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Abstract: Let S be a rational projective surface given by means of a projective rational parametrization
whose base locus satisfies a mild assumption. In this paper we present an algorithm that provides
three rational maps f , g, h : A2 S ⊂ Pn such that the union of the three images covers S. As a
consequence, we present a second algorithm that generates two rational maps f , g̃ : A2 S, such
that the union of its images covers the affine surface S ∩An. In the affine case, the number of rational
maps involved in the cover is in general optimal.
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1. Introduction

Rational parametrizations of algebraic varieties are an important tool in many geo-
metric applications like those in computer aided design (see, e.g., [1,2]) or computer vision
(see, e.g., [3,4]). Nevertheless, the applicability of this tool can be negatively affected if the
parametrization is missing basic properties: for instance its injectivity, its surjectivity, or the
nature of the ground field where the coefficients belong to; see, e.g., the introductions of
the papers [5–7] for some illustrating examples of this phenomenon.

Let us mention here some illustrating situations of this phenomenon; for more detailed
examples, we refer the reader, e.g., to the introductions of the papers [5–7]. Let us say
that we are given a rational parametrization P(t) of a curve that describes the possible
positions that a given robot may achieve. Now, for a position P in the affine space, we want
to detect the value t0 of the parameter t such that P(t0) = P. If the parametrization P is not
injective, the answer may contain unnecessary information, for instance several parameter
values for the same goal, and hence the computation time may not be optimal. On the other
hand, if the parametrization is not surjective the situation can be worse because the point P
may be on the trajectory curve, but not be reachable via the given parametrization for any
parameter value. In addition, if the parametrization has complex non-real coefficients, it
would be unnecessarily complicated to detect the real point positions of the robot.

These types of problems have been addressed by different authors from the theoretical
and computational points of view. For the optimality of the ground field we refer to [8–10]
where the notions of hypercircle and ultraquadric were introduced to approach the problem.
In the case of the injectivity, the answer is based on Lüroth’s theorem for the case of curves
(see, e.g., [11]) and on Castelnuovo’s theorem for the case of surfaces (see, e.g., [12]).
Computationally, the injectivity problem has also been studied and there are different
approaches; for the case of curves, we refer to [13–15], andfor the case of surfaces, we
refer to [14,16,17]. It is worth mentioning that, up to our knowledge, the determination of
injective surface re-parametrizations is still an open problem.

In this paper we focus on the third problem, namely, the surjectivity of rational
parametrizations. Surjective parametrizations, also called normal parametrizations, have
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been studied extensively but many important questions, both theoretical and computa-
tional, still remain open. The case of curves, over algebraically closed fields of characteristic
zero, is comprehensively understood, and one can always find a surjective, indeed also
injective, affine parametrization of the affine algebraic curve (see, e.g., [11,18–20]). Fur-
thermore, the case of curves defined over the field of the real numbers is also studied and
characterized in [20].

The situation, as usually happens, turns to be much more complicated when deal-
ing with surfaces. In [21,22] the first steps in this direction were given and answers for
certain types of surfaces, like quadrics, were provided. Also, in [23] the relation of the
polynomiality of parametrizations to the surjectivity was analyzed. Nevertheless, in [24]
it is shown that there exist rational surfaces that cannot be parametrized birationally and
surjectively. As a consequence of this fact, the question of whether every rational surface
can be covered by the union of the images of finitely many birational parametrizations is
of interest. The answer is positive and can be deduced from the results in [25]. In previous
papers, the second, the third and the fourth authors have studied this problem for special
types of surfaces. In [5] the unreachable points of parametrizations of surfaces of revolution
are characterized. In [7] it is proved that ruled surfaces can be covered by using two
rational parametrizations. In addition, in [6] an algorithm to cover an affine rational surface
without based points at infinity with at most three parametrizations is presented.

In this paper we continue the research described above and we present two main
algorithmic and theoretical results. Moreover, we provide an algorithm that, for any
projective surface parametrization, generates a cover of the projective surface with three
parametrizations, assuming that, either the base locus of the input is empty, or the Jacobian
of the input parametrization, specialized at each base point, has rank two. As a consequence
of this result, we also present an algorithm that, for a given affine parametrization whose
projectivization satisfies the condition on the base points mentioned above, returns a cover
of the affine surface with two affine parametrizations.

Taking into account the results in [24], the affine cover presented in this paper is,
in general, optimal. Furthermore, it improves the results in [6] and extends the results
in [7] to a much more general class of surfaces. With respect to the projective cover case,
although theoretically interesting, we cannot ensure that the number of parametrizations
involved in the cover is optimal for a generically large class of projective surfaces since,
for instance, the whole projective plane can be covered with just two maps from the
affine plane as the following example shows. We leave this theoretical question open as
future reseach.

Example 1. Consider the following two maps:

f : A2 → P2

(s, t) 7→ (1 : s : t)
,

g : A2 → P2

(s, t) 7→ (s(1− s) : t : (1− s)2)

Then for any point P := (x : y : z) ∈ P2, if x 6= 0 then P := f
( y

x , z
x
)
; if x = 0 6= z then

P := g
(
0, y

z
)
; and if x = z = 0 then P := g(1, y), y 6= 0. This means that we can cover the whole

projective plane with just two maps from the affine plane.

The paper is structured as follows. In Section 2, we introduce some notation and we
briefly recall some notions and results that will be used throughout the paper. In Section 3,
we present the projective cover algorithm and in Section 4 we illustrate the result by means
of some examples. In Section 5, we apply the results in Section 3 to derive the two affine
parametrization cover algorithm.

