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Highlights

• We propose the µ-basis formulas for the implicit monoid
curves/surfaces;

• New µ-basis formulas for the parametric monoid
curves/surfaces in general expression;

• Approximate µ-bases are computed for the monoid
curves/surfaces as well as the error estimations
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A B S T R A C T

The µ-basis is a developing algebraic tool to study the expressions of rational curves
and surfaces. It can play a bridge role between the parametric forms and implicit forms
and show some advantages in implicitization, inversion formulas and singularity com-
putation. However, it is difficult and there are few works to compute the µ-basis from an
implicit form. In this paper, we derive the explicit forms of µ-basis for implicit monoid
curves and surfaces, including the conics and quadrics which are particular cases of
these entities. Additionally, we also provide the explicit form of µ-basis for monoid
curves and surfaces defined by any rational parametrization (not necessarily in standard
proper form). Our technique is simply based on the linear coordinate transformation and
standard forms of these curves and surfaces. As a practical application in numerical sit-
uation, if an exact multiple point can not be computed, we can consider the problem of
computing “approximate µ-basis" as well as the error estimation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

The µ-basis was first introduced in [7] to provide a compact2

representation for the implicit equation of a rational paramet-3

ric curve. The µ-basis of a rational planar curve is a basis for4

the syzygy module with respect to homogeneous parameteriza-5

tions, the degrees of their elements are unique and sum to the6

degree of the parametrization, their cross product retrieves the7

homogeneous parametrization, and their resultant generates the8

implicit equation of the curve [3]. The µ-basis can be used not9

only to recover the parametric equation of a rational curve but10

also to derive its implicit equation. Additionally the µ-bases are11

useful used to compute and to analyze all the singular points12

of low degree rational planar and space curves (see [27] and13

[28]). There are several efficient methods to compute the µ-14

bases for rational curves by computing two moving lines which15

satisfy the required properties [7] or based on the vector elimi-16

nation [3].17

The µ-basis has also been generalized to rational surfaces [5]18

and the situation for rational surfaces is quite different: even19

the degrees of µ-basis elements can be different. Currently, the20

only known algorithm to compute a weak µ-basis of a rational21

surface is designed based on the polynomial matrix factoriza-22

tion [8]. However, for certain rational surfaces with special ge-23

ometry, the µ-basis can be defined well and there are some ex- 24

plorations on the µ-bases of such special surfaces, Steiner sur- 25

faces, surfaces of revolution, rational surfaces, ruled surfaces, 26

cyclides as well as canal surfaces etc [14]. 27

In all above discussions, the µ-basis is derived from the para- 28

metric expression. For an implicit curve or surface, it is difficult 29

to compute a µ-basis, since finding a rational parametric expres- 30

sion from an implicit equation is nontrivial, which is known as 31

the parametrization problem. To benefit from the bridge role of 32

the µ-basis, there are still few papers trying to find the µ-basis 33

from an implicit equation. For quadratic surfaces with two base 34

points or cubic surfaces with six base points, the minimal µ- 35

basis was proved to be all linear in the parametric variables and 36

the minimal µ-basis can be computed either from the parametric 37

equation or the implicit equation [4]. The situation was gener- 38

alized to the quadratic surface with one simple base point [29]. 39

Another work was to compute µ-bases from algebraic ruled sur- 40

faces [25]. 41

A monoid hypersurface is an irreducible algebraic hypersur- 42

face which has a singularity of multiplicity one less than the 43

degree of the hypersurface [15]. Note that conics and quadrics 44

are monoid curves and surfaces of degree 2 that have a point 45

of maximum multiplicity (in this case, a simple point) and they 46

1
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are very popularly used in geometric modeling and computer1

graphics [12, 9, 13]. In the Bernstein-Bézier formulation, a2

monoid curve has a simple representation if we choose one ver-3

tex of the reference triangle to be the multiple point. This prop-4

erty can be easily extended to the surface case using barycentre5

coordinates in a tetrahedron. Hence the monoid curves and sur-6

faces are used to approximate implicitization [26] and approxi-7

mate parametrization [17, 18]. In [2], the authors discussed the8

minimal generators of the defining ideal of the Rees Algebra as-9

sociated to monoid parameterizations, on the other words, they10

found the generators of the syzygy model associated to the stan-11

dard parameterizations. If the parameterization corresponds to12

a curve or a surface then the minimal generators form the µ-13

basis of the curve or the surface.14

In this paper, we attempt to compute µ-basis from another di-15

rection, i.e., we give a uniform and explicit way to get µ-basis16

from the standard implicit form. Our method is simply based17

on the linear algebra computations and the fact that all partial18

derivatives of the implicit equation of a monoid curve or surface19

of degree d, till order d − 2, vanish at the singular point. The20

parametrization is used only as the auxiliary role in our discus-21

sion. Once we get the formula form of the µ-basis, people can22

find a µ-basis from the implicit equation without parametriza-23

tion any more. Notice that by our lemmas, we can also com-24

pute the µ-basis from a rational parametrization not necessary25

in standard form in [2].26

We note that for checking the existence and actual compu-
tation of a singularity of multiplicity d − 1 for a surface (simi-
larly for a plane curve), one has to solve the system of algebraic
equations

A =

{
∂i+ j+k f
∂ix∂ jy∂kz

(x, y, z) = 0
}

i+ j+k=0,...,d−2.

The system A may be simplified by reducing the number of
equations and their degrees. More precisely, first, we choose
three triples (i`, j`, k`), with ` = 1, 2, 3, such that i` + j` + k` =

d − 2, and we consider the new subsystem

B =

{
∂d−2 f

∂i` x∂ j`y∂k`z
(x, y, z) = 0

}
, ` = 1, 2, 3.

that only involves quadratic equations. After computing the so-27

lutions ofB, one chooses the one satisfying the systemA (if we28

have a monoid surface this solution exists and it is unique). So,29

the symbolic method requires the computation of a simple point30

on these quadrics; once the point is determined, the remaining31

steps can be executed symbolically without further difficulties32

(similarly for the case of plane curves). The computation of33

this point can be performed either symbolically, for instance34

introducing algebraic numbers, or numerically by root finding35

methods (see [1], [10], [11]). In this case, we should consider36

the problem of computing approximate µ-bases.37

In this paper, we present two methods. The first one (see38

Theorems 3, 8, and Corollaries 1, 3) uses well-known lin-39

ear algebra techniques to transform a conics or quadrics into40

the standard form (i.e. defined by a polynomial of the form41

a1x2
1 + · · · anx2

n, ai ∈ K, n = 2 or 3, and K and algebraically42

closed field of zero characteristic). Note that this transforma- 43

tion is very efficient since it only has to do with linear algebra 44

operations. Afterwards, we give a uniform and explicit way 45

to get µ-basis from the standard implicit form defining a conic 46

or a quadric. The second method (see Theorems 4, 5, 9 and 47

10) assumes that the origin is a point of maximum multiplic- 48

ity on the variety and therefore it can be applied not only to 49

conics, quadrics, and but also in general to monoid curves and 50

surfaces of any degree. The second method only has to do with 51

the computation of some derivatives of order one of the implicit 52

polynomial defining the monoid curve or surface. 53

In both methods, we show the relation of the µ-basis with the 54

coefficients defining the implicit equation of the given variety 55

and also with the rational parametrization defining the variety. 56

We can find that the second method can be applied to more 57

curves and surfaces. Moreover, if an exact point can not be 58

computed, we can not deal in an exact way with the implicit 59

equation defining the variety. This leads us to consider the 60

problem of computing “approximate µ-basis". Some comments 61

concerning this problem are included at the end of each section. 62

Precisely, using [17] and [18], we show how to compute µ-basis 63

for an input variety not necessarily rational. This is the first 64

process to find the approximate µ-bases from implicit curves 65

and surfaces, since there was only one paper considering the 66

approximate µ-bases of the rational parametric equations [24] 67

without error estimation. 68

The paper is organized as follows. In Section 2, we recall 69

the definition, properties and an algorithm as well as two new 70

lemmas for the µ-basis of the rational curve. In Section 3, we 71

propose the explicit µ-bases for the conics of the implicit form 72

and the second method can be generalized to plane curves hav- 73

ing a point of maximum multiplicity. In Section 4, the minimal 74

µ-basis for the quadrics of the implicit form is discussed and 75

the numerical consideration is also introduced for the curves 76

and surfaces in Sections 3 and 4 respectively. We present al- 77

gorithms and examples in Section 5. Finally, we conclude our 78

paper in Section 6 with a brief summary of our work. 79

2. µ-Bases for rational planar curves 80

Here we review the definition of the µ-basis and propose 81

some necessary properties. For this purpose, K denotes and al- 82

gebraically closed field of zero characteristic, and K(·) the field 83

of rational functions in the variables (·). We also will use K[·] 84

that denotes the polynomials in the variables (·). 85

The µ-basis of a rational planar curve P(t) = (℘1(t) : ℘2(t) : 86

℘3(t)) is defined as a special basis of the moving line ideal of 87

the rational curve in [7]. 88

For a better understanding of the concept of µ-basis, syzygies
can be used. A moving line A(t)x1 + B(t)x2 +C(t)x3 = 0 is a line
corresponding to a three dimensional vector (A(t), B(t),C(t)) ∈
K[t]3 with a parameter t, and we call a moving line follows P(t)
if A(t)℘1(t) + B(t)℘2(t) + C(t)℘3(t) ≡ 0. In algebraic view, the
(A(t), B(t),C(t)) exactly corresponds to a syzygy of P(t). Thus
the set

