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Abstract: Graphene (G) and its derivatives, such as graphene oxide (GO) and reduced GO (rGO),
have outstanding electrical, mechanical, thermal, optical, and electrochemical properties, owed to
their 2D structure and large specific surface area. Further, their combination with polymers leads to
novel nanocomposites with enhanced structural and functional properties due to synergistic effects.
Such nanocomposites are becoming increasingly useful in a wide variety of fields ranging from
biomedicine to the electronics and energy storage applications. In this review, a brief introduction
on the aforementioned G derivatives is presented, and different strategies to develop polymeric
nanocomposites are described. Several functionalization methods including covalent and non-
covalent approaches to increase their interaction with polymers are summarized, and selected
examples are provided. Further, applications of this type of nanocomposites in the field of energy
are discussed, including lithium-ion batteries, supercapacitors, transparent conductive electrodes,
counter electrodes of dye-sensitized solar cells, and active layers of organic solar cells. Finally, the
challenges and future outlook for G-based polymeric nanocomposites are discussed.

Keywords: polymer nanocomposites; graphene; graphene oxide; functionalization; synergistic
effects; energy storage

1. Introduction

Reinforced polymers contain a polymeric matrix and a rigid filler that experiences a
drastic change in modulus or stress at a given strain over the pure polymer. Conventional
fillers include glass fibers, carbon fibers, carbon black, silica, calcium carbonate particles,
and so forth, in the micrometer range. Though, most micron sized fillers need high
loadings to attain moderate property improvements, leading to melt flow and processing
issues owed to the high viscosity of the filled materials [1]. Besides, the high density of
some conventional fillers frequently results in heavy composites. Furthermore, the poor
interfacial interaction between the filler and the polymeric matrix leads to weak interfacial
adhesion and results in composite failure.

A wide variety of filler sizes has been used for reinforcing polymeric matrices [2],
and the best performance has been detected in the particle size range of 100 nm and be-
low. Nanofillers in the range of 3–5 wt% attain comparable reinforcement as 20–30 wt%
of microsized fillers [3]. Therefore, nanocomposites have a weight advantage over con-
ventional composites and, nanoscale materials have emerged as suitable fillers owed to
their increased specific interfacial area that enables stronger interfacial interactions and
henceforth, superior modulus [4,5].

According to their dimensions, nanofillers can be classified into 1D, that include nan-
otubes and nanowires, 2D such as nanoclays and graphene (G), and 3D such as spherical
nanoparticles. Amongst them, G is one of the most widely studied over the last decade
due to its exceptional combination of electrical, mechanical, thermal, optical, and elec-
trochemical properties. In particular, it is a promising nanomaterial for applications in
various energy-related fields such as supercapacitors [6], batteries [7], solar cells [8], and
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fuel cells [9]. For such goal, G-based nanomaterials are frequently blended with polymers
to form functional composites [10]. The polymer can enhance either the processability,
flexibility, or both, of graphene materials, and also offer them new functions. To date, a
huge number of G-based nanocomposites with insulating or conducting polymers have
been prepared through noncovalent or covalent approaches [11,12].

This review focuses on summarizing the recent advances in the synthesis of poly-
mer/G nanocomposites. Covalent and non-covalent functionalization methods are sum-
marized, and selected examples are provided. Furthermore, applications of this type of
nanocomposites in the field of energy are described, such as lithium-ion batteries, superca-
pacitors, transparent conductive electrodes, counter electrodes of dye-sensitized solar cells,
organic solar cells, and so forth. Finally, the challenges and future perspectives for G-based
polymeric nanocomposites are discussed.

2. Graphene and Its Derivatives: Synthesis and Characteristics
2.1. Properties and Synthesis Methods of Graphene

G is a 2D flat single-atom-thick sheet composed of sp2 carbon structure arranged in a
honeycomb structure (Scheme 1a). G exhibits exceptional electronic, thermal, and mechani-
cal properties [13]. It presents high gas impermeability, a high specific area (2600 m2/g),
larger than that of carbon nanotubes (about 1000 m2/g), and a delocalized movement
of electrons, which implies an outstanding electronic behavior and very high electron
mobility (i.e., 15,000 cm2/V s) [14]. It displays very high electrical conductivity (6000 S/cm)
and thermal conductivity (between 4800 and 5300 W/m K at room temperature) [15],
significantly higher than that of Cu (400 W/m K). Besides, it is believed to be the thinnest
material on earth and the strongest in terms of stiffness and strength, with a breaking
strength 200 times greater than steel, a tensile strength of 130 GPa, and a Young’s mod-
ulus close to 1 TPa [16]. On the other hand, it shows high optical transparency [17], it is
chemically inert, and electrochemically stable. Due to these properties, G is regarded as
an excellent candidate for a variety of applications: (1) sensing and biosensing devices; (2)
ultracapacitors that could store more renewable energy from sun, wind, and waves than
current technologies; (3) transparent conducting electrodes required in applications such as
touch screens, liquid crystal displays, organic photovoltaic cells; (4) light emitting diodes
(LEDs); and (5) transistors and microchips or nanochips with high operating speed.
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Scheme 1. Chemical structure of graphene (a) and graphene oxide (b).

The synthesis of G can be carried out following two different approaches: (1) bottom-
up method; and (2) top-down method. The former approach is based on the synthesis of
G from small units of carbon to obtain graphene layers. The most common techniques
based on this methodology are chemical vapor deposition (CVD) and epitaxial growth
(Scheme 2).



Polymers 2021, 13, 2978 3 of 25

Polymers 2021, 11, x FOR PEER REVIEW 3 of 25 
 

 

based on this methodology are chemical vapor deposition (CVD) and epitaxial growth 

(Scheme 2). 

A brief description of these methods along with their advantages and limitations are 

shown below. 

 

Scheme 2. Schematic representation of the bottom-up and top-down approaches for graphene synthesis. 

