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Sonia Pérez-Dı́az

Dpto de F́ısica y Matemáticas
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Abstract

Given an algebraically closed field K, and a rational parametrization P of an
algebraic surface V ⊂ K3, we consider the problem of computing a proper
rational parametrization Q from P (reparametrization problem). More pre-
cisely, we present an algorithm that computes a rational parametrization Q
of V such that the degree of the rational map induced by Q is less than the
degree induced by P . The properness of the output parametrization Q is
analyzed. In particular, if the degree of the map induced by Q is one, then
Q is proper and the reparametrization problem is solved. The algorithm
works if at least one of two auxiliary parametrizations defined from P is not
proper.

Keywords: Proper reparametrization, Rational surface, Degree of a
rational map
2000 MSC: 14Q10, 68W30, 14E05

1. Introduction

In this paper, we deal with the reparametrization problem, that is, with
the problem of computing a rational proper reparametrization of a given im-
properly parametrized algebraic surface. More precisely, given an algebraically
closed field K, and P( t ) ∈ K( t )3, t = (t1, t2), a rational parametrization
of a surface V , the reparametrization problem consists in computing a proper
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parametrization of V , Q( t ), and R( t ) ∈ (K( t ) \ K)2, such that P( t ) =
Q(R( t )).

Although it is known from Castelnuovo’s Theorem that unirationality
and rationality are equivalent over algebraically closed fields, only partial
results approaching the problem algorithmically are known (see Pérez-Dı́az
(2006)). In particular, given an algebraically closed field K, and P( t ) a
rational parametrization of a surface V , an algorithm is presented in Pérez-
Dı́az (2006) to determine whether there exists

R( t ) = (r1(t1), r2(t2)) =

(
r1,1(t1)

r1,2(t1)
,
r2,1(t2)

r2,2(t2)

)
∈ (K(t1) \K)× (K(t2) \K),

such that P( t ) = Q(R( t )), and Q( t ) is a proper parametrization of V . In
the affirmative case, R and Q are computed.

The approach presented in this paper complements the results obtained in
Pérez-Dı́az (2006). More precisely, in Pérez-Dı́az (2006), the reparametriza-
tion problem is solved for those surfaces parametrized by P that admit R of
the form R( t ) = (r1(t1), r2(t2)) ∈ (K(t1) \ K) × (K(t2) \ K), and such that
P = Q(R). In this paper, we deal with surfaces not necessarily satisfying
this condition. In addition, for those surfaces for which a rational proper
reparametrization is not found, we show how to decrease the degree of the
rational map induced by the parametrization. For this purpose, we need that
at least one of two auxiliary parametrizations defined from P is not proper.

The reparametrization problem, in particular when the variety is a curve
or a surface, is especially interesting in some practical applications in Com-
puter Aided Geometric Design (CAGD) where objects are often given and
manipulated parametrically. In addition, proper parametrizations play an
important role in many practical applications in CAGD, such as in visualiza-
tion (see Hoffmann et al. (1997) or Hoschek and Lasser (1993)) or rational
parametrization of offsets (see Arrondo et al. (1997)). Also, it is provided
an implicitization approach based on resultants (see Cox et al. (1998), and
Sendra and Winkler (2001)).

A direct approach to the reparametrization problem could consist in first
implicitizing the parametrization (see Busé (2003), Cox (2001), Kotsireas
(2004), Sendra and Winkler (2001)), and then to apply algorithms developed
for instance in Cox et al. (1997), Goldman et al. (1984), González-Vega
(1997), van Hoeij (1997), Hoffmann et al. (1997), Schicho (1998), Sendra
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and Winkler (1991), Sendra and Winkler (1997), to parametrize the implicit
equation. However, some of these implicitization methods have difficulties
in the presence of base points, or deal only with special cases or, although
always valid, the computing time is not totally satisfactory. In Pérez-Dı́az
and Sendra (2008), an algorithm is presented, based on polynomial gcds and
univariate resultants, that is always valid. However, even with this approach,
the solution is, in most of cases, too time consuming (see Subsection 3.1).

Therefore, we would like to approach the problem by means of ratio-
nal reparametrizations. By rational reparametrization we basically mean
without implicitizing, or more formally, by finding a non–constant rational
change of parameter, if it exists, that transforms the input parametrization
into a new parametrization of the same curve or surface. Note that any
reparametrization of a rational parametrization is again a parametrization of
the same variety.

It is well known that for the case of curves, it is always possible to
reparametrize an improperly parametrized curve in such a way that it be-
comes properly parametrized. In Alonso et al. (1995), Gutierrez et al. (2002),
Pérez-Dı́az (2006) and Sederberg (1986), some approaches are presented to
compute a proper parametrization from a given improper one.

The approach presented in this paper deals with the surface case, and it
is based on polynomial gcds and univariate resultants, which always work
and whose computing time is very satisfactory (see Subsection 3.1). More
precisely, the algorithm presented follows from the algorithm Proper Repa-
rametrization for Space Curves developed in Section 2 and derived from the
results in Pérez-Dı́az (2006). The basic idea of the approach presented in
this paper is to compute a reparametrization of two auxiliary parametriza-
tions of two space curves, P1, P2, obtained directly from a given rational
parametrization of the surface P defined over an algebraically closed field K
(see Definition 1). Moreover, since when we compose two rational maps we
multiply their degrees, we can deduce some properties that relate the degree
of the rational map induced by the given parametrization P to the degree of
the output parametrization Q, and the degree of the rational maps induced
by the two auxiliary parametrizations, P1 and P2. Furthermore, we also show
the relation of the degrees of the rational maps induced by P and Q with
the degree of R( t ) ∈ K( t )2 with respect to the variables t1, t2.
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The structure of the paper is as follows: In Section 2, we present an algo-
rithm for computing a proper reparametrization of an algebraic space curve.
The algorithm is derived from the results presented in Pérez-Dı́az (2006).
In Section 3, we outline the algorithm that solves (in some cases) the prob-
lem of computing a rational proper reparametrization for a given improperly
parametrized algebraic surface. More precisely, we introduce some auxil-
iary partial parametrizations defined from the input rational parametriza-
tion P (see Definition 1), and we prove a theorem (see Theorem 3), where
we characterize the properness of P in terms of the properness of its partial
parametrizations. The idea provided by this theorem will be used to derive
the algorithm and to characterize the properness of the output reparametriza-
tion (see Theorem 4 and Corollary 3). In addition, for those surfaces for
which we cannot find a rational proper reparametrization, if at least one of
two auxiliary parametrizations defined from P is not proper, we show how
to compute a rational reparametrization such that the degree of the rational
map induced by it is less than the degree induced by the input parametriza-
tion P (see Corollary 2). Finally, we present the actual computing times of
the implementation, and we show that the algorithm presented here is much
more efficient and powerful, than first finding the implicit equation (see Sub-
section 3.1). Section 4 is devoted to summarizing the contributions of the
paper, and we comment on how the results presented in the paper can easily
be extended to a variety V ⊂ Kn of dimension 2, rationally parametrized by

P( t ) =

(
p1,1( t )

p1,2( t )
, . . . ,

pn,1( t )

pn,2( t )

)
∈ K( t )n,

where K is an algebraically closed field.

2. Proper Reparametrization for Space Curves

The problem of proper reparametrization for curves can be stated as
follows: given a field K (not necessarily an algebraically closed field), and a
rational parametrization P(t) ∈ K(t)n of an algebraic curve C, find a rational
proper parametrization Q(t) ∈ K(t)n of C, and a rational function R(t) ∈
K(t) \K such that P(t) = Q(R(t)).

A parametrization P of C is proper if and only if the map P : K −→ C ⊂
Kn, t 7−→ P(t) is birational, or equivalently, if for almost every point on C
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and for almost all values of the parameter in K the mapping P is rationally
bijective. The notion of properness can also be stated algebraically in terms
of fields of rational functions. In fact, a rational parametrization P is proper
if and only if the induced monomorphism ϕP on the fields of rational functions

ϕP : K(C) −→ K(t);R(x1, . . . , xn) 7−→ R(P(t)).

is an isomorphism. Therefore, P is proper if and only if the mapping ϕP
is surjective, that is, if and only if ϕP(K(C)) = K(P(t)) = K(t). Thus,
Lüroth’s Theorem implies that any rational curve over K can be properly
parametrized (see Abhyankar and Bajaj (1988), Sendra and Winkler (2001),
van Hoeij (1994)).

Under these conditions, the birationality of ϕP , i.e. the properness of
P(t), is characterized by deg(ϕP) = 1, where deg(ϕP) denotes the degree of
the rational map ϕP . The degree of the rational map ϕP is defined as the
degree of the finite field extension ϕP(K(C)) ⊂ K(t); that is, deg(ϕP) =
[K(t) : ϕP(K(C))] (see Harris (1995) and Shafarevich (1994)). In addition,
the degree of a rational map is equal to the cardinality of the fibre of a generic
element. That is, FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}, where FP(P ) is
the fibre of a point P ∈ C (see Theorem 7, pp. 76 in Shafarevich (1994)).
In the following, we refer to the degree of the rational map induced by a
parametrization P , deg(ϕP), as the mapping degree of P .

In this section, we present a preliminary algorithm for computing a proper
reparametrization of an algebraic space curve. That is, given a parametriza-
tion P(t) ∈ K(t)3 of an algebraic space curve C over a field K, we find a
rational proper parametrization Q(t) ∈ K(t)3 of C, and a rational function
R(t) ∈ K(t) \K such that P(t) = Q(R(t)). This algorithm is obtained from
the results presented in Pérez-Dı́az (2006) (where the case of plane curves is
solved), and it will be used to derive the algorithm for surfaces in Section
3. The results presented in this section can easily be extended to curves in
Kn,n ≥ 4.