MP := {(A(t), B(t),C(t)) ∈ K[t]3 |℘1A(t) +℘2B(t) +℘3C(t) ≡ 0}

1
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corresponds to all the moving lines following the rational curve1

P(t) defines a syzygy module over K[t]. The module MP is2

free of rank two, and a µ-basis for the rational curve P(t) is3

just a basis of the syzygy module MP with the lowest possible4

degree. More precisely, one has the following formal definition5

(see e.g. [7]).6

Definition 1. Two moving lines pP( x , t) = p1(t)x1 +7

p2(t)x2 + p3(t)x3 = 0 and qP( x , t) = q1(t)x1 + q2(t)x2 +8

q3(t)x3 = 0, or equivalently, two polynomial vectors p(t) =9

(p1(t), p2(t), p3(t)) ∈ K[t]3 and q(t) = (q1(t), q2(t), q3(t)) ∈10

K[t]3 are a µ-basis of the curve defined by P(t) (or the syzygy11

module MP), if12

1. p(t) and q(t) form a basis for the syzygy module MP, i.e.,13

any moving line L(t) ∈ MP can be expressed by L = h1p +14

h2q with h1, h2 ∈ K[t]; and15

2. p(t) and q(t) have the lowest degree among all the bases of16

MP, i.e., assuming that deg(p) ≤ deg(q), then there does17

not exist another basis p(t) and q(t) of MP with deg(p) ≤18

deg(q) such that deg(p) < deg(q) or deg(q) < deg(q).19

Based on the definitions, Chen and Wang in [3] derived the20

equivalent definitions of µ-basis, we review a necessary one be-21

low.22

Theorem 1. Let p(t), q(t) be two moving lines following the23

curve defined byP(t) with deg(p) ≤ deg(q). Then p(t), q(t) form24

a µ-basis for P(t) if and only if one of the following conditions25

holds:26

1. p × q = kP(t) for some nonzero constant k, and deg(p) +27

deg(q) = deg(P).28

2. deg(p) + deg(q) = deg(P), and p(t) and q(t) are K[t]-29

linearly independent.30

The following properties of µ-basis can be easily obtained from31

the above definitions (see [3] and [20]).32

Theorem 2. Let p(t), q(t) be a µ-basis for P(t) with deg(p) ≤33

deg(q). Then,34

1. p × q = kP(t) for some nonzero constant k.35

2. If P(t) is a parametrization with fibre degree deg(φP),36

then resultantt(pP, qP)deg(φP) is the implicit equation of the37

curve defined by P(t), where pP, qP are introduced in Def-38

inition 1.39

In the following, we prove some technical lemmas that ana-40

lyze the behavior of the µ-basis under change of variables and41

change of coordinates and that will play an important role in42

Sections 3 and 4. The first lemma was proved in [20].43

Lemma 1. Let p̃(t), q̃(t) be a µ-basis for a parametrization44

Q(t) with deg(p̃) ≤ deg(q̃). Let R(t) ∈ K(t) \ K. It holds45

that p(t) = p̃(R(t)) and q(t) = q̃(R(t)) form a µ-basis for the46

reparametrization P(t) = Q(R(t)) with deg(p) ≤ deg(q).47

Note that we considerQ(R(t)), with R(t) = r1(t)/r2(t) ∈ K(t)\48

K, in homogenous form. Hence, in this paper, P(t) = Q(R(t))49

means P(t) = Q (R(t)) r2(t)deg(P) which is a polynomial vector 50

in homogenous form. 51

In the next lemma, we investigate the µ-bases of a rational 52

curve P(t) and the curve P(t) after a linear coordinate transfor- 53

mation from P(t). 54

Lemma 2. Let P(t) = (℘1(t) : ℘2(t) : ℘3(t)), and T : K3 → K3, 55

T ( x ) = (a1x1+b1x2+c1x3, a2x1+b2x2+c2x3, a3x1+b3x2+c3x3), 56

(with x = (x1, x2, x3)) invertible such that P(t) = T (P(t)) is 57

a parametrization. Let p(t), q(t) be a µ-basis for P(t), with 58

deg(p) ≤ deg(q). It holds that S (p) and S (q) form a µ-basis for 59

P(t), where S ( x ) = (a1x1+a2x2+a3x3, b1x1+b2x2+b3x3, c1x1+ 60

c2x2 + c3x3). 61

Proof. We first note that T is invertible and then D , 0 (where 62

D is the determinant of the coefficients of the components of T ). 63

Then, P(t) = T (P(t)) = (a1℘1(t) + b1℘2(t) + c1℘3(t), a2℘1(t) + 64

b2℘2(t) + c2℘3(t), a3℘1(t) + b3℘2(t) + c3℘3(t)). Since p(t) and 65

q(t) form a µ-basis for P(t), p × q = kP for some non-zero 66

constant k and deg(p) + deg(q) = deg(P). Thus, it holds that 67

S (p)(t) and S (q)(t) form a µ-basis for P(t). Indeed, we note 68

that deg(S (p)) ≤ deg(S (q)) (note that deg(p) ≤ deg(q) and S 69

is invertible because D , 0). In addition, since p(t) and q(t) 70

form a µ-basis for P(t), we have that deg(p) + deg(q) = deg(P), 71

and then deg(S (p)) + deg(S (q)) = deg(P) (note that deg(P) = 72

deg(P), and deg(S (p)) = deg(p), deg(S (q)) = deg(q)). Finally, 73

we have that 0 = P(t) · p(t) = ℘1(a1p1(t) + a2p2(t) + a3p3(t)) + 74

℘2(b1p1(t)+b2p2(t)+b3p3(t))+℘3(c1p1(t)+ca2p2(t)+c3p3(t)) = 75

P(t) · S (p). We reason similarly for S (q). Since S (p) and S (p) 76

are linearly independent we get that S (p)×S (q) = kP for some 77

non-zero constant k. From Theorem 1, we conclude that S (p) 78

and S (q) is a µ-basis for P(t). 79

We observe that clearly the reciprocal of Lemma 2 also holds. 80

3. µ-Bases of implicit monoid curves 81

In this section, efficient methods are developed to compute 82

the µ-basis either from the parametric equation or the implicit 83

equation of a given monoid curve with a point P of high multi- 84

plicity (that is, all partial derivatives of the defining polynomial 85

of the curve, till order d − 2, vanish at P). More precisely, we 86

show how to compute µ-basis from a given proper parametriza- 87

tion of a conic and in general of a monoid curve (see Theorems 88

3, 4 and 5). From the expression of the µ-basis computed, we 89

deduce that this µ-basis can be obtained directly from the im- 90

plicit equation. We observe that, from Lemma 1, the properness 91

of the parametrization can be assumed w.l.o.g (see also [20]). 92

We remind that the implicit equation and the parametric 93

equation can be derived straightforward from the µ-basis (see 94

Theorem 2). So we can represent the plane curve using its µ- 95

basis instead. 96

Finally, we briefly consider the problem of computing “ap- 97

proximate µ-basis". More precisely, using [17], we show how 98

to compute µ-basis for an input curve not necessarily rational 99

and having an ε–point of maximum multiplicity. 100

1
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To start with, let C be a projective conic with ground field K1