CVD produces high-quality G using a transition metal substrate such as Cu, Ni, Pd, 

Au, or Ru [18]. The deposition consists of the flow of a hydrocarbon precursor at high 

temperature (i.e., 750–1200 °C) (Scheme 2). As the surface of the metal cools, a deposition 

phenomenon takes place due to the reduction in the solubility of carbon atoms, which 

precipitate forming a monolayer. Thus, CVD graphene is synthesized via two stages: (1) 

the pyrolytic decomposition of precursors, which is performed at very high temperatures 

with the aid of a metal catalyst and onto a substrate to prevent the precipitation of carbon 

clusters; and (2) the formation of G monolayer out of the disassociated carbon atoms, 

which also requires very high temperatures, hence catalysts are employed. This method 

is scalable and enables the synthesis of large graphene flakes. The main disadvantage is 

that the catalysts can incorporate impurities into G monolayer. 

Epitaxial growth is usually carried out using a silicon carbide (SiC) substrate [19]. 

The substrate is graphitized under thermal treatment at ~1300 °C and vacuum conditions, 

which leads to the sublimation of the Si atoms at the same time as the carbon-enriched 

surface experiences reorganization and graphitization. This technique allows controlling 

of the G layer thickness via modifying either the time, the temperature, or in combination, 

and enables obtaining high-quality G. One of its advantages is that it enables electric de-

vices to be fabricated directly on semi-insulating SiC [20]. Though, it is one of the most 

expensive synthesis methods given that SiC has to be heated at very high temperatures; 

thus, it is not reasonably priced on a large-scale. 

Scheme 2. Schematic representation of the bottom-up and top-down approaches for graphene synthesis.

A brief description of these methods along with their advantages and limitations are
shown below.

CVD produces high-quality G using a transition metal substrate such as Cu, Ni, Pd,
Au, or Ru [18]. The deposition consists of the flow of a hydrocarbon precursor at high
temperature (i.e., 750–1200 ◦C) (Scheme 2). As the surface of the metal cools, a deposition
phenomenon takes place due to the reduction in the solubility of carbon atoms, which
precipitate forming a monolayer. Thus, CVD graphene is synthesized via two stages: (1)
the pyrolytic decomposition of precursors, which is performed at very high temperatures
with the aid of a metal catalyst and onto a substrate to prevent the precipitation of carbon
clusters; and (2) the formation of G monolayer out of the disassociated carbon atoms,
which also requires very high temperatures, hence catalysts are employed. This method is
scalable and enables the synthesis of large graphene flakes. The main disadvantage is that
the catalysts can incorporate impurities into G monolayer.

Epitaxial growth is usually carried out using a silicon carbide (SiC) substrate [19].
The substrate is graphitized under thermal treatment at ~1300 ◦C and vacuum conditions,
which leads to the sublimation of the Si atoms at the same time as the carbon-enriched
surface experiences reorganization and graphitization. This technique allows controlling of
the G layer thickness via modifying either the time, the temperature, or in combination, and
enables obtaining high-quality G. One of its advantages is that it enables electric devices to
be fabricated directly on semi-insulating SiC [20]. Though, it is one of the most expensive
synthesis methods given that SiC has to be heated at very high temperatures; thus, it is not
reasonably priced on a large-scale.

Regarding the top-down methods (Scheme 2), the most widely employed are mechan-
ical exfoliation and the electrochemical exfoliation. The former is the method developed
by Andre Geim and Konstantin Novoselov in 2004 [21] to isolate G by peeling it off from
graphite flakes using Scotch tape. Since the interlayer van der Waals forces in graphite
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are very weak (interaction energy of ~2 eV/nm), graphite can be easily exfoliated using
an adhesive tape or atomic force microscopy (AFM). This method yields good quality G
sheets; however, it is not suitable for mass production. G can also be exfoliated in liquid
media, which uses specific organic molecules or surfactants that intercalate between the G
sheets.

Another widely used process is electrochemical exfoliation [22], based on the pene-
tration of graphite by ions from the solution forced by the applied potential. G obtained
by this approach can be dispersed in organic solvents such as DMF, which enables the
fabrication of thin films. By modifying a number of parameters such as the voltage applied,
the time, and concentration of the electrolyte, the properties of the resulting layer can be
tailored. This is a simple and cheap method, that could easily be scaled up.

2.2. Characteristics and Synthesis Methods of Graphene Oxide

Graphene oxide (GO) is an oxidized layer of G that contains epoxides, hydroxyls, and
carbonyls on the basal planes and carboxylic acids on the edges (Scheme 1). Consequently,
some properties of GO differ from those of G: The sp3 carbon atoms in GO increase the
interlayer spacing, improving its ability to hold compounds. The functional groups also
modify the electronic structure; thus its electronic properties are worse than those of pristine
G (i.e., lower electron mobility and lower conductivity, it is typically insulating with a
sheet resistance value of around 1000 Ω/sq). It presents aqueous processability, surface
functionalization capability, amphiphilicity, biocompatibility, and ability to interact with
biological cells and tissues [23]. It is impermeable to gases and vapors except for water,
hence it can be employed in membranes. Further, it can form stable aqueous dispersions
by simple and cheap sonication processes, which is critical for large-scale uses.