Notation

Let K be a field, and let K⋆ = K \ {0}. If C is an affine rational plane
curve, and P(t) is a rational affine parametrization of C over K, we write the
components of P(t) as

P(t) =

(
p1,1(t)

p1,2(t)
,
p2,1(t)

p2,2(t)
,
p3,1(t)

p3,2(t)

)
∈ K(t)3, gcd(pi,1, pi,2) = 1, i = 1, 2, 3.
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For simplicity, we assume that pi,1/pi,2, i = 1, 2, 3 are not constant. Note
that, if for instance p1,1/p1,2 = λ ∈ K, then we apply results in Pérez-Dı́az
(2006), and we compute a proper parametrizationQ of (p2,1(t)/p2,2(t), p3,1(t)/p3,2(t)).
Then, a proper parametrization of C is (λ,Q(t)).

Associated with the given parametrization P , we consider the polynomials

HP
i (t, s) = pi,1(t)pi,2(s)− pi,2(t)pi,1(s) ∈ K[t, s], i = 1, 2, 3,

and
SP(t, s) = gcd(HP

1 (t, s), H
P
2 (t, s), H

P
3 (t, s)) ∈ K[t, s].

The polynomial SP plays an important role in deciding whether a parametriza-
tion P is proper; i.e. in studying whether the parametrization is injective
for almost all parameter values. More precisely, SP(t, s) ∈ K[t, s] \K[t], and
deg(ϕP) = degt(S

P). Thus, P is proper if and only if, up to constants in
K⋆, SP(t, s) = t− s (see Pérez-Dı́az (2006), Sederberg (1986) or Sendra and
Winkler (2001)).

Under these conditions, we apply the results obtained in Pérez-Dı́az
(2006) (Sections 2 and 3) to derive an algorithm that computes a ratio-
nal proper reparametrization of an improperly parametrized algebraic space
curve. It is clear that taking into account that every space curve is bira-
tionally equivalent to a plane curve (see e.g. Theorem 6.5 in Walker (1950)),
the results presented in Pérez-Dı́az (2006) for plane algebraic curves can be
applied to space curves. However, in the following algorithm we show that
one does not need to compute the birationally equivalent plane curve, and
the results in Pérez-Dı́az (2006) can be extended to space curves. In addi-
tion, we note that the algorithm is based on polynomial gcds and univariate
resultants, which always work and whose computing time is very satisfactory.
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Algorithm Proper Reparametrization for Space Curves (PRSC).

Input: a field K, and a rational affine parametrization

P(t) =

(
p1,1(t)

p1,2(t)
,
p2,1(t)

p2,2(t)
,
p3,1(t)

p3,2(t)

)
∈ K(t)3, gcd(pi,1, pi,2) = 1

of an algebraic space curve C.
Output: a rational proper parametrization, Q(t) ∈ K(t)3 of C, and R(t) ∈
K(t) such that P(t) = Q(R(t)).

1. Compute HP
j (t, s) = pj,1(t)pj,2(s)− pj,1(s)pj,2(t), j = 1, 2, 3.

2. Determine SP(t, s) = gcd(HP
1 (t, s), H

P
2 (t, s), H

P
3 (t, s)) = Cm(t)s

m +
· · ·+ C0(t).

3. If deg(ϕP) = degt(S
P) = 1, Return Q(t) = P(t), and R(t) = t.

Otherwise go to Step 4.

4. Compute a rational function R(t) = Ci(t)
Cj(t)

∈ K(t), where Cj(t), Ci(t)

are two of the polynomials obtained in Step 2 such that gcd(Cj, Ci) =
1 and CjCi ̸∈ K∗.

5. For i = 1, 2, 3, define the polynomials GP
i (t, xi) = xipi,2(t) − pi,1(t),

and compute

Li(s, xi) = Rest(G
P
i (t, xi), sCj(t)− Ci(t)) = (qi,2(s)xi − qi,1(s))

deg(R).

6. Return the rational function R(t) = Ci(t)/Cj(t) ∈ K(t), and the
proper parametrization

Q(t) = (q1,1(t)/q1,2(t), q2,1(t)/q2,2(t), q3,1(t)/q3,2(t)) ∈ K(t)3.

Remark 1. Observe that:

1. If P has coefficients in a smaller subfield L of K, then both R and Q
also have coefficients in L.

2. The above algorithm works similarly for plane curves (see Pérez-Dı́az
(2006)). More precisely, given a rational affine parametrization P(t) =
(p1,1(t)/p1,2(t), p2,1(t)/p2,2(t)) , in reduced form, of a plane algebraic
curve C, compute HP

j (t, s) = pj,1(t)pj,2(s) − pj,1(s)pj,2(t), j = 1, 2.
Then, determine the polynomial SP(t, s) = gcd(HP

1 (t, s), H
P
2 (t, s)), and

apply similarly steps 3 to 6 of the algorithm.
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3. We also may apply the algorithm for Ps(t) ∈ (K(s))(t)3 (that is, for a
parametrization of a space curve defined over the field K(s)). The out-
put parametrization, Qs(t) is in (K(s))(t)3 and its inverse Qs

−1 exits
and lies in K(s, x1, x2, x3). This observation will be used in Section 3.

In order to complete this section, we illustrate Algorithm PRSC with an ex-
ample.

Example 1. Let C be a rational space curve over C defined by the parametriza-
tion

P(t) =

(
p1,1(t)

p1,2(t)
,
p2,1(t)

p2,2(t)
,
p3,1(t)

p3,2(t)

)
=

(
(3t2 − 4t− 1 + 9t4)t4

(3t2 − 4t− 1)2
,

9t4 − 24t3 + 10t2 + 8t+ 1 + t8

t8
,

(3t2 − 4t− 1)t4

(9t4 − 24t3 + 10t2 + 8t+ 1 + 4t8)

)
∈ C(t)3.

In Step 1 of the algorithm, we compute the polynomials

HP
1 (t, s) = (s−t)(3s3t2−4s3t−s3+3s2t3−s2t−4s2t2−st2−4st3−t3)(27s4t2−

9s4 − 36s4t+27s2t4 +9s2t2 − 12s2t− 3s2 − 36st4 − 12st2 +16st+4s− 3t2 +
4t+ 1− 9t4),

HP
2 (t, s) = −(s − t)(3s3t2 − 4s3t − s3 + 3s2t3 − s2t − 4s2t2 − st2 − 4st3 −

t3)(3s4t2 − 4s4t− s4 + 3s2t4 − 4st4 − t4),

HP
3 (t, s) = −(s − t)(3s3t2 − 4s3t − s3 + 3s2t3 − s2t − 4s2t2 − st2 − 4st3 −

t3)(4s4t4 + 3s2 − 4s− 1 + 12s2t− 16st− 4t− 9s2t2 + 12st2 + 3t2).

Next, we compute the polynomial SP(t, s). We obtain

SP(t, s) = C0(t) + C1(t)s+ C2(t)s
2 + C3(t)s

3 + C4(t)s
4,

where C0(t) = t4, C1(t) = 4t4, C2(t) = −3t4, C3 = 0, and C4 = 3t2−4t−1.

Since deg(ϕP) = degt(S
P) > 1, we go to Step 4 of the algorithm, and we

compute

R(t) =
C4(t)

C0(t)
=

3t2 − 4t− 1

t4
∈ C(t).
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Note that gcd(C0, C1) = 1. Now, we compute the polynomials

L1(s, x1) = Rest(G
P
1 (t, x1), sC1(t)− C0(t)) = (s2x1 − s− 9)4,

L2(s, x2) = Rest(G
P
2 (t, x2), sC1(t)− C0(t)) = (s2 + 1− x2)

4,

L3(s, x3) = Rest(G
P
3 (t, x3), sC1(t)− C0(t)) = (−s+ 4x3 + s2x3)

4, where

GP
i (t, xi) = xipi,2(t) − pi,1(t) (see Step 5). Finally, in Step 6, the algorithm

outputs the proper parametrization Q(t), and the rational function R(t):

Q(t) =

(
t+ 9

t2
, t2 + 1,

t

4 + t2

)
∈ C(t)3, R(t) =

3t2 − 4t− 1

t4
∈ C(t).

3. Proper Reparametrization for Surfaces

In Section 2, we dealt with the problem of computing a rational proper
reparametrization of a given improperly parametrized algebraic space curve.
For the case of surfaces, although it is known from Castelnuovo’s Theorem
that unirationality and rationality are equivalent over algebraically closed
fields, the problem is not solved computationally. That is, there does not
exist an algorithm that computes the proper reparametrization.

In this section, given an algebraically closed fieldK, and P( t ) ∈ K( t )3, t =
(t1, t2), a rational parametrization of a surface V , we compute a parametrization
of V , Q( t ) ∈ K( t )3, and R( t ) = (S( t ), T (S( t ), t2)), S, T ∈ K( t ), such
that

P( t ) = Q(R( t )), and deg(ϕP) = deg(ϕQ) degt1(S) degt2(T )

(see Theorem 4). From the above equality, we show that if Q is not proper and
degt1(S) degt2(T ) ̸= 1, then deg(ϕQ) < deg(ϕP) (see Corollary 2). In addition,
we establish under which conditions Q is proper (see Corollary 3).