2. Preliminaries

In this section, we briefly recall some concepts and results that will be used in the
subsequent sections. We essentially recall some results on the fundamental locus of rational
maps and some consequences and the characterization of zero dimensional ideals via
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Gröbner bases. Throughout this paper K is an algebraically closed field of characteristic
zero, and Pn the projective space over K. Moreover, we denote by Ai the affine space
{(x0 : · · · : xn) ∈ Pn, | xi 6= 0}. In the examples, the field K will be the field C of the
complex numbers.

Let X be an irreducible projective variety and let f : X Pn be a rational map.
The fundamental locus of f is the algebraic set F( f ) of points to which f cannot be extended
regularly. Any P ∈ F( f ) is called a fundamental point of f . The following theorem analyzes
the dimension of the fundamental locus.

Theorem 1. (Lemma V.5.1 [12]) Let X be a smooth irreducible projective variety and let f :
X Pn be a rational map generically finite. The fundamental locus of f has codimension at least 2
in X.

Corollary 1. Let X be a smooth irreducible surface and f as in Theorem 1. F( f ) is either empty or
zero dimensional.

The traditional way for solving indeterminacies in algebraic geometry consists in blow-
ing up fundamental points (see, e.g., IV.3.3 [26]) and composing with the corresponding
map as the next theorem shows.

Theorem 2. (Example II.7.17.3 [12] or Theorem II.7 [27]) Let X be a smooth surface. Let f : X
Pn be a rational map. Then there exists a commutative diagram

Y

X Pn

g
||

h
""f
//

where g is a composite of blowups involving fundamental points of f and h is a morphism.

A first consequence of Theorem 2 is the following.

Corollary 2. (Corollary 2.5 [24]) Let X and f be as in Theorem 2. For any fundamental point P of
f , h(g−1(P)) is a connected finite union of rational curves.

Remark 1. Let f : P2 Pn be as in Theorem 2, and let S be the Zariski closure of f (P2) in Pn.
The complementary in S of the f (A2) is, according to Theorem 2, contained in h(g−1(F( f )∪ L∞)),
where L∞ = P2 − A2. Such a subset consists of some rational curves and, if f contracts L∞,
a closed point (see Corollary 2.5 [24]).

We end this section with a well-known result on elimination theory that will be used
in Section 3.

Theorem 3. (Chapter 5, Theorem 6 [28]) Let I be an ideal in K[x1, .., xn]. Then, the following
statements are equivalent:

1. The algebraic subset of Kn defined by I is a finite set.
2. Let B be a Gröbner basis for I with respect to a fixed monomial ordering. Then, for each

1 ≤ i ≤ n, there is some mi ∈ N such that xmi
i is the leading monomial of an element of B.

3. Covering Projective Surfaces with Three Parametrizations

Throughout this section, let S ⊂ Pn be a rational projective surface and let

F = (F0 : · · · : Fn) : P2 S ⊂ Pn
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be a (not necessarily birational) parametrization of S, given by n + 1 homogeneous coprime
polynomials F0, ..., Fn where the nonzero polynomials have degree d. In addition, let the
homogeneous ideal I = (F0, ..., Fn)K[x0, x1, x2] be called the fundamental ideal associated
to F.

Since the polynomials defining F are coprime, by Corollary 1, I defines a closed
algebraic subset A of P2 that is either empty or consists of a finite amount of points.
If A = ∅, then F defines a regular map and its restrictions to each of the three affine
planes Ai = {(x0 : x1 : x2) | xi 6= 0} covering P2 define 3 charts that cover S, since the
image of a projective variety by a regular map is always Zariski closed. Otherwise, say
A = {P1, ..., Pk}; we need to make the following assumption:

(∗) If A 6= ∅, then for every P ∈ A := {P1, . . . , Pk} the Jacobian matrix of F at P has
rank 2.

Note that (∗) guarantees that I does not define multiple points (i.e. the base points of
F are simple). We also assume without loss of generality that:

(a) no Pj is in any of the lines {x0 = 0}, {x1 = 0} and {x2 = 0},
(b) no pair {Pi, Pj}, i 6= j, is aligned with any of the coordinate points (1 : 0 : 0), (0 : 1 : 0)

and (0 : 0 : 1).

We observe that the real constraint lays in (∗), since conditions (a) and (b) are satisfied
after a general change of coordinates. In the following remark we discuss how these
hypotheses can be computationally checked.

Remark 2.

1. Note that condition (∗) implies that the point Pj is regular in the projective scheme defined by
the ideal I. Then, the intersection multiplicity is 1 at every Pj. Now, if we consider the ideal J
defined by the 3× 3 minors of the Jacobian matrix of F, the following methods, among others,
can be applied to test (∗):
(i) Check whether the ideal I + J is zero-dimensional.
(ii) Check whether

√
I + J = (x0, x1, x2)K[x0, x1, x2] (i.e., the irrelevant ideal) or,

equivalently, whether I + J contains a power of any of the variables.
(iii) By means of resultants and gcds, using the formulas in (Theorems 2 and 3 [29]) (see

also [30]).

2. Checking (i) without explicitly determining P1, ..., Pk can be carried out by certifying that all
the ideals generated by {F0, ..., Fn, xi} (i = 0, 1, 2) either are zero-dimensional or contain a
power of the irrelevant ideal.