Different methods to prepare GO have been reported [24]: Graphite oxide was syn-
thesized for the first time about 150 years ago by Brodie using KClO3 and HNO3. This
approach was improved by Staudenmaier in 1898 and in 1937 by Hofmann who used
concentrated H2SO4, HNO3, and KClO3 to generate highly oxidized graphite. Though, this
method was time-consuming (nearly 1 week) and harmful since toxic gases are generated
(ClO2 and NOx). In 1958, Hummers reported a novel procedure by replacing HNO3 and
KClO3 with NaNO3 and KMnO4 (Scheme 3a), and this has been the most widely employed
since the first exfoliation of G in 2004. The C/O ratio of the GO synthesized is in the
range of 1–2.9. The contaminants are commonly ash and water, though toxic gases such as
N2O4 and NO2 can evolve. Hummer’s method has been improved using a 9:1 mixture of
concentrated H2SO4/H3PO4 and KMnO4 to achieve high amounts of GO and less toxic
gases in a short period [25] (Scheme 3a). Many researchers have focused on improving the
Hummers’ method to make it either more efficient, environmentally friendly, or both. One
modification is the addition of extra KMnO4 [26] (Scheme 3a) to attain higher oxidation
efficiency. Other approaches try to avoid the production of toxic gases via replacing NaNO3
with other oxidants. In particular, the addition of persulfate (S2O8

2−) ensures the complete
oxidation and exfoliation of graphite [27]. To further increase the oxidation efficiency
without heavy metal and toxic gases, K2FeO4 can be mixed with concentrated H2SO4, and
GO can be synthesized in 1 h at room temperature via a two-stage process (Scheme 3b):
in the intercalation oxidation (IO) stage, the in situ formed oxidants (FeO4

2− and atomic
oxygen) and O2 intercalate into graphite layers and form intercalated graphite oxide (GIO).
Further, in an oxidation-exfoliation (OE) stage, it is further oxidized and exfoliated by O2,
and slGO is obtained [28]. Another path to produce GO is the sonication, stirring (or a
combination of both) of graphite oxide in various solvents, such as water, dimethyl for-
mamide (DMF), tetrahydrofuran (THF), and chloroform [29]. Sonication is a time-effective
way of fully exfoliating graphite oxide, although it can seriously harm the graphene flakes,
reducing their size from microns to nanometers, and even producing graphene platelets.
Mechanically stirring is a less heavy-handed approach, albeit involving longer periods
of time. Synergistic effect between intercalation (oxidation) and ultrasonication have also
been reported [30]; this method requires less acid, is time saving/less energy consuming,
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offers higher productivity, and releases fewer toxic gases than the Hummers’ method.
Monolayers of GO with layer spacing of ∼1 nm can be obtained in less than 1 h. Besides,
this procedure is safe and can be applicable for large scale manufacture of GO. Eco-friendly
protocols for large-scale production of GO using citric acid have also been reported [31],
which preserved yield, and avoided extensive sonication and toxic gas evolution, with
promising applications in composites, energy storage, and reinforcement, where a large
quantity of oxidized graphene is needed.
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2.3. Synthesis and Characteristics of Reduced Graphene Oxide

The reduced GO (rGO) sheets are obtained via elimination of functional groups from
GO. The goal is to attain graphene-like materials analogous to the pristine graphene.
Though, residual functional groups and defects substantially change the structure of the
carbon plane, consequently, the characteristics of rGO vary from those of G. So, the electrical
conductivity of rGO is generally several orders of magnitude lower than that of G.

rGO can be prepared starting from graphite, which is oxidized into graphite oxide,
exfoliated, and then reduced via thermal, chemical, or electrical treatments (Scheme 4) [32].
The thermal annealing involves the reduction of GO just by heat treatment [33]. The
exfoliation is triggered by the sudden expansion of CO or CO2 gases grown within the
spaces between graphene sheets during heating. This procedure is very efficient, although
it has some disadvantages: heating should be gentle to avoid explosion, while slow heating
makes this reduction a time-consuming process. Besides, this approach cannot be applied
for GO films on substrates such as glass and polymers, hence it is not suitable for energy
applications. Other paths are microwave irradiation or photo-reduction [34], using the
energy discharged by a lamp or a laser. This method can be more effective, resulting in rGO
films with superior conductivity (i.e., 260 S/cm [35]), and allows the direct manufacture of
electronic devices.
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Chemical reduction either at room temperature or by applying a moderate heating
is one of the most important methods. The reagent more classically employed is hy-
drazine monohydrate (N2H4·H2O), which is added to a GO aqueous dispersion, resulting
in agglomerated rGO nanosheets due to the increase in hydrophobicity [36]. Despite this
approach possibly being appropriate for industrial production, the high toxicity of hy-
drazine make it unsuitable for large-scale synthesis. Consequently, other reducing agents
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have been suggested, such as NaBH4, which is very helpful at reducing C=O groups while
it is less useful in the reduction of epoxy and carboxylic acid moieties [37], and cannot
reduce alcohol groups. Other green reducing agents such as ascorbic acid, hydroiodic acid,
and urea have been employed for GO synthesis [32].

On the other hand, electrochemical reduction of GO can be performed in a traditional
electrochemical cell at room temperature in an aqueous buffer solution and without the
need for chemical reductors. This method seems advantageous for energy and electrochem-
ical applications.

3. Functionalization Procedures for the Development of Graphene/
Polymer Nanocomposites

The combination of G with a polymeric matrix typically improves the polymer mechan-
ical properties, charge dissociation, and charge transport. However, G and its derivatives
require a functionalization process in order to be properly mixed with the polymer chains.
A wide range of functionalization options to improve the G-polymer interaction have been
reported [3,11]. These methods can be classified into two main categories: noncovalent and
covalent strategies (covalent linking of polymer chains to G materials). A representative
scheme of these approaches, which are described in detail in the following subsections, is
shown in Scheme 5 [38].
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approaches. Reprinted from Ref. [38].

3.1. Covalent Functionalization with Polymers

This approach involves a chemical reaction between G-based compounds and polymer
chains. The irreversible linking of polymers can take place either at functional groups
located on the basal planes or at the edges, and can take place in two different ways
(Scheme 6): (1) Grafting-from technique, which involves the growth of the polymer directly
onto the G-based compound. (2) Grafting-to technique: this pathway requires formerly
prepared monomers that react with the functional groups of G-based materials.
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graphene with polymers.