Note that this approach can be applied to other problems within the
framework of algebraic manipulations of parametrized algebraic surfaces, as
for instance in the decomposition problem (see for instance Gutierrez et al.
(2002)).

We start by introducing the notation that we will use throughout this
section. In particular, we introduce some polynomials defined in Pérez-Dı́az
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et al. (2002), Pérez-Dı́az and Sendra (2004), and Pérez-Dı́az and Sendra
(2005) that play an important role in deciding whether a parametrization
P is proper. Afterwards, we state a preliminary definition (Definition 1)
and a theorem (Theorem 3) that will be used to derive the algorithm and
in particular, to characterize the properness of the output reparametrization
(see Theorem 4 and Corollary 3).

Notation

Let K be an algebraically closed field, and let K⋆ = K \ {0}. In addition,
if V is an affine rational surface, and P( t ), t = (t1, t2), is a rational affine
parametrization of V over K, we write its components as

P( t ) =

(
p1,1( t )

p1,2( t )
,
p2,1( t )

p2,2( t )
,
p3,1( t )

p3,2( t )

)
∈ K( t )3, gcd(pi,1, pi,2) = 1, i = 1, 2, 3.

For simplicity, we assume without loss of generality that pi,1/pi,2, i = 1, 2, 3
are not constant. Note that, if for instance p1,1/p1,2 = λ ∈ K, then a proper
parametrization of V is Q(t1, t2) = (λ, t1, t2), and then the problem is trivial.
In addition, since P is a surface parametrization, we may assume without loss
of generality that {∇ (p1/q1) , ∇ (p2/q2)} are linearly independent as vectors
in K( t )2. This assumption is needed to apply results in Pérez-Dı́az and
Sendra (2004) (see Theorem 1).

In the following, we use the notions of content and primitive part of a poly-
nomial. Given a non-zero polynomial a(x ) ∈ I[ x ], where x = (x1, . . . , xn)
and I is a unique factorization domain, we denote by ppx (a) the primitive
part of a with respect to x , and by Contentx (a) the content part of a with
respect to x . That is, a(x ) = Contentx (a) ppx (a), where Contentx (a) ∈ I
is just the gcd of all the coefficients of a( x ) with respect to x . Note that
the gcd of all the coefficient of ppx (a) with respect to x is 1 (see Winkler
(1996)).

Associated with the given parametrization P , we consider the polynomials

HP
j ( t , s ) = pj,1( t )pj,2( s )− pj,2( t )pj,1( s ) ∈ (K[ s ])[ t ], j = 1, 2, 3,

where s = (s1, s2), and HP
4 ( t ) = lcm(p1,2, p2,2, p3,2) ∈ K[ t ]. In addition, we

also will use the polynomials

TP
1 (t1, s ) = pp s (ContentZ(Rest2(H

P
1 , H

P
2 + ZHP

3 ))) ∈ K[t1, s ],
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TP
2 (t2, s ) = pp s (ContentZ(Rest1(H

P
1 , H

P
2 + ZHP

3 ))) ∈ K[t2, s ].

For a field L we denote by L its algebraic closure.

Finally, for i = 1, 2, 3, we also consider the polynomials

Gi( t , xi) = pi,1( t )−xi pi,2( t ) ∈ (K[xi])[ t ], G4( t ) = lcm(p1,2, p2,2, p3,2) ∈ K[ t ],

and

SP
1 (t1, x ) = ppx (ContentZ(Rest2(G1, G2 + ZG3))) ∈ K[t1, x ],

SP
2 (t2, x ) = ppx (ContentZ(Rest1(G1, G2 + ZG3))) ∈ K[t2, x ],

where the content is taken over the field of rational functionsK(V), and where
K is an algebraically closed field. Recall that if f(x1, x2, x3) is the defining
polynomial of V , then K(V) is the quotient field of K[x1, x2, x3]/(f). Fur-
thermore, arithmetic in the field K(V) can be executed by using the defining
polynomial of V (see Sendra et al. (2007)).

Depending on the problem we are dealing with, we will use two dif-
ferent concepts of degree. For a rational function in reduced form R =
M/N ∈ K(x ), we denote the degree of R with respect to xi as degxi

(R) =
max{degxi

(M), degxi
(N)}. In addition, we denote by deg(ϕP) the degree of

the rational map induced by P (in the following, we refer to the degree of the
rational map P as the mapping degree of P). That is, ϕP : K2 −→ V ; t 7−→
P( t ), and the degree of ϕP is defined as the degree of the finite field exten-
sion ϕP(K(V )) ⊂ K( t ); i.e. deg(ϕP) = [K( t ) : ϕP(K(V ))] (see e.g. Harris
(1995) pp.80, or Shafarevich (1994) pp.143). Note that a mapping degree
which is less or equal than zero is nonsense. In addition, as an important
result, we recall that the properness of P( t ) is characterized by deg(ϕP) = 1
(see Harris (1995) and Shafarevich (1994)). Also, we recall that the mapping
degree is the cardinality of the fibre of a generic element (see Theorem 7, pp.
76 in Shafarevich (1994)). That is,

FP(P ) = P−1(P ) = { t ∈ K2 | P( t ) = P},

where FP(P ) is the fibre of a point P ∈ C.
The polynomials SP

j and TP
j , j = 1, 2, play an important role in de-

ciding whether a parametrization P is proper; i.e. in studying whether the
parametrization is injective for almost all parameter values (see Pérez-Dı́az
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and Sendra (2004)). More precisely, under the conditions introduced in this
section (in particular, K is an algebraically closed field), the following theo-
rem is proved in Pérez-Dı́az and Sendra (2004).

Theorem 1. Let F = K( s ). Then:

1. ϕ−1
P (P( s )) =

{
t ∈F2

∣∣Hi
P( t , s ) = 0, i ∈ {1, 2, 3}, HP

4 ( t ) ̸= 0
}
and

ϕ−1
P ( x )=

{
t ∈ F2

∣∣Gi( t , xi) = 0, i ∈ {1, 2, 3}, G4( t ) ̸= 0
}
.

2. The polynomial TP
i defines the ti–coordinates of the points in ϕ−1

P (P( s )),
for i = 1, 2.
The polynomial SP

i defines the ti–coordinates of the points in ϕ−1
P ( x ),

for i = 1, 2.

3. deg(ϕP) = Card(ϕ−1
P (P( s ))) = degt1(T

P
1 (t1, s )) = degt2(T

P
2 (t2, s )),

and

deg(ϕP) = Card(ϕ−1
P ( x )) = degt1(S

P
1 (t1, x )) = degt2(S

P
2 (t2, x )).

Remark 2. In the following, we will need to compute the mapping degree
of some particular rational maps. More precisely, let R( t ) = (t1, R2( t )) ∈
K( t )2 and ϕR : K2 → K2. Then deg(ϕR) = degt2(R2); a similar result holds
if (R1( t ), t2) (see Lemma 4.32 in Sendra et al. (2007)).

In Definition 1, given a rational parametrization of a surface, N ( t ) ∈
K( t )3, we introduce some auxiliary parametrizations over K(ti) defined from
N . These auxiliary parametrizations will play an important role in the com-
putation of the reparametrization.

Definition 1. Let N ( t ) ∈ K( t )3. We define the partial parametrizations
associated to N as the parametrizations Ni(tj) := N ( t ) ∈ (K(ti))(tj)

3 (that
is, N is defined over K(ti)), for i, j ∈ {1, 2} and i ̸= j.

Remark 3. Observe that:

1. The partial parametrization Ni(tj) (i ̸= j) defines a space curve over

K(ti) (we refer to this space curve as the partial space curve). Note
that, since N ( t ) is a surface parametrization its jacobian has rank 2,
and therefore the gradient of Ni(tj) (with respect to tj) must have rank
1.

12



2. The partial space curve introduced above depends directly on the para-
metrization; that is, different parametrizations of the same surface may
produce different partial space curves. However, if we are working with
Ni(tj) and we perform a reparametrization that only changes tj, then
the corresponding curves are equal.

3. Definition 1 can be stated for R( t ) ∈ K( t )2. More precisely, given
R( t ) ∈ K( t )2, one may consider Ri(tj) := R( t ) ∈ (K(ti))(tj)

2 (that
is, R is defined over K(ti)), for i, j ∈ {1, 2} and i ̸= j.

In order to illustrate Definition 1, and Remark 3 (statements 1 and 2),
we consider the following example.

Example 2. Consider the parametrization N (t1, t2) = (t1, t2, t1 + t2) of the

plane z = x + y. Observe that N1(t2) parametrizes the line CN
1 in K(t1)

3

defined by the equations {z = x+ y, x = t1} and N2(t1) parametrizes the line

CN
2 in K(t2)

3
defined by equation {z = x+ y, y = t2}. Now, consider the new

parametrization M(t1, t2) = (t1 + 1, t2 + 1, t1 + t2 + 2) of the same plane.
Then, CM

1 is the line defined by {z = x+y, x = t1+1}, and hence CM
1 ̸= CN

1 .

In Theorem 3, we characterize the properness of a given parametriza-
tion P of a surface V in terms of the properness of its partial parametriza-
tions. From Definition 1, we have that these partial parametrizations are
given as Pi(tj) := P( t ) ∈ (K(ti))(tj)

3 (that is, P is defined over K(ti)),
for i, j ∈ {1, 2} and i ̸= j. Under these conditions, it is proved that P
is birational if and only if Pi, i = 1, 2 are proper (that is, are invertible)
and the inverse of each Pi, say P−1

i , lies in K(x ) but P−1
i ̸∈ K(ti), where

x = (x1, x2, x3).