3. Checking (ii) can be done by computing the ideal bases B1 and B2 of Algorithm 3PatchSur-
face and checking whether they have adequate shape (see Proposition 1). However, it may be
more efficient to check that, for all i = 0, 1, 2, the gcd of all resultants of couples (F0, Fj) with
respect to xi is square free.

Now we consider the three affine planes Ai defined above. According to (a) all Pj lie
in the intersection of the three affine planes. In this situation, the strategy is as follows. We
will work with the parametrization

f := F|A0 : A0 S

as defined in A0, and we will blowup A1 and A2 at the base points of F to get new affine
planes Ã1 and Ã2 with projections Bl1 : Ã1 → A1 and Bl2 : Ã2 → A2. Now, we introduce
the compositions

g := F|A1 ◦ Bl1 : Ã1 → A1 → S and h := F|A2 ◦ Bl2 : Ã2 → A2 → S,

and we prove that the union of the images of f , g and h is the whole S (see details in
Proposition 1). During this process, we also need to keep track of what happens with the
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infinity line of A0, namely L∞ = {(x0 : x1 : x2) | x0 = 0}. As a consequence, we derive the
following Algorithm 1.

Algorithm 1: 3PatchSurface
Require: A map F = (F0 : · · · : Fn) defined by coprime homogeneous polynomials in

K[x0, x1, x2], where the nonzero polynomials have the same degree, parametrizing
a Zariski dense subset of a projective surface S ⊂ Pn, such that conditions (∗), (a)
and (b) are satisfied.

Ensure: Two maps G = (G0 : · · · : Gn) and H = (H0 : · · · : Hn) defined by
homogeneous polynomials in K[x0, x1, x2] where the nonzero polynomials have
the same degree (while in the same list), such that the union of the images of
F(1 : _ : _), G(_ : 1 : _), H(_ : _ : 1) : A2 → S cover S.

1: if the radical of the homogeneous ideal (F0, ..., Fn)K[x0, x1, x2] is irrelevant
(i.e., F defines a regular morphism) then

2: Return G = F, H = F.
3: end if
4: For the ideals Ii = (F0, ..., Fn, xi − 1) for i = 1, 2, compute reduced Gröbner

bases B1 = {x2 − q1(x0), x1 − 1, p1(x0)}
for I1 and B2 = {x2 − 1, x1 − q2(x0), p2(x0)} for
I2, with lexicographical order x0 < x1 < x2.

5: Set k = deg(pi) > deg(qi) for whatever i = 1, 2.
6: Set P1(x0 : x1) = p1(

x0
x1
)xk

1 and Q1(x0 : x1) = q1(
x0
x1
)xk−1

1 .

7: Put G̃ = (G̃0 : · · · : G̃n) = F
(

x0xk
1 : xk+1

1 : x2
1Q1(x0 : x1) + x2P1(x0 : x1)

)
,

8: Set P2(x0 : x2) = p2(
x0
x2
)xk

2 and Q2(x0 : x2) = q2(
x0
x2
)xk−1

2 .

9: Set H̃ = (H̃0 : · · · : H̃n) = F
(

x0xk
2 : x2

2Q2(x0 : x2) + x1P2(x0 : x2) : xk+1
2

)
10: Set Ĝ = gcd(G̃0, ..., G̃n), Ĥ = gcd(H̃0, ..., H̃n).
11: Return G = G̃/Ĝ, H = H̃/Ĥ.

Remark 3. In Proposition 1 we show that the integer k, introduced in the algorithm, is exactly
the number of base points, that is the cardinality of A (see above), so we have not introduced
equivocal notation.

In the following, we see that the output of Algorithm 3PatchSurface is correct (see
Theorem 4). We also recall that the required conditions for the algorithm can be checked
computationally according to Remark 2. We start by proving that Step 4 works properly,
assuming that conditions (∗), (a) and (b) are satisfied. This is probably a well-known
result in a more general setting but, up to the authors’ knowledge, there are no suitable
references for the proof.

Proposition 1. Let F = (F0 : · · · : Fn), I1 and I2 be as in Algorithm 1. There exist p1, q1 ∈ K[x2],
p2, q2 ∈ K[x1] such that k =deg(pi) > deg(qi) for all i = 1, 2, and the reduced Gröbner basis B1
and B2 of I1 and I2 respectively, have the following shape:

B1 = {x2 − q1(x0), x1 − 1, p1(x0)} and B2 = {x2 − 1, x1 − q2(x0), p2(x0)}.

Proof. Observe that both I1 and I2 define finite sets in A1 and A2, respectively. By
Theorem 3, this implies that, since B1 and B2 are Gröbner bases, with respect to the lexico-
graphical order x0 < x1 < x2, there is a polynomial in each Bi just involving x0. This is p1
for I1 and p2 for I2. Due to (∗), (a) and (b), each pi defines k different parallel lines in Ai,
so its degree is k.

Applying again Theorem 3, there is another monic polynomial in K[x0][x1] ∩ I1. Since
the basis is reduced, and x1 − 1 was originally among the generators of I1, this polynomial
in K[x0][x1] for I1 is precisely x1 − 1.



Mathematics 2021, 9, 338 6 of 15

Now, let qi be the interpolation polynomial whose graph goes through all the base
points Pj ∈ Ai of F. It does exist because (b) holds (so there are no two different Pj
in the same vertical line) and its degree is at most k − 1. Then x1 − q2(x0) vanishes at
every Pj so, by Hilbert’s Nullstellensatz, it belongs to

√
I2. Since deg(p2) = k > deg(q2),

x1− q(x0) cannot be reduced by p(x0), so, since B1 is reduced, this is the monic polynomial
in K[x0][x1] ∩ I2.

