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Abstract7

The µ-basis of a rational curve/surface is a new algebraic tool which plays an important role in connecting
the rational parametric form and the implicit form of a rational curve/surface. However, most results
for µ-bases are presented for proper rational parametrizations. In this paper we consider the µ-basis for
an improper rational planar curve. Based on the known properties and new results, we design two new
proper reparametrization algorithms using µ-basis. The inversion, degree of the induced rational map and
implicitization formulas are also derived.
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1. Introduction10

The µ-basis was first introduced in [7] to provide a compact representation for the implicit equation of a11

rational parametric curve. The µ-basis can be used not only to recover the parametric equation of a rational12

curve/surface but also to derive its implicit equation. There are several methods based on Gröbner basis [28]13

or on vector elimination [4] to compute the µ-basis for rational curves by computing two moving lines which14

satisfy the required properties [7]. Later, the algorithms for computing µ-bases of univariate polynomials15

are extended for general rational curves in arbitrary dimensions, even with the coordinate functions having16

common factors [12, 26]. The µ-basis has also been generalized to rational surfaces [5], although the concept17

of a µ-basis for surfaces is still in flux and awaits further exploration [15, 21, 22]. Actually the situation for18

rational surfaces is quite different: the µ-basis is not unique and even the degrees of the µ-basis elements19

can be different. Currently, the only known algorithm to compute a weak µ-basis of a rational surface is20

designed based on polynomial matrix factorization [8]. However, for certain rational surfaces with special21

geometry, the µ-basis can be defined explicitly and there has been a lot of exploration on the µ-bases of such22

special surfaces: Steiner surfaces, surfaces of revolution, ruled surfaces, cyclides as well as canal surfaces (see23

[13]). Besides the bridge role between the parametric forms and implicit forms, the µ-basis has additional24

applications including inversion formulas and singularity computation.25

A basic property of a rational parametrization is whether or not it is proper. If a rational parametrization26

is not proper, also called improper, then a generic point of the variety corresponds to more than one27

parameter. Much of the research about the rational parametrization, including almost all the above works28

about µ-bases, assume that the parametrization is proper. However, improper parametrizations can be29

found in theoretical and practical situations. If a rational parametrization is improper, naturally we would30

ask whether it can be reparameterized so that the new parametrization is proper. For algebraic curves, the31
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existence of a proper reparametrization for an improper rational parametrization is guaranteed by Lüroth’s32

theorem [27]. Several typical methods to find a proper reparametrization for an improper parametrization of33

an algebraic curve are proposed in [10, 16, 17]. Among them the algorithm in [16] is best since this algorithm34

computes the improper rational function with the fewest GCD computations and involves the computation35

of an easy univariate resultant whereas the other two algorithms [10, 17] solve the problem by means of the36

method of undetermined coefficients.37

The µ-basis as a new algebraic tool has shown different advantages but not in proper reparametrization.38

In this paper, we attempt to find a proper reparametrization for an improper parametrization of an algebraic39

curve by using µ-bases. We study the relationships between the µ-basis of a proper parametrization and40

the µ-basis of its improper parametrization. From the µ-basis of an improper parametrization, we give41

the degree of the rational map defined by the parametrization, i.e., the improper index of the improper42

parametrization. An inversion formula is then found for the case where the parametrization is proper. As43

an important result, we define an associated polynomial by µ-bases and prove that the associated polynomial44

is a bivariate alternating polynomial. Then the associated polynomial will induce a rational function of the45

parameter to properly reparameterize the given improper parametrization. After taking a deep look at the46

µ-basis of the improper parametrization, we derive a way to find a µ-basis for a proper reparametrization47

by solving linear systems. We also give a simple derivation for the implicitization formula for an improper48

algebraic curve using µ-bases.49

This paper is organized as follows. In Section 2, we recall the definition, properties and an algorithm50

as well as two new lemmas for the µ-basis of rational curves. In Section 3, for an improper rational51

parametrization, we study the inversion computation, the degree of the induced rational map, the proper52

reparametrization and implicitization using µ-bases. Finally, we conclude our paper in Section 4 with a brief53

summary of our work. For the convenience of readers and for the consistency of concepts, we will introduce54

some necessary details directly from the references [4, 7, 13, 16].55

2. µ-Bases for Rational Planar Curves56

The µ-basis of a rational planar curve is defined in [7] as a special basis of the moving line ideal of57

the rational curve. The moving line ideal corresponding to the rational planar curve C defined by the58

rational parametrization P(t) = (℘1(t), ℘2(t), ℘3(t)), gcd(℘1(t), ℘2(t), ℘3(t)) = 1 is the ideal I = 〈℘3(t)x1 −59