To start, we need to prove some preliminary results (Proposition 1 and
Corollary 1). For this purpose, first we state the following theorem that is
proved in Sendra and Winkler (2001). Which asserts that when computing a
resultant, the implicit equation defining a plane curve appears to the power
of the mapping degree (similar results on implicitization can be found in
Chionh and Goldman (1992) and Cox et al. (1998)). Afterwards, in Lemma
1, we apply this theorem to a special given parametrization.
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Theorem 2. Let P(t) = (p1,1(t)/p1,2(t), p2,1(t)/p2,2(t)) ∈ K(t)2 be a para-
metrization in reduced form of a plane curve C defined over the algebraically
closed field K. Then, up to multiplication by elements in K,

Rest(p1,1(t)−Xp1,2(t), p2,1(t)− Y p2,2(t)) = f(X,Y )deg(ϕP ) ∈ K[X,Y ],

where f(X,Y ) ∈ K[X, Y ] is the defining polynomial of C.

Lemma 1. Let

Q1(t2) =

(
p1,1( t )

p1,2( t )
,

p2,1( t )− x2p2,2( t )

−(p3,1( t )− x3p3,2( t ))

)
∈ (K(t1, x2, x3))(t2)

2

be a parametrization of a plane curve C defined over K(t1, x2, x3). Then,

Rest2(G1, G2 + ZG3) = f(x1, Z, t1, x2, x3)
deg(ϕP1

)h(t1) ∈ K[x1, Z, t1, x2, x3],

where f(x1, Z, t1, x2, x3) ∈ (K[t1, x2, x3])[x1, Z] is the defining polynomial of
C (f is a polynomial in the variables x1, Z with coefficients in K[t1, x2, x3]),
and h(t1) ∈ K[t1].

Proof. We apply Theorem 2 to the parametrization

Q1(t2) =

(
q1,1( t )

q1,2( t )
,
q2,1( t )

q2,2( t )

)
=

(
p1,1( t )

p1,2( t )
,

p2,1( t )− x2p2,2( t )

−(p3,1( t )− x3p3,2( t ))

)
∈ F(t2)2,

where the algebraically closed field is given by F := K(t1, x2, x3) (observe
that (K(t1, x2, x3))(t2)

2 ⊂ F(t2)2). In addition, we consider X = x1, Y = Z.
Thus, R(x1, Z, t1, x2, x3) :=

Rest2(G1, G2 + ZG3) = f(x1, Z, t1, x2, x3)
deg(ϕQ1

)h(t1, x2, x3) ∈ F[x1, Z].

Note that

q1,1( t )−Xq1,2( t ) = p1,1( t )− x1p1,2( t ) = G1(t1, t2, x1), and

q2,1( t )− Y q2,2( t ) = (p2,1( t )− x2p2,2( t )) + Z(p3,1( t )− x3p3,2( t )) =

G2(t1, t2, x2) + ZG3(t1, t2, x3),

and both polynomials have coefficients in K. Hence R ∈ K[x1, Z, t1, x2, x3].
In particular, f(x1, Z, t1, x2, x3) ∈ (K[t1, x2, x3])[x1, Z] = K[x1, Z, t1, x2, x3],
and h(t1, x2, x3) ∈ K[t1, x2, x3]. Under these conditions, the following prop-
erties hold:
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• h ∈ K[t1]. Indeed: let us assume that there exist α, β ∈ K(t1) such that
h(t1, α, β) = 0. Then, taking into account that the leading coefficient
of G1 with respect to the variable t2 is in K[t1, x1] (and then, it does
not vanish at α, β), and that R(x1, Z, t1, α, β) = 0, we get that there
exists γ ∈ K(t1, Z, x1) such that

G1(t1, γ, x1) = G2(t1, γ, α) + ZG3(t1, γ, β) = 0.

Since G1 does not depend on Z, one deduces that γ ∈ K(t1, x1). In
addition, since α, β ∈ K(t1), one gets that G2(t1, γ, α) = G3(t1, γ, β) =
0, and γ ∈ K(t1). Hence, from

G1(t1, γ, x1) = p1,1(t1, γ)− x1p1,2(t1, γ) = 0,

we obtain that p1,1(t1, γ) = 0 and p1,2(t1, γ) = 0 which implies that
Rest1(p1,1, p1,2)(γ) = 0. Therefore, since Rest1(p1,1, p1,2) ∈ K[t2], one
gets that γ ∈ K (note that K is an algebraically closed field). Thus,
t2−γ divides gcd(p1,1, p1,2) which is impossible since gcd(p1,1, p1,2) = 1.

• deg(ϕQ1) = deg(ϕP1). Indeed: taking into account that

FQ1(P ) = Q−1
1 (P ) = {t ∈ K | Q1(t) = P},

and that the mapping degree is equal to the cardinality of the fibre
of a generic element (see Section 2), we analyze the equality Q1(t2) =
Q1(s2). For this purpose, we observe that Q1(t2) = Q1(s2) iff

p1,1( t )p1,2(t1, s2) = p1,1(t1, s2)p1,2( t ), (I)

p2,1( t )p3,1(t1, s2)− x3p2,1( t )p3,2(t1, s2)− x2p2,2( t )p3,1(t1, s2)+

x3x2p2,2( t )p3,2(t1, s2) = p2,1(t1, s2)p3,1( t )− x3p2,1(t1, s2)p3,2( t )−

x2p2,2(t1, s2)p3,1( t ) + x3x2p2,2(t1, s2)p3,2( t ) (II).

Equality (I) implies that the solutions on the variable t2 are in K(t1, s2).
Thus, equality (II) is equivalent to the following three equalities:

p2,2(t1, s2)p3,1( t ) = p2,2( t )p3,1(t1, s2),

p2,1(t1, s2)p3,2( t ) = p2,1( t )p3,2(t1, s2),
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p2,2(t1, s2)p3,2( t ) = p2,2( t )p3,2(t1, s2).

Since pi,j ̸= 0, the above equalities are equivalent to

p2,1( t )p2,2(t1, s2) = p2,1(t1, s2)p2,2( t ),

p3,1( t )p3,2(t1, s2) = p3,1(t1, s2)p3,2( t ).

Therefore, Q1(t2) = Q1(s2) if and only if P1(t2) = P1(s2).

Taking into account these properties, we conclude that

Rest2(G1, G2 + ZG3) = f(x1, Z, t1, x2, x3)
deg(ϕP1

)h(t1).

Proposition 1. For j = 1, 2, SP
j (tj, x ) = fj( x )

deg(ϕPj
), where fj ∈ K[tj, x ]\

K[tj], and dj := degtj(fj) ≥ 1.

Proof. Let us prove the proposition for j = 1 (for j = 2, one reasons
similarly). From Lemma 1, we get that SP

1 (t1, x ) =

ppx (ContentZ(Rest2(G1, G2+ZG3))) = ppx (ContentZ(f))
deg(ϕP1

) ∈ K[t1, x ],

where the content is taken over K(V), since V is the surface parametrized by
P (see the notation in Section 3), and K is an algebraically closed field. Let

f1 := ppx (ContentZ(f))
deg(ϕP1

).

Clearly f1 ∈ K[t1, x ] \ K[t1], and let us prove that degt1(f1) ≥ 1. For this
purpose, we assume that degt1(f1) = 0 (i.e. f1 ∈ K[x ]), and we write

f = ContentZ(f)ppZ(f) = ppx (ContentZ(f))Contentx (ContentZ(f))ppZ(f)

= f1(x )u(t1)g(Z, t1, x ), and

Rest2(G1, G2 + ZG3) = f1(x )
deg(ϕP1

)g(Z, t1, x )
deg(ϕP1

)u(t1)h(t1).

Since Gj( t ,P) = 0, j = 1, 2, 3, then Rest2(G1, G2 + ZG3)(t1,P) = 0, which
implies that f1(P) = 0 or g(Z, t1,P) = 0. If g(Z, t1,P) = 0, the defin-
ing polynomial of the surface V divides g. This is impossible, because
g(Z, t1, x ) = ppZ(f), and then all the factors of g depend on Z. Thus,
f1(P) = 0, where f1( x ) ∈ K[x ]. Let f̃ ∈ K[x ] be an irreducible factor of
f1 such that f̃(P) = 0. Since 0 = f̃(P) = f̃(P1) = f̃(P2), it follows that
Pj(ti) ∈ (K(tj))(ti)

3, i, j = 1, 2, i ̸= j parametrizes V which is impossible.
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Remark 4. We observe that:

1. Since SP
j (tj, x ) =

ppx (ContentZ(Resti(G1, G2 + ZG3))) = fj( x )
deg(ϕPj

) ∈ K[tj, x ],

one easily deduces that the polynomial fj does not have factors depend-
ing only on the variable tj.

2. From the proof of Proposition 1, we have that

fj(P) = fj(Pj) = fj(Pi) = 0, i, j ∈ {1, 2}, i ̸= j.

In the following, we consider the polynomials fj ∈ (K[tj])[x ], j = 1, 2,
introduced in Proposition 1, and we derive a corollary where the mapping
degree of P is related to the mapping degree of P1, and the mapping degree
of P2.

Corollary 1. deg(ϕP) = deg(ϕP1)d1 = deg(ϕP2)d2. In addition,

d2 = r deg(ϕP1), d1 = r deg(ϕP2), and r =
gcd(d1, d2)

gcd(deg(ϕP1), deg(ϕP2))
∈ N.

