
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a posprint version of the following published document: 

 

Blasco, A. & Pérez Díaz, S. 2014, “Asymptotic behavior of an implicit 

algebraic plane curve”, Computer Aided Geometric Design, vol. 31, no. 7-8, 

pp. 345-357. 

 

Available at https://doi.org/10.1016/j.cagd.2014.04.002  

  

  

© 2014 Elsevier 

 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://doi.org/10.1016/j.cagd.2014.04.002


Asymptotic Behavior of an Implicit Algebraic Plane

CurveI

Angel Blasco and Sonia Pérez-Dı́az
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Abstract

In this paper, we introduce the notion of infinity branches as well as approach-
ing curves. We present some properties which allow us to obtain an algorithm
that compares the behavior of two implicitly defined algebraic plane curves
at the infinity. As an important result, we prove that if two plane algebraic
curves have the same asymptotic behavior, the Hausdorff distance between
them is finite.
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1. Introduction

Unirational algebraic varieties, play an important role in the frame of
practical applications (see Hoffmann et al. (1997), and Hoschek and Lasser
(1993)). In particular, many authors have studied different problems related
to plane algebraic curves that are implicitly defined (see e.g. Sendra et al.
(2007), and Walker (1950)). In this paper, we deal with the notion of infinity
branches which, intuitively speaking, reflect the status of a curve at the points
with sufficiently large coordinates. In fact, an infinity branch is associated to
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a projective place centered at an infinity point, and it can be “parametrized”
by means of Puiseux series (see Section 3).

An infinity branch is a very important tool to analyze the behavior at the
infinity of an implicit real algebraic plane curve. Hence, an infinity branch is
applicable by itself since it faces symbolic computation to real world problems
which is of special interest in the field of C.A.G.D. For instance, determining
the infinity branches of an implicit plane curve is an important step in sketch-
ing its graph as well as in studying its topology (see e.g. Gao and Cheng
(2012), González-Vega and Necula (2002), Hong (1996), and Zeng (2007)).
In addition, in Blasco and Pérez-Dı́az (2014), the notion of g-asymptote is
introduced, and it is show how these asymptotes can be computed from the
infinity branches. Intuitively speaking, a curve C is a generalized asymptote
(or g-asymptote) of another curve C if C approaches C at some infinity branch,
and C can not be approached by a new curve of lower degree (that is, the
notion of g-asymptote generalizes the classical notion of (linear) asymptote).

The concept of infinity branch allows us to introduce the notion of conver-
gent branches and approaching curves (see Section 4). The idea is as follows:
two infinity branches converge if they get closer as they tend to infinity.
In addition, we say that a curve C approaches C at its infinity branch B if C
has an infinity branch B convergent with B. We provide some results that
characterize whether two plane algebraic curves are approaching.

Using these results, we present a method to compare the asymptotic be-
havior of two curves; i.e., the behavior of two curves at the infinity (see
Section 5). The algorithm presented will play an important role in the anal-
ysis of the generalized asymptotes. In particular, in Blasco and Pérez-Dı́az
(2014) (see Subsection 3.1), an algorithm for computing all the generalized
asymptotes of a real plane algebraic curve C implicitly defined is developed.

Finally, we prove that if two plane algebraic curves have the same asymp-
totic behavior, the Hausdorff distance between them is finite. This result
will play an important role in the applications to computer aided geomet-
ric design as for instance in the approximate parametrization problem (see
e.g. Pérez–Dı́az et al. (2004), Pérez–Dı́az et al. (2005), and Pérez–Dı́az et
al. (2010)). In this problem, we are given an affine curve C (say that it is a
perturbation of a rational curve), and one is interested in computing a ratio-
nal parametrization of a rational affine curve C near it (one may state the
problem also for surfaces). The effectiveness of the algorithm will depend on
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the closeness of C and C. For this purpose, at least one needs to show that
the Hausdorff distance between C and C is finite.

The results presented in this paper can be extended to curves in the affine
n-space (see Blasco and Pérez-Dı́az (2014b)).

The structure of the paper is as follows: In Section 2, we present the
terminology that will be used throughout this paper as well as some previous
results. In Section 3, the notion of infinity branch is introduced and some
important properties are proved. In Section 4, we provide the notions of
convergent branches and approaching curves. In addition, we develop some
results that characterize whether two plane algebraic curves approach each
other. The results presented in this section will be used in Section 5, where an
algorithm to compare the asymptotic behavior of two algebraic plane curves
is developed. In addition, we prove that if two plane curves have the same
asymptotic behavior, the Hausdorff distance between them is finite.

2. Preliminaries and Terminology

In this section, we present some notions and terminology that will be
used throughout the paper. In particular, we need some previous results
concerning local parametrizations and Puiseux series. For further details see
Duval (1989), Section 2.5 in Sendra et al. (2007), Stadelmeyer (2000), and
Chapter 4 (Section 2) in Walker (1950).

We denote by C[[t]] the domain of formal power series in the indeter-
minate t with coefficients in the field C, i.e. the set of all sums of the
form

∑∞
i=0 ait

i, ai ∈ C. The quotient field of C[[t]] is called the field of
formal Laurent series, and it is denoted by C((t)). It is well known that
every non-zero formal Laurent series A ∈ C((t)) can be written in the form
A(t) = tk · (a0 + a1t + a2t

2 + · · ·), where a0 ̸= 0 and k ∈ Z. In addition, the
field C ≪ t≫ :=

∪∞
n=1C((t1/n)) is called the field of formal Puiseux series.

Note that Puiseux series are power series with fractional exponents. In addi-
tion, every Puiseux series, φ, has a bound for the denominators of exponents
with non-vanishing coefficients, which is known as the ramification index of
the series. We denote it as ν(φ) (see Duval (1989)).

The order of a non-zero (Puiseux or Laurent) series A is the smallest
exponent of a term with non-vanishing coefficient in A. We denote it by
ord(A). We let the order of 0 be ∞.
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In the following, we introduce the notion of projective local parametri-
zation for a projective plane curve (see Definition 2.69, and Lemma 2.70 in
Sendra et al. (2007)).

