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Abstract

In this paper, we prove that there exits a one-to-one correspondence between
birational automorphisms of the plane and pairs of pencils of curves intersecting
in a unique point. As a consequence, we show how to construct birational auto-
morphisms of the plane of a certain degree d (fixed in advance) from some curves
generating two linear systems of curves of degrees d and d̃, where d̃ = d − 2 for
d > 2, and d̃ = 1 otherwise. In addition, we also get the inverse of the birational
automorphism constructed, and we show that its degree is obtained from the de-
gree of the linear system of curves. As a special case, we show how these results
can be stated to polynomial birational automorphisms of the plane.
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1 Introduction

Let K be an algebraically closed field of characteristic zero. The group of birational
automorphisms of the projective space Pn over K is called the group of Cremona trans-
formations of Pn or the Cremona group. There is an extensive classical literature about
this group (see for instance, [1], [3], [4], [7], [8], [13], [14], [15], [17], [19], [20]).

It is well known that birational automorphisms of the parameter space P1 are
the Möbius transformations. In the plane, by Noether’s Theorem, if K is an alge-
braically closed field, each Cremona transformation can be expressed as a composition
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of quadratic transformations. The simplest examples of Cremona transformations may
be given as linear-fractional transformations

P(t1, t2) =

(
a1t1 + b1t2 + c1
a2t1 + b2t2 + c2

,
a3t1 + b3t2 + c3
a4t1 + b4t2 + c4

)
.

Cremona transformations of P1 and P2 have been extensively used by algebraic
geometers and in particular, they play an important role in the frame of the algebraic
manipulations of curves and surfaces. For instance, they are effective in the reduction
of singularities of curves to points with distinct tangents (see [34]). That is, a plane
algebraic curve can be transformed by a Cremona transformation into a plane algebraic
curve with ordinary multiple points. For surfaces, it is also shown that every algebraic
surface can be transformed by a Cremona transformation into a surface having only
ordinary multiple curves (for further details see [38]). In [9] and [10], the reduction of
linear systems of plane curves by Cremona transformations is considered. There, one
attempts to do a reduction by quadratic Cremona transformation which gives in turn
a proof of the classical result that the Cremona transformations are generated by the
quadratic ones (see [33]).

On the other side, it is well known that, in the case of algebraic curves, Möbius
transformations preserve the degree of a given curve’s parametrization. Hence the
parametric degree (that is, the degree of a parametrization) is the same for all proper
parametrizations. In the case of surfaces, the parametric degree is not preserved by
Cremona transformations. However, in general, one can find a Cremona transformation
that reduce the degree of a surface’s parametrization (see [30]).

For these reasons, the problem of easily constructing Cremona transformations, by
controlling its degree, is very important. In fact, several authors have dealt with this
question recently (see e.g. [6] and [11]). Thus, given d ∈ N, in this paper we are inter-
ested in constructing a birational automorphism of the plane S such that deg(S) = d.
For this purpose, we construct a pencil of curves V1 of degree d (where singularities and
simple points are known), and using Algorithm for Pencil Parametrization (see Section
2) we determine a linear subsystem V2 of dimension 1 of the system of adjoint curves
to V1. From the curves generating V1 and V2, we obtain S. From this construction, we
get that the inverse of S is the unique non–constant intersection point of V1 and V2,
and its degree is obtained from the degree of V1 and V2.

Reciprocally, we show how a given birational automorphism is related with a pair
of pencils that intersect in a unique point. More precisely, we are given a birational
automorphism P, and we construct a pair of pencils (V1,V2), from which we obtain a
birational automorphism S. We show that “up to composition with a polynomial De
Jonquières transformation”, P is equivalent to S (that is, P = J ◦ S, where J is a
De Jonquières transformation). Therefore, in this paper, we prove that there exits a
one-to-one correspondence between birational automorphisms of the plane and pairs of
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pencils (V1,V2) intersecting in a unique point.

Finally, we also show how these results can be stated similarly for the case of bi-
rational automorphisms of the plane that are polynomial and thus, in particular, we
construct polynomial birational automorphisms of the plane of a desired degree d.
We remark that polynomial automorphisms have an additional interest in practical
applications, since the non-existence of denominators avoids the possible unstable be-
havior, when the parameters take values close to the points of the curves defined by
the denominators (see e.g. [26]).

For higher dimension there has also been a lot of research on the subject ([2], [5], [16],
[18], [21], [22], [23], [27]), though the results obtained remain sporadic and, in general,
there are no substantial advances with respect to the pioneering works in the knowledge
either about the structure of arbitrary Cremona transformations themselves or about
the structure of the group of Cremona transformations, even for n = 3. The results
presented here attempt to open several ways that can be used to provide significant
results concerning Cremona transformations for n ≥ 3 (see Section 4).

The structure of the paper is as follows: in Section 2, we provide some preliminaries
and previous results. For this purpose, two subsections are considered: in Subsection
2.1, we deal with the classical problem of parametrizing a plane curve over a subfield k
of and algebraically closed field K of characteristic zero, and the definition of k-rational
curve is introduced (see Definition 1). In Subsection 2.2, we specialize Subsection
2.1 to the case where the input curve is a pencil of curves, k = K(t) and K = K(t)
being K an algebraically closed field of characteristic zero. Section 3 is devoted to
show a one-to-one correspondence between birational automorphisms of the plane and
pairs of pencils intersecting in a unique point. For this purpose, three subsections are
considered: in Subsection 3.1, we show how birational automorphisms of the plane of
a desired degree d can be constructed from the curves generating two 1-dimensional
systems of curves of degrees d and d̃, where d̃ = d−2 for d > 2, and d̃ = 1 otherwise (see
Theorem 1 and statement 2 in Corollary 2). In Subsection 3.2, we show how a given
birational automorphism is related with a pair of pencils. More precisely, we are given
a birational automorphism P , and we construct a pair of pencils (V1,V2) intersecting
in a unique point, from where we obtain a birational automorphism S. We show that
“up to composition with a polynomial De Jonquières transformation”, P is equivalent
to S (see Theorem 2). In Subsection 3.3, we show how these results can be stated
similarly to the case of birational polynomial automorphisms (see Proposition 1 and
Theorem 3). We finish with a section with conclusions and open questions (Section 4).

2 Preliminaries and Previous Results

In this section, we introduce the notation and some previous algorithmic methods and
results that will be used throughout the paper. In Subsection 2.1, we recall basic
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facts about parametrizations of rational curves. In particular, we consider K an alge-
braically closed field of characteristic zero and we treat briefly the classical problem of
parametrizing an algebraic plane curve C∗ ⊂ P2(K) over a subfield k ⊆ K. Afterwards,
in Subsection 2.2, we specialize Subsection 2.1 to the case where C∗ is a pencil of curves,
k = K(t) and K = K(t) (the algebraic closure of the field K(t)) being K an algebraically
closed field of characteristic zero.

2.1 Parametrization of a Rational Curve

Let K be an algebraically closed field of characteristic zero, and let k ⊆ K a subfield.
We denote by A2(K), the affine plane embedded into the projective plane P2(K) by
identifying the point (a, b) ∈ A2(K) with the point (a : b : 1) ∈ P2(K). Hence, given an
affine algebraic plane curve C over K, we denote by C∗ the corresponding projective
algebraic curve, i.e. the projective closure of C in P2(K).

If the affine curve C is defined by a polynomial f(x) ∈ K[x], x = (x1, x2), the
corresponding projective curve C∗ is defined by the homogenization F (X) ∈ K[X], X =
(x1 : x2 : x3), of f(x). Thus, C∗ = {(a : b : c) ∈ P2(K) | F (a, b, c) = 0}, and every
point (a, b) on C corresponds to a point on (a : b : 1) on C∗, and every additional point
on C∗ is a point at infinity. Reciprocally, if C∗ is a projective curve defined by the form
F (X) ∈ K[X], we denote by C the affine plane curve defined by f(x) := F (x, 1) (that
is, we dehomogenize w.r.t. the variable x3). We also recall that deg(C) = degx(f) =
deg(C∗) = degX(F ).

Throughout this subsection, we are interested in curves C∗ that can be rationally
parametrized over k which is equivalent to the existence of a rational parametrization
of C∗ with coefficients in k. In Definition 1, we introduce formally the notion of k-
rationality of C∗.

Definition 1 Let C∗ be the projective plane curve defined by an irreducible homo-
geneous polynomial F (X) ∈ K[X]. We say that C∗ is k-rational if there are poly-
nomials Qi(s) ∈ k[s], i = 1, 2, 3, inducing a non–constant map P1 → P2 such that
F (Q1 : Q2 : Q3) ≡ 0 in K[s]. We say that Q∗(s) = (Q1(s), Q2(s), Q3(s)) is a projective
rational k-parametrization of C∗ or a projective rational parametrization of C∗ over k.

One may extend the notion of k-rationality to the corresponding affine curve, C,
defined by an irreducible polynomial f(x) ∈ K[x]. In this case, C is k-rational if there
exists Q(s) ∈ k(s)2 \ k2 such that f(Q(s)) = 0. We refer to Q(s) as the rational
k-parametrization of C.