We apply an analogous argument and reduction by x1 − 1 to deduce that the monic
polynomial in K[x0, x1][x2] for I1 must be x2− q2(x0), and we know that x2− 1 is a reduced
monic polynomial for I2, so it is in B2.

Since B1 and B2 are reduced Gröbner bases with respect to the lexicographical order
x0 < x1 < x2 and the ideals they generate define, precisely, the fundamental locus, they
are the reduced Gröbner bases of I1 and I2.

Before continuing, we state a Lemma.

Lemma 1. In the conditions of Algorithm 1, neither G(_ : 1 : _) nor H(_ : _ : 1) have affine
base points.

Proof. By the properties of the rational map F : P2 Pn, defined by F, and the fact
that a blow up is bijective outside its blown up points, we know that any base point
of G(_ : 1 : _) = F ◦ Bl1(_ : 1 : _) would be in one of the lines Bl1(Pj). Now, we fix
Pj = (1 : αj : β j) and we then prove that G(_ : 1 : _) has no base points in the line
{x0 = 1

αj
} ⊂ A1.

Since all Fi(x0 : 1 : x2) vanish at Pj, they have αjx0 − 1 as a common factor (note
that αj 6= 0 because (a) holds). Then, since Gi = G̃i/Ĝ, we have that Gi(x0 : 1 : x2) is a
divisor of

Gi(x0 : 1 : x2) :=
G̃i(x0 : 1 : x2)

x0 − 1
αj

=
Fi(x0 : 1 : q1(x0) + p1(x0)x2)

x0 − 1
αj

=

=
Fi(x0 : 1 : q1(x0) + p1(x0)x2)− Fi(

1
αj

: 1 : q1(
1
αj
) + p1(

1
αj
) β

αj
)

x0 − 1
αj

=

=
Fi(x0 : 1 : q1(x0) + p1(x0)x2)− Fi(

1
αj

: 1 : q1(
1
αj
))

x0 − 1
αj

.

This means that

Gi

(
1
αj

: 1 : x2

)
=

=
∂Fi
∂x0

(
1
αj

: 1 : q1

(
1
αj

))
+

∂Fi
∂x2

(
1
αj

: 1 : q1

(
1
αj

))(
∂q1

∂x0

(
1
αj

)
+

∂p1

∂x0

(
1
αj

)
x2

)
=

=
(

∂Fi
∂x0

(Pj)
∂Fi
∂x1

(Pj)
∂Fi
∂x2

(Pj)
)
·

 1
0

∂q1
∂x0

(
1
αj

)
+ ∂p1

∂x0

(
1
αj

)
x2

.

On the other side, the vector (1, αj, β j) is also in the kernel of the Jacobian matrix of
F at Pj, due to Euler’s formula for homogeneous polynomials: x0

∂F
∂x0

+ x1
∂F
∂x1

+ x2
∂F
∂x2

=

deg(F)F.
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By (∗), the Jacobian matrix of F has rank 2 at Pj, so (1, αj, β j) generates its kernel. Then,(
1, 0, ∂q1

∂x0

(
1
αj

)
+ ∂p1

∂x0

(
1
αj

)
x2

)
is not in such kernel, since αj 6= 0. Therefore,

G(
1
αj

: 1 : x2) = Jac(F) ·

 1
0

∂q1
∂x0

(
1
αj

)
+ ∂p1

∂x0

(
1
αj

)
x2

 6= 0

for all x2 ∈ C. Since all entries of G( 1
αj

: 1 : x2) are divisors of those of G( 1
αj

: 1 : x2), then

G is nonzero throughout the whole line x0 = 1
αj

in Ã1.
Repeating the argument with H finishes the proof.

The next result states the correctness of Algorithm 1:

Theorem 4. The three parametrizations F, G and H output by Algorithm 1 satisfy that the union
of the images of F(1 : _ : _), G(_ : 1 : _) and H(_ : _ : 1) covers S completely.

Proof. We devote these first lines to sketch the proof. Keeping in mind Theorem 2, when
(∗), (a) and (b) hold, we construct the following diagram:

BlP1,...,Pk (P
2)

P2 PN

π

��

ϕ

��
F //A0 ⊂

Ã1

Ã2

j0
88j1 33

j2 //

Here, BlP1,...,Pk (P
2) is the blowup of the base points. To prove that the output of

Algorithm 3PatchSurface works as expected, we need to show that

• F(1 : _ : _) = ϕ ◦ j0, G(_ : 1 : _) = ϕ ◦ j1 and H(_ : _ : 1) = ϕ ◦ j2.
• j0(A0) ∪ j1(Ã1) ∪ j2(Ã2) = BlP1,...,Pk (P

2).
• ϕ has no base points.

In this situation, we observe that, since ϕ has no base points, then it is a regular
morphism, so ϕ(BlP1,...,Pk (P

2)) is an algebraic subset of Pn. On the other side, F is dominant
over S, so

S = ϕ(BlP1,...,Pk (P
2)) = F(A0) ∪ G(Ã1) ∪ H(Ã2),

and, hence, the theorem holds.
First of all, we define j1 and j2. The blow up of all the base points of F is, locally,

the blow up of the ideal Ii in Ai with i being 1 or 2. Knowing the bases of I1 and I2, we
have (see Section 4.2 [26]):

BlI1(A1) = {((x0 : 1 : x2), (y0 : y1)) | p1(x0)y0 = (x2 − q1(x0))y1} ⊂ A1 × P1,

BlI2(A2) = {((x0 : x1 : 1), (y0 : y1)) | p2(x0)y0 = (x1 − q2(x0))y1} ⊂ A2 × P1.

