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Abstract

A method is presented for computing the form of highest degree of the implicit
equation of a rational surface, defined by means of a rational parametrization.
Determining the form of highest degree is useful to study the asymptotic behavior
of the surface, to perform surface recognition, or to study symmetries of surfaces,
among other applications. The method is efficient, and works generally better
than known algorithms for implicitizing the whole surface, in the absence of base
points blowing up to a curve at infinity. Possibilities to compute the form of
highest degree of the implicit equation under the presence of such base points are
also discussed. We provide timings to compare our method with known methods
for computing the whole implicit equation of the surface, both in absence and in
presence of base points blowing up to a curve at infinity.
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1 Introduction

Certain operations for rational surfaces are easier to perform when the implicit equation
of the surface is known. For instance, curve-surface or surface-surface intersections, de-
termining whether a point is on the surface, or, for compact surfaces, checking whether
a point is inside or outside the surface, are easier when one works with the surface in
implicit form. As a consequence, implicitizing is a classical problem, that has received
much attention in the literature (see e.g. [4], [9], [10], [13], [16], [17]). The problem
can be approached by means of elimination techniques like Gröbner bases and various
types of resultants (see for example the paper [22], and the references therein). In re-
cent years, alternative methods using µ-bases, moving lines and moving surfaces have
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been extensively studied (see [30, 31] and the references therein). These techniques
have been successfully applied, first, to special types of surfaces, and then to more gen-
eral surfaces. In particular, in [31] the authors combine different approaches (Dixon
A-resultant, moving planes, moving quadrics) for implicitizing rational tensor product
surfaces. This algorithm has been implemented (see [34]) and is, up to our knowledge,
the most recent, efficient and complete general implicitization method.

In this paper we do not consider the implicitization problem, but a weaker one: given
a rational parametrization of a rational surface, we address the problem of computing
the form of highest degree of the implicit equation of the surface. Therefore, we are
not interested in the whole implicit equation, but only in the form of highest degree.
Obviously, a first possibility to solve the problem is to compute the whole implicit
equation, and then extract the form of highest degree from the implicit equation.
Nevertheless, in this paper we consider alternative methods, that work faster in certain
situations.

Knowing the form of highest degree of the implicit equation is useful for several
purposes. Let us see some examples:

Asymptotic behaviour: asymptotes of planar and space curves are studied in [5, 6,
7]. A similar study for surfaces has, apparently, not been carried out so far. In order to
study the behavior of planar and space curves at infinity, the points at infinity of the
curve are needed. However, while curves have finitely many points at infinity, surfaces
have a whole curve of points at infinity. This projective curve is defined by the form
of highest degree of the implicit equation of the surface. Thus, computing the form of
highest degree of the implicit equation is important in order to study the asymptotic
behavior of the surface.

Recognition of special types of algebraic surfaces: special properties of a
surface often lead to a special structure of the form of highest degree of the surface. In
the case of translation surfaces (see [32]), and, as a consequence, of minimal surfaces
(see also [32]), the form of highest degree is a product of linear factors. For surfaces of
revolution (see [1]) as well as for affine rotation surfaces, which arise in the context of
affine differential geometry as generalizations of surfaces of revolutions (see [2, 3]), the
form of highest degree of the implicit equation factors into linear and quadratic factors.
Furthermore, the nature of the quadrics defined by the quadratic factors appearing in
the factorization depends on the type (elliptic -for surfaces of revolution-, hyperbolic
or parabolic) of the affine rotation surface. Even more, the factorization provides
information on the axis of affine rotation of the surface (see [1, 2, 3]). D’Arboux
cyclides and Dupin cyclides (see [24]) also have a special structure in their form of
highest degree: in an appropriate system of coordinates, the form of highest degree is
(x2 + y2 + z2)2 for D’Arboux cyclides, and (x2 + y2 + z2 + α), with α ∈ R, for Dupin
cyclides.
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Symmetries of rational surfaces: A symmetry of a surface is an orthogonal
transformation h(x̄) = Qx̄+ b, QTQ = Id, leaving the surface invariant. It is easy to

see that if h(x̄) is a symmetry of a surface S, then ĥ(x̄) = Qx̄ is a symmetry of the
surface defined by the form of highest degree of the implicit equation of S. Thus, if we
are able to compute the form of highest degree of the implicit equation of a rational
surface, studying the symmetries of the surface defined by the form of highest degree
provides information on the symmetries of the original surface.

Proper and surjective parametrizations: A rational parametrization is proper
when it is generically injective. In a recent paper [11], the authors study the existence
of proper and surjective parametrizations for a given rational surface. In Section 3
of [11], it is proven that if a regular rational surface admits a proper and surjective
parametrization, then the curve at infinity of the surface has at least one rational
component. Again, computing the form of highest degree of the implicit equation is
useful in order to check whether this necessary condition is satisfied.

The algorithm we present here uses results of [20, 21, 22], has a similar flavour to
these papers, and can work with completely general parametrizations, proper or not.
The performance of the algorithm depends on the surjectivity at infinity of the given
parametrization in projective form, i.e. on whether the parametrization completely
covers the curve at infinity of the surface. We prove that this phenomenon is related
to the existence of projective base points blowing up to a curve at infinity: intuitively,
this happens by approaching a base point in the parameter space under different tra-
jectories, we generate not a point, but a whole (rational) curve on the surface. If this
bad case does not arise, our algorithm works efficiently, and generally better than the
algorithms in [22, 31]. However, if this bad case arises, our algorithm can compute
only those components at infinity which are reached by the parametrization. Although
we provide a possible generalization of our algorithm to this bad situation, in the bad
case the best timings are provided, in general, by the algorithm in [22]. In fact, in
the bad case the algorithm in [31] may fail. In order to perform these comparisons,
we have used an improved version of the implementation in [34], kindly provided by
the authors of this implementation, which is based on the results of [31]. It is also
worth mentioning that our algorithm is able to identify, without explicitly computing
the base points, whether we are in a good or a bad case.

The structure of the paper is the following. Section 2 is preliminary and includes
notions and algorithms to be used later in the paper. Our method is presented in
Section 3: here we develop the main results of this paper, we provide the algorithm
and we compare the performance of our algorithm with other approaches; the proofs
of the results in this section are postponed to Section 5 to make the paper more easily
readable. In Section 4 we discuss potential generalizations of the method to the case
of base points blowing up to a curve at infinity. Section 5 is devoted to presenting the
main proofs of the results appearing in Section 3. We close in Section 6 with a brief
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summary of our work.

2 Preliminaries

In this section we recall several notions, results and algorithms related to rational
parametrizations of curves and surfaces. Throughout the paper, K denotes an al-
gebraically closed field of zero characteristic. Furthermore, we consider curves de-
fined over the affine plane A2(K), and surfaces defined over the affine space A3(K).
Notice that these curves and surfaces can be naturally embedded into the projec-
tive plane P2(K) and the projective space P3(K), respectively. Elements of An(K)
are denoted by (x1, x2, . . . , xn), with xi ∈ K. Elements of Pn(K) are denoted by
(x1 : x2 : · · · : xn : xn+1), where points at infinity correspond to xn+1 = 0, and affine
points correspond to xn+1 6= 0.

Let

P(t̄) = (p1(t̄), p2(t̄), . . . , pn(t̄)) =

(
p11(t̄)

p(t̄)
,
p21(t̄)

p(t̄)
, . . . ,

pn1(t̄)

p(t̄)

)
, (2.1)

where t̄ = (t1, t2, . . . , tn−1), be a rational parametrization of a variety V ⊂ An(K)
satisfying that

gcd(p11, p21, . . . , pn1, p) = 1.