Definition 2.1. Let C∗ ⊂ P2(C) be a projective plane curve defined by
the homogeneous polynomial F (x, y, z) ∈ R[x, y, z]. Let A∗, B∗, C∗ be se-
ries in C((t)) such that: (i) F (A∗(t) : B∗(t) : C∗(t)) = 0 (where the
three series converge), and (ii) there is no D ∈ C((t)) \ {0} such that
D · (A∗, B∗, C∗) ∈ C3. Then P∗ = (A∗ : B∗ : C∗) ∈ P2(C((t)) ) is called
a projective local parametrization of C∗. In addition, one can always find
such a parametrization having min{ord(A∗), ord(B∗), ord(C∗)} = 0, and the
point P∗(0) ∈ C∗ is called the center of P∗.

For an affine plane curve, the above notion can be stated as follows:

Definition 2.2. Let C be a real plane algebraic curve over C implicitly defined
by the irreducible polynomial f(x, y) ∈ R[x, y]. Let A,B be series in C((t))
such that: (i) f(A(t), B(t)) = 0 (where both series converge), and (ii) not
both, A and B, are constants. Then P = (A,B) is called an (affine) local
parametrization of C. Moreover, if ord(A), ord(B) ≥ 0, the point P(0) =
(a, b) ∈ C is called the center of P.

In the following, we deal with affine curves. The results and notions
presented can be adapted for projective curves in an obvious way.

Two local parametrizations, P1 and P2, of an algebraic plane curve C
are called equivalent if there exists R ∈ C[[t]], with ord(R) = 1, such that
P1 = P2(R). It can be proved that this equivalence of local parametrizations
is actually an equivalence relation.

If a local parametrization P , or one equivalent, satisfies that P(t) = P ′(tk)
for some parametrization P ′ and for some natural number k > 1, then P is
said to be reducible. Otherwise, P(t) is said to be irreducible. Under these
conditions, we introduce the notion of a place as follows.

Definition 2.3. An equivalence class of irreducible local parametrizations of
the algebraic plane curve C is called a place of C. The common center of the
local parametrizations (if it exists) is the center of the place.

In the following definition, we introduce the notion of branch of a plane
curve.
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Definition 2.4. Given a local parametrization (X,Y ) of a plane curve C,
the set of all points (X(t), Y (t)) obtained by allowing t to vary within some
neighborhood of 0 where X(t) and Y (t) converge is called a branch of C.

It can be shown that two equivalent local parametrizations provide the
same branch. Therefore, one obtains a branch for each place of a given
algebraic plane curve.

One may prove that the center of a local parametrization of C is a point
on C. Conversely, from the following theorems, we also obtain that every
point on C is the center of at least one place of C (see Theorems 2.77 and
2.78 in Sendra et al. (2007)).

Theorem 2.5. (Puiseux’s Theorem) The field K ≪ x≫ is algebraically
closed.

A proof of Puiseux’s Theorem can be given constructively by the Newton
Polygon Method (see e.g. Section 2.5 in Sendra et al. (2007)). This method
solves the construction of solutions of non-constant univariate polynomial
equations over K ≪ x≫.

Theorem 2.6. Let C be a plane curve defined by f(x, y) ∈ R[x, y]. To each
root Y (x) ∈ C ≪ x ≫ of f(x, y) = 0 with ord(Y ) > 0 there corresponds
a unique place of C with center at the origin. Conversely, to each place
(X(t), Y (t)) of C with center at the origin there correspond ord(X) roots of
f(x, y) = 0, each of order greater than zero.

If Y (x) is a Puiseux series solving f(x, y) = 0, ord(Y ) > 0, and n is the

least integer for which Y (x) ∈ C((x 1
n )) (i.e., ν(Y ) = n), then we set x

1
n = t,

and (tn, Y (tn)) is a local parametrization with center at the origin. The
solutions of f(x, y) of order 0 correspond to places with center on the y-axis
but different from the origin, and the solutions of negative order correspond
to places at infinity (places with center at an infinity point).

Note that several different Puiseux series may correspond to equivalent
local parametrizations, and then these series provide a unique place. More
precisely, let Y (x) =

∑
i≥r aix

i/n be a Puiseux series with ramification index
ν(Y ) = n. The series σϵ(Y ), ϵn = 1, are called the conjugates of Y , where

σϵ(Y ) =
∑
i≥r

ϵiaix
i/n.
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The set of all (distinct) conjugates of Y is called the conjugacy class of Y .
The number of different conjugates of Y is ν(Y ). Two Puiseux series provide
the same place if they belong to the same conjugacy class (see Duval (1989)
and Verger-Gaugry (2011)).

3. Infinity Branches

In this section, we introduce the notion of infinity branch (see Definition
3.1), and we obtain some properties concerning to these algebraic entities.

For this purpose, we consider an algebraic affine plane curve C over C,
implicitly defined by the irreducible polynomial f(x, y) ∈ R[x, y]. Let C∗ be
its corresponding projective curve defined by the homogeneous polynomial
F (x, y, z) ∈ R[x, y, z]. Furthermore, let P = (1 : m : 0), m ∈ C, be an infinity
point of C∗, and we consider the curve implicitly defined by the polynomial
g(y, z) = F (1 : y : z). Observe that g(p) = 0, where p = (m, 0).

By applying Theorem 2.5, we compute the series expansion for the solu-
tions of g(y, z) = 0. There exist exactly degY (g) solutions given by different
Puiseux series that can be grouped into conjugacy classes. Let one of these
solutions be given by the following Puiseux series:

φ(t) = m+ a1t
N1/N + a2t

N2/N + a3t
N3/N + · · · ∈ C ≪ t≫, ai ̸= 0, ∀i ∈ N,

where ν(φ) = N ∈ N, Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · ·. We
have that g(φ(t), t) = 0 in some neighborhood of t = 0 where φ(t) converges.
Then, there exists some M ∈ R+ such that

F (1 : φ(t) : t) = g(φ(t), t) = 0, for t ∈ C and |t| < M,

which implies that F (t−1 : t−1φ(t) : 1) = f(t−1, t−1φ(t)) = 0, for t ∈ C and
0 < |t| < M . We set t−1 = z, and we obtain that

f(z, r(z)) = 0, z ∈ C and |z| > M−1, where

r(z) = zφ(z−1) = mz+a1z
1−N1/N+a2z

1−N2/N+a3z
1−N3/N+· · · , ai ̸= 0, ∀i ∈ N

N,Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · ·.
Since ν(φ) = N , we get that there are N different series in its conjugacy

class. Let φ1, . . . , φN be these series, and

ri(z) = zφi(z
−1) = mz + a1c

N1
i z1−N1/N + a2c

N2
i z1−N2/N + a3c

N3
i z1−N3/N + · · ·

(1)
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where c1, . . . , cN are the N complex roots of xN = 1. Now we are ready to
introduce the notion of infinity branch.