3.1.1. Grafting-from Methods

These are based on the anchoring of polymer-growth initiator molecules to the G-based
material surface; then, the polymerization can start in these anchored initiators [39]. This
technique avoids the possible steric hindrance since the polymer grows directly onto the
G-based material surface, allowing the grafting of polymers with a high molecular weight,
hence nanocompounds with an elevated grafting extent can be synthesized. Though,
it requires a fine control of the reaction conditions as well as the amounts of initiator
and substrate. Given that the initiator requires a functional group to be grafted, GO and
rGO are more frequently used than G [40]. However, it is also feasible to use G if a pre-
functionalization step is carried out to introduce functional groups within the structure.
Several grafting-from techniques have been described in the literature, the most important
being atom transfer radical polymerization (ATRP), reversible addition fragmentation
chain transfer polymerization (RAFT), polycondensation, ring opening polymerization
(ROP) and Ziegler–Natta polymerization.

The ATRP is a radical reaction that creates a carbon–carbon bond with a transition
metal catalyst (a copper halide and an amine-based ligand). It comprises a fast initiation
process and the development of a dynamic equilibrium between dormant and growing
radicals [41]. It is suitable for the polymerization of many monomers with diverse chemical
functionalities and provides good control of molecular weight, polymer composition, and
structure with a low polydispersity. Though, it has some disadvantages, such as the
elevated catalyst concentration needed and its removal that can be difficult and expensive,
hence limiting its use on a large scale. Besides, it is an air-sensitive reaction, difficult to
perform in aqueous media. For instance, it has been used for synthesizing a polystyrene
(PS)/G nanocomposite [42]. rGO sheets were initially prepared via reduction of GO in the
presence of a surfactant. Then, aryl diazonium salt as an ATRP initiator was covalently
linked to the rGO sheets. Methyl 2-bromopropionate was used as a grafting initiator to
control the chain propagation on the surfaces of graphene sheets (Scheme 7). The length
and grafting density of polymer chains were tailored by changing the amount of the
grafting initiator and its molar ratio with styrene monomer. Significant increases in thermal
conductivity were observed for the nanocomposite with only 2.0 wt% rGO. Furthermore,
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the resulting PS nanocomposites with 0.9 wt% rGO showed about 70% and 57% increases
in tensile strength and Young’s modulus, respectively. Additionally, it has been applied for
the preparation of poly(methyl methacrylate) (PMMA) grafted from GO [43]. The initiators
were immobilized by esterification reaction with the carboxylic groups of GO. In this work,
the polydispersity of the grafted PMMA was approximately one, demonstrating a well-
controlled process. This PMMA-g-GO displayed good solubility in organic solvents such
as chloroform and methanol, and could be used as nanoreinforcement in a PMMA matrix.
Due to the strong interfacial interactions between the PMMA-g-GO and PMMA, an efficient
load transfer was attained, thus improving the mechanical and thermal properties of the
nanocomposites. For instance, the addition of 1 wt% PMMA-g-GO led to a noteworthy
improvement in the elongation at break, resulting in a more ductile and tougher material,
and also increased the initial degradation temperature of the matrix by around 50 ◦C.
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RAFT is a controlled radical polymerization reaction based on chain transfer agents,
such as thiocarbonylthio (C=S) or vinyl (C=CH2) compounds [44], to produce low polydis-
persity index polymers. It works under mild conditions; polymerization can be attained
by several approaches including emulsion, bulk, or suspension polymerization, and the
structures are well-defined. The key benefits are that it is appropriate to varied types
of monomers and that it allows controlling the polymerization of monomers soluble in
water. The drawbacks are the need to select a RAFT agent for the specific polymerization
and processing conditions. In this regard, PS/GO nanocomposites have been prepared
via RAFT mediated mini-emulsion polymerization [45]. In this work, dodecyl isobutyric
acid trithiocarbonate (DIBTC) RAFT agent was anchored to the hydroxyl groups of GO
through an esterification reaction (Scheme 8). Then, stable mini-emulsions were obtained
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by sonicating RAFT-g-GO in styrene monomer in the presence of a surfactant, followed
by polymerizing using 2,2-azobisisobutyronitrile (AIBN) as initiator to yield encapsulated
PS/GO nanocomposites. The molecular weight and polydispersity of PS in the nanocom-
posites changed with the amount of RAFT-g-GO. The thermal stability and mechanical
properties were also improved due to the intercalation of PS within the GO flakes. The
storage and loss modulus of the nanocomposites with 3 and 6 wt% GO were higher than
those of raw PS, while the glass transition Tg value decreased due to the change in the
molecular weight of PS.
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Polycondensation is a process in which monomers and lower molecular weight poly-
mers react and form longer chains with higher molecular weight, while small molecules
are obtained as byproducts. The resulting polymers usually present two functional groups,
one in each side of the chain, because of the contribution of the functional groups of the
monomers [46]. Using this procedure, GO has been functionalized with polyurethane
(PU): the GO sheets reacted with 4,4′-diphenylmethane diisocyanate followed by polycon-
densation of poly(tetramethylene glycol) and ethylene glycol. The presence of PU chains
linked to GO enhanced its dispersion within the matrix and provided a better matrix-GO
load transfer, thus improving the mechanical properties, thermal stability and electrical
conductivity. The tensile strength and storage modulus of PU increased by 240% and 200%,
respectively, upon addition of 2.0 wt% PU-g-GO.