In this paper we only consider the cases n = 2, 3, and we assume that no pi(t̄) is
constant; if pi(t̄) = µ then V is either the line xi = µ, when n = 2, or the plane xi = µ,
when n = 3, so the problem is trivial. The variety V is a rational curve C ⊂ A2(K) for
n = 2, and a rational surface V ⊂ A3(K) for n = 3. We will represent the projective
closures of C,V by C∗,V∗, i.e. C∗ ⊂ P2(K), V∗ ⊂ P3(K). These projective varieties are
parametrized by

P∗(t̄) = (p11(t̄) : p21(t̄) : · · · : pn1(t̄) : p(t̄)),

where n = 2, 3, respectively. Furthermore, we will represent by P∗h(T̄ ) the parametriza-
tion obtained from P∗(t̄) by homogenizing the components of P∗(t̄) with a homoge-
nization variable tn. We denote the components of P∗h(T̄ ) by

P∗h(T̄ ) = (ph1(T̄ ) : ph2(T̄ ) : ph3(T̄ ) : · · · : phn+1(T̄ )) (2.2)

where T̄ = (t1 : t2 : · · · : tn).

Additionally, let x̄ = (x1, x2, . . . , xn). We represent by f(x̄) the implicit equation
of the variety parametrized by Eq. (2.1), and we denote the total degree of f by d.
Then we can write

f(x̄) = fd(x̄) + fd−1(x̄) + · · ·+ f0(x̄), (2.3)

where fi(x̄) denotes the homogeneous form of degree i = 0, 1, . . . , d. We refer to fd(x̄)
as the form of highest degree of f(x̄). The goal of this paper is to provide algorithms
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for computing fd(x̄).

By homogenizing Eq. (2.3) with a homogenizing variable xn+1, we get a homoge-
neous polynomial

F (x̄, xn+1) = fd(x̄) + fd−1(x̄)xn+1 + · · ·+ f0(x̄)xdn+1, (2.4)

which implicitly defines the projective closure of the variety parametrized by Eq. (2.1).

Degree of a rational map

The parametrization in Eq. (2.1) has an associated rational map φP : Kn−1 →
V; t̄→ P(t̄), where φP(Kn−1) is dense in V. The degree of the rational map φP , which
we denote by deg(φP), is, intuitively speaking, the cardinality of a generic fiber of φP .
A more algebraic definition can be found in [27] or in Lecture 7 of [15]. In particular,
when deg(φP) = 1 we say that P is proper, i.e. generically injective. In order to
compute deg(φP) it is useful to define, for i = 1, . . . , n,

Gi(t̄, s̄) = numer(pi(t̄)− pi(s̄)), (2.5)

where numer(pi(t̄) − pi(s̄)) denotes the numerator of pi(t̄) − pi(s̄), t̄ = (t1, . . . , tn−1)
and s̄ = (s1, . . . , sn−1).

Now for curves, i.e. when n = 2 (see Subsection 4.3 in [28]),

deg(φP) = deg t̄ (gcd(G1(t̄, s̄), G2(t̄, s̄))). (2.6)

In particular, almost all points of the input curve defined by P(t̄) are generated via P(t̄)
by the same number of parameter values, and this number is deg(φP). Thus, for almost
all s̄0 ∈ K, deg(φP) = deg(gcd(G1(t̄, s̄0), G2(t̄, s̄0))) (see Chapter 4 in [28]). Hence,
picking a random s̄0 ∈ K and computing deg(φP) = deg(gcd(G1(t̄, s̄0), G2(t̄, s̄0)))
provides the value of deg(φP) with probability almost one.

One can generalize the preceding idea to a mapping like

Q(t̄) =

(
p11(t̄)

p13(t̄)
,
p12(t̄)

p13(t̄)

)∣∣∣∣
q(t̄)=0

,

where t̄ = (t1, t2), and Q(t̄) is an affine, rational planar mapping K2 → K2 restricted
to the curve D defined by q(t̄) = 0, with q(t̄) an irreducible polynomial. Again, Q has
an associated rational mapping φQ from the planar curve D onto its image under Q
(which is also a planar curve), and deg(φQ) is, intuitively, the cardinality of a generic
fiber of φQ. If the curve D defined by q(t̄) = 0 is rational, then Q can be rewritten
as a rational planar mapping taking values over the whole plane K2 and Eq. (2.6) can
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be applied. Otherwise, we notice again that deg(φQ) is preserved for almost all points,
so we can compute deg(φQ) by picking a random point q ∈ D, and determining the
number of elements in Q−1(Q(q)) belonging to D.

For surfaces the computation of deg(φP) is more elaborate (see [20]), and requires
the use of resultants. We recall this computation in Algorithm 1. The notions of
primitive part and content of a polynomial with respect to a given variable appear in
this algorithm. Recall that the content of a polynomial P with respect to a variable ω
is the gcd of the coefficients of P, seen as a polynomial in ω, and the primitive part is
the result of factoring out the content from P.

Algorithm 1: Computation of deg(φP) for surfaces

[Step 0] Check hypotheses:

[Step 0.1] If any of the projective curves defined by the components of P∗h(T̄ ) (see
Eq. (2.2)) passes through (0 : 1 : 0), apply a random linear reparametrization
t̄→ At̄+B.
[Step 0.2] If the determinant of the Jacobian of (p2( t̄ ), p3( t̄ )) is identically zero,
exchange appropriately the affine coordinates of K3.

[Step 1] For i = 1, 2, 3, compute the Gi( t̄ , s̄ ) in Eq. (2.5).
[Step 2] Determine R(t2, s̄ , Z) = Rest1(G1, G2+ZG3) where Z ∈ K is a generic element.
[Step 3] Compute S(t2, s̄ , Z) = PrimPart{ s̄ }(ContentZ(R))).
[Step 4] Return deg(φP) = degt2(S).

As in the case of curves, since deg(φP) is preserved under almost all specializations
of the variables s1, s2 (see [20]) one can compute deg(φP), with probability almost one,
by randomly taking a point P ∈ K3 on the input surface and determining the degree
of the fiber of P .

Partial degrees of a polynomial

Let f(x̄) in Eq. (2.3) implicitly define a variety V ⊂ An(K). The partial degree of
f in the variable xi, denoted by degxi(f), is the maximum power of xi appearing in
the polynomial f(x̄). For curves, one has (see Chapter 4 in [28])

degx2(f) =
deg(p1(t))

deg(φP)
, degx1(f) =

deg(p2(t))

deg(φP)
. (2.7)

The numerators deg(pi(t)) correspond to the degrees of rational functions, namely the
pi(t). The degree of a rational function is defined as the maximum of the degrees of
the numerator and denominator of the function. Notice that deg(pi(t)) coincides with
the number of solutions of the equation pi(t)− a = 0, for a generic a ∈ K.
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In certain cases (see the next section) we will be interested in computing the partial
degrees of the polynomial defining the planar curve described by

Q(t̄) =

(
p11(t̄)

p13(t̄)
,
p12(t̄)

p13(t̄)

)∣∣∣∣
q(t̄)=0

where t̄ = (t1, t2) and q(t̄) is irreducible, i.e. the partial degrees of the planar curve
obtained as the image of the curve D defined by q(t̄) = 0, under a rational planar
mapping. If D is rational, then Q can be rewritten as a rational planar mapping
taking values over the whole plane K2 and Eq. (2.7) can be applied. Otherwise, we
adapt Eq. (2.7). In order to do this, in the denominator of Eq. (2.7) we replace deg(φP)
by deg(φQ), which can be computed as we explained before. In the numerator of Eq.
(2.7), now we must compute the degree a rational function, say p(t̄) = p1(t̄)/p3(t̄) ∈
K(t̄), pi ∈ K[t̄], restricted to the curve q(t̄) = 0. This is equal to the number of
solutions of {p(t̄)−X = 0, q(t̄) = 0} for a generic X ∈ K, i.e. the number of solutions
of {p1(t̄) − Xp3(t̄) = 0, q(t̄) = 0}. Using properties of resultants (see e.g. [28]), this
number coincides with the degree with respect to t2 of the polynomial T (t2, X), where