Definition 3.1. The set B =
∪N

i=1 Li where

Li = {(z, ri(z)) ∈ C2 : z ∈ C, |z| > Mi}

is called an infinity branch of the affine plane curve C. The subsets L1, . . . , LN

are called the leaves of the infinity branch B.

Remark 3.2. 1. We observe that an infinity branch is uniquely deter-
mined from one leaf, up to conjugation. That is, if B =

∪N
i=1 Li, where

Li = {(z, ri(z)) ∈ C2 : z ∈ C, |z| > Mi}, and

ri(z) = zφi(z
−1) = mz + a1z

1−N1/N + a2z
1−N2/N + a3z

1−N3/N + · · ·

then rj = ri, j = 1, . . . , N , up to conjugation; i.e.

rj(z) = zφj(z
−1) = mz+a1c

N1
j z1−N1/N+a2c

N2
j z1−N2/N+a3c

N3
j z1−N3/N+· · ·

where cNj = 1, j = 1, . . . , N , and N,Ni ∈ N.
2. Let M := max{M1, . . . ,MN}. In the following, we consider Li =

{(z, ri(z)) ∈ C2 : z ∈ C, |z| > M}.

Let φ(z) = m+ a1z
N1/N + a2z

N2/N + a3z
N3/N + · · · be a series expansion

for a solution of g(y, z) = 0. We consider ψ(t) := φ(tN), and we observe that
(1 : ψ(t) : tN) is a local projective parametrization, with center at P , of the
projective curve C∗.

Thus, from ψi(t) := φi(t
N), i = 1, . . . , N (φi are the N different se-

ries in the conjugacy class of φ), we obtain N equivalent local projective
parametrizations, (1 : ψi(t) : t

N) (note that they are equivalent since φ1, . . . φN

belong to the same conjugacy class). Therefore, the leaves of B are all asso-
ciated to a unique infinity place.

Conversely, from a given infinity place defined by a local projective pa-
rametrization (1 : ψ(t) : tN) (see Theorem 2.5.3 in Sendra et al. (2007)), we
obtain N Puiseux series, φj(t) = ψ(cjt

1/N), cNj = 1, that provide different
expressions rj(z) = zφj(z

−1), j = 1, . . . , N . Hence, the infinity branch B is
defined by the leaves Lj = {(z, rj(z)) ∈ C2 : z ∈ C, |z| > M}, j = 1, . . . , N.
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From the above discussion, we deduce that there exists a one-to-one re-
lation between infinity places and infinity branches. In addition, we can say
that each infinity branch is associated to a unique infinity point given by the
center of the corresponding infinity place. Reciprocally, taking into account
the above construction, we get that every infinity point has associated, at
least, one infinity branch. Hence, every algebraic plane curve has, at least,
one infinity branch. Furthermore, every algebraic plane curve has a finite
number of branches.

Observe that the above construction can be applied to any infinity point
of the form (a : b : 0), a ̸= 0. In the following, we assume that a = 0; that
is, we take the infinity point P = (0 : 1 : 0). In this case, we consider the
curve implicitly defined by the polynomial h(x, z) = F (x : 1 : z). Observe
that h(p) = 0, where p = (0, 0). In this situation, we get that there exists
M ∈ R+ such that

F (φ(t) : 1 : t) = h(φ(t), t) = 0, for t ∈ C and |t| < M ,

where

φ(t) = a1t
N1/N + a2t

N2/N + a3t
N3/N + · · · ∈ C ≪ t≫, ai ̸= 0, ∀i ∈ N

N,Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · ·, is a series expansion for a
solution of h(x, z) = 0. We set z = t−1, and we get that

f(r(z), z) = 0, z ∈ C and |z| > M−1, where

r(z) = zφ(z−1) = a1z
1−N1/N + a2z

1−N2/N + a3z
1−N3/N + · · · , ai ̸= 0, ∀i ∈ N

N,Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · ·.

Thus, we obtain an infinity branch B =
∪N

i=1 Li whose leaves have the form:

Li = {(ri(z), z) ∈ C2 : z ∈ C, |z| > M}.

Observe that we may apply this construction to any infinity point of the form
(a : b : 0), b ̸= 0.

These two approaches lead us to consider two types of infinity branches.
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Definition 3.3. Let C be an affine plane curve over C defined by an irre-
ducible polynomial f(x, y) ∈ R[x, y].

• An infinity branch of C of type 1 associated to the infinity point P =
(1 : m : 0), m ∈ C, is a set B =

∪N
i=1 Li, where Li = {(z, ri(z)) ∈

C2 : z ∈ C, |z| > M}, i = 1, . . . , N , M ∈ R+, and r1, . . . , rN are the
conjugates of

r(z) = mz+a1z
1−N1/N +a2z

1−N2/N +a3z
1−N3/N + · · · , ai ̸= 0, ∀i ∈ N

N,Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · ·.

• An infinity branch of C of type 2 associated to the infinity point P =
(m : 1 : 0), m ∈ C, is a set B =

∪N
i=1 Li, where Li = {(ri(z), z) ∈

C2 : z ∈ C, |z| > M}, i = 1, . . . , N , M ∈ R+, and r1, . . . , rN are the
conjugates of

r(z) = mz+a1z
1−N1/N +a2z

1−N2/N +a3z
1−N3/N + · · · , ai ̸= 0, ∀i ∈ N

N,Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · ·.

Remark 3.4. 1. In the following, we assume w.l.o.g that the given alge-
braic plane curve C only has type 1 infinity branches; that is, all the
infinity points are of the form (1 : m : 0), m ∈ C. Otherwise, we may
consider a linear change of coordinates.

2. By abuse of notation, we will say that N is the ramification index of
the branch B, and we will write it as ν(B) = N . Note that B has ν(B)
leaves.

In the following example, we compute the infinity branches for a given
plane curve.

Example 3.5. Let C be the plane curve implicitly defined by the irreducible
polynomial

f(x, y) = y5 − 4y4x+ 4y3x2 + 2y2x− y2x2 + 2yx2 + 2yx3 + x+ x2 ∈ R[x, y].