Proof. From Proposition 1, SP
j (tj, x ) = fj( x )

deg(ϕPj
), j = 1, 2, where fj ∈

K[tj, x ] \ K[tj], and dj := degtj(fj) ≥ 1. Then, taking into account that

deg(ϕP) = degtj(S
P
j ) (see Theorem 1), we deduce that

deg(ϕP) = deg(ϕP1)d1 = deg(ϕP2)d2.

Now, for i, j ∈ {1, 2}, i ̸= j, we consider the polynomial (see Section 2),

SPi(tj, sj) = gcd(HPi
1 (tj, sj), H

Pi
2 (tj, sj), H

Pi
3 (tj, sj)) ∈ (K[ti])[tj, sj],

where

HPi
k (tj, sj) = pk,1(ti, tj)pk,2(ti, sj)− pk,1(ti, sj)pk,2(ti, tj), k = 1, 2, 3.

SPi(tj, sj) divides fj(Pi(sj)) in the variable tj; indeed, let α ∈ K(sj) be such
that SPi(α, sj) = 0. Since SPi does not have factors in (K[ti])[tj] (see the
definition and the properties of the polynomial SP in Section 2), then α ̸∈
K[ti]. In addition, note that pk,2(ti, α) ̸= 0; otherwise pk,1(ti, α)pk,2(ti, sj) = 0
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which implies that pk,1(ti, α) = 0, and then, since the polynomials pk,1, pk,2
have a common root, one gets that Resti(pk,1, pk,2)(α) = 0. This is impossible
because Resti(pk,1, pk,2) ∈ K[tj] and then all its roots are in K (note that K
is an algebraically closed field) but α ̸∈ K.
Hence, SPi(α, sj) = 0 implies that Pi(sj) = Pi(α), and then

fj(Pi(sj))|tj=α = fj(Pi(tj))|tj=α = 0;

note that fj(Pi(tj)) = 0 for every value of tj where Pi is defined (see Remark
4). Therefore, SPi(tj, sj) divides fj(Pi(sj)) in the variable tj. Thus, there
exists rj,i ∈ N such that

dj = rj,i degtj(S
Pi(tj, sj)) = rj,i deg(ϕPi

), i, j ∈ {1, 2}, i ̸= j

(see Section 2). Since deg(ϕP1)d1 = deg(ϕP2)d2, one gets that r1,2 = r2,1. Let
r := r1,2 = r2,1. Then, we conclude that

d2 = r deg(ϕP1), d1 = r deg(ϕP2).

Finally, one easily obtains that

r =
gcd(d1, d2)

gcd(deg(ϕP1), deg(ϕP2))
∈ N.

Theorem 3. The following statements are equivalent:

1. P is birational

2. Pi is proper, P−1
i ∈ K( x ) and P−1

i ̸∈ K(ti), for i = 1, 2.

3. di = 1, for i = 1, 2.

If dj = 1, then P−1
i = −a0,i/a1,i ∈ K(x ), where fj( x ) = a0,i( x ) + a1,i( x )tj,

i, j ∈ {1, 2}, i ̸= j.

Proof.
(1) ⇒ (2) Since P is birational, there existQ(x ) = (q1( x ), q2(x )) ∈ K( x )2

such that Q(P( t )) = t . Then,

qj(Pi(tj)) = tj, for i, j ∈ {1, 2}, and i ̸= j.
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Therefore, Pi is proper and P−1
i = qj ∈ K(x ), qj ̸∈ K(ti), for i, j ∈ {1, 2},

and i ̸= j.

(2) ⇒ (1) Since Pi is proper and P−1
i ∈ K(x ), P−1

i ̸∈ K(ti), i = 1, 2,

then P−1
i = −a0,i( x )/a1,i(x ), where ak,i ∈ K[ x ] for k = 0, 1, a0,ia1,i ̸=

0, gcd(a0,i, a1,i) = 1, and a0,i, a1,i are not both in K. Thus, we may write
gj(Pi) = 0, where

gj( x ) = a0,i( x ) + a1,i(x )tj, i, j ∈ {1, 2}, i ̸= j.

Under these conditions, we observe that gj(Pi) = gj(P) = 0. Thus, we
conclude that

−a0,i(P)

a1,i(P)
= tj, i, j ∈ {1, 2}, i ̸= j.

Therefore,

P−1( x ) =
(
P−1

2 (x ), P−1
1 (x )

)
=

(
−a0,2( x )

a1,2( x )
, −a0,1( x )

a1,1( x )

)
.

(1) ⇐⇒ (3) Apply Corollary 1.

Finally, we prove that if dj = 1, then P−1
i = −a0,i/a1,i ∈ K(x ), where

fj(x ) = a0,i(x ) + a1,i(x )tj, i, j ∈ {1, 2}, i ̸= j. Indeed, by Proposition 1,
we have that

SP
j (tj, x ) = fj(x )

deg(ϕPj
),

where fj ∈ K[tj, x ] \K[tj], and dj = degtj(fj) = 1. Therefore, we may write
(see Remark 4)

fj(x ) = a0,i( x ) + a1,i( x )tj, where ak,i ∈ K[ x ], k = 0, 1, a0,ia1,i ̸= 0,

and a0,i, a1,i are not both constant. Since fj(Pi) = 0, we get that P−1
i =

−a0,i/a1,i ∈ K( x ), because P−1
i (Pi(tj)) = tj.

Many methods for solving the properness problem and inversion problem
for a rational parametrization of a surface defined over an algebraically closed
field, P , have previously been presented (see e.g. Pérez-Dı́az et al. (2002)
and Pérez-Dı́az and Sendra (2004); see also Theorem 1).

Observe that now, from Theorem 3, we may deal with these problems by
using the auxiliary partial parametrizations, P1,P2 (see Definition 1). More
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precisely, the properness problem can be solved by checking the degree of the
gcd of three polynomials (see Step 2 in Algorithm PRSC). In order to compute
the inverse of these partial parametrizations, one may apply, for instance, the
results presented in Sendra et al. (2007) (see Section 4). Observe that one
also has to check whether P−1

j lies in K(x ) and P−1
i ̸∈ K(ti).

Using this idea, in the following we present an algorithm whose goal is
to properly reparametrize the partial parametrizations, Pi, i = 1, 2. If the
inverse of each partial reparametrization lies in K( x ) but not in K(ti), then
the algorithm outputs a proper reparametrization for P . Otherwise, at least
the mapping degree of P is decreased. That is, the algorithm outputs a
rational parametrization Q( t ) ∈ K( t )3 of V , and R( t ) ∈ K( t )2 such that
P( t ) = Q(R( t )), and deg(ϕQ) < deg(ϕP) (see Corollary 2). In addition, if
some additional properties hold (see Corollary 3), then Q is proper.

In addition, in Theorem 4, we derive some properties that relate the
mapping degree of P with the mapping degree of Q, and the degree of R.
More precisely, we prove that

deg(ϕP) = deg(ϕQ) degt1(S) degt2(T ),

where
R( t ) = (S( t ), T (S( t ), t2)), S, T ∈ K( t ).

In order to state the algorithm, we remind the reader that Ni(tj) ∈
(K(ti))(tj)

3, for i, j ∈ {1, 2} and i ̸= j, denotes the partial parametrizations
associated to a rational parametrization N ( t ) ∈ K( t )3 of a surface (see
Definition 1). We will apply to the partial parametrizations Algorithm PRSC.
Observe that the partial parametrizations are defined over the field K(ti) (see
statement 3 in Remark 1) and then, we may apply them the Algorithm PRSC.

In addition, given R( t ) ∈ K( t )2, we will consider Ri(tj) ∈ (K(ti))(tj)
2,

for i, j ∈ {1, 2} and i ̸= j (see statement 3 in Remark 3). Similarly, if we
have S( t ) ∈ K( t ), we will consider Si(tj) ∈ (K(ti))(tj), for i, j ∈ {1, 2} and
i ̸= j.
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Algorithm Reparametrization for Surfaces (RS).

Input: an algebraically closed field K, and a rational affine parametrization

P( t ) =

(
p1,1( t )

p1,2( t )
,
p2,1( t )

p2,2( t )
,
p3,1( t )

p3,2( t )

)
∈ K( t )3, gcd(pi,1, pi,2) = 1

of an algebraic surface V .
Output: a rational parametrization Q( t ) ∈ K( t )3 of V, and R( t ) ∈
K( t )2 such that P( t ) = Q(R( t )), and 1 ≤ deg(ϕQ) < deg(ϕP).

1. Check whether P1 and P2 are proper (apply Steps 1 and 2 of Algorithm
PRSC). In the affirmative case, Return the message “you cannot
apply the algorithm”. Otherwise, go to Step 2 if P2 is not proper, or
go to Step 3 if P1 is not proper.

2. If P2 is not proper do:

2.1. Apply Algorithm PRSC to P2. [This algorithm returns a
parametrization M( t ) ∈ K( t )3, and S( t ) ∈ K( t ) such that the
partial parametrization associated to M, M2(t1) ∈ (K(t2))(t1)

3,
is proper and S2(t1) ∈ (K(t2))(t1) satisfies P2(t1) = M2(S2(t1)).]

2.2. Check whether the partial parametrization associated to M,
M1(t2) ∈ (K(t1))(t2)

3, is proper (apply Steps 1 and 2 of Al-
gorithm PRSC). In the affirmative case, Return Q := M, and
R( t ) := (S( t ), t2). Otherwise, go to Step 2.3.