T (t2, X) = PrimPart{t2,X}(Rest1(p1(t̄)−Xp3(t̄), q(t̄))). (2.8)

Again, for surfaces the procedure is more complicated. We recall this procedure in
Algorithm 2, which follows from Theorem 6 in [22]. Previously we need to introduce
some additional notation: for i, j ∈ {1, 2, 3}, with i < j, let πij be the (i, j)-projection
mapping in 3-space, i.e. πij(x1, x2, x3) = (xi, xj). For i, j ∈ {1, 2, 3}, with i < j, let

Pij( t̄ ) := πij(P( t̄ )) =

(
pi1( t̄ )

p( t̄ )
,
pj1( t̄ )

p( t̄ )

)
∈ K( t̄ )2,

and let φPij be the rational map induced by Pij( t̄ ).

We present the algorithm for the computation of degx1(f). For degxk(f), k = 2, 3,
one argues in a similar way.

Algorithm 2: Computation of degx1(f) for surfaces

[Step 1] Apply Algorithm 1 to compute deg(φP)
[Step 2] Let H2( t̄ , Z2) = p21( t̄ ) − Z2p( t̄ ) and H3( t̄ , Z3) = p31( t̄ ) − Z3p( t̄ ), where
(Z2, Z3) ∈ K2 is a generic element.
[Step 3] Let deg(φP23) = degt2(PrimPart{Z2,Z3}(Rest1(H2( t̄ , Z2), H3( t̄ , Z3))).

[Step 4] Return degx1(f) :=
deg(φP23)

deg(φP)
.

Note that the intuitive idea of Algorithm 2 is the following: in order to determine

degx1(f), one computes ak ∈ K(Z2, Z3)
2

such that P23(ak) = (Z2, Z3), k = 1, . . . , n.
Then, P(ak) = (p1(ak), Z2, Z3) which implies that the number of x1–coordinates for
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every general point on the surface is n, i.e. degx1(f) = n. Observe that if P is not
proper, i.e. if deg(φP) 6= 1, then we have to eliminate redundant elements that are
reached several times via P . We have deg(φP) elements of this kind, so we divide by
this number.

Remark 1. The following observations will be useful in the next section, when proving
Theorem 2 and Corollary 1.

1. One can also work in a different chart and compute the degree with respect to x1 of
F (x1, x2, 1, x4) (similarly if one dehomogenizes with respect to another variable).
In order to do this, one applies Algorithm 2 using the polynomials H2( t̄ , Z2) =
p21( t̄ )− Z2p31( t̄ ) and H4( t̄ , Z4) = p41( t̄ )− Z4p31( t̄ ), where (Z2, Z4) ∈ K2 is a
generic element.

2. Let us assume that fd( x̄ ) = g( x̄ )nh( x̄ ), where g, h are irreducible polynomials
with gcd(g, h) = 1. Let us also assume that p(t̄) is an irreducible polynomial
such that P∗( t̄ )|p(t̄)=0 parametrizes the curve defined by the irreducible polynomial
g( x̄ ). Using the previous observation, we notice that if one applies Algorithm 2
with Z2 a generic element of K and Z4 = 0, one gets the degree with respect to
x1 of g( x̄ )n.

3 The method

Let V ⊂ K3 be a surface defined by a rational parametrization

P(t̄) =

(
p11(t̄)

p(t̄)
,
p21(t̄)

p(t̄)
,
p31(t̄)

p(t̄)

)
(3.1)

(resp. by a projective parametrization P∗h(T̄ ) like Eq. (2.2), with n = 3), different
from a plane. Let us write p( t̄ ) = q1( t̄ )n1 · · · qr( t̄ )nr , r ≥ 1, where qi( t̄ ) ∈ K[ t̄ ], for
i = 1, . . . , r, is irreducible. Furthermore, let us denote by Di the plane curve defined
by qi( t̄ ) = 0 in the (t1, t2) affine plane. The projective closure of Di is denoted by D∗i .

Also, let f(x̄) in Eq. (2.3) represent the implicit equation of V , and let F (x̄, x4) in
Eq. (2.4) (with n = 3) represent the implicit equation of the projective closure of V ,
V∗.

Now let fd( x̄ ) = g1( x̄ )m1 · · · g`( x̄ )m` , ` ≥ 1, and let C∗j be the projective curve
defined by {gj( x̄ ) = 0, x4 = 0}, j = 1, . . . , `. The C∗j are the components of V∗∩{x4 =
0}, i.e. the components of the curve at infinity of the surface V∗. We refer to the mj

as the multiplicities of the gj( x̄ ); notice however that the mj are not necessarily the
multiplicities of the curves {gj( x̄ ) = 0, x4 = 0} seen as subsets of V (see [18]).

An important observation is that not all the C∗j might be covered by P∗h(T̄ ), i.e.
P∗h(T̄ ) might not be a surjective parametrization of V∗, so some components of the
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curve at infinity of V∗ might be missed. The components of the curve at infinity that
are covered by the parametrization are the 1-dimensional varieties which are images
of the D∗i under the (projective) mapping defined by P∗h(T̄ ). When we restrict to the
hyperplane x4 = 0, assuming that gcd(p13, qi) = 1 such components are planar curves
whose affine part can be described by

Qi(t̄) =

(
p11(t̄)

p13(t̄)
,
p12(t̄)

p13(t̄)

)∣∣∣∣
qi(t̄)=0

(3.2)

where Qi corresponds to an affine, rational planar mapping which is restricted to
qi(t̄) = 0, i.e. to Di. If Di is rational, then Qi can be rewritten as a rational planar
mapping taking values over the whole plane K2. If gcd(p13, qi) 6= 1, we can consider
instead either

Qi(t̄) =

(
p11(t̄)

p12(t̄)
,
p13(t̄)

p12(t̄)

)∣∣∣∣
qi(t̄)=0

,

if gcd(p12, qi) = 1, or

Qi(t̄) =

(
p12(t̄)

p11(t̄)
,
p13(t̄)

p11(t̄)

)∣∣∣∣
qi(t̄)=0

,

if gcd(p11, qi) = 1. Since gcd(p1k, qi) = 1 for some k = 1, 2, 3, without loss of generality
we can assume that Qi(t̄) is written as in Eq. (3.2).

We wonder under what conditions we might not reach some component at infinity.
To answer this question, one observes that in order to compute the implicit equation
F (x̄, x4) = 0 from P∗h(T̄ ) (see for instance Theorem 2.5 in [14]), one can consider the
ideal

I = 〈x1 − ph1(T̄ ), x2 − ph2(T̄ ), x3 − ph3(T̄ ), x4 − ph4(T̄ )〉,

and the ideal I4 = I ∩K[ x̄ , x4]. Then F (x̄, x4) = 0 defines the variety V (I4). Arguing
in a similar way to Section 2 of [26], by the Projective Extension Theorem (see Theorem
6 in [12]) and whenever P∗h(T̄ ) has no base points, every point of F (x̄, x4) = 0 is the
image of some T̄ via P∗h(T̄ ). Additionally, since P(t̄) is rational, P(t̄) induces rational
mappings between each Di and its image. Furthermore, if P∗h(T̄ ) has no projective
base points, by Theorem 1.10 in [29] each of these images is a projective closed set. As
a consequence, the following theorem follows.