(an algebraically closed field), implicitly defined by an homo-2

geneous polynomial F( x ) of degree 2, where x = (x1, x2, x3).3

By well–known techniques in linear algebra, we can find a lin-4

ear change of coordinates over K transforming the conic C to a5

conic of the form F( x ) = a1x2
1 + a2x2

2 − a3x2
3, where ai ∈ K.6

Furthermore, we may assume w.l.o.g that a1 · a2 , 0. Let us7

denote this new conic also as C. Under these conditions, we8

consider a rational proper parametrization of C,9

P : K 99K C ⊂ P2(K)
t 7−→ (℘1(t) : ℘2(t) : ℘3(t)), (1)

where gcd(℘1, ℘2, ℘3) = 1. Note that any proper parametriza-10

tion has deg(P) = 2 (see Chapter 4 in [23]).11

Theorem 3. It holds that12

p(t) = (a1℘
′
1(t), a2℘

′
2(t),−a3℘

′
3(t))

q(t) = (a1(2℘1(t)−t℘′1(t)), a2(2℘2(t)−t℘′2(t)),−a3(2℘3(t)−t℘′3(t)))

form a µ-basis for any conic parametrization P(t) = (℘1(t) :13

℘2(t) : ℘3(t)).14

Proof. Since F(P) = 0 and ∇(F(P))P′(t) = 0, we get that15

(a1℘1)℘1 + (a2℘2)℘2 + (−a3℘3)℘3 = (a1℘
′
1)℘1 + (a2℘

′
2)℘2 +16

(−a3℘
′
3)℘3 = 0. From these equalities we get that a1(2℘1(t) −17

t℘′1(t))℘1 + a2(2℘2(t) − t℘′2(t))℘2 − a3(2℘3(t) − t℘′3(t))℘3 = 0.18

Therefore, P · p = P · q = 0. In addition, since deg(℘i) ≤19

2, i = 1, 2, 3 and deg(℘ j) = 2 for some j = 1, 2, 3, we20

have deg(2℘i − t℘′i) ≤ 1 and deg(2℘ j − t℘′j) = 1 for some21

j = 1, 2, 3. Thus, deg(p) = deg(q) = 1 and this implies that22

deg(p)+deg(q) = deg(P) = 2. Hence statement 1 in Theorem 123

holds and we get that p(t) = (a1℘
′
1(t), a2℘

′
2(t),−a3℘

′
3(t)), q(t) =24

(a1(2℘1(t)−t℘′1(t)), a2(2℘2(t)−t℘′2(t)),−a3(2℘3(t)−t℘′3(t))) form25

a µ-basis for any parametrization P(t).26

Remark 1. This theorem can also be obtained using theory of27

Rees Algebra by computing certain minimal set of generators28

(see Theorem 2.10 in [2]) when we focus the same monoid curve29

case. Here, we prefer to give a straightforward proof. Notice30

that here, by the formula one can find a µ-basis from the implicit31

equation without parameterizing.32

It is easy to prove that33

P(t) = (℘1(t) : ℘2(t) : ℘3(t)) =

(
2t

√
a3

a1
: (t2 − 1)

√
a3

a2
: t2 + 1

)

is a rational proper parametrization of C. Remind that any34

proper parametrization of C is expressed as P(R(t)), where35

R(t) ∈ K(t) \K, deg(R) = 1. In this case, we get the following36

corollary.37

Corollary 1. It holds that

p(t) = (
√

a1a3,
√

a2a3t,−a3t),q(t) = (
√

a1a3t,−√a2a3,−a3)

form a µ-basis for the parametrization

P(t) = (2t
√

a3/a1 : (t2 − 1)
√

a3/a2 : t2 + 1).

Since x · p = x · q = 0, for x ∈ C and where p(t),q(t) 38

form the µ-basis of Corollary 1, we also can easily compute an 39

inverse of the input proper parametrization (see the results con- 40

cerning the computation of the inverse presented in [20]). We 41

remind that the inverse is unique modulo the implicit equation 42

defining the algebraic plane curve. More precisely, we get the 43

following corollary. 44

Corollary 2. It holds that −√a1a3 x1√
a2a3 x2−a3 x3

is an inverse of P(t). In 45

addition,
√

a2a3 x2+a3 x3√
a1a3 x1

is another inverse of P(t). 46

Remark 2. Using Lemmas 1 and 2 and Corollary 1, one gets 47

a µ-basis for any proper parametrization P(t) of any conic C 48

generally defined by an irreducible homogeneous polynomial 49

of the form F( x ) = a1x2
1 + a2x1x2 + a3x2

2 + a4x1x3 + a5x2x3 + 50

a6x2
3, ai ∈ K. 51

Example 1. We consider the conic defined by the implicit ho- 52

mogeneous polynomial −x2
1 + 4x1x2 − x2

2 + 2x2
3. By well-known 53

techniques in linear algebra, we can find a linear change of co- 54

ordinates transformation T ( x ) = (x1
√

2/2−x3
√

2/2, x1
√

2/2+ 55

x3
√

2/2, x2), that transforms the input conic to the conic C 56

defined by the polynomial F( x ) = x2
1 + 2x2

2 − 3x2
3. From 57

Corollary 1, we get that p(t) = (
√

3, t
√

6,−3t) and q(t) = 58

(t
√

3,−√6,−3) form a µ-basis for the parametrization P(t) = 59

(2t
√

3 :
√

6/2(t2 − 1) : t2 + 1) of the curve C. Using 60

Lemma 2 with the linear transformation S ( x ) = (x1
√

2/2 + 61

x2
√

2/2), x3,−x1
√

2/2 + x2
√

2/2) that can be easily derived 62

from S ( x ), one gets the µ-basis 63

(
√

2/2(
√

3 + 3t),
√

2/2(
√

3 − 3t), t
√

6),

(
√

6/2(t +
√

3),−
√

6/2(−t +
√

3),−
√

6)

for the input conic defined by the irreducible homogeneous 64

polynomial −x2
1 + 4x1x2 − x2

2 + 2x2
3. In addition (from Theo- 65

rem 2), for the input conic we get the parametrization 66

(
(−
√

2/2(−t +
√

3 −
√

2)(−t +
√

3 +
√

2) :

√
2/2(t +

√
3 +
√

2)(t +
√

3 −
√

2) :
√

6/2(t − 1)(t + 1)
)
.

It is well-known that we can find a linear change of coordi- 67

nates over K transforming the irreducible conic C to a conic of 68

the form F( x ) = f2(x1, x2) + x3 f1(x1, x2), where fi(x1, x2) are 69

homogeneous polynomials of degree i. Note that we have as- 70

sumed that C passes through the origin. Under these conditions, 71

we have that 72

P(t) = (℘1(t) : ℘2(t) : ℘3(t)) = (−t f1(t, 1),− f1(t, 1), f2(t, 1))

is a proper parametrization of C (see Section 4.6 in [23]). 73

In the following, we denote by gz the derivative of a certain 74

polynomial g with respect to the variable z. If g is a univariate 75

polynomial, we will use the notation g′ to represent the first 76

derivative of the polynomial g w.r.t the variable. 77

1
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Theorem 4. For a conic curve defined by f2(x1, x2) +

x3 f1(x1, x2) = 0, it holds that

p(t) = (1,−t, 0)

q(t) = ( f x1
2 (t, 1), f x2

2 (t, 1), t f x1
1 (t, 1) + f1(t, 1) + f x2

1 (t, 1))

form a µ-basis for P(t) = (−t f1(t, 1),− f1(t, 1), f2(t, 1)).1

Proof. Let us use statement 1 in Theorem 1 to prove the theo-2

rem. For this purpose, we first note that deg(p) = deg(q) = 13

and thus deg(p)+deg(q) = deg(P). In addition, P·p = 0. Then,4

it suffices to prove that P · q = 0.5

Since F(P) = 0, we get that ∇(F(P))P′(t) = 0 which implies6

that7

0 = ( f x1
2 (−t f1(t, 1),− f1(t, 1)) +8

f2(t, 1) f x1
1 (−t f1(t, 1),− f1(t, 1)))(− f1(t, 1) −9

t f ′1(t, 1)) + ( f x2
2 (−t f1(t, 1),− f1(t, 1)) +10

f2(t, 1) f x2
1 (−t f1(t, 1),− f1(t, 1)))(− f ′1(t, 1)) +11

f1(−t f1(t, 1),− f1(t, 1)) f ′2(t, 1).12

Then 0 = (− f1(t, 1) f x1
2 (t, 1) + f2(t, 1) f x1

1 (t, 1))(− f1(t, 1) −13

t f ′1(t, 1)) + (− f1(t, 1) f x2
2 (t, 1) + f2(t, 1) f x2

1 (t, 1))(− f ′1(t, 1)) −14

f1(t, 1)2 f ′2(t, 1) (note that f x1
1 , f x2

1 ∈ K since deg( f1) = 1).15

Hence, using that f x1
j (t, 1) = f ′j (t, 1), j = 1, 2, and dividing16

the equality by f ′1(t, 1), we get that 0 = f x1
2 (t, 1)t f1(t, 1) +17

f x2
2 (t, 1) f1(t, 1) − f2(t, 1)( f1(t, 1) + t f ′1(t, 1) + f x2

1 (t, 1)) which18

implies that P · q = 0.19

20

Remark 3.21

1. Using Lemmas 1 and 2 and Theorem 4, one gets a µ-basis22

for any proper parametrization P(t) of any conic C gener-23

ally defined by F( x ) = a1x2
1 + a2x1x2 + a3x2

2 + a4x1x3 +24

a5x2x3 + a6x2
3.25

2. Reasoning as in Corollary 2, we can easily compute the26

inverse of the input parametrization from the µ-basis ob-27

tained in Theorem 4.28

3. We observe that although the µ-basis is defined for para-29

metric equations, we can also design µ-basis for implicit30

equations since the expressions obtained in Theorem 4 can31

be directly obtained from the implicit equation defining the32

conic.33

Theorem 4 can be generalized to plane curves having a point34

of maximum multiplicity. More precisely, in the following we35

assume we have a plane irreducible curve C of degree d where36

(0 : 0 : 1) is a point of multiplicity d − 1 (if (0 : 0 : 1) is not37

the point of maximum multiplicity, we consider a linear change38

of coordinates). Thus, we get that C is implicitly defined as39

F( x ) = fd(x1, x2) + x3 fd−1(x1, x2). Under these conditions, we40

have that41

P(t) = (℘1(t) : ℘2(t) : ℘3(t)) = (−t fd−1(t, 1),− fd−1(t, 1), fd(t, 1))