The corresponding projective curve C∗ is defined by F (x : y : z) =

y5−4y4x+4y3x2+2y2z2x−zy2x2+2z2yx2+2yzx3+z4x+z3x2 ∈ R[x, y, z].
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Note that P = (1 : 0 : 0) is an infinity point of C∗. Let us compute the
infinity branches associated to P . For this purpose, we consider the curve
implicitly defined by the polynomial g(y, z) = F (1 : y : z), and we observe
that g(p) = 0, where p = (0, 0).

We compute the series expansion for the solutions of g(y, z) = 0. For this
purpose, we use for instance the algcurves package included in the computer
algebra system Maple. We get that:

φ1(t) = −1/2t2 + 1/8t4 − 1/8t5 + 1/16t6 + 1/16t7 + · · · ∈ C ≪ t≫, and

φ2(t) =
−(−2t)1/2

2
− t

8
+

27

256
(−2t)3/2− 7

32
t2+

4057

65536
(−2t)5/2+· · · ∈ C ≪ t≫ .

That is, g(φj(t), t) = 0, j = 1, 2 (see e.g. Section 2.5 in Sendra et al.
(2007)). Note that ν(φ1) = 1, which implies that we only have one Puiseux
series in the conjugacy class of φ1. However, ν(φ2) = 2 and then, we have
the following conjugate Puiseux series in the conjugacy class of φ2:

φ2,1(t) =
−(−2t)1/2

2
− t

8
+

27

256
(−2t)3/2 − 7

32
t2 +

4057

65536
(−2t)5/2 + · · ·

φ2,2(t) =
+(−2t)1/2

2
− t

8
− 27

256
(−2t)3/2 − 7

32
t2 − 4057

65536
(−2t)5/2 + · · · .

–1.5

–1

–0.5

0

0.5

1

1.5

–6 –4 –2 2 4 6

–1.5

–1

–0.5

0

0.5

1

1.5

–6 –4 –2 2 4 6

Figure 1: Infinity branches B1 (left), and B2 (right).

Thus, we obtain two infinity branches:

B1 = L1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M}, where
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r1(z) = zφ1(z
−1) = −1/(2z) + 1/(8z3)− 1/(8z4) + 1/(16z5) + 1/(16z6) + · · ·

and B2 = L2,1 ∪ L2,2, where L2,i = {(z, r2,i(z)) ∈ C2 : z ∈ C, |z| > M},
i = 1, 2 and

r2,1(z) = zφ2,1(z
−1) = −(−2z)1/2

2
−1

8
+
27(−2z)−1/2

64
−7z−1

32
+
4057(−2z)−3/2

4096
+· · · .

r2,2(z) = zφ2,2(z
−1) = +

(−2z)1/2

2
−1

8
−27(−2z)−1/2

64
−7z−1

32
−4057(−2z)−3/2

4096
+· · · .

In Figure 1, we plot the curve C and some points of the infinity branches
B1 and B2 associated to P .

In the following, we prove that any point of the curve with sufficiently
large coordinates belongs to some infinity branch. For this purpose, we recall
the reader that if h is a complex-valued function of a complex variable, h :
C → C, we say that the limit of h(z) as z approaches ∞ is L, written
lim
z→∞

h(z) = L, if whenever {zn}n∈N is a sequence of points with lim
n→∞

zn = ∞,

it holds that lim
n→∞

h(zn) = L (see e.g. Ahlfors (1979) or Conway (1995)).

Lemma 3.6. Let C be an algebraic plane curve. There exists K ∈ R+ such
that for every p = (a, b) ∈ C with |a| > K, it holds that p ∈ Bp, where Bp is
an infinity branch of C.

Proof: Let us assume that the lemma does not hold, and we consider a
sequence {Kn}n∈N ⊂ R+ such that limn→∞Kn = ∞. Then, for every n ∈ N
there exists a point pn = (an, bn) ∈ C such that |an| > Kn, and pn does not
belong to any infinity branch of C.

Let Pn = (an : bn : 1). Since F (Pn) = f(pn) = 0, then limn→∞ F (Pn) = 0.
Thus, we distinguish two different cases:

a) If there exists a monotone subsequence {bnl
/anl

}l∈N that is not bounded,
we have that liml→∞ bnl

/anl
= ∞, and then liml→∞ anl

/bnl
= 0. Hence,

lim
l→∞

F (Qnl
) = F (0 : 1 : 0) = 0, Qnl

= (anl
/bnl

: 1 : 1/bnl
)

which implies that P = (0 : 1 : 0) is an infinity point of C∗.

11



b) If there exists a monotone subsequence {bnl
/anl

}l∈N that is bounded,
we have that liml→∞ bnl

/anl
= m. Thus,

lim
l→∞

F (Qnl
) = F (1 : m : 0) = 0, Qnl

= (1 : bnl
/anl

: 1/anl
)

which implies that P = (1 : m : 0) is an infinity point of C∗.

From both situations, we conclude that there exist a sequence {Qn}n∈N
that approaches to an infinity point P as n tends to infinity; that is, there
exists M ∈ R+ such that ∥Qn − P∥ ≤ ϵ, for n ≥ M . Thus, we deduce that
{Qn}n∈N, n≥M can be obtained by a place centered at P . Hence, pn belongs
to some infinity branch of C, which contradicts the hypothesis. �

Remark 3.7. Reasoning similarly as in Lemma 3.6, one has that there exists
K ∈ R+ such that for every p = (a, b) ∈ C with |b| > K, it holds that p ∈ Bp,
where Bp is an infinity branch of C.

4. Convergent Branches and Approaching Curves

In this section, we introduce the notions of convergent branches and ap-
proaching curves. Intuitively speaking, two infinity branches converge if they
get closer as they tend to infinity. This concept will allow us to analyze
whether two curves approach each other at the infinity.

The results presented in this section will be used in Section 5, where a
method to compare the asymptotic behavior of two curves is developed.

Definition 4.1. Given two leaves, L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M}
and L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M}, we say that they are convergent
if limz→∞(r(z)− r(z)) = 0.

Lemma 4.2. Two leaves L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} and
L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} are convergent if and only if the
terms with non negative exponent in the series r(z) and r(z) are the same.