While the way to glue the two open subsets is not interesting for the purpose of this
proof, it is easy to see that BlI1(A1) ∪ BlI2(A2) is the whole Bl{P1,...,Pk}(P

2) minus the point
that is the strict transform of (1 : 0 : 0). We now consider the inclusions

j1 : Ã1 → BlI1(A1)
(x0, x2) 7→ ((x0 : 1 : q1(x0) + x2 p1(x0)), (x2 : 1))

,

j2 : Ã2 → BlI2(A2)
(x0, x1) 7→ ((x0 : q2(x0) + x1 p2(x0) : 1), (x1 : 1))

.
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If πi : BlIi (Ai)→ Ai is the first projection in any of the cases, it is clear that Bli = πi ◦ ji
is defined by

Bl1(x0, x2) = (x0, q1(x0) + x2 p1(x0)) and Bl2(x0, x1) = (x0, q2(x0) + x1 p2(x0)).

Therefore, we have that

G(x0 : 1 : x2) = F(Bl1(x0, x2)) and H(x0 : x1 : 1) = F(Bl2(x0, x1)).

On the other hand, Ãi covers the whole Ai except the vertical lines through the base
points. These affine lines are completely contained in A0, since the infinity point is (0 : 0 : 1)
for A1 and (0 : 1 : 0) for A2. This means that, to show that Ã1, Ã2 and A0\{P1, ..., Pk}
—through j1, j2 and the blowup j0 of the base points— cover Bl{P1,...,Pk}(P

2), we just need

to prove that Ã1 and Ã2 cover the exceptional divisor. So we fix Pj = (1 : αj : β j) and we
call Ej ' P1 the component of the exceptional divisor corresponding to Pj. Note that Bli
covers a full neighborhood of Pj in Ai minus the vertical line. This corresponds to the line
joining Pj with (0 : 0 : 1) for the case i = 1 and the line joining Pj with (0 : 1 : 0) for the
case i = 2. By condition (b), these lines do not contain other base points. These two lines
represent two different directions at Pj (i.e., two different points in Ej). This means that
j1({x0 = 1

αj
}) covers all Ej except one point and that j2({x0 = 1

β j
}) is an affine line passing

through that point.
The only task remaining is proving that ϕ has no base points. Such base points would

be in the exceptional divisor, which is covered by Ã1 and Ã2, but Lemma 1 states that there
are no base points of ϕ in j1(Ã1) ∪ j2(Ã2).

4. Examples

This section is devoted to illustrating Algorithm 3PatchSurface by examples. In all
of them, and in those of the next section, we have used Sage [31] for the calculations. We
start with a toy example in which we explicitly show that the three parametrizations cover
the whole projective surface.

Example 2. Whitney’s umbrella has implicit equation y0y2
1− y2

2y3 = 0. The usual parametrization
(x0 : x1 : x2) 7→ (x2

0 : x1x2 : x0x1 : x2
2) does not satisfy condition (a), so we change coordinates

to get a new parametrization

F(x0 : x1 : x2) = (x2
2 − 2x0x2 + x2

0 : x2
1 + x1x2 − x0x1 − x0x2 :

− x1x2 + x0x1 + x0x2 − x2
0 : x2

1 + 2x1x2 + x2
2).

The only base point of the new parametrization is (1 : −1 : 1). We then compute the bases

B1 = {x2 + 1, x1 − 1, x0 + 1} and B2 = {x2 − 1, x1 + 1, x0 − 1}.

So we get:

G̃(x0 : x1 : x2) = (x0 + x1)G(x0 : x1 : x2) and H̃(x0 : x1 : x2) = (x2 − x0)H(x0 : x1 : x2)

where

G = (x3
1 − 2x2

1x2 + x2
1x0 + x1x2

2 − 2x1x2x0 + x2
2x0 : x2

1x2 − x1x2x0 :

x3
1 − x2

1x2 − x2
1x0 + x1x2x0 : x1x2

2 + x2
2x0)

and

H = (x3
2− x2

2x0 : x2
1x2− x2

1x0 + x1x2
2 + x0x1x2 : x1x2

2− x0x1x2 + x3
2 + x0x2

2 : x2
1x2− x0x2

1).
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We now prove that the whole surface is covered by F(1 : _ : _), G(_ : 1 : _) and H(_ : _ : 1).
Let A = (y0 : y1 : y2 : y3) be such that y0y2

1 − y2
2y3 = 0. Then:

1. if y0y2(y0y1 + y0y2 − y2
2) 6= 0, then, taking y0 = 1,

A = F

(
1 :

y2 + y1 + y2
2

y2 + y1 − y2
2

:
−y2 + y1 − y2

2
y2 + y1 − y2

2

)

Note here that y3 =
y2

1
y2

2
, due to the equation of the umbrella and y0 = 1.

2. if y0y1 + y0y2 − y2
2 = 0 and y0y2 6= 0, taking y0 = 1, we get y1 = y2

2 − y2. This equality
transforms the equation of the umbrella in y3 = (y2 − 1)2. Then, A = G(0 : 1 : 1− 1/y2).

3. if y2 = 0 and y0 6= 0, then, taking y0 = 1,

A = F
(

1 : 1 :
−1 +

√
y3

1 +
√

y3

)
.

Note here that every A in this case is gotten twice. Even (1 : 0 : 0 : 1) is both F(1 : 1 : 0)
and H(0 : −1 : 1).