is a proper parametrization of C (see Section 4.6 in [23]).42

Theorem 5. For a planar curve defined by fd(x1, x2) +

x3 fd−1(x1, x2) = 0, it holds that

p(t) = (1,−t, 0),

q(t) = ( f x1
d (t, 1), f x2

d (t, 1), t f x1
d−1(t, 1) + fd−1(t, 1) + f x2

d−1(t, 1))

form a µ-basis for P(t) = (−t fd−1(t, 1),− fd−1(t, 1), fd(t, 1)). 43

Proof. Let us use statement 1 in Theorem 1 to prove the the- 44

orem. For this purpose, we first note that deg(p) = 1 and 45

deg(q) = d − 1 and thus deg(p) + deg(q) = deg(P) = d. In 46

addition, P · p = 0. Then, we only have to prove that P · q = 0. 47

Since F(P) = 0, we get that ∇(F(P))P′(t) = 0 which implies 48

that 49

0 = ( f x1
d (−t fd−1(t, 1),− fd−1(t, 1)) + 50

fd(t, 1) f x1
d−1(−t fd−1(t, 1),− fd−1(t, 1)))(− fd−1(t, 1) − 51

t f ′d−1(t, 1)) + ( f x2
d (−t fd−1(t, 1),− fd−1(t, 1)) + 52

fd(t, 1) f x2
d−1(−t fd−1(t, 1),− fd−1(t, 1)))(− f ′d−1(t, 1)) + 53

fd−1(−t fd−1(t, 1),− fd−1(t, 1)) f ′d(t, 1). 54

Then, 0 = (− fd−1(t, 1) f x1
d (t, 1) + fd(t, 1) f x1

d−1(t, 1))(− fd−1(t, 1) − 55

t f ′d−1(t, 1))+(− fd−1(t, 1) f x2
d (t, 1)+ fd(t, 1) f x2

d−1(t, 1))(− f ′d−1(t, 1))− 56

fd−1(t, 1)2 f ′d(t, 1). Hence, using that f x1
j (t, 1) = f ′j (t, 1), j = 57

d − 1, d, and dividing the equality by f ′d−1(t, 1), we get that 58

0 = f x1
d (t, 1)t fd−1(t, 1) + f x2

d (t, 1) fd−1(t, 1) − fd(t, 1)( fd−1(t, 1) + 59

t f ′d−1(t, 1) + f x2
d−1(t, 1)) which implies that P · q = 0. 60

Note that we have the parallel discussions in Remark 3 for the 61

general case but with Theorem 5 instead. More precisely and 62

what is more important, using Lemmas 1 and 2 and Theorem 5, 63

one gets a µ-basis for any curve C having a point of maximum 64

multiplicity. Note that we can compute the µ-basis from the 65

implicit or from the parametric equations (see Section 5). 66

3.1. Numerical µ-bases for implicit monoid curves 67

For the numerical µ-basis, there is only one initial ideal was 68

tested but no error estimation is given [24]. It is expected that 69

a different choice for the approximation criteria will lead to a 70

different specification for the approximate µ-basis. We here in- 71

troduce a different criteria. Namely, we could say that given a 72

curve C implicitly defined by F( x ) with an approximate point 73

of maximum multiplicity (an ε-point of maximum multiplicity) 74

and thus not necessarily rational, we could find a µ-basis, p(t) 75

and q(t), such that p(t) × q(t) defines a rational parametriza- 76

tion P(t) describing a new rational curve C (defined by a new 77

polynomial F( x )) such that C and C are “closed" enough in the 78

sense given in [17]. Summarizing, we could compute a µ-basis, 79

p(t) and q(t), for an input curve, C, not necessarily rational. 80

To start with, we first summarize some notions and results 81

presented in [17]. To be more precise, we first introduce the 82

notion of ε–singularity. We assume that P = (a, b, 1) although 83

we reason similarly for points of the form P = (a, 1, b) or P = 84

(1, a, b). In addition, we use || · || that denotes the∞–norm. More 85

precisely, as the implicit equation defines univocally a plane 86

curve up to a non-zero constant, we need to normalize it by 87

considering ‖F(x1, x2, 1)‖, were F( x ) is the defined polynomial 88

of the curve. 89

Definition 2. We say that P = (a, b, 1) is an ε-singularity of 90

multiplicity r of an algebraic plane curve defined by a polyno- 91

mial F( x ) if it holds that

∥∥∥∥∥ ∂i+ jF
∂i x1∂

j x2
(P)

∥∥∥∥∥
‖F(x1,x2,1)‖ ≤ ε for 0 ≤ i + j ≤ r − 1, 92

and

∣∣∣∣∣ ∂r F
∂i0 x1∂

j0 x2
(P)

∣∣∣∣∣
‖F(x1,x2,1)‖ > ε for some i0, j0 ∈ N with i0 + j0 = r. 93

1
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The following theorem shows that the implicit equation of the1

rational curve approximating an input not necessarily rational2

curve with an ε–singularity of maximum multiplicity can be3

obtained by Taylor expansions at the ε–singularity (see results4

in [17]). In fact, the theorem includes the result for conics as a5

particular case.6

Theorem 6. Let F( x ) be the implicit equation of a curve C of7

degree d with an ε–singularity of maximum multiplicity at P.8

Let C be the curve defined by the polynomial F( x ) = F( x ) −9

TP( x ), where TP( x ) is the Taylor expansion up to order d − 110

of F( x ) at P. Then, it holds that C is a rational curve having a11

singularity at P of maximum multiplicity. Furthermore, it holds12

that13

1. For almost all point Q ∈ C there exists a point Q ∈ C (and14

reciprocally) such that ‖Q − Q‖2 ≤
√

2ε
1

2d exp(2).15

2. C is contained in the offset region of C (and reciprocally)16

at distance 2
√

2ε
1

2d exp(2).17

Definition 3. Let F( x ) be the implicit equation of a curve C of18

degree d. We say that two polynomial vectors p(t) and q(t) form19

an ε-µ-basis of the curve C, if p(t) and q(t) form a µ-basis of a20

rational curve C that is contained in the offset region of C (and21

reciprocally) at distance ε.22

From Theorems 5 and 6 and using Definition 3, we get the fol-23

lowing theorem.24

Theorem 7. Let F( x ) be the implicit equation of a curve C of25

degree d. Let p(t) and q(t) be the µ-basis computed in Theorem26

5 for the curve C constructed in Theorem 6. It holds that p(t)27

and q(t) form a 2
√

2ε
1

2d exp(2)-µ-basis of the curve C.28

In the following example, we illustrate the above results with29

a curve C of degree d = 4 that has an ε–singularity of multiplic-30

ity d − 1 = 3.31

Example 2. Let32

F( x ) = 4445x3
1 + 321x4

2 − 2234x1x2
2 + 0.0005x2 − 0.001x1x2 −33

0.0002x2
1 − 0.00134

be the implicit equation of a curve C of degree d = 4 (see Fig-35

ure 1). Observe that C is not a rational curve but it has an36

ε–singularity of maximum multiplicity at the origin P = (0 : 0 :37

1), with ε = 2 · 10−7. Let C be the curve defined by the poly-38

nomial F( x ) = F( x ) − TP( x ) = 4445x3
1 + 321x4

2 − 2234x1x2
2,39

where TP( x ) is the Taylor expansion up to order 3 of F( x ) at40

P. Then, it holds that C is a rational curve having a singularity41

at P of maximum multiplicity.42

Let p(t) = (1,−t, 0) and q(t) = (0, 1284, 17780t3 − 8936t) be43

the µ-basis computed in Theorem 5 for the curve C. It holds that44

p(t) and q(t) form an 3.08-µ-basis of the curve C (see Theorem45

7).46

By the statement 1 in Theorem 2, we conclude that p(t) ×47

q(t) = (−4445t4 + 2234t2 : −4445t3 + 2234t : 321) is a48

parametrization of F( x ) and so an approximate parametriza-49

tion of F( x ).50

Fig. 1. Input curve (red color), output curve (black color) and both curves
around the origin