If C is defined by Q(s) = (q1(s)/q(s), q2(s)/q(s)) ∈ k(s)2\k2, the corresponding pro-
jective curve C∗ is defined by Q∗(s) = (q1(s) : q2(s) : q(s)) ∈ P2(k(s)), and reciprocally.
By abuse of notation, we equivalently say that C∗ is k-rational or C is k-rational.
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Observe that using the results of Section 4.5 in [32] (see Theorem 4.41), if C is
k-rational then f(x) ∈ k[x] (and F (X) ∈ k[X]).

In the following, for the sake of completeness, we consider a k-rational algebraic
plane curve C of degree d defined by an irreducible polynomial f(x) ∈ k[x], and we
show how to compute a k-parametrization Q(s) ∈ k(s)2 \ k2 of C. We recall that C∗ is
rational if and only if

genus(C∗) =
1

2
[(d− 1)(d− 2)−

∑
p∈S

mp(mp − 1)] = 0,

where S is the set of all the singularities and neighboring singularities of C∗ in P2(K),
and mp denotes the multiplicity of the point p ∈ S. In addition, from Theorem 4.74 in
[32], we have that if C∗ is a rational curve implicitly defined by an irreducible polynomial
f(x) ∈ k[x], then C∗ is parametrizable over k if and only if there exists a simple point
on C∗ with coordinates over k. In this subsection, we do not deal with the problem
of deciding whether C∗ is k-rational. Instead, we assume that C∗ is k-rational and we
show how to compute a k-parametrization of it. This will be enough for our purposes.

Thus, we present an algorithm that is essentially an application of the method
developed in [32] (see Sections 4.7 and 4.8), where a rational parametrization of a given
rational algebraic curve implicitly defined is computed (see statement 4 in Remark 1).
The method described in [32] follows basically the approach in [31] and [36] and the idea
is to use a linear system of curves such that for almost every curve in this system, all its
intersections with C∗, except one, are predetermined. The set of all these intersection
points is the same one for every curve in the system, and the points in this set are
called the “base points”. Thus, if one computes the intersection points of C∗ with a
generic representative of the system, the expression of the unknown intersection point
gives the parametrization of C∗ in terms of the parameter defining the linear system.

More precisely, let Hd−2 be the linear system of adjoint curves to C∗ of degree d− 2
(we assume that d > 2, otherwise we consider adjoint curves of degree 1; see statement
2 in Remark 1). That is, Hd−2 is the linear system of curves of degree d − 2 having
each r–fold of C∗ as a base point of multiplicity r− 1; i.e. as a point of multiplicity at
least r− 1. Since C is k-rational, there exists a parametrization defined over k and the
singularities of C can be decomposed as a finite union of families of conjugate parametric
points over k such that all points in the same family have the same multiplicity and
character (see Theorem 16 in [24]). Thus, Hd−2 is computed without extending k (see
Theorem 4.66 in [32]).

Under these conditions, the multiplicity of intersection of a curve in Hd−2 and C∗

at a base point of multiplicity r − 1 is at least r(r − 1). Using that the genus of
C∗ is zero (C∗ is k-rational), and taking into account Bézout’s Theorem, one deduces
that (d− 2) intersections of C∗ and a generic element in Hd−2 are not predetermined.
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In this situation, one takes (d − 3) different simple points on C∗, and determines the
1-dimensional linear subsystem D∗ of Hd−2 obtained when these simple points are
required to be base points of multiplicity 1 (in the following, we refer to D∗ as an
adjoint pencil of C∗). We remark that D∗ depends on the choice of the simple points.

Note that if one takes these (d − 3) simple points of C in P2(k), then the desired
parametrization will be defined over k since D∗ is computed without extending k (see
Theorem 4.66 in [32]). Note that since we are assuming that C is k-rational, then C can
be defined by a parametrization over k, and thus one can find infinitely many simple
points in P2(k). If the simple points are taken over K, then the output parametrization
will be defined over K but we can not guarantee that it is over k (see Theorems 4.66
and 4.68, and Corollary 4.69 in [32]).

In this way, the number of predetermined intersections of C∗ and D∗ (counted with
multiplicity) is (d− 1)(d− 2) + (d− 3) = d(d− 2)− 1, i.e. only one intersection point
is missing. Computing this free intersection point, one finds a projective rational k-
parametrization of C∗. We remark that taking into account the results presented in [32]
(see Theorems 4.57, 4.58, 4.61 and 4.62), one has that the base points and the simple
points impose independent linear conditions on Hd−2 and thus, D∗ always exists.

Summarizing these ideas, one has the following algorithm that computes a
rational k-parametrization of a curve C of degree d > 2 that is k-rational (for
the case d ≤ 2, see statement 2 in Remark 1). For the sake of simplicity, we
assume that all singularities of C∗ are ordinary (for a complete description see
Sections 4.7 and 4.8 in [32]). The algorithm described as well as some illustrative ex-
amples can be found in [32] (see algorithm Parametrization-by-Adjoints in Section 4.7).

Algorithm for k-Parametrization.

Input: A k-rational plane curve C implicitly defined by a polynomial f(x) ∈ k[x].
Output: A rational k-parametrization Q(s) ∈ k(s)2 \ k2 of C.

Step 1. Compute the singularities of C∗ and their multiplicities.

Step 2. Determine the linear system Hd−2 of adjoint curves of degree (d− 2).

Step 3. Compute (d− 3) different simple points of C∗ in P2(k).

Step 4. Determine the linear subsystem D∗ of Hd−2 by requiring that every simple point
in Step 3 is a base point of multiplicity one (that is, we compute an adjoint pencil of C∗).
Let

G(X, s) = G1(X)− sG2(X) ∈ k(s)[X], gcd(G1, G2) = 1

be the defining polynomial of D∗.
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Step 5. Return the k-parametrization Q(s) ∈ k(s)2 \ k2 given by the solution in
{x1, x2} of the system defined by pps(Resxi

(f(x), g(x, s))) = 0, i = 1, 2, where
g(x, s) := G(x, 1, s) and pps(ℓ(x, s)) denotes the primitive part with respect to s of a
polynomial ℓ(x, s).

Remark 1 1. The above process can be applied similarly to linear systems of adjoint
curves of degree d−1 or d (see Step 2). In this case, in order to reduce the systems
of adjoints to subsystems of dimension 1 (see Step 3), one needs to compute
(2d − 3) and (3d − 3) different simple points, respectively (see Sections 4.7 and
4.8 in [32]).

2. If d ≤ 2, we use adjoints of degree 1. For d = 1 no additional simple points are
needed. If d = 2, we need to compute one simple point (see Section 4.6 in [32]).

3. From Lemma 4.52 in [32], we get that the parametrization Q(s) ∈ k(s)2 \ k2 is
invertible (i.e. proper).

4. There are alternative parametrization methods such as [28] based on the con-
struction of adjoints of high degree, or [35] where the anticanonical divisor is
computed.

2.2 Parametrization of a Pencil of Curves

In this subsection, we consider K as an algebraically closed field of characteristic zero,
and we specialize Subsection 2.1 to the case where C∗ is a pencil of curves, k = K(t)
and K = K(t) (the algebraic closure of the field K(t)).

More precisely, let G(X), H(X) ∈ K[X] be coprime homogeneous polynomials, and
we identify the pencil of curves over K generated by G and H with the projective curve

V∗ = {(a : b : c) ∈ P2(K(t)) | F (a, b, c) := G(a, b, c)− tH(a, b, c) = 0},

defined over K(t). Note that F is irreducible since gcd(G,H) = 1, and deg(V∗) =
degX(F ). We denote by C∗

i , i = 1, 2, the projective curves defined by the polynomials
G and H, respectively, and let Ci, i = 1, 2, be the corresponding affine curves defined
by g(x) = G(x, 1), and h(x) = H(x, 1), respectively.

Throughout this subsection, we are interested in curves V∗ that can be ratio-
nally parametrized over K(t) ⊂ K which is equivalent to the existence of a rational
parametrization of V∗ with coefficients in K(t) (apply Definition 1 to V∗, k = K(t) and
K = K(t) ).
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Thus, we consider a K(t)-rational curve V of degree d defined by an irreducible
polynomial f(x) = g(x) − th(x) ∈ K(t)[x], and we show how to compute a K(t)-
parametrization Q(s) ∈ (K(t))(s)2 \ K(t)2 of V by adapting the Algorithm for k-
Parametrization to the case of k = K(t) and K = K(t).

For this purpose, we first prove that the singularities of V∗ lie in P2(K) since they
are exactly the intersection of the singularities of the curves defined by the equations
G = 0 and H = 0. In addition, the multiplicity of a singularity P ∈ V∗, is the minimum
of the multiplicity of P ∈ C∗

1 and the multiplicity of P ∈ C∗
2 .