ROP is a method in which one termination of the polymer chain bears a group suitable
to react with cyclic monomers. The end group of a compound acts as initiator and forces
the opening of the first cyclic monomer, which is added to the structure as a new chain with
its end group being reactive, such as the previous initiator. The polymerization continues
adding more cyclic broken monomers to the structure. Different researchers also used this
method for anchoring polycaprolactone (PCL) and poly(L-lactide) (PLLA) to GO [47,48].
This route was developed to prepare polyamide 6 (PA6)/GO composites (Scheme 9): ε-
caprolactam (CL) was fixed onto the GO sheets coupling by 4,4′-methylenebis(phenyl
isocyanate), and then PA6 was grafted from the GO surface by in situ anionic ring-opening
polymerization. The polymerization was performed at 150 ◦C and for 20–40 min, by us-
ing a caprolactam magnesium bromide initiator (C1) in combination with a difunctional
hexamethylene-1,6-dicarbamoylcaprolactam (C20) activator, leading to about 74 wt% poly-
mer content [48]. The crystallization temperature, degree of crystallinity, and mechanical
properties of PA6/GO nanocomposites increased, especially for the composites with GO
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loading less than 0.2 wt%, owed to the strong interfacial adhesion. This simple and effec-
tive approach can offer novel possibilities for expanding the applications of polymer-g-G
nanocomposites.
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The Ziegler–Natta polymerization involves the use of catalysts to bind together vinyl-
contained compounds. It usually employs TiCl3 or TiCl4, along with an aluminum-based
co-catalyst [49,50], and allows synthesizing of polymers of specific tacticity. The reaction is
based on the breakage of the double bound to add another molecule and continues until the
termination step. As the reaction involves the functional groups of G-based compounds,
the selected monomer requires a vinyl group. Polypropylene (PP)-g-GO nanocomposites
have been prepared via in situ Ziegler–Natta polymerization (Scheme 10). A Mg/Ti catalyst
was immobilized onto GO sheets by reacting with the surface functional groups including
–OH and –COOH. Furthermore, PP polymerization was carried out together with the
nanoscale exfoliation of GO. A good dispersion of the GO flakes within the PP matrix was
corroborated by morphological inspection done by TEM and SEM analysis. Furthermore,
high electrical conductivity was found: for instance, for a GO loading of 4.9 wt%, the
conductivity was 0.3 S m−1. This could arise from a side reaction involving the reduction
of GO sheets that takes place in one of the synthetic steps.
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3.1.2. Grafting-to Methods

This approach involves the grafting of the polymer chain itself onto the G-based
compound surface, although it may require former functionalization steps of either the
G surface or the polymer. The goal of these functionalization steps is to provide reactive
groups that can be employed for a coupling reaction. In contrast with grafting from
procedures, grafting-to methods are strongly affected by steric hindrance, due to the G
flakes’ size. However, they are highly versatile, since a wide variety of functional groups
can be employed [51]. Besides, they allow the selection of the location of graphene, which
influences the final properties. Grafting-to techniques can be divided into three types:
(1) esterification/amidation reactions; (2) cycloaddition reactions; and (3) click coupling
reactions.

The most extended approaches are focused on esterification or amidation reactions
of the surface oxygenated groups of G with functional groups of the polymer, such as
carboxylic acid or hydroxyl in order to form esters, or epoxy or carboxylic acid to form
amide linkages [52]. Furthermore, other pathways to exploit the reactivity of GO and
rGO have been proposed, such as the conversion of double/triple bounds using radicals
(i.e., amide radicals) [53], multi-step amidation/esterification reactions (which involve a
conversion of functional groups with other compounds, e.g., SOCl2), etc.

For instance, functionalized rGO can react with poly(vinyl chloride) (PVC) via ester-
ification, which was provided by a nucleophilic substitution reaction [54]. The covalent
linkage of rGO to suitably functionalized PVC is an effective method to manufacture
nanocomposites with enhanced thermal and mechanical properties. The addition of rGO
increases the glass transition temperature of the nanocomposites, indicating chain mobility
restrictions. Conjugated polymer-functionalized G-based materials have also been pre-
pared by esterification/amidation reactions [55]. In such works, the ends of the conjugated
polymers were connected to the functional groups on the graphene sheets. Thus, the
solubility of the functionalized graphene in common solvents was improved, allowing
solution processing. Accordingly, triphenylamine-based polyazomethine-modified GO
(TPAPAM-GO) and poly(3-hexylthiophene) modified GO (P3HT-GO) were incorporated
into devices via spin coating in order to obtain nanocomposites that showed non-volatile
memory effect as well as higher power conversion efficiency for solar cells.

Another widely used conducting polymer is polypyrrole. In this regard, a polypyrrole-
carboxylic acid derivative (PPy-COOH) was grafted onto the surface of hexamethylene



Polymers 2021, 13, 2978 13 of 25

diisocyanate (HDI)-modified GO following two esterification approaches: activation of
the carboxylic acids of the polymer by carbodiimide, and conversion of the carboxylic
groups to acyl chloride. The yield of the grafting reactions (31% and 42%, respectively) was
higher for the sample synthesized via formation of the acyl chloride-functionalized PPy
(Scheme 11). The grafted samples showed higher thermal stability and sheet resistance
than PPy-COOH. They also demonstrated better stiffness and strength, and the reinforcing
efficacy was roughly retained at high temperatures. Improved mechanical performance
was attained for the sample with higher grafting yield. The developed method is a useful
tactic to covalently link conductive polymers onto G nanomaterials for application in
flexible electronics, fuel cells, solar cells, and supercapacitors.
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Scheme 11. Representation of the synthesis of polypyrrole-carboxylic acid derivative (PPy-COOH) covalently anchored on
hexamethylene diisocyanate (HDI)-modified graphene oxide via esterification reaction with previous functionalization of
the carboxylic groups with SOCl2. Reprinted from Ref. [56].

One of the most extended cycloaddition reactions with GO is the nitrene [2 + 1] [57],
which requires high temperatures and azide-based polymers, such as perfluoroazides,
2,4,6-tricholoro-1,3,5-triazine combined with sodium azide, or nitrene radicals arising from
other organic molecules. This strategy is simple and efficient, allowing various functional
moieties (e.g., hydroxyl, carboxyl, amino, bromine, long alkyl chain, etc.) and polymers
(i.e., PEG, PS) to covalently and stably anchor on GO in a one-step reaction [58], leading to
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individually dispersed, highly soluble, and conductive G nanosheets, as demonstrated by
TEM analysis (Figure 1).
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Reprinted with permission from Ref. [58]. Copyright 2010 American Chemical Society.