Remark 4. We observe that the space curve could be included 51

in this section. More precisely, for the univariate case, since the 52

syzygy is always free, the µ-basis exists and we can generalize 53

these results into the cases of dimension greater than two. 54

4. Minimal µ-bases of implicit monoid surfaces 55

In this section, we move to compute the minimal µ-basis ei- 56

ther from the parametric equation or the implicit equation of a 57

monoid surface. We first show how to compute µ-basis from a 58

given proper parametrization of a quadric and in general of a 59

monoid surface. From the expression of the µ-basis, a µ-basis 60

can be obtained directly from the implicit equation. Using [18], 61

we show how to compute “approximate µ-basis" for an input 62

surface not necessarily rational and having an ε–point of maxi- 63

mum multiplicity. 64

To start with, we need to introduce some preliminaries of µ-
basis for surfaces. Let

P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )), t = (t1, t2) (2)

1
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where gcd(℘1, ℘2, ℘3, ℘4) = 1, be a rational parametrization of1

a projective surfaceV with the ground field K (an algebraically2

closed field). A moving plane is a family of planes with param-3

eter pair t = (t1, t2), defined by4

L( t ) := L(x1, x2, x3; t ) := A1( t )x1 + A2( t )x2 + A3( t )x3 +5

A4( t ) = 0,6

or, in vector form L( t ) = (A1( t ), A2( t ), A3( t ), A4( t )) ∈7

K[ t ]4. A moving plane L( t ) is said to follow the rational sur-8

face P( t ) if L( t ) · P( t ) = 0. Thus the set MP := {L( t ) | L( t ) ·9

P( t ) = 0} is exactly the syzygy module syz(℘1, ℘2, ℘3, ℘4) and10

is a free module of rank 3 (see [5]).11

Definition 4. Let p( t ),q( t ), r( t ) ∈ MP be three moving planes12

following the surface defined by P( t ) such that [p,q, r] =13

kP( t ) for some nonzero constant k, where [p,q, r] is the outer14

product of p,q and r. Then {p,q, r} is a µ-basis of the rational15

surface P( t ).16

If, in addition, among all the triples of p,q and r satisfying17

that [p,q, r] = kP( t ), the total degree deg(p) + deg(q) + deg(r)18

is smallest, then p,q, r are called to form a minimal µ-basis.19

The existence of µ-basis was proved in [5] and an algorithm20

was developed to compute a weak µ-basis in [8]. The µ-basis of21

improper parametrization is discussed in [21]. However, it is an22

unsolved problem to compute a minimal µ-basis for a general23

rational surface.24

Some properties stated for curves also hold for surfaces. In25

particular, Lemmas 1 and 2.26

Remark 5. Lemma 1 can be similarly proved for a27

given rational parametrization of a surface Q( t ) =28

(℘1( t ), . . . , ℘4( t )), t = (t1, t2) with n ≥ 2. More precisely, if29

{p̃1, p̃2, p̃3} is a µ-basis for a parametrization Q( t ) and R( t ) ∈30

(K( t ) \ K)2, it holds that pi( t ) = p̃i(R( t )), i = 1, 2, 3, is a31

µ-basis for the reparametrization P( t ) = Q(R( t )) (see Defini-32

tions 4).33

Remark 6. We easily get that Lemma 2 can be simi-34

larly proved for a parametrization of a surface P( t ) =35

(℘1( t ), . . . , ℘4(t)), t = (t1, t2), and T : K4 → K4, T ( x ) =36

(a11x1 + . . . + a14x4, . . . , a41x1 + . . . + a44x4), (with x =37

(x1, . . . , x4)) invertible (see Definitions 4).38

In the following, we first show that the minimal µ-basis of a39

quadric surface are linear in the variables and then we present40

a very simple algorithm to compute the minimal µ-basis. The41

conversion between the parametric form and the implicit form42

of a quadric is thus derived.43

Similar to the curves, we consider V be a projective irre-44

ducible quadric with ground field K (an algebraically closed45

field), implicitly defined by an homogeneous polynomial,46

F(x1, x2, x3, x4), of degree 2 (see [18]). There has a linear47

change of coordinates over K transforming the quadricV onto48

a quadric of the form F( x ) = a1x2
1 + a2x2

2 + a3x2
3 − a4x2

4, where49

x = (x1, x2, x3, x4), ai ∈ K and w.l.o.g, a1 · a2 , 0. Let50

us denote this new quadric also as V. There exists a rational51

proper parametrization of the form (2) such that deg(P) = 2 (see52

e.g. [18]). Notice that there may be other proper parametriza-53

tions of higher degree (the situation is different to the case of54

curves). Under these conditions, we have the following theo- 55

rem. 56

Theorem 8. It holds that

p( t ) = (a1℘
t1
1 ( t ), a2℘

t1
2 ( t ), a3℘

t1
3 ( t ),−a4℘

t1
4 ( t )),

q( t ) = (a1℘
t2
1 ( t ), a2℘

t2
2 ( t ), a3℘

t2
3 ( t ),−a4℘

t2
4 ( t )),

r( t ) = (a1(2℘1( t )− t1℘
t1
1 ( t )− t2℘

t2
1 ( t )), a2(2℘2( t )− t1℘

t1
2 ( t )−

t2℘
t2
2 ( t )), a3(2℘3( t ) − t1℘

t1
3 ( t ) − t2℘

t2
3 ( t )),−a4(2℘4( t ) −

t1℘
t1
4 ( t ) − t2℘

t2
4 ( t )))

form a minimal µ-basis for any quadric parametrization

P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )).

Proof. Since F(P) = 0 and ∇(F(P))Pti ( t ) = 0, i = 1, 2, 57

we get that (a1℘1)℘1 + (a2℘2)℘2 + (a3℘3)℘3 + (−a4℘4)℘4 = 58

(a1℘
t1 )℘1 + (a2℘

t1 )℘2 + (a3℘
t1 )℘3 + (−a4℘

t1 )℘4 = 0 and 59

(a1℘
t2 )℘1 + (a2℘

t2 )℘2 + (a3℘
t2 )℘3 + (−a4℘

t2 )℘4 = 0. From these 60

three equalities we get that a1(2℘1( t )− t1℘
t1
1 ( t )− t2℘

t2
1 ( t ))℘1 + 61

a2(2℘2( t ) − t1℘
t1
2 ( t ) − t2℘

t2
2 ( t ))℘2 + a3(2℘3( t ) − t1℘

t1
3 ( t ) − 62

t2℘
t2
3 ( t ))℘3 − a4(2℘4( t ) − t1℘

t1
4 ( t ) − t2℘

t2
4 ( t ))℘4 = 0. There- 63

fore, P · p = P · q = P · r = 0. 64

In addition, since deg(℘i) ≤ 2, i = 1, 2, 3 and deg(℘ j) = 2 65

for some j = 1, 2, 3, we have that deg(2℘i − t1℘
t1
i − t2℘

t1
i ) ≤ 1 66

and deg(2℘ j − t1℘
t1
j − t2℘

t1
j ) = 1 for some j = 1, 2, 3. Thus, 67

deg(p) = deg(q) = deg(r) = 1 and thus deg(p)+deg(q)+deg(r) 68

is smallest. Therefore, by Definition 4, we get that p,q, r form 69

a minimal µ-basis. 70

It is easy to prove that 71

P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )) = (2t1
√

a3a4 : 72

2t2
√

a3a4 : (t2
1a1 + t2

2a2 − a3)
√

a4/a3 : t2
1a1 + t2

2a2 + a3) 73

is a rational proper parametrization of V. Remind that any 74

proper parametrization of V is expressed as P(R( t )), where 75

R( t ) ∈
(
K( t ) \K

)2
is birational. In this case, we get the fol- 76

lowing corollary. 77

Corollary 3. It holds that

p( t ) = (a1
√

a3a4, 0, t1a3
√

a4/a3 : −t1a4),
q( t ) = (0, a2

√
a3a4, t2a3

√
a4/a3,−t2a4),

r( t ) = (a1t1
√

a3a4, a2t2
√

a3a4,−a3
√

a3a4,−a3a4)

form a minimal µ-basis for P( t ) = (2t1
√

a3a4 : 2t2
√

a3a4 : 78

(t2
1a1 + t2

2a2 − a3)
√

a4/a3 : t2
1a1 + t2

2a2 + a3). 79

Since x · p = x · q = x · r = 0, where x ∈ V and 80

{p,q, r} is the µ-basis of Corollary 3, we can also compute 81

an inverse of the input proper parametrization More precisely, 82

we consider the polynomials G1( t , x ) = x · p, G2( t , x ) = 83

x · q, G3( t , x ) = x · r, and by applying elimination tech- 84

niques, for instance [6, 16], we obtain an inverse of P by solv- 85

ing the equations Gi = 0, i = 1, 2, 3 in the variables (t1, t2) (we 86

remind that the inverse is unique modulo the implicit equation 87

defining the algebraic surface). In this particular case, we have 88

the following corollary. 89

1
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Corollary 4. It holds that
(