Lemma 1 It holds that the singularities of V∗ lie in P2(K). Furthermore, mP (V∗) =
min{mP (C∗

1), mP (C∗
2)}, where mP (D∗) denotes the multiplicity of singularity at a point

P ∈ D∗.

Proof. Let P = (a1 : a2 : a3) be a singularity of V∗. Then, F (P ) = ∂F
∂xk

(P ) =

0, k = 1, 2, 3, and Ek(P ) = 0, where Ek := G ∂H
∂xk

− H ∂G
∂xk

= 0, k = 1, 2, 3. Therefore,

resultantxk
(Em, En)(ai, aj) = 0, for m,n, k ∈ {1, 2, 3} with m < n and i < j (i ̸= k, j ̸=

k) which implies that P ∈ P2(K) since resultantxk
(Em, En)(xi, xj) is an homogeneous

polynomial in K[xi, xj] (see e.g. Chapter 3 in [12]).

On the other side, taking into account the definition of multiplicity (see e.g. Def-
inition 2.2 in [32]), the first part of the lemma which states that P ∈ P2(K), and
that

∂ℓF

∂xℓ1
1 ∂x

ℓ2
2 ∂x

ℓ3
3

(P ) =
∂ℓG

∂xℓ1
1 ∂x

ℓ2
2 ∂x

ℓ3
3

(P )− t
∂ℓH

∂xℓ1
1 ∂x

ℓ2
2 ∂x

ℓ3
3

(P ), ℓ1 + ℓ2 + ℓ3 = ℓ

where ℓ, ℓj ∈ N, one deduces that mP (V∗) = min{mP (C∗
1), mP (C∗

2)}.

Taking into account Lemma 1, and that there exists a parametrization of V de-
fined over K(t) (V is K(t)-rational), if one finds (d − 3) different simple points of V
in P2(K(t)), then the output parametrization Q(s) will be defined over K(t); that is,
Q(s) ∈ (K(t))(s)2 \ K(t)2 (see Subsection 2.1). Note that since we are assuming that
V is K(t)-rational, then V can be defined by a parametrization over K(t), and thus one
can find infinitely many points in P2(K(t)) (for instance, one may check first whether
there are simple points in P2(K) ⊂ P2(K(t)) by computing the intersection points of C∗

1

and C∗
2). If the simple points are taken over K, then Q(s) ∈ K(s)2 \K2 but we could

not ensure that Q is defined over K(t). Of course, one may apply different algorithms
(see e.g. [28], [35], etc.) to determine the parametrization over K(t) (we recall that the
parametrization exists since V is K(t)-rational).

Summarizing these ideas, one has the following algorithm that computes a rational
K(t)-parametrization the curve V of degree d > 2 that is K(t)-rational (for the case
d ≤ 2, see statement 2 in Remark 1). This algorithm is an special case of the Algorithm
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for k-Parametrization presented in Subsection 2.1. For the sake of simplicity, we
assume that all singularities of V∗ are ordinary.

Algorithm for Pencil Parametrization.

Input: A K(t)-rational curve V implicitly defined by an irreducible polynomial f(x) =
g(x)− th(x) ∈ K(t)[x].
Output: A rational K(t)-parametrization Q(s) ∈ (K(t))(s)2 \ K(t)2 of V .

Step 1. Compute the singularities of V∗ and their multiplicities. For this purpose, we
apply Lemma 1.

Step 2. Determine the linear system Hd−2 of adjoint curves of degree (d − 2). For
this purpose, one considers a homogeneous polynomial L(X) of degree (d − 2) with
undetermined coefficients. For each singular point of multiplicity ri, one requires that
L and all its partial derivatives up to order (ri − 1) vanish at the singular point. This
generates a linear system of equations in the undetermined coefficients of L. Solving
it, and substituting in L, we get the defining polynomial of Hd−2; let us call it again
L.

Step 3. Compute (d − 3) different simple points of V∗ in P2(K(t)). Observe that first,
one may check whether there are simple points in P2(K) ⊂ P2(K(t)) by computing the
intersection points of C∗

1 and C∗
2 .

Step 4. Determine the linear subsystem W∗ of Hd−2 by requiring that every simple point
in Step 3 is a base point of multiplicity one (that is, we compute an adjoint pencil of V∗).
This step can be approached as Step 2, i.e. by requiring that L vanishes at each simple
point, solving the provided linear system and substituting the solution in L. Note that
since dim(W∗) = 1, the defining polynomial of W∗ can be expressed as

R(X, t) = M(X, t)− sN(X, t) ∈ K(t, s)[X], gcd(M,N) = 1.

Observe that since the singularities are in P2(K) (see Lemma 1), if we may compute
(d − 3) simple points in P2(K), then R(X) = M(X) − sN(X) ∈ K(s)[X] (that is, R
does not depend on t).

Step 5. Return the K(t)-parametrization Q(s) ∈ (K(t))(s)2 \K(t)2 given by the solution
in {x1, x2} of the system defined by pps(Resxi

(f(x), r(x, t))) = 0, i = 1, 2, where
r(x, t) := R(x, 1, t).

In the following, we illustrate Algorithm for Pencil Parametrization with an example.
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Example 1 Let V be the curve of degree d = 4 defined by the irreducible polynomial
f(x) = g(x)− th(x), where

g(x) = x2
1x

2
2−x1x

3
2+17x1x

2
2−56x1x2−68x2

1x2−20x3
1x2+x3

2+128x2
1+128x3

1+32x4
1 ∈ C[x],

h(x) = 20x1x
2
2 − 992

9
x1x2 − 2000

9
x2
1x2 − 752

9
x3
1x2 + x4

2 +
4352
9
x2
1 +

4352
9
x3
1 +

1088
9
x4
1 ∈ C[x].

Note that the generators of V are the curves C1 and C2 implicitly defined by the
polynomials g and h, respectively.

We compute the singularities of V∗, and we obtain the points in C2:
(−2, 0), (0, 0), (1, 4) of multiplicities 2, 2, 2, respectively (see Step 1 of the
algorithm). Note that genus(V) = 0. Now, we determine the linear system H2 of ad-
joint curves of degree d−2 = 2 (see Step 2). We get that H2 is defined by the polynomial

L(X) = 3a01x2x3 + 3a02x
2
2 − 8x1a01x3 − 32x1a02x3 − 8a11x1x3 + 3a11x1x2 − 4x2

1a01 −
16x2

1a02 − 4x2
1a11.

In order to determine the C(t)-parametrization, we need d − 3 = 1 simple point of
V∗ in P2(C(t)) (see Step 3). For this purpose, we first check whether there are simple
points in P2(C) by computing the intersection points of the curves C∗

1 and C∗
2 . We obtain

three simple points. We consider one of these simple points: (−1, 2) ∈ C2.

Now, we compute an adjoint pencil of V∗, W∗, by requiring that the simple point
(−1, 2) is a base point of multiplicity one (see Step 4). We get that the defining poly-
nomial of W is r(x) = m(x)− sn(x), where

m(x) = −16x1−8x2
1+x2+5x1x2 ∈ C[x], n(x) = −x2

2+48x1−14x1x2+24x2
1 ∈ C[x].

Observe that since the simple point is in C2, the generators of W are plane curves over
C implicitly defined by the polynomials m and n.

Finally, we return the C(t)-parametrization Q(s) ∈ (C(t))(s)2 \ C(t)2 given by the
solution in {x1, x2} of the system defined by pps(Resxi

(f(x), r(x))) = 0, i = 1, 2, where

pps(Resx2(f(x), r(x)))(x1, t, s) = −162t − 162s − 810tx1 + 270t2 + 162x1s − 297ts −
567s2 + 3294t2x1 − 8289tx1s + 1116st2 + 1053s2x1 + 1116ts2 + 34308t2x1s −
29790s2tx1 + 2025x1s

3 + 130104s2t2x1 − 43344s3tx1 + 648x1s
4 + 212784s3t2x1 −

17856s4tx1 + 123008s4t2x1, and

pps(Resx1(f(x), r(x)))(x2, t, s) = 972 − 5832t + 6804s − 43344x2s
3t − 17856x2s

4t +
123008x2s

4t2 + 212784x2s
3t2 + 34308t2sx2 + 130104t2s2x2 − 8289x2st + 159216s2t2 −

71424s3t+ 123008s3t2 + 60336st2 − 109224ts2 + 7020t2 + 4536s3 + 13203s2 + 162x2s−
810x2t− 45900ts− 29790x2s

2t+ 2025x2s
3 + 648x2s

4 + 3294x2t
2 + 1053x2s

2.
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We remark that in Step 3 of the algorithm, the computed (d − 3) different simple
points are in P2(K(t)). First, one may check whether there are simple points in P2(K) ⊂
P2(K(t)) by computing the intersection points of C∗

1 and C∗
2 (see Example 1). This can

be done in many cases; however, sometimes we can not find enough different simple
points in P2(K), and we have to compute them in P2(K(t)). Here, we can find enough
different simple points if V is K(t)-rational.

