S. What’s up captcha?: A CAPTCHA based on
image orientation. In: Proceedings of the 18th international conference on world
wide web. Www ’09, Madrid, Spain: ACM; 2009, p. 841–50. http://dx.doi.org/
10.1145/1526709.1526822.

[26] Kim J, Kim S, Yang J, Ryu J-H, Wohn K. Facecaptcha: A CAPTCHA that identifies
the gender of face images unrecognized by existing gender classifiers. Multimedia
Tools Appl 2014;72(2):1215–37.

[27] Sim T, Nejati H, Chua J. Face recognition CAPTCHA made difficult. In: Pro-
ceedings of the 23rd international conference on world wide web. Www ’14
companion, Seoul, Korea: ACM; 2014, p. 379–80. http://dx.doi.org/10.1145/
2567948.2577321, URL http://doi.acm.org/10.1145/2567948.2577321.

[28] Gosschalk K, Ford M. Funcaptcha. Tech. rep., 2016.
[29] Schryen G, Wagner G, Schlegel A. Development of two novel face-recognition

CAPTCHAs. Comput Secur 2016;60(C):95–116. http://dx.doi.org/10.1016/j.cose.
2016.03.007.

[30] Goswami G, Powell BM, Vatsa M, Singh R, Noore A. FaceDCAPTCHA:
Face detection based color image CAPTCHA. Future Gener Comput Syst
2014;31:59–68.

[31] Goswami G, Powell BM, Vatsa M, Singh R, Noore A. FR-CAPTCHA: CAPTCHA
based on recognizing human faces. PLoS One 2014;9(4):e91708.

[32] Gao H, Lei L, Zhou X, Li J, Liu X. The robustness of face-based CAPTCHAs. In:
2015 IEEE international conference on computer and information technology;
ubiquitous computing and communications; dependable, autonomic and secure
computing; pervasive intelligence and computing. Liverpool, UK; 2015, p.
2248–55. http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.332.

[33] Kim H, Tang J, Anderson R. Social authentication: harder than it looks. In:
International conference on financial cryptography and data security. Bonaire,
Netherlands: Springer; 2012, p. 1–15.

[34] Polakis I, Lancini M, Kontaxis G, Maggi F, Ioannidis S, Keromytis AD, Zanero S.
All your face are belong to us: breaking facebook’s social authentication. In:
Proceedings of the 28th annual computer security applications conference.
Orlando, Florida, USA: ACM; 2012, p. 399–408.

[35] Paxton T, Tatoris R. How PlayThru makes CAPTCHA obsolete. Tech. rep., 2012,
URL http://areyouahuman.com/benefits/ (Accessed on 2012-09-26).

[36] Mohamed M, Sachdeva N, Georgescu M, Gao S, Saxena N, Zhang C, Ku-
maraguru P, van Oorschot PC, bang Chen W. Three-way dissection of a
game-CAPTCHA: Automated attacks, relay attacks, and usability. 2013, ArXiv
Preprint abs/1310.1540.

[37] Mitra NJ, Chu H-K, Lee T-Y, Wolf L, Yeshurun H, Cohen-Or D. Emerging images.
ACM Trans Graph 2009;28(5):163:1–8.

[38] NuCaptcha. Nucaptcha security feautures. Tech. rep., 2016, URL http://www.
nucaptcha.com/security-features (Accessed on 2014-11-20).

[39] Kluever KA. Evaluating the usability and security of a video captcha (Master’s
thesis), Rochester Institute of Technology; 2008.

[40] Hernandez-Castro CJ, Ribagorda A. Video CAPTCHAs. In: IDET Security Con-
ference - Security and Protection of Information (SPIE). Brno, Czech Republic;
2009.

[41] Qvarfordt P, Rieffel EG, Hilbert DM. Motion and interaction based CAPTCHA.
(US Patent 8,601,538). 2013.

[42] Santamarta R. Breaking gmail’s audio captcha. Tech. rep., 2008, URL http:
//blog.wintercore.com/?p=11 (Accessed on 2010-13-02).

[43] Tam J, Simsa J, Hyde S, von Ahn L. Breaking audio CAPTCHAs. In: Advances
in neural information processing systems (nips). Vancouver, British Columbia,
Canada: Curran Associates, Inc.; 2008, p. 1625–32.

[44] Sano S, Otsuka T, Okuno HG. Solving google’s continuous audio CAPTCHA
with HMM-based automatic speech recognition. In: Sakiyama K, Terada M,
editors. Advances in information and computer security: proceedings of the 8th
international workshop on security, iwsec 2013. Okinawa, Japan: Springer Berlin
Heidelberg; 2013, p. 36–52.

[45] Sidorov Z. Rebreakcaptcha: Breaking google’s recaptcha v2 using google. Tech.
rep., 2017, (Accessed on 2017-08-14).