−x1
√

a3a4

a1(x3
√

a4/a3+x4)
,

−x2
√

a3a4

a2(x3
√

a4/a3+x4)

)
is an1

inverse of P( t ).2

Remark 7. Using Remarks 5 and 6 (see Lemmas 1 and 2) and3

Corollary 3, one gets a µ-basis for any proper parametrization4

P( t ) of any quadric V implicitly defined by some irreducible5

polynomial F( x ) of degree 2.6

Example 3. We consider the quadric defined by the implicit7

homogeneous polynomial 3/2x2
1 − x1x2 + 3/2x2

2 + x2
3 − 3x2

4.8

By well-known techniques in linear algebra, we can find a lin-9

ear change of coordinates transformation T ( x ) = (1/2x1
√

2 −10

1/2x3
√

2, 1/2x1
√

2 + 1/2x3
√

2, x2, x4), that transforms the in-11

put quadric to the quadricV defined by the polynomial F( x ) =12

x2
1 + x2

2 + 2x2
3 − 3x2

4. From Corollary 3, we get that13

p( t ) = (
√

6, 0, t1
√

6,−3t1),
q( t ) = (0,

√
6, t2
√

6,−3t2),
r( t ) = (t1

√
6, t2
√

6,−2
√

6,−6)

form a µ-basis for the parametrization P( t ) = (2t1
√

6 :14

2t2
√

6 :
√

6/2(t2
1 + t2

2 − 2) : t2
1 + t2

2 + 2) of V. Using Re-15

mark 6 with the linear transformation S ( x ) = (1/2x1
√

2 +16

1/2x2
√

2, x3,−1/2x1
√

2 + 1/2x2
√

2, x4) that can be easily de-17

rived from S ( x ), one gets the µ-basis18

(−√3(−1 + t1),
√

3(1 + t1), 0,−3t1),
(−t2
√

3, t2
√

3,
√

6,−3t2),
(
√

3(2 + t1),
√

3(−2 + t1), t2
√

6,−6)

for the input quadric. In addition (from Definition 4), for the19

input quadric we get the parametrization20

(−
√

3/2(−4t1+t2
1+t2

2−2) :
√

3/2(4t1+t2
1+t2

2−2) : 2t2
√

6, t2
1+t2

2+2).

On the other hand, wee can also find a linear change of co-21

ordinates over K transforming the irreducible quadric V to a22

quadric of the form F( x ) = f2(x1, x2, x3) + x4 f1(x1, x2, x3),23

where fi(x1, x2, x3) are homogeneous polynomials of degree i.24

Note that we have assumed that V passes through the origin.25

Under these conditions, we have that26

P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t ))
= (−t1 f1( t , 1) : −t2 f1( t , 1) : − f1( t , 1) : f2( t , 1))

is a proper parametrization ofV (see e.g [18]).27

Theorem 9. For a quadric defined by f2(x1, x2, x3) +28

x4 f1(x1, x2, x3) = 0, it holds that29

p( t ) = (1, 0,−t1, 0), q( t ) = (0, 1,−t2, 0),

r( t ) = ( f x1
2 ( t , 1), f x2

2 ( t , 1), f x3
2 ( t , 1), t1 f x1

1 ( t , 1) + t2 f x2
1 ( t , 1) +

f1( t , 1) + f x3
1 ( t , 1))

form a minimal µ-basis for the parametrization

P( t ) = (−t1 f1( t , 1),−t2 f1( t , 1),− f1( t , 1), f2( t , 1)).

Proof. We first note that deg(p) = deg(q) = deg(r) = 1 and 30

P · p = P · r = 0. We only need to prove that P · r = 0 (see 31

Definition 4). 32

Since F(P) = 0, we derive w.r.t t1 (similarly if one derives 33

w.r.t t2), and get that 0 = ∇(F(P))Pt1 ( t ) = (− f1( t , 1) f x1
2 ( t , 1)+ 34

f2( t , 1) f x1
1 ( t , 1))(− f1( t , 1)− t1 f ′1( t , 1)) + (− f1( t , 1) f x2

2 ( t , 1) + 35

f2( t , 1) f x2
1 ( t , 1))(−t2 f ′1( t , 1)) + (− f1( t , 1) f x3

2 ( t , 1) + 36

f2( t , 1) f x3
1 ( t , 1))(− f ′1( t , 1)) − f1( t , 1)2 f ′2( t , 1) where 37

f ′j ( t , 1) is the derivative of the polynomial f j w.r.t. 38

t1 (note that f x1
1 , f x2

1 , f x3
1 ∈ K). Then, using that 39

f x1
j ( t , 1) = f ′j ( t , 1), j = 1, 2, and dividing the equality 40

by f ′1( t , 1), we get that 41

0 = f x1
2 ( t , 1)t1 f1( t , 1) + f x2

2 ( t , 1)t2 f1( t , 1) + f x3
2 ( t , 1) f1( t , 1)− 42

f2( t , 1)( f1( t , 1) + t1 f ′1( t , 1) + t2 f x2
1 ( t , 1) + f x3

1 ( t , 1)), 43

which implies that P · r = 0. 44

Remark 8. 45

1. Using Remarks 5 and 6 (see Lemmas 1 and 2) and Theo- 46

rem 9, one gets a µ-basis for any proper parametrization 47

P( t ) of any quadric C defined by some irreducible poly- 48

nomial F( x ). 49

2. Reasoning as in Corollary 4, we can easily compute the 50

inverse of the input parametrization from the µ-based ob- 51

tained in Theorem 9. 52

3. We can also design µ-basis for implicit equations since 53

the expressions obtained in Theorem 9 can be directly ob- 54

tained from the implicit equation defining the quadric. 55

Theorem 9 can be generalized to surfaces having a point of 56

maximum multiplicity. More precisely, in the following we as- 57

sume we have a surface V of degree d where (0 : 0 : 0 : 1) 58

is a point of multiplicity d − 1 (if (0 : 0 : 0 : 1) is not the 59

point of maximum multiplicity, we consider a linear change 60

of coordinates). Thus, we get that V is implicitly defined as 61

F( x ) = fd(x1, x2, x3) + x4 fd−1(x1, x2, x3). Under these condi- 62

tions, we have that 63

P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t ))
= (−t1 fd−1( t , 1) : −t2 fd−1( t , 1) : − fd−1( t , 1) : fd( t , 1))

is a proper parametrization ofV (see [18]). 64

Theorem 10. For a surface defined by fd(x1, x2, x3) +

x4 fd−1(x1, x2, x3) = 0, it holds that

p( t ) = (1, 0,−t1, 0), q( t ) = (0, 1,−t2, 0),

r( t ) = ( f x1
d ( t , 1), f x2

d ( t , 1), f x3
d ( t , 1), t1 f x1

d−1( t , 1) + 65

t2 f x2
d−1( t , 1) + fd−1( t , 1) + f x3

d−1( t , 1)) 66

is a minimal µ-basis for the parametrization 67

P( t ) = (−t1 fd−1( t , 1) : −t2 fd−1( t , 1) : − fd−1( t , 1) : fd( t , 1)).