Example 2 Let V be the curve of degree d = 3 defined by f(x) = g(x)− th(x), where
g(x) = −x3

2 + x4
1 ∈ C[x], and h(x) = −x4

2 ∈ C[x]. The generators of V are the curves
C1, and C2 implicitly defined by the polynomials g and h, respectively.

We compute the singularities of V∗, and we obtain that (0, 0) ∈ C2 is a singularity
of multiplicity 3 (see Step 1 of the algorithm). Note that genus(V) = 0. Now, we
determine the linear system H2 of adjoint curves of degree d− 2 = 2 (see Step 2). We
get that H2 is defined by the polynomial L(X) = a02x

2
2 + a11x1x2 + a20x

2
1.

In order to determine the C(t)-parametrization, we need d − 3 = 1 simple point of
V∗ in P2(C(t)) (see Step 3). For this purpose, we first check whether there are simple
points in P2(C) by computing the intersection points of the curves C∗

1 and C∗
2 . We have

that the curves C∗
1 and C∗

2 only intersect at the singular point. Thus, we have to compute
a simple point in P2(C(t)). We obtain the simple point (−1/(1+ t3), 1/(t+ t4)) ∈ C(t)2.

Now, we compute an adjoint pencil of V∗, W∗, by requiring that the simple point
is a base point of multiplicity one (see Step 4). We get that the defining polynomial of
W is r(x, t) = m(x, t) − sn(x, t), where m(x, t) = −x2

2t
2 + x2

1 ∈ C(t)[x], and n(x, t) =
−x2

2t− x2x1 ∈ C(t)[x].

Finally, we return the C(t)-parametrization Q(s) ∈ (C(t))(s)2 \ C(t)2 given by the
solution in {x1, x2} of the system defined by pps(Resxi

(f(x), r(x, t))) = 0, i = 1, 2,
where

pps(Resx2(f(x), r(x, t)))(x1, t, s) = x1t−t+s+x1t
4−4x1t

3s+6x1t
2s2−4x1ts

3+x1s
4, and

pps(Resx1(f(x), r(x, t)))(x2, t, s) = −1 + x2t+ x2t
4 − 4x2t

3s+ 6x2t
2s2 − 4x2ts

3 + x2s
4.

In this paper, we deal neither with the problem of deciding whether V is K(t)-
rational nor with the problem of computing simple points in P2(K(t)) (see Step 3 of the
algorithm). Instead, we construct a curve V of degree d where singularities and simple
points are known, and we use Algorithm for Pencil Parametrization to compute a pencil
of adjoints W (see Step 4 of the Algorithm for Pencil Parametrization). Afterwards,
from the curves generating V and W , we will get a birational automorphism of degree
d (see Theorem 1, statement 2 in Corollary 2 and Proposition 1 in Section 3).
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3 Construction of Birational Automorphisms of the

Plane

In this section, we consider d ∈ N, and we show how to construct birational auto-
morphisms of the plane of degree d (see Theorem 1 and statement 2 in Corollary 2 in
Subsection 3.1). The idea is to construct a K(t1)-rational curve V1, and from there we
compute the adjoint pencil V2 (see Step 4 of the Algorithm for Pencil Parametrization).
The birational automorphism (and also its inverse, see Corollary 1) is obtained from
the curves generating V1 and V2.

Reciprocally, in Subsection 3.2, we are given a birational automorphism P , and we
construct a certain V1 being K(t1)-rational, and from there its adjoint pencil V2. In
Theorem 2, we show the relation between P and the pair of pencils (V1,V2).

From Subsections 3.1 and 3.2, we deduce that there exits a one-to-one correspon-
dence between birational automorphisms of the plane and pairs of pencils (V1,V2)
intersecting in a unique point. As a consequence, we obtain a method that allows to
construct birational automorphisms of the plane of a desired degree.

As a particular case, in Subsection 3.3, we show how these results can be stated for
the case of birational polynomial automorphisms (see Proposition 1 and Theorem 3).
Similarly as in the general case, as a consequence we obtain a method that allows to
construct birational automorphisms of the plane that are polynomial (see Proposition
1).

3.1 From Pencils to Birational Automorphisms

In the following, we consider G1,1, G1,2 ∈ K[X] coprime homogeneous polynomials, and
the projective curve

V∗
1 = {(a : b : c) ∈ P2(K(t1)) | F1(a, b, c) := G1,1(a, b, c)− t1G1,2(a, b, c) = 0},

defined over K(t1) with deg(V∗
1 ) = degX(F1) = d. We denote by C∗

i the projective curve
defined by the polynomial G1,i, for = 1, 2. Using Algorithm for Pencil Parametrization
(see Step 4), we compute the adjoint pencil of V∗

1 ,

V∗
2 = {(a : b : c) ∈ P2(K(t1, t2)) | F2(a, b, c, t1) := G2,1(a, b, c, t1)−t2G2,2(a, b, c, t1) = 0},

where G2,1, G2,2 ∈ K(t1)[X] are coprime homogeneous polynomials. We have that

deg(V∗
2 ) = degX(F2) = d̃, where d̃ = d − 2 for d > 2, and d̃ = 1 otherwise (see

Algorithm for Pencil Parametrization, and statement 2 in Remark 1).

We recall that the corresponding affine curves, V1 and V2 are defined by the irre-
ducible polynomials

f1(x) := F1(x, 1) = g1,1(x)− t1g1,2(x) ∈ K(t1)[x], and
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f2(x, t1) := F2(x, 1, t1) = g2,1(x, t1)− t2g2,2(x, t1) ∈ K(t1, t2)[x].

The following theorem (which is the main theorem of this subsection) shows that
the curves generating V1 and V2 define a birational automorphism S. In Corollary
1, we prove some properties of the inverse of S, and in Corollary 2 (statement 2) we
show how to control the degree of the birational automorphism S constructed in this
theorem.

Theorem 1 Let V1 be a K(t)-rational curve of degree d defined by an irreducible poly-
nomial f1(x) = g1,1(x)− t1g1,2(x) ∈ K(t1)[x]. Let f2(x, t1) = g2,1(x, t1)− t2g2,2(x, t1) ∈
K(t1, t2)[x] be an irreducible polynomial defining the adjoint pencil of V1, V2. Then,

S(x) = (g1(x), g2(x)), where g1(x) =
g1,1(x)

g1,2(x)
, g2(x) =

g2,1(x, g1(x))

g2,2(x, g1(x))

is birational.

Proof. Let Q(t1, t2) ∈ K(t1, t2)2 \ K2 be the intersection point of the polynomials f1
and f2 (see Step 5 of Algorithm for Pencil Parametrization). Observe that g1,2(Q) ̸= 0.
Otherwise, g1,1(Q) = 0 (because f1(Q) = 0) and then, since gcd(g1,1, g1,2) = 1, we
would deduce that Q ∈ K2 which is impossible. Thus, since g1,2(Q) ̸= 0 and f1(Q) = 0,
we get that g1(Q) = t1.
On the other hand, one also has that g2,2(Q, g1(Q)) ̸= 0. Indeed, if g2,2(Q, g1(Q)) =
g2,2(Q, t1) = 0 (note that g1(Q) = t1), then g2,1(Q, t1) = 0 (because f2(Q) = 0). Thus,
(Q(t1, t2), t1) parametrizes the surfaces defined by the polynomials g2,i(x1, x2, x3) for
i = 1, 2 which is impossible (the polynomials g2,i are irreducible and gcd(g2,1, g2,2) ̸= 1).
Hence, g2,2(Q, g1(Q)) ̸= 0 and then g2(Q) = t2 (note that f2(Q, g1(Q)) = 0). Therefore,
we conclude that S(Q(t1, t2)) = (t1, t2) which implies that S is birational.

In the following corollary, we prove that the output of Algorithm for Pencil
Parametrization determines the inverse of the birational automorphism computed in
Theorem 1. In addition, we show some formulae that provide the degree of this in-
verse. For this purpose, in the following we denote by index(M), the tracing index of
a parametrization M (see Definition 4.24 in [32]). Intuitively speaking, index(M) is a
natural number such that almost all points on the curve defined by M are generated,
via M(t), by exactly index(M) parameter values. Thus, if index(M) = 1, we have
that M is proper (i.e. an invertible parametrization). In order to compute index(M),
one may apply the results in Section 4.3 in [32].

Corollary 1 Let Q(t1, t2) = (q1(t1, t2), q2(t1, t2)) ∈ K(t1, t2)2 \ K2 be the intersection
point of V1 and V2. It holds that Q is the inverse of the birational automorphism S.
In addition,

degt2(q1) = degx2
(h1), degt2(q2) = degx1

(h1), and

degt1(q1) = degx2
(h2)index(Q2), degt1(q2) = degx1

(h2)index(Q2)

where h1(x) := g1,1(x)− t1g1,2(x) and h2(x) := g2,1(x, g1(x))− t2g2,2(x, g1(x)).
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Proof. From the proof of Theorem 1, we get that the inverse of S is given by the
output of Algorithm for Pencil Parametrization; i.e. by the intersection point of V1

and V2. In addition, from this proof, we also get that

gi(Q) = ti, i = 1, 2, where g1(x) =
g1,1(x)

g1,2(x)
, g2(x) =

g2,1(x, g1(x))

g2,2(x, g1(x))
.