Theorem 1. If P∗h(T̄ ) has no projective base points, then every C∗j is the image of at
least one D∗i under the rational map defined by P∗h(T̄ ).

Thus, if P∗h(T̄ ) has no projective base points we can be sure that the curve at
infinity of V∗ is completely reached by the parametrization P∗h(T̄ ), and that each of the
components of this curve is the image under P∗h(T̄ ) of some D∗i . However, if P∗h(T̄ ) has
projective base points, some C∗j might be missed. More precisely, we miss components
at infinity when we have projective base points blowing up to a curve at infinity.
Notice also that if a C∗j is covered by the parametrization, C∗j can be reached by several
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D∗i : this can certainly happen when we work with a non-proper (i.e. non-injective)
parametrization, but it can even happen when the parametrization is proper, when we
have a self-intersection at infinity. Thus, in general ` ≤ r.

Example 1. Consider the ruled surface V parametrized by

P(t̄) =

(
t21

t41 − 2
+ t2t1,

1

t41 − 2
+ t2,

t1
t41 − 2

+ t2t
2
1

)
.

The implicit equation of this surface is

f( x̄ ) = x6
1 + x4

1x2x3 − 2x2
1x

4
2 + 2x5

2x3 − x2
1x

3
2 + x1x

4
2,

and the form of highest degree of f( x̄ ) is fd( x̄ ) = x6
1 + x4

1x2x3 − 2x2
1x

4
2 + 2x5

2x3. The
polynomial fd( x̄ ) defining the curve at infinity of V is reducible and consists of four
linear factors, and a quadratic factor. The four linear factors of fd( x̄ ) correspond to
components of the curve at infinity that are covered by the parametrization. In fact,
these components are rational curves corresponding to the four real roots of t41 − 2.
However, the quadratic factor defines a component not reached by the parametrization.
Observe also that the parametrization has a projective base point, namely (0 : 1 : 0).

In the rest of the section we first focus on finding, for each component C∗j reached by
the parametrization, the polynomial gj(x̄) defining C∗j , and its multiplicity mj. Next,
by computing the degree of the surface V (see for instance [23]), i.e. the degree of fd(x̄),
we can know whether the parametrization covers all the components of the curve at
infinity, i.e. whether or not we have missed some component. If we have not, then
we have finished. If there are missed components at infinity then our method is not
necessarily better than implicitizing the surface, and taking the highest degree form;
however, we present some ideas for this case in the next section.

3.1 Components reached by the parametrization.

For simplicity, we start assuming that p( t̄ ) = q( t̄ )n, where q( t̄ ) is an irreducible
polynomial defining a plane curve D; then we generalize, as a corollary, to the case
when p( t̄ ) has several irreducible factors. Now if p( t̄ ) = q( t̄ )n then there is only at
most one component C∗ of the curve at infinity of V∗ reached by the parametrization.
Thus, fd( x̄ ) = g( x̄ )mh( x̄ ), where g( x̄ ) = 0 implicitly defines C∗, h( x̄ ) = 0 defines
the components not covered by the parametrization, and gcd(g, h) = 1.

If the curve D defined by q(t̄) = 0 is rational, in order to compute g( x̄ ) one com-
putes a parametrization of D, substitutes the parametrization in P(t̄), and computes
the implicit equation of the rational (projective, planar) curve obtained this way. If D
is not rational, then we need to use elimination methods to compute g( x̄ ); we provide
more details in Remark 2. However, we need the following theorem in order to compute
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the multiplicity m of the factor g( x̄ ). Notice that this theorem does not require that
P(t̄) is a proper parametrization.

Theorem 2. Let V be a surface defined by a parametrization like Eq. (3.1), with
p( t̄ ) = q( t̄ )n, where q(t̄) ∈ K[ t̄ ] is an irreducible polynomial. Let

Q(t̄) =

(
p11(t̄)

p31(t̄)
,
p21(t̄)

p31(t̄)

)∣∣∣∣
q(t̄)=0

.

Then fd( x̄ ) = g( x̄ )mh( x̄ ), where gcd(g, h) = 1, the polynomial h( x̄ ) defines the
missed components at infinity, and

m = n
deg(φQ)

deg(φP)
. (3.3)

Remark 2. In order to compute the polynomial g( x̄ ), we can apply elimination tech-
niques in the following way: If the curve D defined by q(t̄) = 0 is not rational, one can
proceed as follows (see [22]): first, one computes

L1(t1, x1, x2) = resultantt2(H1, H2), L2(t1, x1, x2) = resultantt2(H1, q)

(where Hj = p1j − xjp13, j = 1, 2). Then g(x1, x2, 1) divides L3(x1, x2) =
resultantt1(L1,Primpartx1(L2)). In order to detect the factor g(x1, x2, 1) of the poly-
nomial L3(x1, x2), one generates several values (a, b) via the given parametrization to
check which factor of L3 vanishes at the points (a, b).

Remark 3. We recall that deg(φQ) (see Eq. (5.1)) is the degree of the rational mapping
induced by Q restricted to q(t̄) = 0. In order to compute it, one argues as in Section 2
(see the part corresponding to the degree of a rational map).

Thus, by using Remark 2 and Theorem 2 we can compute g(x̄) and m. Further-
more, we can check whether h(x̄) is constant, and therefore whether we have computed
the whole form of highest degree fd(x̄). In order to do this, first one computes deg(V)
(applying for instance [23]) and then deg(h) = deg(V)− deg(gm): if deg(h) = 0, then
we have already found fd( x̄ ), otherwise we have not.

Now let us generalize the previous results to the case when p( t̄ ) has several irreducible
factors, i.e. when p( t̄ ) = q1( t̄ )n1 · · · q`( t̄ )n` , ` > 1.

Corollary 1. Let V be a surface defined by a parametrization like Eq. (3.1), where
p( t̄ ) = q1( t̄ )n1 · · · q`( t̄ )n` , ` ≥ 1, and qi( t̄ ) ∈ K[ t̄ ], i = 1, . . . , ` are irreducible polyno-
mials. For i = 1, . . . , `, let Qi(t̄) be like Eq. (3.2). Then fd( x̄ ) = g1( x̄ )m1 · · · g`( x̄ )m` ·
h( x̄ ), where gcd(h, gi) = 1, the polynomial h( x̄ ) defines the missed components at
infinity, and

mi = ni
deg(φQi)

deg(φP)
. (3.4)
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Remark 4. If qj1( t̄ ), . . . , qjs( t̄ ) give rise to the same gi( x̄ ), each one with multiplicity
mjk , the multiplicity of the factor gi( x̄ ) is equal to mj1 + · · ·+mjs.

Remark 5. In order to compute the polynomials gi( x̄ ) and deg(φQi) for i = 1, . . . , `,
one may reason as in Remark 2.

In the general case p( t̄ ) = q1( t̄ )n1 · · · q`( t̄ )n` , ` > 1, one can also check whether all
the components at infinity are reached by the parametrization as in the case p( t̄ ) =
q( t̄ )n, i.e. by first determining deg(V), and then deg(h). The following algorithm
summarizes the above method to find the form of highest degree of a rational surface
defined by a parametrization like Eq. (3.1).

Algorithm 3: Computation of the highest-degree form

[Step 1] Compute deg(φP) by applying Algorithm 1.

[Step 2] Factor the denominator of the input parametrization in the form p( t̄ ) =
q1( t̄ )n1 · · · qr( t̄ )nr , r ≥ 1, where qi( t̄ ) ∈ K[ t̄ ], i = 1, . . . , r are irreducible polynomials.