Proof: Let

r(z) = mz+a1z
N−N1

N +a2z
N−N2

N +· · · , N,Ni ∈ N, 0 < N1 < N2 < · · · , ai ̸= 0

12



and

r(z) = mz+b1z
N−N1

N +b2z
N−N2

N +· · · , N,N i ∈ N, 0 < N1 < N2 < · · · , bi ̸= 0.

Then,

r(z)− r(z) = mz −mz + a1z
N−N1

N − b1z
N−N1

N + a2z
N−N2

N − b2z
N−N2

N + · · · .

Note that limz→∞(r(z)−r(z)) = 0 if and only if r(z)−r(z) has no terms with
non negative exponent. This situation holds if the terms with non negative
exponent in both series, r(z) and r(z), are the same. �

Remark 4.3. 1. From Lemma 4.2, we deduce that m = m and then, L
and L are associated to the same infinity point.

2. Note that the number of terms with positive exponent in both series is
finite.

Definition 4.4. Two infinity branches, B and B, are convergent if there
exist two convergent leaves L ⊂ B and L ⊂ B.

Remark 4.5. From Remark 4.3, statement 1, we get that two convergent
infinity branches are associated to the same infinity point.

Proposition 4.6. Two infinity branches B and B are convergent if and
only if for each leaf L ⊂ B there exists a leaf L ⊂ B convergent with L, and
reciprocally.

Proof: Let B and B be two convergent infinity branches, and let us prove
that for any Li ⊂ B there exists Lj ⊂ B convergent with Li (using Definition
4.4, we clearly have the reciprocal). From Definition 4.4, there exist two
leaves L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B, and L = {(z, r(z)) ∈ C2 :
z ∈ C, |z| > M} ⊂ B convergent. Let

r(z) = zφ(z−1) = mz+u1z
1−N1

N + · · ·+ukz1−
Nk
N +uk+1z

1−
Nk+1

N + · · · , ui ̸= 0,

r(z) = zφ(z−1) = mz+u1z
1−N1

N + · · ·+ukz1−
Nk
N +uk+1z

1−
Nk+1

N + · · · , ui ̸= 0,

where ν(B) = N , ν(B) = N , Nk ≤ N < Nk+1 and Nk ≤ N < Nk+1.

13



From Lemma 4.2, we deduce that the terms with non negative exponent
in r and r must coincide. Thus, ul = ul = al, for l = 1, . . . , k, and

r(z) = mz + a1z
1−n1

n + · · ·+ akz
1−nk

n + uk+1z
1−

Nk+1
N + · · · , ai, ui ̸= 0

r(z) = mz + a1z
1−n1

n + · · ·+ akz
1−nk

n + uk+1z
1−

Nk+1
N + · · · , ai, ui ̸= 0,

where n, ni ∈ N, 0 < n1 < · · · < nk < n, Nk+1 > N ,Nk+1 > N . Observe that
we have simplified the non negative exponents such that gcd(n, n1, . . . , nk) =
1. That is, for l = 1, . . . , k, there are b, b ∈ N such that Nl = bnl, N = bn,
N l = bnl, and N = bn.

Under these conditions, we observe that the different leaves of B and B
are obtained by conjugation on r(z) and r(z). That is (see equation (1)),

ri(z) = mz + u1c
N1
i z1−

N1
N + · · ·+ ukc

Nk
i z1−

Nk
N + uk+1c

Nk+1

i z1−
Nk+1

N + · · ·

rj(z) = mz + u1d
N1
j z1−

N1
N + · · ·+ ukd

Nk
j z1−

Nk
N + uk+1d

Nk+1

j z1−
Nk+1

N + · · · ,
where c1, . . . , cN are the N complex roots of xN = 1, and d1, . . . , dN are the

N complex roots of xN = 1.

We simplify the exponents and, using that ul = ul = al, l = 1, . . . , k, we
get that:

ri(z) = mz + a1c
N1
i z1−

n1
n + · · ·+ akc

Nk
i z1−

nk
n + uk+1c

Nk+1

i z1−
Nk+1

N + · · ·

rj(z) = mz + a1d
N1
j z1−

n1
n + · · ·+ akd

Nk
j z1−

nk
n + uk+1d

Nk+1

j z1−
Nk+1

N + · · · .

Hence, we only have to show that for each i ∈ {1, . . . , N} there exists

j ∈ {1, . . . , N} such that cNl
i = dN l

j for every l = 1, . . . , k. Indeed: since
ci, i = 1, . . . , N are the N complex roots of xN = 1, we have that ci =

e
2(i−1)πI

N , where I is the imaginary unit. Taking into account that N = bn,

we deduce that cbi = e
2(i−1)πI

n , i = 1, . . . , N , and cbi = cbi+(m−1)n for each

i = 1, . . . , n, and m = 1, . . . , b. That is, (cbi)
n = 1, i = 1, . . . , n. Reasoning

similarly, we have that dbj = e
2(j−1)πI

n , j = 1, . . . , N , and dbj = dbj+(m−1)n for

each j = 1, . . . , n, and m = 1, . . . , b. That is, (dbj)
n = 1, j = 1, . . . , n.

Therefore, cbi = dbi+(m−1)n,m = 1, . . . , b, and using that Nl = bnl and N l =

bnl, l = 1, . . . , k, it follows that cNl
i = dN l

j , j = i+ (m− 1)n, m = 1, . . . , b. �
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Remark 4.7. Two convergent infinity branches may have different ramifi-
cation indexes i.e., they may have different number of leaves. However, the
value n ∈ N obtained by simplifying the non negative exponents, is the same
in both branches. We refer to it the degree of the infinity branch. Observe
that the proof of Proposition 4.6 implies that two convergent infinity branches
have the same degree.
In order to illustrate this remark, we consider the curves C and C, defined by
the polynomials f(x, y) = y4 − 2xy2 + x2 − y, and f(x, y) = y2 − x, respec-
tively. C has only the infinity branch B =

∪4
i=1 Li, where Li = {(z, ri(z)) ∈

C2 : z ∈ C, |z| > M},

ri(z) = c2i z
1/2 +

1

2
c5i z

−1/4 − 1

64
c11i z

−7/4 +
1

128
c14i z

−10/4 + · · · ,

and c1 = 1, c2 = I, c3 = −1, c4 = −I. Note that the first term of these
series is z1/2 or −z1/2. The curve C also has one infinity branch defined by
B =

∪2
i=1 Li, where Li = {(z, ri(z)) ∈ C2 : z ∈ C, |z| > M}, ri(z) = diz

1/2,
and d1 = 1, d2 = −1. We get that B and B, are convergent since L1 and L1

converge. In fact, L1 and L3 converge with L1 and, on the other hand, L2

and L4 converge with L2 (see Lemma 4.2).