4. if y0 = 0, the infinity hyperplane section of Whitney’s umbrella has two components: y2 = 0
and y3 = 0. Then:

A = (0 : y1 : 0 : y3) = F
(

1 : 0 :
(y3 + y1)

(y3 − y1)

)
when y3 − y1 6= 0, and A = (0 : 1 : 0 : 1) = G(0 : 1 : 1). Moreover,

A = (0 : y1 : y2 : 0) = G(−1 : y1 + y2 : y1)

when y1 + y2 6= 0. Finally, A = (0 : −1 : 1 : 0) = H(1 : −1 : 1).

Observe that F(1 : _ : _) covers the whole umbrella minus a couple of rational curves. Then,
G(_ : 1 : _) covers these curves minus just a point, that is covered by H(_ : _ : 1).

The following example applies Algorithm 1 to a classic surface. While the computation
time is not long, the output is too large, so we just sketch some computations.

Example 3. Let us consider the Clebsch cubic, given by the equation

z3
0 + z3

1 + z3
2 + z3

3 − (z0 + z1 + z2 + z3)
3 = 0.

A parametrization is defined by

(−x2
0x1 + x2

0x2 + x0x2
1 − x0x2

2 : x3
0 − x2

0x1 − x2
0x2 + x1x2

2 :

− x3
0 + x2

0x1 + x2
0x2 − x2

1x2 : −x0x2
1 + x2

0x1 − x1x2
2).

This parametrization, however, does not satisfy conditions (a) and (b). After the coordinate
change in P2 given by

(x0 : x1 : x2) 7→ (x0 + 3x1 + 2x2 : x0 + x1 + 3x2 : −x0 − x1 + x2),

we get the parametrization F = (F0 : F1 : F2 : F3), where

F0 = 8x3
2 + 8x2

2x1 + 8x2
2x0 − 18x2x2

1 − 12x2x1x0 − 2x2x2
0 − 18x3

1 − 30x2
1x0 − 14x1x2

0 − 2x3
0,

F1 = −5x3
2− 17x2

2x1− 9x2
2x0 + 19x2x2

1 + 14x2x1x0 + 3x2x2
0 + 28x3

1 + 30x2
1x0 + 12x1x2

0 + 2x3
0,

F2 = −x3
2 + 15x2

2x1 + 7x2
2x0 − 13x2x2

1 − 2x2x1x0 + 3x2x2
0 − 26x3

1 − 24x2
1x0 − 6x1x2

0,
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F3 = −9x3
2 + 6x2

2x1 + 18x2x2
1 + 4x2x1x0 − 2x2x2

0 + 5x3
1 + 5x2

1x0 − x1x2
0 − x3

0.

One can check that the base points are P1 = (5 : 2 : −3), P2 = (11 : −2 : −5), P3 = (7 :
−2 : −1), P4 = (1 : 2 : 1), P5,6 = (±2−

√
5 : 2 :

√
5). This agrees with the well known fact that

a cubic smooth surface is a plane blown up at 6 general points.
Now we take x1 = 1 or x2 = 1 and get the two Gröbner bases Bi = {xi − 1, x3−i −

qi(x0), pi(x0)}, where i ∈ {1, 2} and:

p1(x0) = x6
0 + 8x5

0 +
21
4

x4
0 − 61x3

0 −
1077

16
x2

0 +
239
4

x0 −
385
64

,

q1(x0) = −
393
8360

x5
0 −

18511
50160

x4
0 −

12941
50160

x3
0 +

13537
5280

x2
0 +

1123141
401280

x0 −
21649
14592

,

p2(x0) = x6
0 +

178
15

x5
0 +

199
5

x4
0 +

916
25

x3
0 −

2387
75

x2
0 −

3926
75

x0 −
77
15

,

q2(x0) = −
7075

11264
x5

0 −
212195
33792

x4
0 −

221885
16896

x3
0 +

49613
16896

x2
0 +

612691
33792

x0 +
2987
3072

.

Performing substitutions

G̃(x0 : 1 : x2) = F(x0 : 1 : q1(x0) + x2 p1(x0))

and
H̃(x0 : x1 : 1) = F(x0 : q2(x0) + x1 p2(x0) : 1)

then dividing by the gcd of all entries in each case produces two parametrizations of degree 15,
G(x0 : 1 : x2) and H(x0 : x1 : 1), with about 45 coefficients per polynomial and about 70 bits per
coefficient, that cover, together with F(1 : x1 : x2), the whole cubic.

5. The Affine Case

In this section, we slightly change our point of view and we consider the problem of
covering a rational affine surface by means of the images of several affine parametrizations.
So, in the sequel we consider that we are given F and S as in Section 5, and we deal
with the problem of covering S ∩An, where An is the open subset of Pn defined by the
first variable not vanishing. Equivalently, one may consider that we are indeed given an
affine parametrization and the affine surface that it defines. Nevertheless, to be consistent
with the notation used throughout the paper, we will use the first notational statement of
the problem.