[Step 3] For i = 1, . . . , r, let Qi(t̄) be like Eq. (3.2), and check whether Qi(t̄) is a
parametrization. In the affirmative case, if the curve Di defined by qi( t̄ ) is rational go
to Step 3.1. Otherwise, go to Step 3.2.

[Step 3.1] If the curve Di defined by qi( t̄ ) is rational, rewrite Qi(t̄) as a rational
planar mapping taking values over the whole plane K2; that is, consider the rational
parametrization Qi(t) := Qi(Ri(t)), where Ri is a parametrization of Di.
[Step 3.1.1] Apply statement (i) in Remark 2 to get gi( x̄ ).

[Step 3.1.2] Compute deg(φQi) by applying Eq. (2.6), and mi = ni
deg(φQi )

deg(φP )
.

[Step 3.2] If the curve Di defined by qi is not rational, proceed as follows:
[Step 3.2.1] Apply statement (ii) in Remark 2 to get gi( x̄ ).

[Step 3.2.2] Compute deg(φQi) by applying Remark 3, and mi = ni
deg(φQi )

deg(φP )
.

[Step 4] Let g( x̄ ) = g1( x̄ )m1 · · · g`( x̄ )m` , and compute deg(V) (apply for instance [23]).

[Step 5] If deg(V) = deg(g), then return fd( x̄ ) = g( x̄ ). Otherwise, return
fd( x̄ ) = g( x̄ )h( x̄ ), where h( x̄ ) are missed components at infinity.

Example 2. Let

P( t̄ ) =

(
t41

(t2 + t1) (t31 − t22 + 1)
,

t42
(t2 + t1) (t31 − t22 + 1)

,
t52 − 1

(t2 + t1) (t31 − t22 + 1)

)
define a surface V.

Step 1: By applying Algorithm 1, we get that deg(φP) = 1.
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Step 2: Since p(t̄) = (t2 + t1) (t31 − t22 + 1), we have q1(t̄) = t1 + t2, q2(t̄) = t31 − t22 + 1
and ni = 1, i = 1, 2.

Step 3: For i = 1, 2, let Qi(t̄) be the rational parametrization in Eq. (3.2). Note that
Qi(t̄), i = 1, 2 are both rational parametrizations.

Step 3.1: The curve D1 defined by q1(t̄) = 0 is rational, and can be parametrized by
R1(t) = (t,−t). Thus,

Q1(t) =

(
p11(R1(t))

p13(R1(t))
,
p12(R1(t))

p13(R1(t))

)
=(

− t4

(t+ 1) (t4 − t3 + t2 − t+ 1)
,− t4

(t+ 1) (t4 − t3 + t2 − t+ 1)

)
,

whose implicit equation is g1( x̄ ) = x1 − x2 (Step 3.1.1). Additionally, deg(φQ1) = 5
(Step 3.1.2). Hence, m1 = 1 · 5/1 = 5. Thus, g5

1( x̄ ) = (x1 − x2)5 is a factor appearing
in fd( x̄ ).

Step 3.2: The curve D2 defined by q2(t̄) = 0 is not rational. Thus, we consider

Q2(t̄) =

(
p11(t̄)

p13(t̄)
,
p12(t̄)

p13(t̄)

)∣∣∣∣
q2(t̄)=0

=

=

(
t41

(t42 + t32 + t22 + t2 + 1) (t2 − 1)
,

t42
(t42 + t32 + t22 + t2 + 1)(t2 − 1)

)∣∣∣∣
q2(t̄)=0

.

The implicit equation of the projective curve defined by Q2 is computed by applying
statement (ii) of Remark 2 (Step 3.2.1). We get that

g2( x̄ ) = −125x6
1x

9
2 + 625x3

1x
12
2 + 150x9

1x
6
2 + x15

1 + 20x3
2x

12
1 + 356x6

2x
3
1x

6
3 + 212x5

2x
3
1x

7
3 +

28x3
1x

2
2x

10
3 − 24x12

1 x2x
2
3 − 40x9

1x2x
5
3 − 8x6

1x2x
8
3 + 580x7

2x
3
1x

5
3 + 122x4

2x
3
1x

8
3 − 41x5

2x
6
1x

4
3 +

1650x10
2 x

3
1x

2
3 + 332x6

1x
6
2x

3
3 − 220x4

2x
6
1x

5
3 + 200x6

1x
8
2x3 + 550x6

1x
7
2x

2
3 − 300x9

1x
5
2x3 +

1500x3
1x

11
2 x3 + 64x3

1x
3
2x

9
3 + 282x9

1x
4
2x

2
3 + 164x9

1x
2
2x

4
3 + 4x12

1 x
2
2x3−68x6

1x
2
2x

7
3−136x9

1x
3
2x

3
3−

220x6
1x

3
2x

6
3 + 8x2x

3
1x

11
3 + 1260x9

2x
3
1x

3
3 + 875x8

2x
3
1x

4
3 − x7

2x
8
3 + 4x6

1x
9
3 + 6x9

1x
6
3 + 4x12

1 x
3
3 −

32x10
2 x

5
3 − 16x11

2 x
4
3 − 24x9

2x
6
3 − 8x8

2x
7
3 + x3

1x
12
3 .

Additionally, we have deg(φQ2) = 1 (Step 3.2.2). In order to compute deg(φQ2), we
pick q ∈ D2 and observe that the number of elements in Q−1

2 (Q2(q)) belonging to D2

is 1 (see Remark 3). Hence, m2 = 1 · 1/1 = 1. Thus, g2( x̄ ) is a factor appearing in
fd( x̄ ).

Step 4: Let g( x̄ ) = g1( x̄ )m1g2( x̄ )m2. In addition, we compute deg(V) by applying
[23], and we get deg(V) = 20.

Step 5: Since deg(V) = deg(g), the algorithm returns the highest order form of the
implicit equation of V:

fd( x̄ ) = g1( x̄ )m1g2( x̄ )m2 .
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P( t̄ ) Time 1 Time 2 Time 3
P1( t̄ ) 5.813 223.906 17.469
P2( t̄ ) 3.969 154.625 6.391
P3( t̄ ) 3.235 65.281 2.140
P4( t̄ ) 1.906 39.312 3.860
P5( t̄ ) 2.078 39.641 34.765
P6( t̄ ) 1.438 8.234 3.329
P7( t̄ ) 1.046 4.828 0.312
P8( t̄ ) 9.547 > 500 > 500
P9( t̄ ) 0.500 0.078 1.562

Table 1: Times of Implementations

3.2 Experimentation, and comparison with other approaches

We have implemented our algorithm (Algorithm 3) using Maple 2016 on a Lenovo
ThinkPad Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz and 16 GB of
RAM, OS-Windows 10 Pro. In Table 1, we provide timings, in CPU seconds, for
our method (Time 1), the implicitization algorithm developed in [22] (Time 2) and
the method recently implemented in [34], based on the results of [31] (Time 3). The
method in [31] is, up to our knowledge, the most complete and up-to-date implicitiza-
tion algorithm, and combines the use of the Dixon resultant, moving planes and moving
surfaces. Notice that in [22] and [31] the algorithm outputs not the homogeneous form
of maximum degree but the whole implicit equation of the surface.

The timings in Table 1 correspond to the nine parametrizations of the surfaces
used in [31] to illustrate the performance of their algorithm. These parametrizations
involve various types of affine base points, simple and multiple. For details on these
parametrizations, we refer the interested reader to [31]. In each case, we highlight in
blue the best timing.