Two convergent infinity branches may be contained in the same curve or
they may belong to different curves. In this second case we will say that
those curves approach each other. In order to define this concept in a more
formal way, we first introduce the following distance:

Definition 4.8. Given an algebraic plane curve C over C and a point p ∈ C2,
we define the distance from p to C as d(p, C) = min{d(p, q) : q ∈ C}.

Remark 4.9. Observe that this minimum exists because C is a closed set.

Definition 4.10. Let C be an algebraic plane curve over C with an infinity
branch B. We say that a curve C approaches C at its infinity branch B if
there exists one leaf L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B such that
limz→∞ d((z, r(z)), C) = 0.

We will show that this condition is satisfied for one leaf of B if and only
if it is satisfied for every leaf of B. It will be derived as a consequence of the
following theorem.

15



Theorem 4.11. Let C be a plane algebraic curve over C with an infinity
branch B. A plane algebraic curve C approaches C at B if and only if C has
an infinity branch, B, such that B and B are convergent.

Proof: Suppose that C approaches C at B. Then, there exists a leaf L =
{(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B such that limz→∞ d((z, r(z)), C) = 0.
In addition, let P = (1 : m : 0) be the infinity point associated to B, and
let {zn}n∈N be a sequence in C such that limn→∞ zn = ∞. We have that
limn→∞ d((zn, r(zn)), C) = 0 which implies that

lim
n→∞

d((zn, r(zn)), (pn, qn)) = 0,

where, for each zn such that |zn| > M , (pn, qn) is the point of C closest to
the point (zn, r(zn)) (this point exists because of Definition 4.8). Note that
the above equality implies that

lim
n→∞

|pn − zn|2 + |qn − r(zn)|2 = 0,

and hence we have that:

• lim
n→∞

(pn − zn) = 0. Then, limn→∞ pn/zn = 1 which implies that

limn→∞ pn = ∞. Hence, limn→∞ 1/pn = 0.

• lim
n→∞

(qn − r(zn)) = 0. Then, limn→∞(qn/zn − r(zn)/zn) = 0 which

implies that limn→∞ qn/zn = limn→∞ r(zn)/zn = m.

Therefore,

lim
n→∞

qn/pn = lim
n→∞

qn/zn
pn/zn

= m.

Now, taking into account Lemma 3.6 and that limn→∞ pn = ∞, we get
that there exits n0 ∈ N such that for n ≥ n0, the points (pn, qn) are in some
infinity branch of C. Moreover, since any curve has a finite number of infinity
branches and a finite number of leaves, we can find a subsequence {znl

}l∈N
and l0 ∈ N such that for l ≥ l0, the points (pnl

, qnl
) are all in a same leaf

L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M}, belonging to some branch B ⊂ C.
Under these conditions, we deduce that for l ≥ l0, qnl

= r(pnl
), and then

lim
l→∞

r(pnl
)/pnl

= lim
l→∞

qnl
/pnl

= m.
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Since the limit limz→∞
r(z)
z

= limz→∞ φ(z−1) exists, we get limz→∞
r(z)
z

= m.

In addition, note that

|r(znl
)− r(znl

)| = d((znl
, r(znl

)), (znl
, r(znl

))) ≤

d((znl
, r(znl

)), (pnl
, r(pnl

))) + d((pnl
, r(pnl

)), (znl
, r(znl

))) (I)

and

d((znl
, r(znl

)), (pnl
, r(pnl

))) = d((znl
, r(znl

)), (pnl
, qnl

))−−−−→
l → ∞0.

Now, let us prove that d((pnl
, r(pnl

)), (znl
, r(znl

)))−−−−→
l → ∞0. For this purpose,

we show that liml→∞(r(pnl
)− r(znl

)) = 0. Indeed: let

r(z) = mz + b1z
s−s1

s + b2z
s−s2

s + · · · , s, si ∈ N, 0 < s1 < s2 < · · · .

Thus,

r ′(z) = m+
s− s1
s

b1z
−s1
s +

s− s2
s

b2z
−s2
s + · · · −−−−→z → ∞m.

Therefore, there exist K > 0 and δ > 0 such that |r ′(z)| ≤ K, for |z| > δ.
Applying the Mean Value Theorem (see Ahlfors (1979)), we have that

Re

(
r(pnl

)− r(znl
)

pnl
− znl

)
= Re(r ′(c1)), Im

(
r(pnl

)− r(znl
)

pnl
− znl

)
= Im(r ′(c2)),

where Re(q) and Im(q) denote the real part and the imaginary part of q(z) ∈
C(z), respectively, and c1, c2 ∈]pnl

, znl
[, where ]pnl

, znl
[:= {z ∈ C : z =

pnl
+ (pnl

− znl
)t, t ∈ (0, 1)}. Thus,

|r(pnl
)− r(znl

)|2 = (Re(r ′(c1))
2 + Im(r ′(c2))

2)|pnl
− znl

|2.

Now, since liml→∞ pnl
= liml→∞ znl

= ∞, and liml→∞ pnl
− znl

= 0, we
deduce that given ε > 0, there exists l1 ∈ N such that, for l ≥ l1,

|pnl
| > δ + ε, |znl

| > δ + ε, and |pnl
− znl

| < ε.

Then, |cj| > δ and |r ′(cj)| ≤ K for j = 1, 2, which implies that, for l ≥ l1,

|r(pnl
)− r(znl

)| ≤
√
2K|pnl

− znl
|−−−−→
l → ∞0
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(note that Re(r ′(c1)) ≤ |r ′(c1)| ≤ K, and Im(r ′(c2)) ≤ |r ′(c2)| ≤ K).
Therefore, liml→∞(r(pnl

) − r(znl
)) = 0, which implies that there exists a

sequence {znl
}l∈N with liml→∞ znl

= ∞, such that

lim
l→∞

(r(znl
)− r(znl

)) = 0

(see inequality (I)). Then, the terms with positive exponent of the series r(z)
and r(z) are the same (see the proof of Lemma 4.2). Hence, we conclude
that (see Lemma 4.2)

lim
z→∞

(r(z)− r(z)) = 0

and thus B and B are convergent (see Definition 4.4).