Then, Qi(tj), where Qi(tj) := Q(t1, t2) ∈ (K(ti))(tj)2, i, j ∈ {1, 2}, i ̸= j (that
is, we see Q as a parametrization in the variable tj with coefficients in K(ti)) is
a parametrization of the curve over K(ti) defined by hi(x). Thus, we apply the
results in [32] (see Section 4.2), and we get that degtj(q1) = degx2

(hi)index(Qi)
and degtj(q2) = degx1

(hi)index(Qi), for i, j ∈ {1, 2}, i ̸= j. In addition, since
index(Q1) = 1 (see statement 3 in Remark 1), we get that

degt2(q1) = degx2
(h1), degt2(q2) = degx1

(h1), and

degt1(q1) = degx2
(h2)index(Q2), degt1(q2) = degx1

(h2)index(Q2).

In the following corollary, we first show that the degree of S is not controlled; i.e. we
do not know in advance the degree of the birational automorphism S although an upper
bound is provided (see statement 1 in Corollary 2). However, if one may determine the
needed simple points in P2(K), then f2 ∈ K(t2)[x] and thus deg(S) = d (see statement
2 in Corollary 2). Hence, the following corollary will be used to construct birational
automorphisms of a desired degree d (see Example 2).

Corollary 2 Let V1 be a K(t)-rational curve of degree d defined by an irreducible poly-
nomial f1(x) = g1,1(x)− t1g1,2(x) ∈ K(t1)[x]. Then,

1. If f2(x, t1) = g2,1(x, t1)− t2g2,2(x, t1) ∈ K(t1, t2)[x] is an irreducible polynomial of

degree d̃ defining the adjoint pencil of V1, V2, and

S(x) = (g1(x), g2(x)), g1(x) =
g1,1(x)

g1,2(x)
, g2(x) =

g2,1(x, g1(x))

g2,2(x, g1(x))

is the birational automorphism computed in Theorem 1, it holds that

deg(g1) = degx(f1) = d, deg(g2) ≤ degx(f2)+degt1(f2)deg(g1) = d̃+degt1(f2)d.

In addition, deg(S) ≤ max{d, d̃+ degt1(f2)d}.

2. If d ≥ 3 and V1 has at least (d− 3) different simple points in P2(K), then f2(x) =
g2,1(x) − t2g2,2(x) ∈ K(t2)[x] is an irreducible polynomial defining the adjoint
pencil V2 and

S(x) = (g1(x), g2(x)), gi(x) =
gi,1(x)

gi,2(x)
, i = 1, 2

is birational with deg(S) = d.
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Proof.

1. Taking into account that degx(f1) = d and degx(f2) = d̃, where d̃ = d − 2 for
d > 2, and d̃ = 1 otherwise, and that gcd(gi,1, gi,2) = 1, i = 1, 2, we deduce that

deg(g1) = degx(f1) = d, deg(g2) ≤ degx(f2)+degt1(f2)deg(g1) = d̃+degt1(f2)d.

Therefore, deg(S) ≤ max{d, d̃+ degt1(f2)d}.

2. Since we may determine the needed simple points in P2(K) (see Step 3 of Algorithm
for Pencil Parametrization, and statement 2 in Remark 1), then f2 ∈ K(t2)[x]
(see Step 4 of Algorithm for Pencil Parametrization) and hence, from Theorem
1, we deduce that

S(x) = (g1(x), g2(x)), gi(x) =
gi,1(x)

gi,2(x)
, i = 1, 2

is birational. In addition, since f2 ∈ K(t2)[x], we get that degt1(f2) = 0 which

implies that deg(g2) = degx(f2) = d̃ ≤ d (note that g2(x) = g2,1(x)/g2,2(x)).
Therefore, deg(S) = d.

Remark 2 Note that if d = 2, we get that V1 always has at least 1 simple point in
P2(K). Thus, no additional condition has to be imposed in statement 2 in Corollary 2.

Remark 3 The birational automorphism S computed in Theorem 1 and Corollary
2 (statement 2), does not parametrize a plane curve. Indeed, let us assume that S
parametrizes a plane curve implicitly defined by an irreducible polynomial p(x) ∈ K[x]\
K. Thus, p(S) = 0. This implies that p(t1, t2) = p(S(Q(t1, t2))) = 0 (from Corollary
1, we have that Q = S−1) which is impossible.

Taking into account Corollary 2 (statement 2), we deduce that if we compute a
curve V1 of degree d in the conditions of Corollary 2 (statement 2), we may construct
a birational automorphism S of degree d from the generators of V1, and the generators
of the adjoint pencil of V1, V2.

Example 3 Let us construct a C(t)-rational curve, V1, of degree d = 5, defined by
an irreducible polynomial of the form f1(x) = g1,1(x) − t1g1,2(x) ∈ C(t1)[x]. For this
purpose, we determine V1 having the singularities

(0 : 0 : 1) of multiplicity 3, (−1 : −1 : 1) of multiplicity 2,

(I : 1 : 0) of multiplicity 2 and , (−I : 1 : 0) of multiplicity 2,
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where we denote by I the imaginary unit. We observe that genus(V1) = 0. In addition,
since we are going to need d−3 = 2 different simple points (see Step 3 of Algorithm for
Pencil Parametrization), we determine V1 by requiring that (2 : 5 : 1) and (−1 : 3 : 1)
are simple points in V1. We obtain

g1,1(x) = −(11x5
1 + 11x1x

4
2 + 44x1x

3
2 − 22x4

1 + 22x3
1x

2
2 + 44x3

1x2 − 1560x3
1 + 2556x2

1x2+

22x4
2 − 476x1x

2
2 − 476x3

2) ∈ C[x],

g1,2(x) = 11x4
1x2+33x3

1x2+11x2
1x

2
2+22x2

1x
3
2+33x1x

3
2+2769x2

1x2−457x1x
2
2+11x5

2+11x4
1−

1657x3
1 − 611x3

2 ∈ C[x].

Now, let us compute V2. For this purpose, we determine a linear system of adjoint
curves to V1 of degree d − 2 = 3. We remark that this linear system has each r–
fold point above as a point of multiplicity at least r − 1 (see Step 2 of Algorithm
for Pencil Parametrization). In addition, the simple points introduced above are re-
quired to be points of multiplicity at least 1 (see Steps 3 and 4 of Algorithm for Pencil
Parametrization). Under these conditions, we get that the pencil of adjoints V2 is
defined by f2(x) = g2,1(x)− t2g2,2(x), where

g2,1(x) = −(11x3
1 − 58x1x2 + 98x2

1 + 11x1x
2
2 − 18x2

2) ∈ C[x],

g2,2(x) = 135x2
1 + 11x2

1x2 − 46x1x2 + 11x3
2 − 67x2

2 ∈ C[x].

Finally, from Corollary 2 (statement 2), we deduce that

S(x) = (g1,1(x)/g1,2(x), g2,1(x)/g2,2(x)) ∈ C(x)2

is a birational automorphism of the plane of degree d = 5. Note that the inverse of S
can be obtained by computing the intersection point in K(t1, t2)2 \ K2 of V1 and V2 (see
Corollary 1, and Step 5 of Algorithm for Pencil Parametrization).

3.2 From Birational Automorphisms to Pencils

In this subsection, we are given a birational automorphism P , and we construct a
K(t1)-rational curve V1, and from there its adjoint pencil V2. Thus, using Theorem
1 we get a new birational automorphism S, and in Theorem 2 we show the relation
between P and S. In particular, we prove that P is equivalent to S in the sense that
P = J ◦ S, where J is a De Jonquières transformation.

For this purpose, we first prove the following lemma.

Lemma 2 Let P(x) = (p1(x), p2(x)) ∈ K(x)2 \K2, pi = pi,1/pi,2, gcd(pi,1, pi,2) = 1, i =
1, 2 be a birational automorphism. Let Zi be the curves defined by the polynomials
Hi(x) = pi,1(x) − ti pi,2(x) ∈ K(ti)[x], for i = 1, 2. It holds that Zi, i = 1, 2, are
K(t)-rational.
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Proof. Since P is birational, there exists the inverse M(t1, t2) := P−1(t1, t2) ∈
K(t1, t2)2 \ K2. Thus, P(M(t1, t2)) = (t1, t2) which implies that Hi(M(t1, t2)) = 0,
i ∈ {1, 2}. Then, H1(M1(t2)) = H2(M2(t1)) = 0, where M1(t2) := M(t1, t2) ∈
(K(t1))(t2)2 (that is, we seeM as a parametrization in the variable t2 with coefficients in
K(t1); similarly, M2(t1) := M(t1, t2) ∈ (K(t2))(t1)2 that is, we see M as a parametriza-
tion in the variable t1 with coefficients in K(t2)). Note that M1(t2) ̸∈ K(t1)2; indeed:
if M1(t2) ∈ K(t1)2, then M = P−1 ∈ K(t1)2 which implies that P−1 parametrizes
a curve defined by a polynomial h(x) ∈ K[x]. Thus, h(P−1) = 0 and hence,
h(P−1(P(t1, t2))) = h(t1, t2) = 0. This is impossible, and then M1(t2) ̸∈ K(t1)2.
Similarly M2(t1) ̸∈ K(t2)2. Therefore, Mi is a rational parametrization of Zi over
K(ti). Hence, Zi, i = 1, 2, are K(t)-rational.