[46] Bursztein E. How we broke the nucaptcha video scheme and what we propose
to fix it. Tech. rep., Google Anti-abuse Research Team; 2012.

http://refhub.elsevier.com/S2214-2126(21)00192-7/sb1
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb1
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb1
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb2
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb3
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb3
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb3
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb4
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb4
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb4
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb4
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb4
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb5
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb5
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb5
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb5
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb5
http://dx.doi.org/10.1145/2046707.2046724
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb8
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb8
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb8
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb9
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb9
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb9
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb10
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb10
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb10
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb10
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb10
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb12
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb12
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb12
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb12
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb12
http://dx.doi.org/10.1145/1752046.1752052
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb15
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb15
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb15
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb15
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb15
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb16
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb16
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb16
http://dx.doi.org/10.1007/978-3-642-35404-5_9
http://dx.doi.org/10.1007/978-3-642-35404-5_9
http://dx.doi.org/10.1007/978-3-642-35404-5_9
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb19
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb21
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb21
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb21
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb21
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb21
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb22
http://dx.doi.org/10.1145/1101149.1101218
http://dx.doi.org/10.1145/1101149.1101218
http://dx.doi.org/10.1145/1101149.1101218
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb24
http://dx.doi.org/10.1145/1526709.1526822
http://dx.doi.org/10.1145/1526709.1526822
http://dx.doi.org/10.1145/1526709.1526822
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb26
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb26
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb26
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb26
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb26
http://dx.doi.org/10.1145/2567948.2577321
http://dx.doi.org/10.1145/2567948.2577321
http://dx.doi.org/10.1145/2567948.2577321
http://doi.acm.org/10.1145/2567948.2577321
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb28
http://dx.doi.org/10.1016/j.cose.2016.03.007
http://dx.doi.org/10.1016/j.cose.2016.03.007
http://dx.doi.org/10.1016/j.cose.2016.03.007
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb30
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb30
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb30
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb30
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb30
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb31
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb31
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb31
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.332
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb33
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb33
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb33
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb33
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb33
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb34
http://areyouahuman.com/benefits/
http://abs/1310.1540
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb37
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb37
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb37
http://www.nucaptcha.com/security-features
http://www.nucaptcha.com/security-features
http://www.nucaptcha.com/security-features
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb39
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb39
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb39
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb40
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb40
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb40
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb40
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb40
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb41
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb41
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb41
http://blog.wintercore.com/?p=11
http://blog.wintercore.com/?p=11
http://blog.wintercore.com/?p=11
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb43
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb43
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb43
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb43
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb43
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb44
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb45
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb45
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb45
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb46
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb46
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb46

Journal of Information Security and Applications 63 (2021) 103018C.J. Hernández-Castro et al.
[47] Xu Y, Reynaga G, Chiasson S, Frahm J-M, Monrose F, Van Oorschot P. Security
and usability challenges of moving-object CAPTCHAs: decoding codewords in
motion. In: Presented As Part of the 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA, USA: USENIX; 2012, p. 49–64.

[48] Sivakorn S, Polakis I, Keromytis AD. I am robot:(deep) learning to break semantic
image CAPTCHAs. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). Saarbrücken, Germany: IEEE; 2016, p. 388–403.

[49] Homakov E. The no CAPTCHA problem. Tech. rep., 2014, URL http://
homakov.blogspot.com.es/2014/12/the-no-captcha-problem.html (Accessed on
2017-08-16).

[50] Hernández-Castro CJ, Barrero DF, R-Moreno MD. Machine learning and empathy:
The civil rights CAPTCHA. Concurr Comput Pract Exp 2016;28(4):1310–23.
http://dx.doi.org/10.1002/cpe.3632.
15
[51] Hernández-Castro CJ, R-moreno MD, Barrero DF. Side-channel attack against the
capy HIP. In: Fifth international conference on emerging security technologies
(est 2014). 2014.

[52] Seber GAF. The Estimation of Animal Abundance. 16, (1):Griffin London; 1974,
p. 80–5,

[53] Hernandez-Castro CJ. Where do CAPTCHAs fail: A study in common pitfalls
in CAPTCHA design and how to avoid them. (Ph.D. thesis), Madrid, Spain:
Universidad de Alcala; 2017.

[54] Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. Liblinear: A library for large
linear classification. J Mach Learn Res 2008;9:1871–4.

http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb47
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb48
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb48
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb48
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb48
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb48
http://homakov.blogspot.com.es/2014/12/the-no-captcha-problem.html
http://homakov.blogspot.com.es/2014/12/the-no-captcha-problem.html
http://homakov.blogspot.com.es/2014/12/the-no-captcha-problem.html
http://dx.doi.org/10.1002/cpe.3632
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb51
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb51
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb51
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb51
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb51
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb52
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb52
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb52
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb53
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb53
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb53
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb53
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb53
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb54
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb54
http://refhub.elsevier.com/S2214-2126(21)00192-7/sb54

	BASECASS: A methodology for CAPTCHAs security assurance
	Introduction
	Attacks against CAPTCHAs
	Attacks to text based CAPTCHAs
	Attacks to language/semantic CAPTCHAs
	Attacks to image classification CAPTCHAs
	Attacks to game-like CAPTCHAs
	CAPTCHAs based on the understanding of video
	Audio CAPTCHAs
	Attacks to ``behavioural'' CAPTCHAs
	Attacks to CAPTCHAs based on empathy
	Puzzle CAPTCHAs

	BASECASS: A framework for BAsic SEcurity CAPTCHA ASSessment
	Step 1. Black-box basic security analysis
	Step 2. Black-box S/ML analysis
	Step 3. Parameter-related S/ML analysis
	BASECASS summary table
	Design guidelines

	Cases of study
	BASECASS analysis of Capy CAPTCHA
	BASECASS analysis of the Civil Rights CAPTCHA
	BASECASS partial analysis of the HumanAuth CAPTCHA

	Conclusions
	Declaration of competing interest
	Acknowledgements
	Compliance with Ethical Standards

	References