℘1(t)x3, ℘3(t)x2 − ℘2(t)x3〉 ⊂ K[x1, x2, x3, t] (K is an algebraically closed field of characteristic zero) that60

consists of all the moving curves following P(t). A µ-basis of the rational curve C defined by P(t) is a basis61

of the ideal I with the form:62

pP(x , t) = p1(t)x1 + p2(t)x2 + p3(t)x3, qP(x , t) = q1(t)x1 + q2(t)x2 + q3(t)x3, x = (x1, x2, x3)63

where pi(t), qi(t), i = 1, 2, 3, are polynomials in K[t], and pP and qP have the lowest possible degrees64

in t. Thus a µ-basis is two moving lines that form a basis of the moving line ideal I. Assuming that65

degt(p
P) = µ ≤ degt(q

P) (where 0 ≤ µ ≤ [n/2] and n = deg(P)), it is proven that degt(q
P) = n − µ, and66

for any rational planar curve, µ is uniquely determined and such a µ-basis always exists (see [7]).67

We recall that deg(P) is the maximum of the degrees of the components of the rational parametrization68

P(t). In general, for any vector υ := (a1(t), a2(t), . . . , a`(t)) ∈ K[t]`, deg(υ) is the maximum of deg(ai), for69

i = 1, . . . , `.70

For a better understanding of µ-bases, syzygies can be used. A moving line A(t)x1 +B(t)x2 +C(t)x3 = 071

corresponds to a three dimensional vector (A(t), B(t), C(t)) ∈ K[t]3, and a moving line A(t)x1 + B(t)x2 +72

C(t)x3 = 0 following P(t) corresponds to a syzygy of P(t) = (℘1(t), ℘2(t), ℘3(t)). Thus the set73

MP := {(A(t), B(t), C(t)) ∈ K[t]3 |℘1(t)A(t) + ℘2(t)B(t) + ℘3(t)C(t) ≡ 0}74

corresponds to all the moving lines following the rational curve P(t) (see e.g [13]). MP is a syzygy module75

over K[t] which is free of rank two, and a µ-basis for the rational curve P(t) is just a basis of the syzygy76
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module MP with the lowest possible degree (see [7]). More precisely, one has the following formal definition77

(see e.g. [7]).78

Definition 1. Two moving lines pP(x , t) = p1(t)x1 + p2(t)x2 + p3(t)x3 = 0 and qP(x , t) = q1(t)x1 +79

q2(t)x2 + q3(t)x3 = 0, or equivalently, two polynomial vectors p(t) = (p1(t), p2(t), p3(t)) ∈ K[t]3 and q(t) =80

(q1(t), q2(t), q3(t)) ∈ K[t]3 are a µ-basis of the curve defined by P(t) (or the syzygy module MP), if81

1. p(t) and q(t) are a basis for the syzygy module MP , i.e., any moving line L(t) ∈MP can be expressed82

by83

L = h1p + h2q (1)84

with h1, h2 ∈ K[t]; and85

2. p(t) and q(t) have the lowest degree among all the bases of MP , i.e., assuming that deg(p) ≤ deg(q),86

then there does not exist another basis p(t) and q(t) of MP with deg(p) ≤ deg(q) such that deg(p) <87

deg(p) or deg(q) < deg(q).88

The following properties of µ-bases can easily be derived from the above definitions (see [4]).89

Theorem 1. Let p(t), q(t) be a µ-basis for P(t) with deg(p) ≤ deg(q). Then,90

1. p(t) and q(t) are K[t]-linearly independent.91

2. p(t0)q(t0) 6= 0 for any parameter value t0.92

3. p(t0) and q(t0) are linearly independent for any parameter value t0.93

4. LV(p) and LV(q) are linearly independent, where LV(·) returns the leading vector of a vector polyno-94

mial.95

5. Expression (1) is unique for any moving line L of P(t).96

6. Any moving line L of P(t) can be expressed in (1) with deg(h1p) ≤ deg(L) and deg(h2q) ≤ deg(L).97

7. p× q = kP(t) for some nonzero constant k.98

8. The moving line ideal I = 〈℘3x1 − ℘1, ℘3x2 − ℘2〉 = 〈pP , qP〉.99

9. deg(p) + deg(q) = deg(P).100

10. If P(t) is proper, then resultantt(p
P , qP) is the implicit equation of the curve defined by P(t).101

Note that property 7 implies that any rational planar curve of degree n is the intersection of two families of102

lines whose degrees sum to n. On the other hand, by property 10, a µ-basis provides a compact representation103

for the implicit equation of the rational curve defined by a proper parametrization P(t). In fact, the Bézout104

resultant of p and q with respect to t gives the implicit equation of P(t) expressed as a determinant of size105