2.3. Apply Algorithm PRSC to the partial parametrization associ-
ated to M, M1(t2). [This algorithm returns a parametriza-
tion Q( t ) ∈ K( t )3, and T ( t ) ∈ K( t ) such that the partial
parametrization associated to Q, Q1(t2) ∈ (K(t1))(t2)

3, is proper
and T1(t2) ∈ (K(t1))(t2) satisfies M1(t2) = Q1(T1(t2)).]

2.4. Check whether the partial parametrization associated to Q,
Q2(t1) ∈ (K(t2))(t1)

3, is proper (apply Steps 1 and 2 of Algorithm
PRSC). In the affirmative case, Return the reparametrization
Q, and R( t ) := (S( t ), T (S( t ), t2)). Otherwise, Return the
reparametrization Q, R( t ) := (S( t ), T (S( t ), t2)), and the mes-
sage “you may apply the algorithm again (Step 2) to Q2)”.

3. If P1 is not proper, apply Step 2.3 to P and P1.
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Remark 5. Observe that:

1. Note that if deg(ϕPi
) = 1 for i = 1, 2, the algorithm does not start.

2. The algorithm returns a rational reparametrization Q of P. More pre-
cisely, we get a rational parametrization Q of V, and R( t ) ∈ K( t )2

such that P = Q(R). The output parametrization Q may not be proper
(see statement 3) but it holds that 1 ≤ deg(ϕQ) < deg(ϕP) (see Corol-
lary 2), if deg(ϕPi

) ̸= 1 for some i = 1, 2 (see statement 1).

3. In Corollary 3, we show under which conditions the output parametriza-
tion is proper that is, whether deg(ϕQ) = 1 .

4. In order to apply Algorithm PRSC, we need that the space curves defined
by the auxiliary parametrizations Pi are over a field. Observe that in
our situation, they are defined over the field K(ti). Hence, Algorithm RS
can be applied for an input surface defined over a field not necessarily
algebraically closed. However, the results presented above (Theorems
1, 2 and 3, Lemma 1, Proposition 1, and Corollary 1) are valid over
algebraically closed fields.

5. Note that the algorithm does not loop forever. If it starts, it always
outputs a reparametrization Q satisfying 1 ≤ deg(ϕQ) < deg(ϕP) (see
Corollary 2). In addition, if Q2 is not proper, one may apply the algo-
rithm again to further decrease the mapping degree of Q (see Step 2.4).
If the algorithm can be applied (see statement 1) till we get deg(ϕQ) = 1,
the we obtain a proper reparametrization and then, the reparametriza-
tion problem is solved.

Next, we illustrate Algorithm RS with three examples, where different
steps (depending on the input parametrization) are applied.

Example 3. Let V be a rational surface defined over the field of the complex
numbers, C, by the parametrization

P( t ) =

(
p1,1( t )

p1,2( t )
,
p2,1( t )

p2,2( t )
,
p3,1( t )

p3,2( t )

)
=

(
t2t1(t

2
1 + t22 − t1t2)

(t1 + t2)2
, t2,

t2(t
3
1 + t22t1 − t2t

2
1 + t21 + 2t1t2 + t22)

(t1 + t2)2

)
∈ C( t )3.
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By applying Theorem 1, one may check that deg(ϕP) = 3. Now, we apply
Algorithm RS.
For this purpose, in Step 1, we apply Algorithm PRSC, and we find that
SP2(t1, s1) =

t2(s1−t1)(s
2
1t

2
1+2s21t1t2+s21t

2
2−2s1t

2
2t1−s1t

3
2+2s1t2t

2
1+t42+t21t

2
2−t1t

3
2) ∈ (C[t2])[t1, s1]

which implies that P2(t1) is not proper (in fact, deg(ϕP2) = degt1(S
P2) = 3).

Thus, we go to Step 2 and we apply Algorithm PRSC to P2. We obtain

S2(t1) =
q1( t )

q2( t )
=

−t22t1(t
2
1 + t22 − t1t2)

(t1 + t2)2
∈ (C[t2])[t1].

Furthermore, we determine the polynomials

Li(s1, xi) = Rest1(G
P2
i ( t , xi), q2( t )s1−q1( t )) = (mi,2(s1)xi−mi,1(s1))

degt1 (S),

where GP2
i ( t , xi) = xipi,2( t )− pi,1( t ), for i = 1, 2, 3, and we get M( t ) =(
m1,1( t )

m1,2( t )
,
m2,1( t )

m2,2( t )
,
m3,1( t )

m3,2( t )

)
=

(
−t1
t2

, t2,
t22 − t1
t2

)
∈ C( t )3.

Now, in Step 2.2 of the algorithm, we apply Algorithm PRSC to M1(t2) ∈
(C(t1))(t2)3, and we find that

SM1(t2, s2) = s2 − t2 ∈ (C[t1])[t2, s2].

Thus, since deg(ϕM1) = degt2(S
M1) = 1, we get that M1 is proper. Then,

Algorithm RS outputs the parametrization Q( t ) = M( t ), and

R( t ) = (S( t ), t2) =

(
−t22t1(t

2
1 + t22 − t1t2)

(t1 + t2)2
, t2

)
∈ C( t )2.

One may check that V is the plane defined by the equation z = x+ y.

Example 4. Let V be a rational surface defined over the field of the complex
numbers, C, by the parametrization

P( t ) =

(
p1,1( t )

p1,2( t )
,
p2,1( t )

p2,2( t )
,
p3,1( t )

p3,2( t )

)
=

(
−t61(t

2
2 + t21)

3(t21t
2
2 + t41 − 2)

t22(t
2
1t

2
2 + t41 − 1)

,
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−(t21t
2
2 + t41 − 1)t21(t

2
2 + t21)

t22(t
2
1t

2
2 + t41 − 2)

,
(t41t

4
2 + 2t61t

2
2 + t81 + t42t

2
1 + t22t

4
1 − t22)

t22

)
∈ C( t )3.

By applying Theorem 1, one may check that deg(ϕP) = 8. Now, we apply
Algorithm RS.
For this purpose, in Step 1, we apply Algorithm PRSC, and we find that

SP2(t1, s1) = (s1 − t1)(s1 + t1)(s
2
1 + t22 + t21) ∈ (C[t2])[t1, s1]

which implies that P2(t1) is not proper (in fact, deg(ϕP2) = degt1(S
P2) = 4).

Thus, we go to Step 2 and we apply Algorithm PRSC to P2. We obtain
S2(t1) = −t21t

2
2 − t41 ∈ (C[t2])[t1]. Furthermore, we determine the polynomials

Li(s1, xi) = Rest1(G
P2
i ( t , xi), s1 − S2(t1)) = (mi,2(s1)xi −mi,1(s1))

degt1 (S),

where GP2
i ( t , xi) = xipi,2( t )− pi,1( t ), for i = 1, 2, 3, and we get M( t ) =(

m1,1( t )

m1,2( t )
,
m2,1( t )

m2,2( t )
,
m3,1( t )

m3,2( t )

)
=

(
t31(2 + t1)

t22(t1 + 1)
,
t1(t1 + 1)

t22(2 + t1)
,
(−t22 − t1t

2
2 + t21)

t22

)
.

Now, in Step 2.2 of the algorithm, we apply Algorithm PRSC to M1(t2) ∈
(C(t1))(t2)3, and we find that

SM1(t2, s2) = s22 − t22 ∈ (C[t1])[t2, s2].

Thus, since deg(ϕM1) = degt2(S
M1) = 2, we get that M1 is not proper.

Then, we go to Step 2.3. We apply Algorithm PRSC to M1, and we compute
T1(t2) = t22 ∈ (C[t1])[t2], and the polynomials

Li(s2, xi) = Rest2(G
M1
i ( t , xi), s2 − T1(t2)) = (qi,2(s2)xi − qi,1(s2))

degt2 (T ),

where GM1
i ( t , xi) = ximi,2( t )−mi,1( t ), for i = 1, 2, 3. We obtain Q( t ) =(

q1,1( t )

q1,2( t )
,
q2,1( t )

q2,2( t )
,
q3,1( t )

q3,2( t )

)
=

(
t31(2 + t1)

t2(t1 + 1)
,
t1(t1 + 1)

t2(2 + t1)
,−−t21 + t2 + t1t2

t2

)
.

Finally, in Step 2.4 of the algorithm, we apply Algorithm PRSC to Q2(t1) ∈
(C(t2))(t1)3. We get that

SQ2(t1, s1) = s1 − t1 ∈ (C[t2])[t1, s1]

which implies that Q2 is proper. Therefore, Algorithm RS outputs the parametriza-
tion Q( t ), and

R( t ) = (S( t ), T (S( t ), t2)) = (−t21t
2
2 − t41, t

2
2) ∈ C( t )2.
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In the following example, we consider a parametrization P of a surface
such that P1 is not proper. Then, we go to Step 3 of the Algorithm RS, and
we apply Steps 2.3 and 2.4. Afterwards, we apply the algorithm again to
decrease further the mapping degree of the output parametrization.

In this situation, we have that P = Q(t1, T ) (output of Step 2.4), and
Q = M(S, t2) (output of Step 2.2). Therefore,

P = Q(t1, T ) = M(S, t2)(t1, T ) = M(R), where R = (S(t1, T ), T ).