Proof. We first note that deg(p) = deg(q) = 1 and deg(r) = 68

d − 1. In addition, P · p = P · q = 0. 69

To prove that P · r = 0, since F(P) = 0, we de- 70

rive w.r.t t1 (similarly if one derives w.r.t t2), and get 71

1
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that 0 = ∇(F(P))Pt1 ( t ) = (− fd−1( t , 1) f x1
d ( t , 1) +1

fd( t , 1) f x1
d−1( t , 1))(− fd−1( t , 1) − t1 f ′d−1( t , 1)) +2

(− fd−1( t , 1) f x2
d ( t , 1) + fd( t , 1) f x2

d−1( t , 1))(−t2 f ′d−1( t , 1)) +3

(− fd−1( t , 1) f x3
d ( t , 1) + fd( t , 1) f x3

d−1( t , 1))(− f ′d−1( t , 1)) −4

fd−1( t , 1)2 f ′d( t , 1) where f ′j ( t , 1) is the derivative of the poly-5

nomial f j w.r.t. t1. Then, by f x1
j ( t , 1) = f ′j ( t , 1), j = d − 1, d,6

and dividing the equality by f ′d−1( t , 1), we get that7

0 = f x1
d ( t , 1)t1 fd−1( t , 1) + f x2

d ( t , 1)t2 fd−1( t , 1) +8

f x3
d ( t , 1) fd−1( t , 1) − fd(t, 1)( fd−1( t , 1) + t1 f ′d−1( t , 1) +9

t2 f x2
d−1( t , 1) + f x3

d−1( t , 1)), which implies that P · r = 0.10

Using Lemmas 1 and 2, Remarks 5 and 6 and Theorem 10,11

one gets a µ-basis for any general surface V having a point12

of maximum multiplicity and computes the µ-basis from the13

implicit or from the parametric equations (see Section 5)14

4.1. Numerical µ-bases of implicit monoid surfaces15

For the numerical µ-basis, we generalize the results presented16

in Section 3 (Definitions 2 and 4, and Theorems 6 and 7) for the17

case of surfaces using the results in [18]. Namely, we could18

say that given a surface V implicitly defined by F( x ) with an19

approximate point of maximum multiplicity (an ε-point of max-20

imum multiplicity) and thus not necessarily rational, we could21

find µ-basis, p( t ), q( t ) and r( t ), such that [p( t ),q( t ), r( t )]22

defines a rational parametrization P( t ) of a new rational sur-23

face V (defined by a new polynomial F( x )) such that V and24

V are “closed" enough in the sense given in [18]. Summariz-25

ing, we could compute µ-basis, p( t ), q( t ) and r( t ), for an input26

surface,V, not necessarily rational.27

To start with, we first summarize some notions and results28

presented in [18]. To be more precise, we first generalize the29

notion of ε–singularity introduced in 2 for the case of surfaces.30

We assume that P = (a, b, c, 1) although we reason similarly if31

we dehomogenize in a different chart. Similarly as in the case32

of plane curves, we use || · || that denotes the ∞–norm. More33

precisely, as the implicit equation defines univocally a surface34

up to a non-zero constant, we need to normalize it by consid-35

ering ‖F(x1, x2, x3, 1)‖, were F( x ) is the defined polynomial of36

the surface.37

Definition 5. We say that P = (a, b, c, 1) is an ε–singularity of38

multiplicity r of an algebraic surface defined by a polynomial39

F( x ) if it holds that

∣∣∣∣∣ ∂i+ j+k F
∂i x1∂

j x2∂
k x3

(P)
∣∣∣∣∣

‖F(x1,x2,x3,1)‖ ≤ ε for 0 ≤ i+ j+k ≤ r−1, and40
∣∣∣∣∣ ∂r F
∂i0 x1∂

j0 x2∂
k0 x3

(P)
∣∣∣∣∣

‖F(x1,x2,x3,1)‖ > ε for some i0, j0, k0 ∈ N with i0 + j0 + k0 = r.41

The following theorem shows that the implicit equation of the42

rational surface approximating an input not necessarily rational43

surface with an ε–singularity of maximum multiplicity can be44

obtained by Taylor expansions at the ε–singularity (see results45

in [18]). In fact, the theorem includes the result for quadrics as46

a particular case and it is a generalization of Theorem 6.47

Theorem 11. Let F( x ) be the implicit equation of a surfaceV48

of degree d with an ε–singularity of maximum multiplicity at P.49

LetV be the surface defined by the polynomial F( x ) = F( x )−50

TP( x ), where TP( x ) is the Taylor expansion up to order d−1 of51

F( x ) at P. Then, it holds thatV is a rational surface having at 52

P a singularity of maximum multiplicity. Furthermore, it holds 53

that 54

1. For almost all point Q ∈ V there exists a point Q ∈ V 55

(and reciprocally) such that ‖Q − Q‖2 ≤
√

3ε
1

2d exp(3). 56

2. C is contained in the offset region ofV (and reciprocally) 57

at distance 3
√

3ε
1

2d exp(3). 58

Definition 6. Let F( x ) be the implicit equation of a surfaceV 59

of degree d. We say that three polynomial vectors p( t ), q( t ) 60

and r( t ) form an ε-µ-basis of the surface V, if p( t ), q( t ) and 61

r( t ) form a µ-basis of a rational surfaceV that is contained in 62

the offset region ofV (and reciprocally) at distance ε. 63

From Theorems 10 and 11 and using Definition 6, we get the 64

following theorem which generalizes Theorem 7. 65

Theorem 12. Let F( x ) be the implicit equation of a surfaceV 66

of degree d. Let p( t ), q( t ) and r( t ) be the µ-basis computed 67

in Theorem 10 for the surfaceV constructed in Theorem 11. It 68

holds that p( t ), q( t ) and r( t ) form an 3
√

3ε
1

2d exp(3)-µ-basis 69

of the surfaceV. 70

Example 4. Let 71

F( x ) = 4587775x3
1 + 24841x4

2 − 243324x1x2
2 + 345896x4

3 + 72

0.0005x3 + 0.0005x1 − 0.0001x1x3 − 0.0002x2
3 − 0.0001 73

be the implicit equation of a surface V of degree d = 4 (see 74

Figure 2). One may check thatV is not a rational surface but it 75

has an ε–singularity of maximum multiplicity at the origin P = 76

(0 : 0 : 0 : 1), with ε = 2·10−11. LetV be the surface defined by 77

the polynomial F( x ) = F( x )−TP( x ) = 4587775x3
1+24841x4

2− 78

243324x1x2
2 + 345896x4

3, where TP( x ) is the Taylor expansion 79

up to order 3 of F( x ) at P. Then, it holds that V is a rational 80

surface having a singularity at P of maximum multiplicity. 81

Let p(t) = (1, 0,−t1, 0), q(t) = (0, 1,−t2, 0) and r(t) = 82

(0, 99364t3
2, 1383584, 18351100t3

1 − 973296t1t2
2) be the µ-basis 83

computed in Theorem 10 for the surface V. It holds that p(t), 84

q(t) and r(t) form an 4.851-µ-basis of the surfaceV (see Theo- 85

rem 12). 86

By Definition 4, we conclude that [p,q, r] = (−4587775t4
1 + 87

243324t2
1t2

2 : −4587775t2t3
1 + 243324t1t3

2 : −4587775t3
1 + 88

243324t1t2
2 : 24841t4

2 + 345896) is a parametrization of F( x ) 89

and so an approximate parametrization of F( x ). 90

5. Algorithms and examples 91

In this section, we present two general algorithms and we il- 92

lustrate them with examples. More precisely, the first algorithm 93

compute a µ-basis for a plane curve C (defined implicitly or 94

parametrically) having a point of maximum multiplicity. Simi- 95

larly, the first algorithm compute a µ-basis for a surfaceV (de- 96

fined implicitly or parametrically) having a point of maximum 97

multiplicity. These algorithms are based on Lemmas 1 and 2, 98

Remarks 5 and 6 and Theorems 5 and 10. 99

1
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Fig. 2. Input surface (red color with 25% transparency), output surface
(blue color with 25% transparency), both surfaces in same figure and en-
larged surfaces near the origin

Algorithm 1 (Compute a µ-Basis for a Monoid Curve).1

Input a plane algebraic monoid curve C.2

Output a µ-basis of a parametrization Q(t).3

Steps4

1. If C is defined implicitly:5

1.1. Apply a linear change of coordinates T ( x ) such that6

the new curveD has in (0 : 0 : 1) a point of maximum7

multiplicity. ThusD is defined as F( x ) = fd(x1, x2)+8

x3 fd−1(x1, x2).9

1.2. Compute
p(t) = (1,−t, 0),

q(t) = ( f x1
d (t, 1), f x2

d (t, 1), t f x1
d−1(t, 1) + fd−1(t, 1) +10

f x2
d−1(t, 1))11

that form a µ-basis for the proper12

parametrization of D defined as P(t) =13

(−t fd−1(t, 1),− fd−1(t, 1), fd(t, 1)).14

1.3. Let S ( x ) computed from T ( x ) as in Lemma 2. Re- 15

turn S (p)(t), S (q)(t) form a µ-basis for the proper 16

parametrization of C defined as Q(t) := S (P)(t). 17

2. If C is defined parametrically by Q(t): 18

2.1. Apply a linear change of coordinates T ( x ) such that
the new curveD has in (0 : 0 : 1) a point of maximum
multiplicity. ThusD is defined as