In this section, we prove that to cover a rational affine surface, only two patches
are necessary (see Theorem 5 and Corollary 3). The basic idea is as follows. The given
parametrization F(1 : x1 : x2) covers a constructible subset. The complement of such
subset is contained in the image of L∞ (that is, F(0 : x1 : x2)) and the base points, which
is a finite union of affine rational curves (see Corollary 2) and, maybe, an isolated point
corresponding to a contracted L∞. The parametrization G(x0 : 1 : x2) of Algorithm 1,
restricted to certain vertical lines, covers all such affine curves except at most one point.
Since such curves also have a point at infinity, we want such point to be the image of the
point at infinity of the parameter line. Based on these ideas, we derive Algorithm 2 that,
when the original parametrization satisfies (∗), (a) and (b), covers affine surfaces using
just two parametrizations.
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Algorithm 1: 2PatchForAffine

Require: A list F = (F0 : · · · : Fn) of coprime homogeneous polynomials of the same degree in K[x0, x1, x2],
parametrizing a Zariski dense subset of a projective surface S ⊂ Pn

C, such that conditions (∗), (a) and (b) are
satisfied.

Ensure: A list g′ = (g′0 : · · · : g′n) of rational functions of two variables such that F(1 : _ : _) and g′(_, _) cover S ∩An .
1: Compute B1 = {x2 − q1(x0), x1 − 1, p1(x0)} and G = (G0 : · · · : Gn) as in Algorithm 1.
2: for α root of p1(x0) or α = 0 do
3: if deg G0(α : 1 : x2) < max{deg Gi(α : 1 : x2) | i = 1, ..., n} or G0(α : 1 : x2) is constant then
4: Include α in set A and βα := ∞.
5: else
6: Include α in set B. Choose βα among the roots of G0(α : 1 : x2).
7: end if
8: end for
9: Let s(x0) be a polynomial vanishing at all the α ∈ A and not vanishing at any of the α ∈ B. See Remark 4 below,

for suggestions on how to find one.
10: Choose r(x0), a polynomial such that r(α) = βαs(α) for all α ∈ B and r(α) 6= 0 for all α ∈ A.
11: Find Bezout coefficients u and v such that gcd(r, s) = u · r + v · s.

12: return g′(x0, x2) = G
(

x0 : 1 :
r(x0)x2 + v(x0)

s(x0)x2 − u(x0)

)
.

Remark 4. Let us comment some computational aspects of Algorithm 2.

1. For s(x0), one may proceed as follows: collect the coefficients of G0(x0 : 1 : x2) for x2

except the one for x0
2, and compute the gcd, d(x0), of these coefficients; then s(x0) =

gcd(d(x0), x0 p1(x0)).
2. Note that Algorithm 1 does not extend the field that is used to define F, However, Algorithm 2

needs to consider possibly algebraic coordinates for the points that need to be sent to the
infinity in the parameter plane A1. Example 4 shows that the application of the algorithm
forces the usage of algebraic coefficients.

In order to state the correctness of Algorithm 2, we start with a technical lemma.

Lemma 2. In the setting of Algorithm 2, if no component of G(α : 1 : x2) is constant, it holds that

1. If α ∈ A, then limx2→∞ G(α : 1 : x2) is a point at infinity.
2. If α ∈ B, then G(α : 1 : βα) is a point at infinity.

Proof. Let α be an element of A. If G0(α : 1 : x0) is identically zero, then the result is
obvious. Otherwise, the map (G1

G0
(α : 1 : x2), ..., Gn

G0
(α : 1 : x2)), from the affine plane to

the surface, has degree strictly higher in the numerator of at least one of its components,
because deg(G0(α : 1 : x2)) < max{deg(Gi(α : 1 : x2)) | i = 1, ..., n}. So the limit, when x2
tends to ∞, is at infinity. Note that the full (n + 1)−tuple G(α : 1 : x2) is not constant, so
the case of constant first entry G0(α : 1 : x2) satisfies the inequality too.

Now, let α be an element of B. Then, G0(α : 1 : βα) = 0, so the statement holds.

Let us, now, prove that Algorithm 2 works as expected.

Theorem 5. Let F, S and g′ be as in Algorithm 2. Then F(1 : x1 : x2) and g′(x0, x2) cover the
whole S ∩ {y0 6= 0}.

Proof. Since the input of Algorithms 1 and 2 are the same, by Theorem 4, one deduces that
F(1 : x1 : x2), G(x0 : 1 : x2) and H(x0 : x1 : 1) cover the projective surface S.

Taking into account how G and H in Algorithm 1 are defined, any point in Ã1 and
Ã2, not in L∞ or in {pi(x0) = 0}, is sent by G(x0 : 1 : x2) or H(x0 : x1 : 1) into the
image by F of a point in A0. Therefore, we need to check that g′ covers any affine point in
G({x0 = 0} ∪ {p1(x0) = 0}) ∪ H({x0 = 0} ∪ {p2(x0) = 0}).
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Any component C of G({x0 = 0} ∪ {p1(x0) = 0}) ∪ H({x0 = 0} ∪ {p2(x0) = 0}) is
either a point or a rational curve covered by G(α : 1 : x2) ∪ H(α′ : x1 : 1), where either
α = α′ = 0 or (1 : 1

α : 1
α′ ) is a base point of F. Moreover, such component is the Zariski

closure of the image of the restriction G|{x0=α,x1 6=0}, which coincides with the Zariski
closure of g′|{x0=α}.

If C is just a point, then it is covered by g′|{x0=α}. Otherwise, it is well known that any
morphism defined in an open subset of a projective smooth curve can be extended regularly
to the whole curve and that the image of a projective curve by a regular morphism is a
Zariski closed subset. Then, we can extend g′|{x0=α} to the Zariski closure of the line where
it is defined and we would cover completely C. This means that g′|{x0=α} covers all C
minus, at most, just a point (the image of the infinity point of the affine line). However, this
point is G(α : 1 : βα), which is at infinity by Lemma 2. Therefore, any point in C ∩ {y0 6= 0}
is in g′({x0 = α}) ⊂ g′(A2).