Another cycloaddition reaction approach is the Diels–Alder reaction, which relies on
the formation of a cyclohexane-based derivative by a diene and a dienophile. In the case of
G and its derivatives, sp2 C atoms can react with both dienophiles and dienes without the
presence of catalyst, as described in the literature [59,60]. However, the polymer chains
must comprise a diene or dienophile group within their structure, hence it could require a
previous functionalization step of the polymer.

On the other hand, the idea of using click coupling reactions to functionalize G-based
compounds arises from studies with CNTs, since click reactions demonstrated good results
for the functionalization of these carbon-based nanomaterials [61,62]. Click reactions were
introduced by Kolb et al. in 2001 [63], and they are based on joining small units using
heteroatoms as linkers. The major characteristics of click reactions are simple to perform,
high yielding, wide in scope, easily-separable byproducts, high stereospecific reaction, and
the possibility of using easily-handled solvents. Several reactions fulfill these requirements
(e.g., cycloadditions of unsaturated species, nucleophilic ring-opening reactions, additions
to C–C multiple bonds, etc.) [63], though in graphene nanocomposites with polymers,
three main approaches have been used: (1) copper(I)-catalyzed alkyne-azide cycloaddition
(CuAAC); (2) thiol-ene radical approach; and (3) thiol-yne radical approach.

In 2002 it was proved that CuI efficiently catalyzed azide/alkyne cycloaddition reac-
tions [64], and many studies have been reported to date using CuAAC click reaction [65].
In the case of G-based compounds, a preceding addition of alkyne groups to the G surface
is typically required, in order to react with the azide groups of the desired polymer, or vice
versa. Other characteristics of CuAAC reactions are their high selectivity and that require
a source of copper catalyst. Several variations of CuAAC reactions have been reported
considering other metals (Ru, Ag, Au, Ni, Zn), leading to a whole family of metal-catalyzed
azide-alkyne cycloaddition (MAAC) reactions.
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3.2. Non-Covalent Functionalization with Polymers

Three main approaches have been described among the non-covalent functionalization
methods, namely, hydrogen bonding, π–π stacking, and electrostatic interactions, which
do not alter the chemical structure of the G sheets, hence the electronic structure of G is
preserved and its electrical conductivity is hardly affected. They are usually followed by
physical methods, such as melt blending, solution mixing, or in situ polymerization [12].
They are typically simple and can be performed under mild conditions. Nevertheless, the
main drawback of this method is that other components (such as surfactants) are frequently
introduced.

π–π interactions take place between the π electrons of the G basal-plane, (see Scheme 5)
and the delocalized π electrons of the polymer chain chosen, which can arise from double
bounds or aromatic rings [66]. Van der Waals forces and π–π stacking are of outmost
importance in carbon nanostructures [67], since they promote the absorption of different
molecules or the stacking of layers onto different allotropic forms of carbon. Adsorption
of polymers onto the basal plane of G can be either complete—with the whole chain
physisorbed—or partial—due to intrachain coiling or interchain repulsion—depending on
the initial geometry, number of polymers, graphene flake size, and thickness. The planar
structure of graphene is a key factor in the formation of effective π-stacking [68]. These
interactions can be comparable to covalent attachment in strength and offer more stable
alternatives to the weaker hydrogen bonding or electrostatic forces. Furthermore, π–π
stacking also preserves the aromatic conjugation of G.

Using this approach, thermoresponsive G-polymer nanocomposites have been pre-
pared via RAFT polymerization to synthesize a pyrene terminated poly(N-isopropylacrylamide)
(PNIPAAm), followed via anchoring to G nanosheets through π–π stacking interactions [69].
The lower critical solution temperature (LCST) of pyrene-terminated PNIPAAm was found
to be 33 ◦C. Though, subsequent to functionalization, the nanocomposites had an LCST of
24 ◦C, despite also being thermoresponsive in aqueous solutions.

Hydrogen bonding is a weaker bound (2–8 kcal/mol) than π–π interactions but is
widely used as non-covalent functionalization method. This bonding takes place between
the oxygenated functional groups on the GO or rGO surface, and hydroxyl or carboxylic
acid groups of the polymer chains. This modification of the G surface does not introduce
impurities, which is nontoxic and reliable, and has important potential applications in
the biomedical field [68]. This bonding is very common in the biological arena. PVA
nanocomposites with GO sheets dispersed into the matrix at molecular level have been
prepared [70]. The improved modulus and strength of the resulting nanocomposites were
ascribed to the strong hydrogen bonding interactions between the residual oxygenated
moieties of GO and the hydroxyl groups of the PVA chains. G nanocomposites with
other polymers comprising hydroxyl or amine moieties such as epoxy, poly(acrylonitrile)
(PAN), and polyaniline (PANI) showed unusual increments in modulus or glass transition
temperature owed to H-bonding interactions [71,72].

Electrostatic interactions are another type of force employed to non-covalent func-
tionalization. Thus, G can be non-covalently functionalized with anionic surfactants such
as sodium dodecyl sulfate (SDS) solutions of different concentrations [73]. This leads to
stable G dispersions due to the electrostatic repulsion between the negative charges of SDS
and the π cloud of graphene. Besides, GO is soluble in water because its surface negative
charge repels each other and forms a stable colloidal suspension.