The results in Table 1 show that in general, the method presented in this section
works efficiently. Furthermore, in most of the examples in Table 1 our method works
better than the method in [31, 34]. In all these cases, the parametrizations completely
cover the curve at infinity. In fact, the approach presented in [31, 34] may fail when the
parametrization does not reach completely the curve at infinity (see Section 9 in [31],
as well as Table 2 in Section 4). Recall, from Theorem 1, that this situation appears
when there are base points blowing up to a curve at infinity.
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4 Potential generalizations

The ideas in the previous subsection allow us to compute fd( x̄ ) when all the compo-
nents of the curve at infinity of V are covered by the parametrization, but we fail to
compute the factors, and their multiplicities, corresponding to the components non-
covered by the parametrization, if any. From Theorem 1, this situation arises precisely
when there are projective base points blowing up to a curve at infinity. Certainly, an
alternative possibility in this case is using known implicitization methods to compute
the whole implicit equation f( x̄ ) of V , and then extract fd( x̄ ) from f( x̄ ). In this
section we will discuss some additional possibilities.

An obvious first possibility to overcome this difficulty is to reparametrize the surface
so that the new parametrization does not have any base points blowing up to a curve
at infinity. For instance, consider the surface V implicitly defined by f( x̄ ) = x3−x1x2,
whose projective closure V∗ is F ( x̄ , x4) = x3x4 − x1x2 = 0. A parametrization of V is
P( t̄ ) = (t1, t2, t1t2), which, written in projective form, corresponds to

P∗h(T̄ ) = (t1t3 : t2t3 : t1t2 : t23).

The curve at infinity of V is the union of two projective lines, {x1 = 0, x4 = 0} and
{x2 = 0, x4 = 0}, not covered by the parametrization. In fact, P∗h(T̄ ) has two projective
base points, namely (1 : 0 : 0) and (0 : 1 : 0). However, another parametrization of V
is

M( t̄ ) =

(
1

t1
,

1

t2
,

1

t1t2

)
,

which covers completely the curve at infinity of V . In projective form, this new
parametrization is

M∗
h(T̄ ) = (t2t3 : t1t3 : t23 : t1t2).

Notice that M∗
h(T̄ ) also has two projective base points, which are again the points

(1 : 0 : 0), (0 : 1 : 0). However, while in the case of P∗h the base points blow up to a
curve at infinity, in the case of M∗

h they do not. Unfortunately, up to our knowledge
there is no algorithm available at the moment for computing a reparametrization with
the desired property.

Another possibility is using not one, but several, parametrizations to completely
cover the surface. For instance, in [25] it is shown that every affine rational sur-
face without projective base points can be fully covered by at most three rational
parametrizations. For affine ruled surfaces, in [26] it is shown that two rational
parametrizations suffice. Furthermore, in [26] an algorithm to find these parametriza-
tions is provided. However, again unfortunately, up to date there is no general algo-
rithm to compute a set of rational parametrizations that completely covers a projective
rational surface.
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So let us discuss a third possibility, which allows us to reduce the case of missed
components at infinity to the case addressed in the previous section, i.e. the case when
all the components at infinity are reached. As we show in Table 2 at the end of this
section, the method we are about to present can be costly, and not necessarily better
than directly implicitizing the surface, and extracting the form of highest degree from
the whole implicit equation. However, we believe that the description of this method,
which completes the picture of the method presented in the previous section, can be
of some interest.

In order to describe the method, let us write the implicit equation of the projective
closure of V , V∗ (see Eq. (2.3) and Eq. (2.4)) as

F ( x̄ , x4) = fd( x̄ ) + x4fd−1( x̄ ) + · · ·+ xd4f0( x̄ ),

where x4 is a homogenization variable. Recall that V∗ is parametrized (omitting, for
simplicity, the homogenization variable) by

P∗h(T̄ ) = (ph11(T̄ ) : ph12(T̄ ) : ph13(T̄ ) : ph(T̄ )),

where gcd(p11, p12, p13, p) = 1 (see Eq. (2.2)). Now let W∗λ be the result of applying to
V∗ the projective transformation Tλ defined by

x1 := x1, x2 := x2, x3 := x3, x4 := x4 − λx3, (4.1)

where λ is regarded as a nonzero parameter. ThenW∗λ is rational, and is parametrized
by

R∗λ(T̄ ) = (ph11(T̄ ) : ph12(T̄ ) : ph13(T̄ ) : ph(T̄ ) + λph13(T̄ )). (4.2)

Observe that the implicit equation of W∗λ, which has the same degree as V∗, is

Gλ( x̄ , x4) = gλd ( x̄ ) + x4g
λ
d−1( x̄ ) + · · ·+ xd4g

λ
0 ( x̄ ).

Additionally, Gλ( x̄ , x4) can be written as

(fd − λx3fd−1 + λ2x2
3fd−2 + · · ·+ (−1)dxd3λ

df0) + x4(fd−1 + λx3fd−2 + · · · ) + · · · .

Thus, the highest order form of Gλ is

gλd = fd − λx3fd−1 + λ2x2
3fd−2 + · · ·+ (−1)dλdxd3f0,

so evaluating gλd at λ = 0 we get fd. The next lemma shows that gλd can be computed
from the results in the previous subsection (including λ in the computations as a
parameter).

Lemma 1. The curve at infinity of W∗λ is completely reached by the parametrization
R∗λ.
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Proof. Because W∗λ is the image of V∗ under the transformation Tλ in Eq. (4.1), the
curve at infinity of W∗λ is the image under Tλ of the intersection curve D∗λ of V∗ with
the hyperplane x3− 1

λ
x4 = 0. Now if a curve D∗ ⊂ V∗ is covered by the parametrization

P∗(t̄), then Tλ(D∗) ⊂ W∗ is covered by the parametrization R∗λ(t̄). Since the set of
points of V∗ not covered by P∗(t̄) is at most 1-dimensional, there are only finitely many
values of λ, if any, such that D∗λ is not reached by P∗(t̄). In other words, for a generic
value λ ∈ K, the curve D∗λ is covered by P∗(t̄). Since the curve at infinity of W∗ is
Tλ(D∗λ), the result follows.

Remark 6. Notice that we might also pick other transformations Tλ: for instance,
replacing x4 := x4 − λx3 by x4 := x4 − λxi, with i 6= 4, does as well.

Thus, in order to compute fd we proceed as follows: (1) we compute the highest
order form gλd by using Algorithm 3; (2) evaluating gλd at λ = 0, we get fd. However,
the computations in (1) include one parameter, which makes the method costly in the
generic case.

Example 3. Let

P(t̄) =

(
t1t2 − 1

t21 + t22 − 1
,

t1t2
t21 + t22 − 1

,
t2 − 1

t1(t21 + t22 − 1)

)
define a surface V. We apply Algorithm 3 to compute the components of the curve at
infinity covered by the parametrization:

Step 1: By applying Algorithm 1, we get that deg(φP) = 1.

Step 2: In this case p(t̄) = t1(t21 + t22 − 1), so q1(t̄) = t21 + t22 − 1, q2(t̄) = t1, and
ni = 1, i = 1, 2.

Step 3: For i = 1, 2, let Qi(t̄) be the rational mapping in Eq. (3.2). Notice that Q2(t̄)
does not correspond to a component C∗2 of the curve at infinity: although the curve D2

defined by q2(t̄) = t1 = 0 is rational, and can be parametrized by R2(t) = (0, t), we get
P∗(0, t) = (0 : 0 : t− 1 : 0), which does not parametrize a projective curve.