P(t) = (−r1 fd−1(r1, r2),− fd−1(r1, r2), fd(r1, r2)),

where R(t) := r1/r2 ∈ K(t) \K. 19

2.2. Compute
p(t) = (1,−r1, 0),

q(t) = ( f x1
d (r1, r2), f x2

d (r1, r2), r1 f x1
d−1(r1, r2) + 20

fd−1(r1, r2) + f x2
d−1(r1, r2)) 21

that form a µ-basis for P(t). 22

2.3. Let S ( x ) computed from T ( x ) as in Lemma 2. Re- 23

turn S (p)(t), S (q)(t) form a µ-basis for the input 24

parametrization Q(t). 25

Remark 9. • In order to determine if C has a point P with 26

the multiplicity d−1. If C is defined implicitly by a polyno- 27

mial of degree d, one check whether all partial derivatives 28

of the defining polynomial of the curve, till order d − 2, 29

vanish at P. If C is defined parametrically, one may apply 30

the results in [19]. 31

• Observe that the parametrization obtained in Step 2.1 is 32

not necessarily the used in Theorem 5 but with a change of 33

variable r(t) ∈ K(t) \K. 34

• The output parametrization in Step 1.3 can also be com- 35

puted using Theorem 2. 36

Example 5. We consider the curve of degree d = 3 defined by
the implicit homogeneous polynomial

x3
1 − 2x3x2

1 + x2
3x1 + x3

2 + x2
1x2 − 2x2x1x3 + x2

3x2 − 3x3x2
2.

We have that (1 : 0 : 1) is a point of multiplicity 2 of this 37

curve. Thus, we consider the linear change of coordinates 38

transformation T ( x ) = (x1 − x3, x2, x3) which transforms the 39

given input curve onto the curve C defined by the polynomial 40

F( x ) = f3(x1, x2) + x3 f2(x1, x3) = x3
1 + x3

2 + x2
1x2 + x3(x2

1 − 3x2
2) 41

(Step 1.1 in Algorithm 1). Observe that (0 : 0 : 1) is a point of 42

multiplicity 2 of C. 43

From Theorem 5 (Step 1.2 in Algorithm 1), we get that p(t) = 44

(1,−t, 0) and q(t) = (3t2 + 2t, t2 + 3, 3t2 − 9) is a µ-basis for the 45

parametrization P(t) = (−t(t2 − 3) : −t2 + 3 : t3 + t2 + 1) of C. 46

One can get S ( x ) = (x1 − x3, x2, x3) from T ( x ) (see Lemma 2), 47

and we obtain the µ-basis (1,−t,−1), (3t2 + 2t, t2 + 3,−2t − 9) 48

for the input curve. In addition (from Theorem 2), for the input 49

curve we get the parametrization (3t+t2 +1 : −t2 +3 : t3 +t2 +1) 50

(Step 1.3 in Algorithm 1). 51

Algorithm 2 (Compute a µ-Basis for a Monoid Surface). 52

Input an algebraic monoid surfaceV. 53

Output a µ-basis of a parametrization Q( t ). 54

Steps 55

1
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1. IfV is defined implicitly:1

1.1. Apply a linear change of coordinates T ( x ) such that2

the new surface W has in (0 : 0 : 0 : 1) a point of3

maximum multiplicity. ThusW is defined as F( x ) =4

fd(x1, x2, x3) + x4 fd−1(x1, x2, x3).5

1.2. Compute

p( t ) = (1, 0,−t1, 0), q( t ) = (0, 1,−t2, 0),

r( t ) = ( f x1
d ( t , 1), f x2

d ( t , 1), f x3
d ( t , 1), t1 f x1

d−1( t , 1) +6

t2 f x2
d−1( t , 1) + fd−1( t , 1) + f x3

d−1( t , 1))7

that form a µ-basis for the proper parametrization of8

W defined as P( t ) = (−t1 fd−1( t , 1) : −t2 fd−1( t , 1) :9

− fd−1( t , 1) : fd( t , 1)).10

1.3. Let S ( x ) computed from T ( x ) as in Remark 6. Re-11

turn S (p)( t ), S (q)( t ), S (r)( t ) form a µ-basis for the12

proper parametrization of V defined as Q( t ) :=13

S (P)( t ).14

2. IfV is defined parametrically by Q( t ):15

2.1. Apply a linear change of coordinates T ( x ) such16

that the new curve W has in (0 : 0 : 0 : 1) a17

point of maximum multiplicity. Thus W is defined18

as P( t ) = (−r1 fd−1(r1, r2, r3) : −r2 fd−1(r1, r2, r3) :19

− fd−1(r1, r2, r3) : fd(r1, r2, r3)),20

where R( t ) := (r1/r3, r2/r3) ∈ (K( t ) \K)2.21

2.2. Compute

p( t ) = (1, 0,−r1, 0), q( t ) = (0, 1,−r2, 0),

r( t ) = ( f x1
d (r1, r2, r3), f x2

d (r1, r2, r3), f x3
d (r1, r2, r3),22

r1 f x1
d−1(r1, r2, r3) + r2 f x2

d−1(r1, r2, r3) + fd−1(r1, r2, r3) +23

f x3
d−1(r1, r2, r3))24

that form a µ-basis for P( t ).25

2.3. Let S ( x ) computed from T ( x ) as in Remark 6. Re-26

turn S (p)( t ), S (q)( t ), S (r)( t ) form a µ-basis for the27

parametrization Q( t ).28

Remark 10. • Similarly to the curves, one can determine if29

V has a point P with the maximum multiplicity. If V is30

defined implicitly by a polynomial of degree d, one check31

whether all partial derivatives of the defining polynomial32

of the surface, till order d − 2, vanish at P. IfV is defined33

parametrically, one may apply the results in [22].34

• The parametrization obtained in Step 2.1 is not necessar-35

ily the used in Theorem 10 but with a change of variable36

R( t ) ∈ (K( t ) \K)2.37

• The output parametrization in Step 1.3 can also be com-38

puted using Definition 4.39

Example 6. We consider the surfaceV defined by the rational40

parametrization41

Q( t ) = (3t1t3
2 + t1 + t3

2 + 4 : −t2t3
1 + 3t4

2 + t2 + t4
1 + t3

2 + 4 :42

−t3
1 + 3t3

2 + 1 : t4
1 + t3

2 + 4).43

We have that (1 : 1 : 0 : 1) is a point of multiplicity 3 of this44

surface which has degree d = 4 (see [22]). Thus, we consider45

the linear change of coordinates transformation T ( x ) = (x1 −46

x4, x2− x4, x3, x4) which transforms the given input surface onto47

the surfaceW defined by the parametrization P( t ) = (−t1(t3
1 − 48

3t3
2 −1) : −t2(t3

1 −3t3
2 −1) : −t3

1 + 3t3
2 + 1 : t4

1 + t3
2 + 4) (Step 2.1 in 49

Algorithm 2). Observe that P( t ) has the standard proper form 50

and that (0 : 0 : 0 : 1) is a point of multiplicity 3 ofW. 51

From Theorem 10 (Step 2.2 in Algorithm 2), we get that 52

p(t) = (1, 0,−t1, 0), q(t) = (0, 1,−t2, 0) and r(t) = (4t3
1, 3t2

2, t
3
2 + 53

16, 4t3
1 − 12t3

2 − 4) is a µ-basis for the parametrization P( t ) 54

of W. One can get S ( x ) = (x1, x2, x3, x4 − x1 − x2) from 55

T ( x ) (see Remark 6), and we obtain the µ-basis (1, 0,−t1,−1), 56

(0, 1,−t2,−1) and (4t3
1, 3t2

2, t
3
2 + 16,−3t2

2 −12t3
2 −4) for the input 57

parametrization Q( t ) (Step 2.3 in Algorithm 2). 58

6. Conclusion 59

The µ-basis has shown some interesting and useful propo- 60

sitions. However, there are two aspects, finding µ-bases from 61

implicit equations and computing in approximate way, need 62

much more attentions. We derive the explicit µ-bases for im- 63

plicit monoid curves and surfaces including conics and quadrics 64

defined implicitly or by any rational parametrization (not neces- 65

sarily in standard proper form). The way is based on the simple 66

investigations and basic algebraic results, hence the computa- 67

tions are efficient. The technique introduces only linear trans- 68

formation and so the proposed methods can be naturally gen- 69

eralized to deal with the numerical situations. By combining 70

the current technique on ε-singularity analysis, we can find the 71

approximate µ-bases. More important, we propose the error es- 72

timation formula while only one paper gave tentative definitions 73

of approximate µ-bases before. 74
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