The interactions between PEDOT:PSS and hexamethylene diisocyanate (HDI)-modified
GO have been investigated [74]. PEDOT chains can interact with the aromatic rings of
GO and HDI-GO by π–π stacking as well as via electrostatic interactions between their
negatively charged COOH groups and the positively charged PEDOT chains (Scheme 12).
Moreover, their surface OH groups are disposed to interact with the negatively charged
sulfonyl groups of PSS through H-bonding. In addition, HDI-GO can interact with the
alkyl side chains of PSS via hydrophobic interactions and van der Waals forces. Thus,
HDI-GO can interact strongly with both PEDOT and PSS chains, leading to a homoge-
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neous dispersion within the matrix. The higher the functionalization degree of the GO, the
stronger the interactions, the better the dispersion.
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Similarly, different types of interactions, including H-bonding, π–π stacking, hy-
drophobic as well as electrostatic have been reported between PANI, in the form of emeral-
dine salt, and HDI-GO (Scheme 13), that result in improved interaction between the two
nanocomposite components, hence very high electrical conductivity [71].
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4. Applications of Graphene/Polymer Nanocomposites in the Field of Energy

As mentioned earlier, G/polymer nanocomposites can be developed via melt blending,
solution mixing, or in situ polymerization, combined with covalent and non-covalent
modification. These composites have superior optical, electrical, and thermal properties
that make them suitable for a large number of applications, particularly in the field of
energy. A chart flow showing these applications is shown in Scheme 14, and some of them
are briefly described below.

Lithium-ion batteries are widely used energy storage devices owed to their high
energy and power density, good durability, and environmental safety. Conventional
cathode materials used in these batteries are LiCoO2 and LiFePO4, although they present
some drawbacks such as restricted capacity and nonrenewable resources [75]. Hence, novel
materials for use as cathodes are required, including polymeric ones that present some
benefits like lightness, mechanical flexibility, and easy processing. Nevertheless, polymeric
cathode materials have low electrical conductivities and slow redox reactions. Thus, G-
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based nanomaterials can be incorporated to improve performance. For instance, PPy/rGO
nanocomposites were prepared via electrodeposition on a stainless steel mesh, and their
performance was compared to that of PPy/sodium p-toluenesulfonate (PPy/pTS) [76]. The
nanocomposite with rGO showed improved conductivity and higher discharge capacity at
low current rates, ascribed to the porous structure and the high conductivity of rGO.
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Scheme 14. Chart flow showing potential applications of graphene-polymer composites in the field of energy.

Layered manganese oxide (LMO) is abundant in nature, has a high theoretical ca-
pacity, and is environmentally friendly, hence is also suitable as cathode in these types of
batteries. Though, its low electrical conductivity and big expansion volume throughout the
charging/discharging process restricts its application. This can be solved via addition of G.
Besides, polymers can act as stabilizers for developing nanostructures onto G. In particular,
ternary LMO/PEDOT/G nanocomposites have been prepared via in situ polymerization
of EDOT monomer in the presence of G (Figure 2A) and then used as a substrate for LMO
growth [77]. A battery based on this ternary nanocomposite had improved capacity and
stability over different cycles compared to those based on LMO/G binary sample or only
LMO (Figure 2B,C). The improved behavior was ascribed to the presence of PEDOT/G
that prevented LMO aggregation, as revealed via SEM observations (Figure 2D).
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Figure 2. (A) Scheme for the preparation of LMO/PEDOT/G nanocomposite. (B) Capacities of the nanocomposite for the
indicated charging/discharging cycles. (C) Change in charge/discharge capacity versus cycle number for the indicated
samples. (D) SEM image of the LMO/PEDOT/G nanocomposite. Reprinted with permission from Ref. [77]. Copyright 2011
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Likewise, PANI was used to stabilize SnO2 bonded to rGO, and the correspond-
ing batteries displayed high capacity and outstanding cycling stability with improved
performance [78].

Supercapacitors are energy storage devices that are charged/discharged at a fast speed,
and should have high energy density and power density as well as long cycling life. PPy is a
suitable material for use in supercapacitors. Though, the poor cycling stability and low rate
of supercapacitors based on neat PPy hinder their use. In this regard, nanocomposite films
based on sulphonated graphene (SG) and PPy were prepared via in situ polymerization
using electrochemical deposition at 0.5 C cm−2 [79]. Though, semimicrospheres appeared
on the film as the charge density was increaseded up to 1 C cm−2 (Figure 3A). When the
charge density was higher than 2 C cm−2, the microspheres vanished and a porous film
was formed (Figure 3B), which showed a high specific capacitance (Figure 3C) as well as
enhanced electrochemical stability and rate performance (Figure 3D). A similar technique
was used to make rGO/PPy nanocomposite, which showed about double capacitance
retention than neat PPy [80].

Transparent conducting electrodes are a main component of optoelectronic devices. In-
dium tin oxide (ITO) is now the most broadly used for manufacturing this type of electrode.
Though, ITO has drawbacks including some disadvantages such as elevated manufactur-
ing costs, restricted resources, and brittleness [81]. Transparent electrodes based on rGO
have been developed by solution mixing approaches, though typically displaying reduced
conductivity due to contact resistance among neighboring sheets. In this regard, G-based
polymer composites can be more effective. In particular, PEDOT/SG nanocomposites
prepared through in situ polymerization presented higher conductivity than commercial
PEDOT:PPS and transmittances higher than 80% between 400 and 1800 nm [82]. Likewise,
SDBS-modified G/PEDOT:PSS nanocomposites were prepared via spin coating [83]. As
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the ratio of SDBS-modified G to the polymer increased, the conductivity decreased, be-
ing higher than that of commercially available ITO/polyethylene terephthalate (PET) or
polyethylene naphthalate (PEN). The transparency of the nanocomposites was close to 80%
at 550 nm, only slightly lower than that of ITO/PET.
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Figure 3. (A) SEM micrograph of PPy/SG nanocomposite formed at 1 C cm−2. (B) Image of the nanocomposite deposited
at 2 C cm−2. (C) Charge/discharge curves of nanocomposites grown at 0.5 (a), 1.0 (b) 2 (c), and 4 C cm−2 (d), respectively,
and (e) SG film in the aqueous solution of 1 mol L−1 KCl. (D) Cycling stability test of PPy and PPy/SG nanocomposites.
Reprinted with permission from Ref. [79]. Copyright 2010 American Chemical Society.