Given a birational automorphism P(x) = (p1(x), p2(x)) ∈ K(x)2 \ K2, pi =
pi,1/pi,2, gcd(pi,1, pi,2) = 1, i = 1, 2, from Lemma 2, we get that Z1 is K(t)-rational.
Thus, we may apply Theorem 1 to Z1, and we get the birational automorphism:

SP
1 = (p1, g2), where g2(x) =

g2,1(x, p1(x))

g2,2(x, p1(x))
,

and g2,1(x, t1) − t2 g2,2(x, t1) is the adjoint pencil of Z1. Similarly, since Z2 is
K(t)-rational (see Lemma 2), we get that (p2, g1) is birational, where g1(x) =
g1,1(x, p2(x))/g1,2(x, p2(x)), and g1,1(x, t2)− t1 g1,2(x, t2) is the adjoint pencil of Z2 (we
apply Theorem 1 to Z2). Instead of (p2, g1), we consider (g1, p2) that clearly is also
birational. Then, we write

SP
2 = (g1, p2), where g1(x) =

g1,1(x, p2(x))

g1,2(x, p2(x))
.

We refer to SP
1 and SP

2 as the associated birational automorphisms to P . We remark
that SP

i , i = 1, 2, does not parametrize a plane curve (see Remark 3).

In the following theorem, it is shown that P is equivalent to the associated birational
automorphisms SP

j , j = 1, 2, in the sense that P = Jj ◦SP
j , where Jj is a De Jonquières

transformation. We remind the reader that a De Jonquières transformation is defined
as the Cremona transformation(

x1,
α(x1)x2 + β(x1)

γ(x1)x2 + δ(x1)

)
, α, β, γ, δ ∈ K[x1], gcd(αx2 + β, γx2 + δ) = 1

(note that gcd(αx2+β, γx2+δ) = 1 is equivalent to gcd(α, β, γ, δ) = 1 and αδ−βγ ̸= 0;
see Chapter 4 in [32]). This transformation is most naturally interpreted as a birational
transformation of P1 × P1 which preserve projection onto one of the factors.
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Theorem 2 Let P(x) = (p1(x), p2(x)) ∈ K(x)2 \ K2 be birational. The following
statements hold:

1. P(x) = (x1, B(x)) ◦ SP
1 (x), where B(x) = α(x1)x2+β(x1)

γ(x1)x2+δ(x1)
∈ K(x) \ K(x1), and

α, β, γ, δ ∈ K[x1], gcd(αx2 + β, γx2 + δ) = 1.

2. P(x) = (A(x), x2) ◦ SP
2 (x), where A(x) = m(x2)x1+n(x2)

u(x2)x1+v(x2)
∈ K(x) \ K(x2), and

m,n, u, v ∈ K[x2], gcd(mx1 + n, ux1 + v) = 1.

Proof. Let us prove that statement 1 holds (one reasons similarly to prove that
statement 2 holds). Since SP

1 (SP
2 to prove statement 2) is birational (see Theorem 1),

we have that
R(x) = (R1(x), R2(x)) := P ◦ (SP

1 )
−1 ∈ K(x)2 \ K2

is birational, and it satisfies that P = R(SP
1 ). Let us show, that R(x) = (x1, B(x)),

where B(x) = α(x1)x2+β(x1)
γ(x1)x2+δ(x1)

, and gcd(αx2 + β, γx2 + δ) = 1. For this purpose, first

we prove that R1(x) = x1. We observe that since P = R(SP
1 ), in particular p1 =

R1(SP
1 ) = R1(p1, g2) and then, SP

1 parametrizes the plane curve implicitly defined by
the irreducible polynomial

h(x) := r1,1(x)− r1,2(x)x1, where R1 = r1,1/r1,2, and gcd(r1,1, r1,2) = 1.

Since SP
1 does not parametrize a plane curve (see Remark 3), we get that h(x) is

identically zero, which implies that R1(x) = x1. Thus, we have that

R(x) = (x1, R2(x)) ∈ K(x)2.

Now, we prove that R2(x) =
α(x1)x2+β(x1)
γ(x1)x2+δ(x1)

, gcd(αx2+β, γx2+ δ) = 1. For this purpose,

taking into account that R(x) = (x1, R2(x)) and that R is birational, we get that
degx2

(R2) = 1 (see Lemma 4.32 in [32]). Therefore, we conclude that (see Chapter 4
in [32])

R2(x) =
α(x1)x2 + β(x1)

γ(x1)x2 + δ(x1)
,

where α, β, γ, δ ∈ K[x1] (we clean denominators if it is necessary), and gcd(α, β, γ, δ) =
1, and αδ − βγ ̸= 0. Finally, we observe that since P = R(SP

1 ), and in particular
p2 = R2(p1, g2), we get that R2 ∈ K(x). Moreover R2 ̸∈ K(x1), since degx2

(R2) = 1.

Remark 4 We note that:

1. The converse of Theorem 2 can be stated as follows: let P(x) = (x1, B(x))◦S(x),
where S is a birational automorphism and B is a De Jonquières transformation
defined as B(x) = α(x1)x2+β(x1)

γ(x1)x2+δ(x1)
∈ K(x) \ K(x1), α, β, γ, δ ∈ K[x1], gcd(αx2 +

β, γx2 + δ) = 1. Then, P is a birational automorphism. Indeed: we consider

L(x) :=

(
x1,

δ(x1)x2 − β(x1)

−γ(x1)x2 + α(x1)

)
, where gcd(αx2 + β, γx2 + δ) = 1.
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Note that L is well defined since if γ = α = 0 then gcd(αx2+β, γx2+ δ) ̸= 1 (we
recall that condition gcd(αx2 + β, γx2 + δ) = 1 is equivalent to gcd(α, β, γ, δ) =
1 and αδ − βγ ̸= 0; see Chapter 4 in [32]). In addition, we also have that
gcd(δx2−β,−γx2+α) = 1, and (x1, B(x)) ◦L(x) = (x1, x2). Thus, (x1, B(x)) is
birational and L(x) is its inverse (see Lemma 1 in [25]). Hence, since S is also
birational, from P(x) = (x1, B(x)) ◦ S(x), we deduce that P is birational.

2. Reasoning as above, we also get that if P(x) = (A(x), x2) ◦M(x), where M is a
birational automorphism and A is a De Jonquières transformation, then P is a
birational automorphism.

3. Observe that the birational automorphism SP
i depends on the choice of an adjoint

pencil of Zi, for i = 1, 2. In fact, if one considers two different adjoint pencils
of Z1 (similarly if one reasons for Z2), we get two birational automorphisms SP

1,1

and SP
1,2. By applying Theorem 2, we get that

P(x) = (x1, B1(x)) ◦ SP
1,1(x) = (x1, B2(x)) ◦ SP

1,2(x),

where B1, B2 are the De Jonquières transformations described in statement 1 in
Theorem 2. Thus,

SP
1,1(x) = (x1, B1(x))

−1 ◦ (x1, B2(x)) ◦ SP
1,2(x) = (x1, D(x)) ◦ SP

1,2(x),

where D is a De Jonquières transformation. Thus, the birational automorphism
SP
1 is unique “up to a De Jonquières transformation” (similarly for SP

2 ).

3.3 The Polynomial Case

In this subsection, we deal with the special and important case of birational auto-
morphisms that are polynomial, and we show how the results obtained in Subsec-
tions 3.1 and 3.2 can be particularized for the case of birational polynomial automor-
phisms (see Proposition 1 and Theorem 3). More precisely, we prove that there exits a
one-to-one correspondence between birational polynomial automorphisms of the plane
and pairs of pencils (V1,V2) intersecting in a unique point. As a consequence, given
d ∈ N, we show how to construct birational automorphisms, S, of degree d, such that
S(x) = (g1(x), g2(x)) ∈ K[x]2.

For this purpose, throughout this subsection, we consider the K(t)-rational curve
V∗
1 defined by an irreducible polynomial

F1(X) = G1(X)− t1x
d
3 ∈ K(t1)[X], where d = deg(G1) = deg(V∗

1 ).