Example 5. Let V be a rational surface defined over C by the parametrization

P( t ) =

(
p1,1( t )

p1,2( t )
,
p2,1( t )

p2,2( t )
,
p3,1( t )

p3,2( t )

)
∈ C( t )3, where

p1,1 = 51t62t
4
1+102t42t

2
1+73t22−90t82t

8
1−360t62t

6
1−540t42t

4
1−360t22t

2
1−90+93t42,

p2,1 = −9000t22t
2
1 − 31500t42t

4
1 + 67275t62t

4
1 + 29550t42t

2
1 − 78750t82t

8
1 − 1123 +

5475t22+1395t42−6789t62−63000t62t
6
1−63000t102 t101 −31500t122 t121 +3825t142 t121 +

22950t122 t101 + 59025t102 t81 + 83100t82t
6
1 − 9000t124t

14
1 − 1125t162 t161 − 4743t102 t41 −

9486t82t
2
1 + 1395t122 t81 + 5580t102 t61 + 8370t82t

4
1 + 5580t62t

2
1,

p3,2 = 25t82t
8
1 + 100t62t

6
1 + 150t42t

4
1 + 100t22t

2
1 + 25− 31t42,

p1,2 = p2,2 = p3,1 = 1.

Using Theorem 1, one may check that deg(ϕP) = 32. Now, we apply Algo-
rithm RS.
For this purpose, in Step 1, we apply Algorithm PRSC, and we find that

SP1(t2, s2) = (s2 − t2)(s2 + t2) ∈ (C[t1])[t2, s2]

which implies that P1(t2) is not proper (in fact, deg(ϕP1) = degt2(S
P1) = 2).

Therefore, we go to Step 3. Thus, in Step 2.3, we apply Algorithm PRSC
to the partial parametrization P1. We obtain T1(t2) = −t22 ∈ (C[t1])[t2].
Moreover, we determine the polynomials

Li(s2, xi) = Rest1(G
P1
i ( t , xi), s2 − T1(t2)) = (mi,2(s2)xi −mi,1(s2))

degt2(T ),

where GP2
i ( t , xi) = xipi,2( t )− pi,1( t ), for i = 1, 2, 3. We obtain

Q( t ) =

(
q1,1( t )

q1,2( t )
,
q2,1( t )

q2,2( t )
,
q3,1( t )

q3,2( t )

)
∈ C( t )3, where
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q1,1 = −90−540t22t
4
1+360t2t

2
1−90t42t

8
1+102t22t

2
1+360t61t

3
2+93t22−73t2−51t41t

3
2,

q2,1 = −31500t121 t62 − 1125t82t
16
1 − 3825t121 t72 − 31500t22t

4
1 + 4743t52t

4
1 + 6789t32 −

5580t52t
6
1−9486t21t

4
2−78750t42t

8
1+29550t22t

2
1−5580t21t

3
2+83100t42t

6
1+63000t61t

3
2+

22950t101 t+2 63000t
5
2t

10
1 − 59025t52t

8
1 + 9000t141 t72 − 67275t41t

3
2 − 1123 − 5475t2 +

1395t81t
6
2 + 8370t42t

4
1 + 1395t22 + 9000t2t

2
1,

q3,2 = −100t61t
3
2 + 25t42t

8
1 + 25− 100t2t

2
1 + 150t22t

4
1 − 31t22,

q1,2 = q2,2 = q3,1 = 1.

Now, in Step 2.4 of the algorithm, we apply Algorithm PRSC to Q2(t1) ∈
(C(t2))(t1)3, and we find that

SQ2(t1, s1) = (t1 − s1)(t1 + s1)(t2t
2
1 − 2 + t2s

2
1) ∈ (C[t2])[t1, s1].

Thus, since deg(ϕQ2) = degt1(S
Q2) = 4, we get that Q2 is not proper. There-

fore, the algorithm returns the rational parametrization Q, and R( t ) :=
(t1, T (t1, t2)) ∈ K( t )2 with P = Q(t1, T ), and the message “you may ap-
ply the algorithm again (Step 2) to Q2)”.

Under these conditions, we again apply the algorithm. We go to Step
2.1, and by applying Algorithm PRSC, we compute S2(t1) = t2t

4
1 − 2t21 ∈

(C[t2])[t1], and

Li(s1, xi) = Rest1(G
Q2
i ( t , xi), s1 − S2(t1)) = (qi,2(s2)xi − qi,1(s2))

degt1 (S),

where GQ2
i ( t , xi) = xiqi,2( t )− qi,1( t ), for i = 1, 2, 3. We obtain

M( t ) =

(
m1,1( t )

m1,2( t )
,
m2,1( t )

m2,2( t )
,
m3,1( t )

m3,2( t )

)
∈ C( t )3, where

m1,1 = −180t2t1 + 93t22 − 73t2 − 90− 90t22t
2
1 − 51t1t

2
2,

m2,1 = 2790t1t
3
2−5475t2−1123−4500t2t1−4500t31t

3
2−1125t42t

4
1−14775t1t

2
2−

13125t21t
3
2 + 1395t22 + 1395t42t

2
1 + 4743t42t1 − 3825t42t

3
1 − 6750t22t

2
1 + 6789t32,

m3,2 = 25− 31t22 + 25t22t
2
1 + 50t2t1,

m1,2 = m2,2 = m3,1 = 1.

Finally, in Step 2.3 of the algorithm, we apply Algorithm PRSC to M1(t2) ∈
(C(t1))(t2)3. We get that

SM1(t2, s2) = s2 − t2 ∈ (C[t1])[t2, s2]
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which implies that M1(t2) is proper. Thus, Algorithm RS outputs the parametriza-
tion M, and R = (S, t2) = (t2t

4
1 − 2t21, t2) ∈ C( t )2 such that Q = M(S, t2).

Summarizing, we have that P = Q(t1, T ) (output of Step 2.4), and Q =
M(S, t2) (output of Step 2.2). Therefore,

P = Q(t1, T ) = M(S, t2)(t1, T ) = M(R), where

R( t ) = (S(t1, T ( t )), T ( t )) = (−t22t
4
1 − 2t21,−t22) ∈ C( t )2.

In the following, we derive some properties concerning the output para-
metrization obtained by Algorithm RS. For this purpose, we assume that
we have applied the algorithm only once, and that the output is a ratio-
nal parametrization Q, and R( t ) := (S( t ), T (S( t ), t2)) ∈ K( t )2 such that
P( t ) = Q(R( t )) (see Example 4). Observe that if the output is given in
Step 2.2, then Q = M, and T = t2 (see Example 3).

Under these conditions, and since when we compose two rational maps
we multiply their degrees, we can relate the mapping degree of P with the
mapping degree of Q, M, Pi, i = 1, 2, and with degt1(S) and degt2(T ). In
particular, in Theorem 4 we prove that

deg(ϕP) = deg(ϕQ) degt1(S) degt2(T ).

For this purpose, we first present a technical lemma where we show that,
in the case of a single nonconstant rational function r(t) ∈ K(t), the degree
with respect to t of r(t) is the mapping degree of r. This lemma is proved in
Lemma 4.32. in Sendra et al. (2007).

Lemma 2. Let r(t) ∈ K(t) be a nonconstant rational function in reduced
form. Then, deg(ϕr) = degt(r(t)), where deg(ϕr) = card(r−1(a)) and r−1(a) =
{t ∈ K | r(t) = a}.

Theorem 4. deg(ϕP) = deg(ϕQ) degt1(S( t )) degt2(T ( t )), and

deg(ϕP2) = degt1(S( t )), deg(ϕM1) = degt2(T ( t )).

In addition,

deg(ϕP) = deg(ϕM) degt1(S( t )), deg(ϕM) = deg(ϕQ) degt2(T ( t )).
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Proof. From Algorithm PRSC, we get that P2(t1) = M2(S2(t1)). Then, since
deg(ϕM2) = 1, we obtain (note that by Lemma 2, deg(ϕS2(t1)) = degt1(S( t )))

deg(ϕP2) = degt1(S( t )).

In addition, P( t ) = M(S( t ), t2). Then, by Remark 2,

deg(ϕP) = deg(ϕM) degt1(S( t )) (I).

Also, from Algorithm PRSC, we get that

M1(t2) = Q1(T1(t2)).

Then, since deg(ϕQ1) = 1, we obtain (note that by Lemma 2, deg(ϕT1(t2)) =
degt2(T ( t )))

deg(ϕM1) = degt2(T ( t )).

In addition, M( t ) = Q(t1, T ( t )). Then, by Remark 2,

deg(ϕM) = deg(ϕQ) degt2(T ( t )) (II).

Therefore, from (I) and (II), we conclude that

deg(ϕP) = deg(ϕM) degt1(S( t )) = deg(ϕQ) degt2(T ( t )) degt1(S( t )).

In the following corollary, we show that if deg(ϕPi
) ̸= 1 for some i = 1, 2,

Algorithm RS returns a parametrization that has a mapping degree less than
the mapping degree of the input parametrization.

Corollary 2. If deg(ϕPi
) ̸= 1 for some i = 1, 2, then

1 ≤ deg(ϕQ) < deg(ϕP).

Proof. Let us assume that deg(ϕP2) ̸= 1. Then, from Theorem 4, we deduce
that deg(ϕQ) ̸= deg(ϕP); otherwise, degt1(S) = 1 and deg(ϕP2) = degt1(S) =
1 which is impossible. In addition, since

deg(ϕP) = deg(ϕQ) degt1(S) degt2(T ), and degt1(S) = deg(ϕP2) ≥ 2

(see Theorem 4), we conclude that deg(ϕQ) < deg(ϕP). Finally, note that it
always hold that 1 ≤ deg(ϕQ).
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Let Q be the output parametrization obtained by Algorithm RS, and let
us assume that deg(ϕQi

) = 1, for i = 1, 2. Then, note that the algorithm
cannot be applied again. Under these conditions, we cannot ensure that Q is
proper because it could happen that Q−1

i ̸∈ K(x ), for i = 1, 2 (see Theorem
3). In order to check whether Q is proper, one may apply Theorem 4 or the
following corollary that is derived from Theorem 4.