Dye-sensitized solar cells (DSSCs) have attracted a lot of interest due to their inexpen-
siveness, ease of fabrication, and high efficiency [81]. They comprise a working electrode
of dye-sensitized titania nanocrystals, an electrolyte with a redox pair (c.a. I2/I3

−), and a
Pt counter electrode. G has been used to replace some materials of DSSCs. For instance,
the use of a G film as a substitute for Pt in cells with PEDOT:PSS slightly decreases the
efficiency, albeit the durability is enhanced, and the efficiency is preserved afterward for
100 cycles [84]. Moreover, liquid electrodes have been substituted by rGO with electrolyte
gels to enable a faster diffusion of the I3

−, hence improve efficiency [81].
Polymeric nanocomposites with G have been tested as flexible counter electrodes

of DSSCs. Thus, a PEDOT layer was spin coated onto a G-coated PET film (Figure 4A),
and the cell with this PEDOT/G/PET counter electrode had an efficiency of 6.3%, close
to that with Pt/ITO and higher than that with PEDOT counter electrode (Figure 4B) [85].
Moreover, the cell with PEDOT/G/PET has a high fill factor and outstanding performance
even after bending (Figure 4C). G/polymer nanocomposites have also been used in organic
solar cells (OSCs). The first use of G as an electron acceptor material in these types of
cells was reported in 2008 [86]. A film of poly(3-octylthiophene) (P3OT) as donor and
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phenyl isocyanate-functionalized G as acceptor was prepared by spin coating. The π–
π interactions between P3OT and functionalized G made this nanocomposite effective
as the active layer in OSCs, though the efficiency was low (~1.4% for a G loading of
5 wt%). The annealing process detached some functional groups, thus enhancing the charge
transport, and increased the matrix crystallinity, and hence the cell efficiency. Besides,
PEDOT:PSS/GO nanocomposites have been used as hole transport layer in OSCs, leading
to an efficiency of 4.3%, better than that of a cell with only PEDOT:PSS (3.6%), as well as in
improved durability and reproducibility, ascribed to the well complemented work function
between GO and PEDOT:PSS that increases charge mobility [87]. In addition, GO blocks
electrons, and solves the acid corrosion problems in the ITO layer produced by PEDOT:PSS,
thus prolonging cell life.
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Figure 4. (A) G-coated PET and representation of the preparation process of a DSSC with a PEDOT/G/PET counter
electrode. (B) J–V characteristics of the cells with PEDOT/G/PET (black), PEDOT/PET (green) and Pt/ITO/PET (red) as
counter electrode. (C) J–V characteristics of bended (circles) and pristine (squares) DSSCs using a PEDOT/G/PET counter
electrode. Reprinted with permission from Ref. [85]. Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

5. Conclusions and Future Perspectives

Graphene is a novel nanomaterial for electrical and optical devices owed to its atom-
thick 2D structure, large specific surface area, outstanding electrical and thermal conductiv-
ity, superior mechanical stiffness combined with flexibility, and high optical transparency.
However, G-based materials, including GO and rGO, are frequently blended with polymers
in order to form nanocomposites with enhanced processibility, mechanical, chemical, and
electrochemical properties due to synergistic effects. In this review, recent advances in
the development of polymer/G nanocomposites were summarized. G and its derivatives
typically require a functionalization process of being properly mixed with the polymer
chains. These functionalization methods, namely, noncovalent and covalent strategies,
were reviewed and selected examples were described. Furthermore, the applications
of these polymeric nanocomposites in the field of energy were highlighted. When G is
blended with conducting polymers, it offers mechanical support to the matrix, and thus
enhances the cycling performance and the capacitance.

Although much progress has been attained to date, the research in this arena is still in
its initial stage, and several problems remain unsolved to reach their full potentials: Firstly,
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G used to develop polymer nanocomposites typically has considerably lower conductivity
than that reported for a perfect graphene monolayer. Thus, the thermal and electrical
conductivities of the nanocomposites are much lower than the predictions, and do not
fulfill the requirements for certain applications such as transparent conductive electrodes
or counter electrodes of OSCs. Secondly, a method that allows the synthesis at a large scale
and at low cost of high-quality graphene is immediately required, without compromising
the G nanostructure owed to sheet restacking or aggregation. Numerous efforts have
already been dedicated to solve this issue, such as the fabrication of G sheets with large
lateral dimensions, albeit only very low efficiencies have been attained. Thirdly, the real
specific surface area of G and its derivatives in the polymer nanocomposites are much
lower than the predictions owed to the strong π–π stacking among G sheets. This issue
becomes even worse when blending with polymers. The mixing can be carried out via three
main methods: solution blending, in situ polymerization, and melt blending. Melt blending
is a promising approach because of its versatility, compatibility with current processing
technologies, and environmental safeness due to the absence of solvents, but some polymers
lack stability at high temperatures. Thus, novel techniques that preserve the large specific
surface area during G dispersion within polymer matrices, able to tailor the microstructure,
are required. Processing approaches such as electrospinning or layer-by-layer assembly
provide effective means to control the morphology at the nanometer scale and enable the
integration of considerably higher nanofiller content compared to conventional techniques,
but have low potential at an industrial level owed to their low manufacture speed. Besides,
the use of G-based polymeric composites in solar cells is still at an early stage, and their
performance is still far from those of their traditional counterparts. Thus, the compositions
and morphologies of the nanocomposites require additional optimization. All these aspects
should be taken into account to obtain a deeper understanding of the structure-property
relationship and designs of graphene/polymer nanocomposites. Overall, these types of
nanocomposites have great potential in a wide number of applications, particularly in the
field of energy, and will have important applications when commercialized at a large scale
in the near future.
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