Example 4. Consider the following projective transformation of the Veronese morphism:

F : P2 → P5

(x0 : x1 : x2) 7→ (x2
0 + x2

1 + x2
2 : x0x1 : x0x2 : x2

1 : x1x2 : x2
2)

Since there are no base points, Algorithm 2 generates G = F, and then, for just α = 0, it
computes β0 such that β2

0 + 1 = 0. This means that β0 must be imaginary, so it is not rational.
The output

g′(x0, x2) = G
(

x0 : 1 :
ix2 + 1

x2

)
has imaginary coefficients.

We observe that any choice of two rationally defined affine planes A0 and A1 of the projective
plane will leave a point P in the projective plane over Q out of the union, and then F(P), which is
not at infinity, will not be covered. Observe, however, that the surface is isomorphic to the projective
plane, so one can compose the two maps appearing in Example 1 with the Veronese morphism to
cover, not just the affine part, but the whole projective surface without extending the field

Example 5. Let us again consider the cubic of Example 3. We recall that

p1(x0) = x6
0 + 8x5

0 +
21
4

x4
0 − 61x3

0 −
1077

16
x2

0 +
239
4

x0 −
385
64

.

One can factor G0, as obtained in Example 3, and one of the factors is

200640x2x4
0 + 1203840x2x3

0 − 1304160x2x2
0 − 9329760x2x0+

4827900x2 − 9432x3
0 − 55180x2

0 + 56238x0 + 388135.

Here, one can easily get x2 as a rational function on x0, so we have a point going to infinity at
each vertical line:

x2 = βx0 =
9432x3

0 + 55180x2
0 − 56238x0 − 388135

200640x4
0 + 1203840x3

0 − 1304160x2
0 − 9329760x0 + 4827900

. (1)

The set A is given by the common roots of p1 and the denominator in (1), so

s(x0) = gcd(p1, denominator(βx0)) = 16x4
0 + 96x3

0 − 104x2
0 − 744x0 + 385.

We need a polynomial r(x0), coprime with s(x0), whose values at the roots of x0 p1(x0)
s(x0)

equal

βx0 s(x0). Such roots are 0 and 1±
√

5
2 , and the interpolating polynomial

r(x0) =
18511
3135

x2
0 −

898
209

x0 −
7057
228
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works. We now need a Bezout identity ur + vs = 1, so we get

u(x0) = −
26198287461

21693258568709
x3

0 −
1732666485971

130159551412254
x2

0−

487041584557
12396147753548

x0 −
632041996387

74376886521288

and
v(x0) =

1510767910251
3389825077278640

x0 +
357074564524303

186537231395390304
.

Then, we have that the images of F(1 : x1 : x2) and G
(

x0 : 1 :
r(x0)x2 + v(x0)

s(x0)x2 − u(x0)

)
cover the

whole affine cubic.

In [24], it is proved that there exist affine surfaces that cannot be covered by means of
a unique map from the affine plane. In fact, the surface in Example 5 is proved to be one of
them. Now, the following corollary of Theorem 5 shows that, under hypotheses (*), (a), (b),
one can always cover the affine surface with two affine parametrization images.

Corollary 3. Let S be an affine surface such that there exists a parametrization f : A2 S with a
projectivization F satisfying (∗), (a) and (b). Then S can be covered with just two parametrizations.

In order to prove that two affine patches are enough we have had to impose, to the
projectivization of the input affine parametrization, hypotheses (*), (a) and (b). If we do not
impose (*), we cannot ensure this general result. However, it is interesting to observe that
there are affine surfaces not satisfying (∗) that can be covered by only one map. To create
an example, it is enough to send the exceptional divisor to the infinity hyperplane together
with the image of L∞.

Example 6. Consider the transformation of the plane t(x0 : x1 : x2) = (x0x1x2 : x3
1 : x0x2

2) and
let F be its composition with the degree-3 Veronese morphism v3(x0 : x1 : x2) = (x0x1x2 : x3

0 :
· · · : x3

2). We can observe that P2 − t(A0) = {x0x1x2 = 0} = v−1
3 ({y0 = 0}). On the other

hand, the fundamental locus is defined by the ideal I = (x0x1x2, x3
1, x0x2

2), which is singular, so F
does not satisfy (∗), but F(1, x1, x2) covers the whole affine surface.

6. Conclusions

In the introduction we have commented the importance for applications of having
surjective parametrizations of curves and surfaces. For the curve case, the problem can be
solved by means of a single parametrization. For the surface case, the situation is much
more complicated and, in general, one may need more that one parametrization to cover it.
So the problem is reformulated by, on one hand, asking for the minimization of the number
of parametrizations in the cover and, on the other, by requiring the actual computation of
covers. There were previous results for some particular types of surfaces, specially of those
whose construction is directly related to curves as ruled surfaces, revolution surfaces, etc.

In this paper we present theoretical results on the number of parametrizations that
one may need to cover a surface, and we enlarge the class of surfaces where this approach
is valid. More precisely, we present two algorithms, one for the projective case and the
other for the affine case. In the affine case, we are able to cover any rational affine surface
satisfying certain mild hypotheses on the base locus of the input parametrization, in a
way that is optimal in the number of cover elements, namely, two. For the projective case,
the answer provides three cover parametrizations. Two open problems are the extension of
the results to the case where no condition of the base locus is imposed, and the optimality
on the number of cover parametrizations in the projective case.
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