Corollary 3. The following statements are equivalent:

1. Q is proper.

2. deg(ϕM) = degt2(T ).

3. deg(ϕP) = degt1(S) degt2(T ).

In the following, we apply Theorem 4 and Corollary 3 to the parametriza-
tions introduced in Examples 3, 4 and 5.

Example 6. In Example 3, we have that

degt2(T ) = 1, and degt1(S) = 3.

Thus, since 3 = deg(ϕP) = degt1(S) degt2(T ), by Corollary 3 we get that Q
is a proper reparametrization.

In Example 4, we have that

degt2(T ) = 2, and degt1(S) = 4.

Thus, since 8 = deg(ϕP) = degt1(S) degt2(T ), by Corollary 3 we get that Q
is a proper reparametrization.

In Example 5, we have that

degt1(S) = 4, and degt2(T ) = 2.

Since 32 = deg(ϕP) ̸= degt1(S) degt2(T ), by Corollary 3 we get that Q is not
proper. In fact, from Theorem 4, we deduce that deg(ϕQ) = 4. Observe that
clearly Corollary 2 holds.
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Remark 6. In addition to the equalities derived in Theorem 4, we also have:

• P1(t2) = M(S1(t2), t2) which implies that

deg(ϕP1) = deg(ϕM∗) deg(ϕ(S1(t2),t2)) = deg(ϕM∗),

where ϕ∗
M is the restriction of ϕM to the plane curve defined, over

K(t1), by the numerator x−S1(y) (S is expressed in reduced form). In
addition, note that (S1(t), t) is proper (its inverse is t = y) and hence
deg(ϕ(S1(t2),t2)) = 1.

• M2(t1) = Q(t1, T2(t1)), which implies that

1 = deg(ϕM2) = deg(ϕQ∗) deg(ϕ(t1,T2(t1))) = deg(ϕQ∗),

where ϕ∗
Q is the restriction of ϕQ to the plane curve defined, over K(t2),

by the numerator y − T2(x) (T is expressed in reduced form). In ad-
dition, note that (t, T2(t)) is proper (its inverse is t = x) and hence
deg(ϕ(t1,T2(t1))) = 1.

Note that from Theorem 4, and Corollaries 1 and 3, one may derive addi-
tional equalities that may help to analyze whether a given surface parametriza-
tion can be properly reparametrized. For instance, if deg(ϕPi

) ̸= 1 for some
i = 1, 2, and deg(ϕP) = n where n is a prime number, then deg(ϕQ) = 1 (see
Corollaries 1 and 3).

Finally, we also show how the equalities presented above can be stated in
terms of di = degti(fi) (see Proposition 1 and Theorem 3). More precisely,
from Corollary 1, where we show that

deg(ϕP) = deg(ϕP1)d1 = deg(ϕP2)d2

and from Theorem 4, where it is proved that deg(ϕP) = deg(ϕM) deg(ϕP2),
and deg(ϕM) = deg(ϕQ)degt2(T ), one deduces the following corollary.

Corollary 4. deg(ϕM) = d2, deg(ϕQ) =
d2

degt2 (T ( t ))
, and

d2 =
deg(ϕP)

deg(ϕP2)
=

degt1(S
P
1 )

degt1(S
P2)

.
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3.1. Practical Implementation

In the following table, we illustrate the performance of the implementa-
tion in Maple of Algorithm RS, showing times for some parametrizations. In
the table, we also list the total degree, the degree in the variables t1, t2, and
the maximum number of terms, of each input and output parametrization
(second and fourth column, respectively) as well as R (fifth column). The
last column of the table shows the mapping degrees deg(ϕP), and deg(ϕQ).
Actual computing times, running on a PC Mobile Intel Celeron 2.4 GHz and
265 MB of RAM, are given in seconds of CPU.

Input
Degree
of P[i]

Time
Degree
of Q[i]

Degree
of Ri( t )

[deg(ϕP),
deg(ϕQ)]

P [1] [16, 16, 8, 9] 0.022 [4, 4, 1, 3] [4, 4, 2, 2] [8, 1]
P [2] [8, 8, 8, 7] 0.015 [1, 1, 1, 1] [8, 8, 8, 7] [1, 1]
P [3] [8, 8, 8, 7] 0.031 [4, 4, 4, 7] [2, 2, 2, 1] [16, 4]
P [4] [48, 32, 32, 31] 0.421 [16, 8, 16, 31] [4, 4, 2, 1] [128, 16]
P [5] [32, 16, 16, 57] 1.139 [8, 4, 8, 22] [6, 4, 2, 3] [64, 8]
P [6] [128, 48, 80, 156] 0.639 [36, 4, 32, 86] [16, 12, 4, 3] [576, 24]
P [7] [80, 48, 32, 139] 3.183 [16, 4, 16, 57] [16, 12, 4, 5] [192,8]
P [8] [24, 24, 24, 45] 0.125 [8, 4, 8, 25] [6, 6, 3, 3] [144,8]
P [9] [80, 48, 32, 109] 0.297 [8, 4, 8, 25] [20, 12, 8, 7] [192,4]
P [10] [80, 48, 32, 135] 0.421 [16, 4, 16, 35] [20, 12, 8, 7] [288,12]
P [11] [32, 12, 32, 24] 0.063 [16, 4, 16, 24] [3, 3, 2, 1] [6,1]
P [12] [48, 24, 48, 15] 0.047 [6, 4, 6, 15] [8, 6, 8, 1] [48,1]

As we mention in the introduction, a direct approach to the reparametriza-
tion problem could consist of implicitizing the parametrization to apply af-
terwards algorithms to parametrize the implicit equation. In particular, in
Pérez-Dı́az and Sendra (2008), an implicitization method is presented based
on the computation of polynomial gcds and univariate resultants for deter-
mining the implicit equation of a rational surface from a rational parametriza-
tion. The resultant based formula provides the implicit equation to a power
which is the mapping degree of the parametrization.

In this paper, we approach the reparametrization problem by means of
rational reparametrizations, that is without implicitizing. The algorithm
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presented uses polynomial gcds and univariate resultants, and it is much
more efficient and powerful than first finding the implicit equation. In fact, we
tried to compute the implicit equation for the above parametrizations using
the method in Pérez-Dı́az and Sendra (2008), and the computing time was
> 3000 seconds for all the cases. The reason is that the approach in Pérez-
Dı́az and Sendra (2008) needs to compute several resultants of polynomials
depending on 7 variables which is highly time consuming (see Theorem 10 in
Pérez-Dı́az and Sendra (2008)).

Finally, we observe that P[5] and P [7] take so much longer than P [6],
but the degree of P [5] and P [7] is [32, 16, 16, 57] and [80, 48, 32, 139], respec-
tively, and the degree of P [6] is [128, 48, 80, 156]. The reason is that the
polynomials defining the components of the parametrization P [6] are not
squarefree, which improves considerably the computation time of a resultant
(since Rest(p

n, q) = Rest(p, q)
n). In fact, the denominator of the third com-

ponent of P[6] is given as

(25t242 − 100t282 t61 − 300t302 t61 − 300t322 t61 − 100t342 t61 + 150t282 + 100t302 + 100t262 +
25t322 + 150t322 t121 + 300t342 t121 + 150t362 t121 + 25t402 t241 − 100t382 t181 − 100t362 t181 −
31)(t61t

4
2 − t22 − 1)4.

4. Conclusion

In this paper, we study the reparametrization problem. That is, given an
algebraically closed field K, and a rational parametrization P of an algebraic
surface V ⊂ K3, we consider the problem of computing a proper rational
parametrization Q from P .

The approach presented complements some previous results developed in
Pérez-Dı́az (2006). More precisely, in Pérez-Dı́az (2006), the reparametriza-
tion problem is solved for those surfaces parametrized by P such that there
exists R( t ) ∈ (K(t1) \ K) × (K(t2) \ K) with P = Q(R). In this paper,
we no not need to impose any condition on R, although we have to check
whether at least one of the two auxiliary parametrizations defined from P
is not proper. For those surfaces for which a rational proper reparametriza-
tion is not found, we show that the mapping degree of the reparametriza-
tion is lower; that is, 1 ≤ deg(ϕQ) < deg(ϕP) (see Corollary 2). More-
over, we prove that deg(ϕP) = deg(ϕQ) degt1(S) degt2(T ), where R( t ) =
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(S( t ), T (S( t ), t2)), S, T ∈ K( t ) (see Theorem 4).

The basic idea of the algorithm is to compute a proper reparametri-
zation of two parametric space curves defined directly from the given rational
parametrization of the surface. For this purpose, we use the Algorithm PRSC
presented in Section 2, and derived from the results in Pérez-Dı́az (2006).

The algorithm is based on polynomial gcds and univariate resultants,
which always work and whose computing time is very satisfactory.

The results presented in this paper can easily be extended to a variety
V ⊂ Kn of dimension 2, rationally parametrized by

P( t ) =

(
p1,1( t )

p1,2( t )
, . . . ,

pn,1( t )

pn,2( t )

)
∈ K( t )n,

where t = (t1, t2), gcd(pi,1, pi,2) = 1, for i = 1, . . . , n, and K is an alge-
braically closed field. For this purpose, one only has to take into account
that the Algorithm PRSC presented in Section 2 can easily be extended to
curves in Kn,n ≥ 4.
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