Step 3.1: The curve D1 defined by q1( t̄ ) = 0 is rational, and can be parametrized by
R1(t) = ((t2 − 1)/(t2 + 1), 2t/(t2 + 1)). Thus,

Q1(t) =

(
p11(R1(t))

p13(R1(t))
,
p12(R1(t))

p13(R1(t))

)
=

(
(−2t3 + 2t+ t4 + 2t2 + 1)(t+ 1)

(t− 1)(t2 + 1)2
, −2t(t+ 1)2

(t2 + 1)2

)
,

whose implicit equation is
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g1( x̄ ) = 2x2
1x2x

2
3 − 8x3

2x1x3 + 4x1x2x
3
3 − 4x4

2x1 + 2x4
2x3 + x2x

4
3 + 2x2

3x
3
2 + 6x2

1x
3
2 + x5

2 −
8x2x

3
1x3 − 4x3

1x
2
2 + x4

1x2 − 2x2
1x

3
3 − 4x2

2x1x
2
3 + 12x2

2x
2
1x3 − 2x2

2x
3
3 + 2x4

1x3

(Step 3.1.1). Additionally, we have deg(φQ1) = 1 (Step 3.1.2). Hence, m1 = 1 ·1/1 = 1
and thus, g1( x̄ ) is a factor appearing in fd( x̄ ).

Step 4: Let g( x̄ ) = g1( x̄ )m1. We compute deg(V) by applying [23], and we get that
deg(V) = 6.

Step 5: Since deg(V) 6= deg(g) the algorithm returns fd( x̄ ) = g( x̄ )h( x̄ ), where h( x̄ )
are missed components at infinity. In fact, since deg(V)−deg(g) = 1, we deduce
that we are missing a linear factor.

Therefore, in order to compute the whole fd( x̄ ), we consider the parametrization
Eq. (4.2) of the surface W∗λ. Notice that

qλ(t̄) = p(t̄) + λp13(t̄) = t1(t22 + t21 − 1) + λ(t2 − 1).

The curve Dλ defined by qλ(t̄) = 0 is not rational. Thus, we consider

Qλ(t̄) =

(
p11(t̄)

p13(t̄)
,
p12(t̄)

p13(t̄)

)∣∣∣∣
qλ(t̄)=0

=

(
(t2t1 − 1)t1
t2 − 1

,
t2t

2
1

t2 − 1

)∣∣∣∣
qλ(t̄)=0

.

Arguing as in Example 2, we compute the implicit equation, gλd ( x̄ ), of the projective
curve defined by Qλ (see Remark 2), which is

gλd ( x̄ ) = 2x5
2x3 +x2

2x
4
3 +2x4

2x
2
3−2x3

2x
3
3−3λx2

1x2x
3
3−2λ2x1x2x

4
3 +3λx1x

2
2x

3
3−2λx3

1x2x
2
3 +

10x3
2λx

2
1x3 − 10λx3

1x
2
2x3 + 6x2

2λx
2
1x

2
3 − 5x4

2λx1x3 − 2λx1x2x
4
3 − 6x3

2λx1x
2
3 + 5λx4

1x2x3 +
λ2x2

1x
4
3 + λx3

1x
3
3 − λx5

1x3 − 8x3
1x

2
2x3 − 8x4

2x1x3 + 12x2
1x

3
2x3 + 2x4

1x2x3 + 2x2
1x

2
2x

2
3 −

4x3
2x1x

2
3 + 4x2

2x1x
3
3 − 2x2

1x2x
3
3 + x5

2λx3 + 2λx2
2x

4
3 − λx3

2x
3
3 + 2x4

2λx
2
3 + λ2x2

2x
4
3 + x6

2 +
x4

1x
2
2 − 4x5

2x1 + 6x4
2x

2
1 − 4x3

1x
3
2.

Evaluating gλd at λ = 0, we get

fd( x̄ ) = x2(2x2
1x2x

2
3 − 8x3

2x1x3 + 4x1x2x
3
3 − 4x4

2x1 + 2x4
2x3 + x2x

4
3 + 2x2

3x
3
2 + 6x2

1x
3
2 +

x5
2 − 8x2x

3
1x3 − 4x3

1x
2
2 + x4

1x2 − 2x2
1x

3
3 − 4x2

2x1x
2
3 + 12x2

2x
2
1x3 − 2x2

2x
3
3 + 2x4

1x3).

Observe that fd( x̄ ) = g1( x̄ )m1h( x̄ ), where h( x̄ ) = x2 is the missed component.

We have implemented this last method in the same machine of Section 3.2, and
compared, as in Section 3.2, the performance of this method with the algorithms
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P( t̄ ) Time 1 Time 2 Time 3
P1( t̄ ) > 500 0.641 36.406
P2( t̄ ) > 500 73.765 50.188
P3( t̄ ) > 500 483.797 Fail
P4( t̄ ) > 500 105.531 Fail
P5( t̄ ) 0.438 2.407 Fail
P6( t̄ ) 20.343 27.531 Fail
P7( t̄ ) 0.250 0.031 0.594
P8( t̄ ) 0.735 0.047 1.063
P9( t̄ ) 0.656 0.641 3.078

Table 2: Times of Implementations for the Generalizations

in [22] and [31]. In order to do this, we tested the three methods on nine rational
surfaces, of degrees 4, 5 and 6, where the curve at infinity is not completely reached
by the parametrization; the parametrizations were randomly generated, although
respecting the condition of not reaching all the components at infinity. The timings
are given in Table 2: Time 1 is the timing for our method, Time 2 corresponds to
[22], and Time 3 corresponds to [31]. In general, it is the method presented in [22]
(Times 2) that provides the best results. In most cases the timing for our method
is higher than the timing for the method in [22]. The algorithm in [31] provides an
answer in five of the surfaces, and fails to give an answer in the rest of the surfaces.
In some cases, this phenomenon happens because the algorithm needs to expand the
determinant of a large matrix (of dimension greater than 25). In other cases, because
this matrix is identically zero; this can happen when there are base points blowing up
to a curve, which is the case discussed in this section.

Remark 7. It is well known that the method based on Gröbner basis computations is
not very good for computing implicit equation of parameterized surfaces. In fact, did not
finish in an reasonable amount of time, in any of the considered the parametrizations
used in this paper.

5 Main proofs

This section is devoted to show the proofs of the main results of this paper, Theorem
2 and Corollary 1 in Subsection 3.1.

Theorem 2 Let V be a surface defined by a parametrization like Eq. (3.1), with
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p( t̄ ) = q( t̄ )n, where q(t̄) ∈ K[ t̄ ] is an irreducible polynomial. Let

Q(t̄) =

(
p11(t̄)

p31(t̄)
,
p21(t̄)

p31(t̄)

)∣∣∣∣
q(t̄)=0

.

Then fd( x̄ ) = g( x̄ )mh( x̄ ), where gcd(g, h) = 1, the polynomial h( x̄ ) defines the
missed components at infinity, and

m = n
deg(φQ)

deg(φP)
. (5.1)

Proof. First, we assume without loss of generality that deg(f) = degx1(f), which
is equivalent to (1 : 0 : 0 : 0) 6∈ V∗. We can always achieve this by apply-
ing a linear birational transformation T ( x̄ ) = (a1x1 + a2x2 + a3x3, b1x1 + b2x2 +
b3x3, c1x1 + c2x2 + c3x3) ∈ K[x1, x2, x3] on the input parametrization P , that is, we
consider T (P) and obtain a new surface VT defined parametrically by PT := T (P),
and implicitly by f (T ) = f(T −1). Observe that for almost all linear transforma-
tions T , we get deg(f (T )) = degx1(f

(T )). Furthermore, if the form of highest de-
gree of f(x̄) is fd(x̄) = g(x̄)mh(x̄), then the form of highest degree of f (T )(x̄) is

f
(T )
d (x̄) = gT ( x̄ )mhT ( x̄ ), where g = gT (T ), h = hT (T ), gcd(gT , hT ) = 1. In par-

ticular, the multiplicity m of g and gT is the same.