Reciprocally, let us assume that B and B are convergent. Then, by
definition, there exist two leaves L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B
and L = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B such that lim

z→∞
(r(z)−r(z)) =

0. Therefore,

lim
z→∞

d((z, r(z)), C) ≤ lim
z→∞

d((z, r(z)), (z, r(z))) = lim
z→∞

(r(z)−r(z)) = 0. �

Remark 4.12. 1. From Theorem 4.11, we get that “proximity” is a sym-
metric relation; i.e., C approaches C at some infinity branch B iff C
approaches C at some infinity branch B. In the following, we say that
C and C approach each other or that they are approaching curves.

2. Theorem 4.11 and Remark 4.5 imply that two approaching curves have
a common infinity point.

3. From Theorem 4.11 and Proposition 4.6, we get that C approaches C
at an infinity branch B if and only if for every leaf L = {(z, r(z)) ∈
C2 : z ∈ C, |z| > M} ⊂ B, it holds that lim

z→∞
d((z, r(z)), C) = 0.

Corollary 4.13. Let C be an algebraic plane curve with an infinity branch
B. Let C1 and C2 be two different curves that approach C at B. Then C1 and
C2 approach each other.

Proof: From Theorem 4.11, there exist two infinity branches B1 ⊂ C1 and
B2 ⊂ C2, convergent with B. Thus, for each leaf L = {(z, r(z)) ∈ C2 : z ∈
C, |z| > M} ⊂ B, there exist two leaves L1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| >

18



M1} ⊂ B1 and L2 = {(z, r2(z)) ∈ C2 : z ∈ C, |z| > M2} ⊂ B2 such that
limz→∞(r(z)− r1(z)) = 0 and limz→∞(r(z)− r2(z)) = 0. Then

|r1(z)− r2(z)| ≤ |r1(z)− r(z)|+ |r(z)− r2(z)|−−−−→z → ∞0.

Therefore, C1 and C2 approach each other. �

In the following, we illustrate the above results with an example.

Example 4.14. Let C and C be two plane curves implicitly defined by the
polynomials

f(x, y) = 2y3x− y4 + 2y2x− y3 − 2x3 + x2y + 3 ∈ R[x, y], and

f(x, y) = y3x− y4 + y2x− y3 − x3 + x2y + 2 ∈ R[x, y],
respectively. Let us prove that C and C approach each other (see Figure 2) at
the infinity branch associated to the infinity point P = (1 : 0 : 0) (note that
both curves have P as an infinity point).
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Figure 2: C (left), C (center), and both approaching curves (right)

Reasoning as in Example 3.5, we get that the infinity branch of C associ-
ated to P is given by B = L1 ∪ L2 ∪ L3, where Li = {(z, ri(z)) ∈ C2 : z ∈
C, |z| > M},

ri(z) = c2i z
2/3 − 1/3 + 1/9c2i z

−2/3 − 2/81c4i z
−4/3 − 1/2c7i z

−7/3 + · · ·

and ci, i = 1, 2, 3 are the complex roots of x3 = 1. On the other hand, the
infinity branch of C associated to P is given by B = L1 ∪ L2 ∪ L3, where
Li = {(z, ri(z)) ∈ C2 : z ∈ C, |z| > M},

ri(z) = c2i z
2/3 − 1/3 + 1/9c2i z

−2/3 − 2/81c4i z
−4/3 − 2/3c7i z

−7/3 + · · ·
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and ci, i = 1, 2, 3 are the complex roots of x3 = 1 (to compute ri and ri, we
use the algcurves package included in Maple). From Lemma 4.2, we conclude
that both branches converge, since the terms with non negative exponent in
both series, ri and ri, are the same.

Remark 4.15. In the above example, the curves C and C are approaching
curves, since C approaches C at one of its infinity branches, and reciprocally.
However, C has another infinity branch which is not approached by C and
C has an infinity branch which is not approached by C. When a curve ap-
proaches another curve at all of its infinity branches and reciprocally, we say
that both curves have the same asymptotic behavior. We focus on this special
relation in the next section.

5. Asymptotic Behavior

Using the results presented in the previous sections, in the following we
present an algorithm that allows us to compare the asymptotic behavior of
two curves. We say that two curves have the same asymptotic behavior if they
approach each other at all of the infinity branches. In addition, we prove that
if two plane algebraic curves have the same asymptotic behavior, the Haus-
dorff distance between them is finite. We remark that the results presented
in the paper, and in particular in this section, can be stated similarly for
curves in the affine n-space (see Blasco and Pérez-Dı́az (2014b)).

The algorithm presented, as well as the results developed in this section,
play an important role in the frame of practical applications in C.A.G.D
such as approximate parametrization problems (see Section 1). In particular,
estimating the Hausdorff distance between two curves is specially interesting
since it is an appropriate tool for measuring the closeness between these two
curves. Many authors have addressed some problems in this frame (see e.g.
Bai et al. (2011), Chen et al. (2010), Kim et al. (2010), Patrikalakis and
Maekawa. (2001), Rueda et al. (2014), etc).

To start with, we first introduce the following definition.

Definition 5.1. We say that two algebraic plane curves, C and C, have the
same asymptotic behavior if every infinity branch of C converges to another
branch of C, and reciprocally.

Remark 5.2. From Theorem 4.11, we get that C and C have the same asymp-
totic behavior iff C approaches C at all its infinity branches, and reciprocally.
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Now, we recall the notion of Hausdorff distance.

Definition 5.3. Given a metric space (E, d) and two subsets A,B ⊂ E\{∅},
the Hausdorff distance between them is defined as:

dH(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.

If E = C2 and d is the Euclidean distance, the Hausdorff distance between
two curves C and C can be expressed as:

dH(C, C) = max{sup
p∈C

d(p, C), sup
p∈C

d(p, C)}.

Proposition 5.4. Let C and C be two algebraic plane curves having the same
asymptotic behavior. Then, the Hausdorff distance between them is finite.

Proof: Let r be the number of infinity branches of C. Then, C = B1 ∪ · · · ∪
Br ∪ B̂, where B̂ is the set of points of C that do not belong to any infinity
branch. Thus,

sup
p∈C

d(p, C) = max{ sup
p∈B1

d(p, C), ..., sup
p∈Br

d(p, C), sup
p∈B̂

d(p, C)}.