In addition, let V1 be the corresponding affine curve defined by the irreducible polyno-
mial

f1(x) = g1(x)− t1 ∈ K(t1)[x], g1 ∈ K[x] \ K.
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The singularities and neighboring singularities of V∗
1 are points at infinity in P2(K)

since they are exactly the intersection of the singularities of the curves defined by the
equations G1 = 0 and xd

3 = 0 (see Lemma 1). In this particular case, the polynomial
L(X) computed by applying Step 2 of Algorithm for Pencil Parametrization has an
especial form. More precisely, in order to determine the linear system Hd−2 of adjoint
curves of degree (d − 2) (see Step 2 of Algorithm for Pencil Parametrization), one
considers the homogeneous polynomial L(X) of degree (d − 2) with undetermined
coefficients. For each singular point in P2(K) of multiplicity ri, one requires that L
and all its partial derivatives up to order (ri − 1) vanish at the singular point. This
generates a linear system of equations in the undetermined coefficients of L. In this
system, the undetermined coefficient λ corresponding to xd−2

3 does not appear since the
singular points are points at infinity. Hence, when we solve it, and we substitute in L,
we get the defining homogeneous polynomial of Hd−2 which we call again L(X), that
satisfies that L(0, 0, x3) = λxd−2

3 . Note that if d ≤ 2, we have that L(0, 0, x3) = λx3

(see statement 2 in Remark 1).

Under these conditions, if we have (d−3) different simple points on V∗
1 being of the

form (a1 : a2 : 0) ∈ P2(K(t1)), we deduce that the linear subsystem V∗
2 ofHd−2, obtained

by requiring that every simple point is a base point of multiplicity one, is defined by

the polynomial F2(X, t1) = G2(X, t1) − t2x
d̃
3 ∈ K(t1, t2)[X] with deg(G2) = d̃, where

d̃ = d − 2 for d > 2, and d̃ = 1 otherwise (see Steps 3 and 4 of Algorithm for Pencil
Parametrization, and statement 2 in Remark 1).

However, note that the condition concerning that the simple points are (a1 : a2 :
0) ∈ P2(K(t1)) is equivalent to that the simple points are (a1 : a2 : 0) ∈ P2(K) ⊂
P2(K(t1)) since F1(a1, a2, 0) = G1(a1, a2, 0) = 0, and G1(X) ∈ K[X].

Thus, the adjoint pencil V∗
2 is defined by the polynomial

F2(X) = G2(X)− t2x
d̃
3 ∈ K(t2)[X]

that is, F2 does not depend on the variable t1. Then, from Theorem 1, we deduce that
S(x) = (g1(x), g2(x)) ∈ K[x]2 is birational (g1(x) = G1(x, 1), g2(x, t1) = G2(x, 1, t1))
and deg(S) = d (see statement 2 in Corollary 2).

Hence, we get the following proposition which is equivalent to statement 2 in Corol-
lary 2. This result, will be used to construct polynomial birational automorphisms of
a given degree d (see Example 3).

Proposition 1 Let V1 be a K(t)-rational curve of degree d defined by an irreducible
polynomial f1(x) = g1(x) − t1 ∈ K(t1)[x] such that if d ≥ 3, V1 has at least (d − 3)
different simple points in P2(K) at infinity. Let f2(x) = g2(x) − t2 ∈ K(t2)[x] be an
irreducible polynomial defining the adjoint pencil V2. Then, S(x) = (g1(x), g2(x)) ∈
K[x]2 is birational, and deg(S) = d.
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Remark 5 Note that if d = 2, we get that V1 always has at least 1 simple point in
P2(K) at infinity. Thus, no additional condition has to be imposed in Proposition 1.

Proposition 1 shows that given a curve V1 of degree d in the conditions stated in
Proposition 1, we may construct a birational polynomial automorphism S of degree d
from the curves generating V1 and V2. For instance, let C be a plane algebraic curve
of degree d > 2 defined by a polynomial g1(x), and having a singularity of maximum
multiplicity, and (d− 3) different simple points at infinity. Then S(x) = (g1(x), g2(x))
is birational, where f1(x) = g1(x) − t1 ∈ K(t1)[x] defines V1, and f2(x) = g2(x) − t2 ∈
K(t2)[x] defines V2. In the following example, we illustrate this statement, and we
construct a birational polynomial automorphism of degree d = 3.

Example 4 Let us compute a C(t)-rational curve, V1, of degree d = 3, defined by
an irreducible polynomial of the form f1(x) := g1(x) − t1, g1 ∈ C[x] \ C, with d =
degx(f1) = 3. For this purpose, we determine V1 having (1 : 0 : 0) as a point of
multiplicity 2 (genus(V1) = 0). In addition, since d−3 = 0, we do not need to consider
additional simple points (see Step 3 of Algorithm for Pencil Parametrization). We get
that

g1(x) = 1 + 3x2 + 4x2
2 + 6x3

2 − 5x1 − 2x1x2 + 8x1x
2
2 ∈ C[x].

Now, let us compute V2. For this purpose, we determine a linear system of adjoint
curves to V1 of degree d− 2 = 1. We remark that this linear system has (1 : 0 : 0) as a
point of multiplicity at least 1 (see Step 2 of Algorithm for Pencil Parametrization). In
this case, we do not need to consider additional simple points (see Step 3 of Algorithm
for Pencil Parametrization). We get that V2 is defined by f2(x) = g2(x)− t2, where

g2(x) = x2 ∈ C[x].

Thus, from Proposition 1, we conclude that

S(x) = (g1(x), g2(x)) =
(
1 + 3x2 + 4x2

2 + 6x3
2 − 5x1 − 2x1x2 + 8x1x

2
2, x2

)
∈ C[x]2

is a birational polynomial automorphism of degree d = 3.

In Theorem 3, we present a result that is equivalent to Theorem 2 but for the
polynomial case. More precisely, we are given a birational polynomial automorphism
of the plane, P(x) = (p1(x), p2(x)) ∈ K[x]2, and we consider the associated birational
automorphisms to P (see paragraph before Theorem 2) defined by

SP
1 = (p1, g2), g2(x) =

g2,1(x, p1(x))

g2,2(x, p1(x))
, SP

2 = (g1, p2), g1(x) =
g1,1(x, p2(x))

g1,2(x, p2(x))
,

where gj,1(x, ti)− tj gj,2(x, ti) is an adjoint pencil of Zi for i, j ∈ {1, 2}, i ̸= j (note that
SP
i , i = 1, 2, is birational and it does not parametrize a plane curve; see Theorem 1

and Remark 3).
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Observe that if P is such that Zi, i = 1, 2 satisfy conditions in Proposition 1, then
the associated birational automorphisms to P are defined as

SP
1 = (p1, g2) ∈ K[x]2, and SP

2 = (g1, p2) ∈ K[x]2,

where gj(x)− tj is an adjoint pencil of Zi for i, j ∈ {1, 2}, i ̸= j (apply Proposition 1
to Zi).

Under these conditions, we prove that, “up to composition with a polynomial De
Jonquières transformation”, the given polynomial birational automorphism P is equiv-
alent to the associated birational automorphisms introduced above SP

i , i = 1, 2 (that
is, P = Ji ◦ SP

i , where Ji is a De Jonquières transformation). For this purpose, we
first introduce the following lemma concerning specialization of resultants (see Lemma
4.3.1, pp. 96 in [37]).

Lemma 3 Let f, g ∈ K[h1, . . . , hn][t1, . . . , tm], let A = (a1, . . . , an) ∈ Kn be such that
degt1(φA(f)) = degt1(f), and degt1(φA(g)) = degt1(g)−k, where φA denotes the natural
evaluation homomorphism of K[h1, . . . , hn][t1, . . . , tm] into K[t1, . . . , tm]; that is,

φA : K[h1, . . . , hn][t1, . . . , tm] → K[t1, . . . , tm]
f(h1, . . . , hn, t1, . . . , tm) 7→ f(a1, . . . , an, t1, . . . , tm).

Then,
φA(Rest1(f, g)) = φA(lc(f, t1))

kRest1(φA(f), φA(g)),

where lc(f, t1) denotes the leading coefficient of f w.r.t. t1.

Theorem 3 Let P(x) = (p1(x), p2(x)) ∈ K[x]2 be a polynomial birational automor-
phism such that Zi, i = 1, 2 satisfy conditions in Proposition 1. The following state-
ments holds:

1. P(x) = (x1, B(x)) ◦ SP
1 (x), where B(x) = α(x1)x2 + β(x1) ∈ K[x] \ K[x1].

2. P(x) = (A(x), x2) ◦ SP
2 (x), where A(x) = m(x2)x1 + n(x2) ∈ K[x] \ K[x2].

Proof. Since P is birational, we deduce that statements (1) and (2) in Theorem 2
hold. In the following, we prove that statement (1) in Theorem 2 implies statement (1)
in Theorem 3. Similarly, one shows that statement (2) in Theorem 2 implies statement
(2) in Theorem 3.