Under the above conditions, we consider the homogeneous polynomials

H2(T̄ , x2, x4) = x4t
k2
3 p21(T̄ )− x2t

k
3q
n(T̄ ), H3(T̄ , x3, x4) = x4t

k3
3 p31(T̄ )− x3t

k
3q
n(T̄ ),

where T̄ := (t1, t2, t3), and k, k2, k3 ≥ 0. Note that gcd(H2, H3) = 1 since we have
assumed that gcd(p31, q) = 1. Using some properties of resultants (see Lemma 4 in
[8]),

Rest1(x3H2 − x2H3, H3) = Rest1(x4(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ )), H3) =

= x
degt1 (H3)

4 Rest1(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ ), H3)

(note that the above resultant is not identically zero since gcd(H2, H3) = 1). Addi-
tionally, and denoting the leading coefficient of H3 with respect to t1 by lct1(H3),

Rest1(x3H2 − x2H3, H3) = lct1(H3)rRest1(x3H2, H3) = lct1(H3)rx
degt1 (H3)

3 Rest1(H2, H3),

where r = degt1(x3H2 − x2H3) − degt1(x3H2). Let `(t2, t3, x2, x3, x4) := lct1(H3)r ∈
K[t2, x2, x3, x4], and let us define

R(t2, t3, x2, x3, x4) := Rest1(x3p21(t̄)− x2p31(t̄), H3) =

=
x

degt1 (H3)

3

x
degt1 (H3)

4

· `(t2, t3, x2, x3, x4) · Rest1(H2, H3).
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Since R(t2, t3, x2, x3, x4) is a polynomial, x
degt1 (H3)

4 divides `(t2, t3, x2, x3, x4) ·
Rest1(H2, H3). Next we write

`(t2, t3, x2, x3, x4) · Rest1(H2, H3) = x
degt1 (H3)

4 M(t2, t3)U(x2, x3, x4)S(t2, t3, x2, x3, x4),

where Content{t2,t3}(S) = Content{x2,x3,x4}(S) = 1. Therefore,

R(t2, t3, x2, x3, x4) = M(t2, t3)x
degt1 (H3)

3 U(x2, x3, x4)S(t2, t3, x2, x3, x4).

Now, by applying the properties of specialization of resultants (see Lemma 4.3.1 of
[33]), we get

R(t2, t3, x2, x3, 0) = M(t2, t3)x
degt1 (H3)

3 U(x2, x3, 0)S(t2, t3, x2, x3, 0) =

= `(t2, t3, x2, x3, 0) · Rest1(x3t
k2
3 p21(t̄)− x2t

k3
3 p31(t̄), H3)

∣∣
x4=0

=

= `(t2, t3, x2, x3, 0) · Rest1(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ ), x3t

k
3q(T̄ )n) =

= x
degt1 (H3)

3 t
k·degt1 (H3)

3 `(t2, t3, x2, x3, 0) · Rest1(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ ), q(T̄ ))n

(in the last equality we have applied properties of resultants; see again Lemma 4 in
[8]). Thus, from the above equality there exist M(t2, t3), U(x2, x3), S(t2, t3, x2, x3) such
that

M(t2, t3) = t
k·degt1 (H3)

3 M(t2, t3),

U(x2, x3, 0)S(t2, t3, x2, x3, 0) = `(t2, t3, x2, x3, 0)U(x2, x3)S(t2, t3, x2, x3).

Then,

Rest1(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ ), q(T̄ )) = M(t2, t3)1/nU(x2, x3)1/nS(t2, t3, x2, x3)1/n.

Since Rest1(x3t
k2
3 p21(t̄) − x2t

k3
3 p31(t̄), q(T̄ )) is a polynomial, the last equality implies

that
S(t2, t3, x2, x3) = N(t2, t3)nW (t2, t3, x2, x3)n, (5.2)

where Contentt2(W ) = 1. Therefore, we get

PrimPart{t2,t3,x2,x3}(Rest1(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ ), q(T̄ ))) = W (t2, t3, x2, x3).

Since deg(f) = degx1(f) we deduce that deg(g) = degx1(g). Using results in Section
2 and in particular Eq. (2.8), we get

deg(g) =
degt2(W )

deg(φQ)
. (5.3)

Furthermore, since fd = gmh,

d = deg(fd) = deg(gmh) = mdeg(g) + deg(h).
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Thus, taking this into account, Eq. (5.2), and since the curve implicitly defined by g
is reached via P (when q(t̄) = 0), we deduce that

mdeg(g) =
degt2(W

n)

deg(φP)
= n

degt2(W )

deg(φP)

(see Remark 1). Now, using Eq. (5.3) we conclude that

m
degt2(W )

deg(φQ)
= n

degt2(W )

deg(φP)

and thus

m = n
deg(φQ)

deg(φP)
.

Corollary 1 Let V be a surface defined by a parametrization like Eq. (3.1),
where p( t̄ ) = q1( t̄ )n1 · · · q`( t̄ )n` , ` ≥ 1, and qi( t̄ ) ∈ K[ t̄ ], i = 1, . . . , ` are irre-
ducible polynomials. For i = 1, . . . , `, let Qi(t̄) be like Eq. (3.2). Then fd( x̄ ) =
g1( x̄ )m1 · · · g`( x̄ )m` · h( x̄ ), where gcd(h, gi) = 1, the polynomial h( x̄ ) defines the
missed components at infinity, and

mi = ni
deg(φQi)

deg(φP)
. (5.4)

Proof. The proof is similar to the proof of Theorem 2, taking into account that now

PrimPart{t2,t3,x2,x3}(Rest1(x3t
k2
3 p21(T̄ )−x2t

k2
3 p31(T̄ ), q1(T̄ ) · · · q`(T̄ ))) = W (t2, t3, x2, x3),

with
W (t2, t3, x2, x3) = W1(t2, t3, x2, x3) · · ·W`(t2, t3, x2, x3),

where for i = 1, . . . , `,

Wi(t2, t3, x2, x3) = PrimPart{t2,t3,x2,x3}(Rest1(x3t
k2
3 p21(T̄ )− x2t

k3
3 p31(T̄ ), qi(T̄ )).

Thus

deg(gi) = degx1(gi) =
degt2(Wi)

deg(φQi)
, i = 1, . . . , `,

and additionally,

d = deg(fd) = deg(g1( x̄ )m1 · · · g`( x̄ )m` · h) =
∑̀
i=1

mideg(gi) + deg(h),

where h( x̄ ) = 0 implicitly defines the component of the curve at infinity of the given
surface that is not reached by P . Thus, taking this equality into account, Eq. (5.2),
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and since the curves implicitly defined by the gi are reached via P (when qi(t̄) = 0),
we argue as in Theorem 2 (see Remark 1), and we deduce

mideg(gi) =
degt2(W

n
i )

deg(φP)
= n

degt2(Wi)

deg(φP)
.

Since

deg(gi) =
degt2(Wi)

deg(φQi)
,

we conclude that

mi

degt2(Wi)

deg(φQi)
= n

degt2(Wi)

deg(φP)

and thus

mi = n
deg(φQi)

deg(φP)
.

6 Conclusion

A method has been presented to compute the form of highest degree of the implicit
equation of a rational surface, defined by a rational parametrization. The method
is suitable both for proper and non-proper parametrizations, and works efficiently
whenever the given parametrization completely covers the curve at infinity. This phe-
nomenon is related to the existence of base points blowing up to a curve at infinity.
In absence of this bad case, our experiments show that our algorithm works generally
better than the algorithms for computing the whole implicit equation in [22] and [31],
with which we have compared our results. We provide a potential generalization of
our method for the bad case. However, in the bad case the algorithm that seems to
be more effective is the algorithm in [22]; in fact, in the bad case the algorithm in [31]
fails, in some cases, to give an answer.
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