For each i = 1, ..., r, let Bi =
∪Ni

j=1 Li,j, where Li,j = {(z, ri,j(z)) ∈ C2 : z ∈
C, |z| > Mi}, and Ni = ν(Bi). Then,

sup
p∈Bi

d(p, C) = max
j=1,...,Ni

{
sup

|z|>Mi

d((z, ri,j(z)), C)

}
.

Moreover, from Remark 5.2, C approaches C atBi, so limz→∞ d((z, ri,j(z)), C) =
0 for every j = 1, . . . , Ni. Hence, given ε > 0 there exists δ > 0 such that
d((z, ri,j(z)), C) < ε, for |z| > δ. Then, since ri,j is a continuous function,
and {z ∈ C : Mi ≤ |z| ≤ δ} is a compact set, we deduce that

sup
p∈Bi

d(p, C) ≤ max
j=1,...,Ni

max

{
sup

Mi≤|z|≤δ

d((z, ri,j(z)), C), ε

}
<∞.

Now, let p = (a, b) ∈ B̂. From Lemma 3.6 and Remark 3.7, we have that
there exists K ∈ R+ such that |a|, |b| ≤ K. Thus, d(p,O) ≤ K, where O is
the origin and,

d(p, C) ≤ d(p,O) + d(O, C) ≤ K + d(O, C).
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Note that K <∞, and d(O, C) <∞, which implies that supp∈B̂ d(p, C) <∞.

Therefore, we conclude that supp∈C d(p, C) <∞. Reasoning similarly, we

deduce that supp∈C d(p, C) <∞, which implies that dH(C, C) <∞. �

The following algorithm allow us to compare the asymptotic behavior of
two curves C and C. We assume that we have prepared C and C such that by
means of a suitable linear change of coordinates (the same change applied to
both curves), (0 : 1 : 0) is not a point of infinity of C∗ and C∗

.

Algorithm Asymptotic Behavior.

Given two implicit algebraic plane curves C and C, the algorithm decides
whether C and C have the same asymptotic behavior.

1. Compute the infinity points of C and C. If they are not the same,
Return the curves do not have the same asymptotic behavior (see
Remark 4.5). Otherwise, let P1, . . . , Pn be these infinity points.

2. For each Pk := (1 : mk : 0), k = 1, . . . , n do:

2.1. Compute the infinity branches of C associated to Pk. Let
B1, ..., Bnk

be these branches. For each i = 1, . . . , nk, let
Li = {(z, ri(z)) ∈ C2 : z ∈ C, |z| > Mi} be any leaf of Bi.

2.2. Compute the infinity branches of C associated to Pk. Let
B1, ..., Blk be these branches. For each j = 1, . . . , lk, let
Lj = {(z, rj(z)) ∈ C2 : z ∈ C, |z| > Mj} be any leaf of Bj.

2.3. For each Bi ⊂ C, find Bj ⊂ C such that the terms with non
negative exponent in ri(z) and rj(z) are the same up to conju-
gation. If there isn’t such a branch, Return the curves do not
have the same asymptotic behavior (see Lemma 4.2).

2.4. For each Bj ⊂ C, find Bi ⊂ C such that the terms with non
negative exponent in ri(z) and rj(z) are the same up to conju-
gation. If there isn’t such a branch, Return the curves do not
have the same asymptotic behavior (see Lemma 4.2).

3. Return the curves C and C have the same asymptotic behavior.

In the following, we illustrate the performance of algorithm Asymptotic
Behavior with an example.
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Example 5.5. Let C, and C be two plane curves implicitly defined by the
polynomials

f(x, y) = 2y3x− y4 + 2y2x− y3 − 2x3 + x2y + 3, and

f(x, y) = 2y3x− y4 + 2y2x− y3 − 2x3 + x2y − 3x2 − xy + 2x− 3y + 1,

respectively. We apply the algorithm Asymptotic Behavior to decide whether
C and C have the same asymptotic behavior:

Step 1: Compute the infinity points of C and C. We obtain that C and
C have the same infinity points: P1 = (1 : 0 : 0) and P2 = (1 : 2 : 0).

We start by analyzing the infinity branches associated to P1:

Step 2.1: Reasoning as in Example 3.5, we get that the only infinity
branch associated to P1 in C is given by B1 = L1,1 ∪ L1,2 ∪ L1,3 where
L1,i = {(z, r1,i(z)) ∈ C2 : z ∈ C, |z| > M1}, i = 1, 2, 3, and

r1,i(z) = z2/3 − 1/3 + 1/9z−2/3 − 2/81z−4/3 + · · · ,

up to conjugation.

Step 2.2: We also have that there exists only one infinity branch as-
sociated to P1 in C. It is given by B1 = L1,1 ∪ L1,2 ∪ L1,3 where
L1,i = {(z, r1,i(z)) ∈ C2 : z ∈ C, |z| > M1}, i = 1, 2, 3, and

r1,i(z) = z2/3 − 1/3 + 1/2z−1/3 + 19/36z−2/3 + · · · ,

up to conjugation.

Step 2.3 and Step 2.4: r1,1(z) and r1,1(z) have the same terms with non
negative exponent. Thus, B1 and B1 converge.

Now we analyze the infinity branches associated to P2:

Step 2.1: Reasoning as in Example 3.5, we get that the only infinity
branch associated to P2 in C is given by B2 = L2 = {(z, r2(z)) ∈ C2 :
z ∈ C, |z| > M2}, where

r2(z) = 2z + 3/8z−3 − 9/64z−4 + 27/512z−5 + · · · .

23



Step 2.2: The only infinity branch associated to P2 in C is given by
B2 = L2 = {(z, r2(z)) ∈ C2 : z ∈ C, |z| > M2}, where

r2(z) = 2z − 5/8z−1 − 17/64z−2 − 145/512z−3 + · · · .

Step 2.3 and Step 2.4: r2(z) and r2(z) have the same terms with non
negative exponent. Thus, B2 and B2 converge.

Since every infinity branch of C converges to another branch of C, and
reciprocally, the algorithm returns that C and C have the same asymptotic
behavior (see Figure 3).
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Figure 3: C (left), C (center), and the asymptotic behavior of C and C (right)
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