Thus, since statement (1) in Theorem 2 holds, we have that

P(x) = (x1, B(x)) ◦ SP
1 (x), B(x) =

α(x1)x2 + β(x1)

γ(x1)x2 + δ(x1)
,

SP
1 (x) = (p1(x), g2(x)) ∈ K[x]2,
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where α, β, γ, δ ∈ K[x1], and gcd(αx2 + β, γx2 + δ) = 1. Thus, we have to prove that
γ(x1)x2 + δ(x1) ∈ K; that is, γ = 0, and δ ∈ K \ {0}. For this purpose, we first observe
that from the equality p2 = B(SP

1 ) =
α(p1)g2+β(p1)
γ(p1)g2+δ(p1)

, we get that

hn(x, p1(x)) = p2(x)hd(x, p1(x)) (I),

where

hn(x, t1) := α(t1)g2(x) + β(t1), hd(x, t1) := γ(t1)g2(x) + δ(t1).

Note that if hd(x, p1) = c ∈ K, then SP
1 parametrizes the curve defined by γ(x1)x2 +

δ(x1)− c which implies that γ(x1)x2 + δ(x1) = c (by Remark 3, we have that SP
1 does

not parametrize a curve). Hence, hd(x, p1) ∈ K iff γ(t1)t2 + δ(t1) ∈ K. Similarly, one
has that hn(x, p1) ∈ K iff α(t1)t2 + β(t1) ∈ K. Since p2 ̸∈ K, from (I), we get that
hn(x, p1) ̸∈ K.

Under these conditions, we assume that hd(x, p1) ̸∈ K, and we distinguish two
different cases:

1. There exists an affine point M ∈ K(t1)2 such that p1(M)−t1 = hd(M, p1(M)) =
0. Thus, from (I), we get that hn(M, p1(M)) = hn(M, t1) = 0. Then,

α(t1)g2(M) + β(t1) = γ(t1)g2(M) + δ(t1) = 0,

which is impossible since αδ − βγ ̸= 0.

2. There does not exist any affine point M ∈ K(t1)2 such that p1(M) − t1 =
hd(M, p1(M)) = 0. We again distinguish two different cases:

(a) Let γ(t1) = 0. Then, hd(x, t1) := δ(t1) ̸∈ K and from (I), we deduce that

α(p1)g2(x) + β(p1) = (p1(x)− r0)N(x), N(x) ∈ K[x],

where δ(r0) = 0, r0 ∈ K (δ(t1) ̸∈ K). Indeed: since α(p1)g2(x) + β(p1) =
p2(x)δ(p1(x)) (see (I)), the result follows taking into account that δ(t1) =
(t1 − r0)U(t1).
Now, using this equality, we get that for every q ∈ K2 such that p1(q) −
r0 = 0 (p1 ̸∈ K since P does not parametrize a plane curve), it holds that
α(r0)g2(q) + β(r0) = α(p1(q))g2(q) + β(p1(q)) = 0. Thus,

α(r0)g2(x) + β(r0) = (p1(x)− r0)L(x), L(x) ∈ K[x] (II).

Note that if deg(p1) := d, we have that deg(g2) = d̃, where d̃ = d−2 for d >
2, and d̃ = 1 otherwise (see Step 4 of Algorithm for Pencil Parametrization,
and statement 2 in Remark 1). Hence,
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i. If d ≥ 2, we get that deg(α(r0)g2(x) + β(r0)) < deg(p1(x) − r0) which
implies (using (II)) that α(r0) = β(r0) = L = 0. Thus, t1 − r0 divides
gcd(α, β, γ, δ) = 1 which is impossible.

ii. If d = 1, then deg(α(r0)g2(x) + β(r0)) = deg(p1(x) − r0) = 1 which
implies (using (II)) that

α(r0)g2(x) + β(r0) = ℓ(p1(x)− r0), ℓ ∈ K.

Since SP
1 = (p1, g2) does not parametrize a plane curve, we get that

α(r0)x2+β(r0)−ℓ(x1−r0) = 0. This implies that α(r0) = β(r0) = ℓ = 0.
Therefore, t1 − r0 divides gcd(α, β, γ, δ) = 1 which is impossible.

(b) Let γ(t1) ̸= 0. We know that V∗
1 is the K(t)-rational pencil of curves of degree

d defined by the polynomial F1(X) = P1(X)− t1x
d
3 (note that deg(P1) = d,

and P1 is the homogenization of p1), and V∗
2 is defined by the polynomial

F2(X) = G2(x) − t2x
d̃
3, where deg(G2) = d̃, and G2 is the homogenization

of g2 (see Proposition 1). Thus, taking into account Lemma 3 and that
γ(t1) ̸= 0, we have that

Resx3(F1, F2)(x, t1,−
δ(t1)

γ(t1)
) = C(x, t1)

kResx3(F1(X), G2(x) +
δ(t1)

γ(t1)
xd̃
3),

where C(x, t1) := lc(F1, x3) ∈ K(t1)[x], and k ∈ N. By construction, V∗
1 and

V∗
2 intersect at dd̃− 1 points at infinity (counted with multiplicity), and at

one additional affine point Q ∈ K(t1, t2)2 (see Step 5 of Algorithm for Pencil
Parametrization). Then, from the above equality and using the results in [32]
(see Chapter 2, Subsection 2.3), we deduce that V∗

1 and the linear system

of curves defined by G2(x) + δ(t1)/γ(t1)x
d̃
3 intersect at dd̃ − 1 points at

infinity (counted with multiplicity), and at the additional point M(t1) :=
Q(t1,−δ(t1)/γ(t1)) ∈ K(t1)2. Therefore, p1(M) − t1 = hd(M, p1(M)) = 0
which contradicts our assumption.

Since all the situations analyzed above are impossible, we deduce that hd(x, p1) ∈ K
which implies that γ(t1)t2 + δ(t1) ∈ K; that is, γ = 0, and δ ∈ K \ {0}. Finally, we
observe that α ̸= 0 (that is, B(x) ̸∈ K[x1]). Otherwise, p2 = β(p1) which is impossible
because P does not parametrize a plane curve.

Remark 6 The converse of Theorem 3 can be stated as follows:

1. Let P(x) = (x1, B(x)) ◦ S(x), where S is a birational polynomial automorphism
and B is a De Jonquières transformation defined as B(x) = α(x1)x2 + β(x1) ∈
K[x] \ K[x1]. Then, P is a birational polynomial automorphism

2. Let P(x) = (A(x), x2) ◦ M(x), where M is a birational polynomial automor-
phism and A is a De Jonquières transformation in K[x]. Then, P is a birational
automorphism.

The above statements can be proved using Theorem 2.
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4 Conclusions

In this paper, we prove that there exits a one-to-one correspondence between bira-
tional automorphisms of the plane and pairs of pencils (V1,V2) intersecting in a unique
point. As a consequence, we obtain a method that allows to construct birational auto-
morphisms of the plane of a desired degree. The results are also stated for birational
automorphism of the plane that are polynomial.

More precisely, we first construct a birational automorphism of the plane, S, of a
certain degree d (fixed in advance) from a pencil of curves V1 of degree d and a linear
subsystem V2 of dimension 1 of the system of adjoint curves to V1. The birational
automorphism S is obtained from the curves generating V1 and V2 (see Theorem 1 and
statement 2 in Corollary 2). In Proposition 1, we show how these results can be stated
for the important case of polynomial birational automorphisms. Additionally, we also
are able to compute the inverse of S from V1 and V2, and we provide some formulae
that allow to compute explicitly the degree of this inverse (see Corollary 1).

Reciprocally, we are given a birational automorphism P , and we construct a cer-
tain V1 being K(t1)-rational, and its adjoint pencil V2. From V1 and V2, we obtain a
birational automorphism S (constructed as in Theorem 1), and we show that “up to
composition with a polynomial De Jonquières transformation”, the given polynomial
birational automorphism P is equivalent to the associated birational automorphism S
(that is, P = J ◦ S, where J is a De Jonquières transformation; see Theorem 2).
Furthermore, it is shown that the above results may be stated similarly for polynomial
birational automorphisms. In this case, a polynomial De Jonquières transformation
relates this correspondence (see Theorem 3).

The ideas presented in this paper open several important ways that may be used
to provide significant results concerning Cremona transformations for dimensions n ≥
3. More precisely, given V1 defined by an irreducible polynomial f1(x) = g1,1(x) −
t1g1,2(x) ∈ K(t1)[x], where x = (x1, x2, x3) is a generic element of K3, one would like to
compute two polynomials

f2(x, t1) = g2,1(x, t1)− t2 g2,2(x, t1) ∈ K(t1, t2)[x], and

f3(x, t1, t2) = g3,1(x, t1, t2)− t3 g3,2(x, t1, t2) ∈ K(t1, t2, t3)[x]

such that there exists exactly one intersection point in K(t1, t2, t3)3 \ K3 of the polyno-
mials f1, f2 and f3. If this is the case, S(x) = (g1(x), g2(x), g3(x)), where

g1(x) =
g1,1(x)

g1,2(x)
, g2(x) =

g2,1(x, g1(x))

g2,2(x, g1(x))
, g3(x) =

g3,1(x, g1(x), g2(x))

g3,2(x, g1(x), g2(x))

is birational.

It is expected that, in order to solve this question, adjoints of high degree should
be used (see [29]). In a future work, this problem will be developed in more detail.
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