(n − µ) × (n − µ) (see [4]). For the generic case with µ = n/2, the size of the determinant generated by a106

µ-basis is half of the size of the determinant generated by the classical method. In this regard, a µ-basis107

serves as a bridge to connect the parametric form and the implicit form of a rational curve. Note that all the108

above properties hold for improperly parameterized curves, except that the resultant in property 10 gives109

the implicit equation to some power. In the following section, we will analyze this power (see Theorem 6).110

The naive approach to computing a µ-basis for a rational planar curve is by computing two moving111

lines that satisfy the required properties (see [7]). However, this method is a trial-and-error approach,112

and generally linear systems of equations of size O(n) have to be solved whose algorithmic complexity113

is O(n3). Zheng and Sederberg presented an automatic algorithm based on Gröbner basis computation114

with an algorithmic complexity of O(n2) (see [28]). An improved algorithm to compute a µ-basis based on115

vector elimination is provided by Chen and Wang and is described in [4]. Here, we review the algorithm to116

compute a µ-basis for rational planar curves presented in [4].117

Algorithm 1 (Compute a µ-Basis for a Rational Curve Defined by P(t)).118

Input a rational parametrization P(t) = (℘1(t), ℘2(t), ℘3(t)) ∈ K[t]3 of a plane algebraic curve C.119

Output a µ-basis for P(t).120

Steps121
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1. Set u1 = (−℘2, ℘1, 0),u2 = (−℘3, 0, ℘1),u3 = (0, ℘3,−℘2). Set mi = LV(ui) for i = 1, 2, 3.122

2. Set ni = deg(ui), i = 1, 2, 3. Renumber ui, i = 1, 2, 3, if necessary, so that n1 ≥ n2 ≥ n3. Find real123

numbers α1, α2, α3 (at least two of them are non-zeros) such that124

α1m1 + α2m2 + α3m3 = 0.125

If α1 6= 0, update u1 by126

u1 = α1u1 + α2t
n1−n2u2 + α3t

n1−n3u3127

and set m1 = LV(u1) and n1 = deg(u1). If α1 = 0 (then both α2 and α3 are non-zero), update u2 by128

u2 := α2u2 + α3t
n2−n3u3129

and set m2 = LV(u2) and n2 = deg(u2).130

3. If one of u1,u2 and u3 is zero, say u1 = 0, then output u2 and u3 and stop; else, go to Step 2.131

Next, we prove two technical lemmas that analyze the behavior of a µ-basis under a change of variables.132

These results will play an important role in the next section.133

Lemma 1. Let p(t), q(t) be a µ-basis for P(t) with deg(p) ≤ deg(q). Then,134

1. if deg(p) < deg(q), p(t) is unique up to a nonzero constant scalar,135

2. if deg(p) = deg(q), {p(t),q(t)} is unique up to a linear combination.136

Proof. First, let us assume that deg(p) < deg(q), and suppose there exists p̃(t) 6= p(t) that belongs to a137

µ-basis with deg(p̃) = deg(p). Then from statement 7 in Theorem 1, p · P = 0 and p̃ · P = 0. Hence, we138

have that p× p̃ = k(t)P, where k(t) ∈ K[t] \ {0}. But this cannot happen since deg(p̃) + deg(p) < deg(P).139

Now, let us assume that deg(p) = deg(q) = deg(P(t))
2 , and suppose there exists p̃(t), q̃(t) another140

µ-basis different from p(t), q(t) but with the same degrees. By the definition of a µ-basis, there exist141

αi(t), βi(t) ∈ K[t] \ {0}, i = 1, 2 such that p̃(t) = α1(t)p + α2(t)q, q̃(t) = β1(t)p + β2(t)q. According to the142

properties of a µ-basis, deg(p̃)+deg(q) = deg(P) and p̃×q = (α1(t)p+α2(t)q)×q = α1(t)p×q = α1(t)P(t).143

Thus, one deduces that α1(t) ∈ K since deg(p̃×q) ≤ deg(P(t)). Similar results apply to the other coefficients.144

Hence (p̃ q̃)T =

(
α1 α2

β1 β2

)
(p q)T where the coefficient matrix is a nonsingular constant matrix.145

Lemma 2. Let p̃(t), q̃(t) be a µ-basis for a parametrization Q(t) with deg(p̃) ≤ deg(q̃). Let R(t) ∈ K(t)\K.146

Then p(t) = p̃(R(t)), q(t) = q̃(R(t)) is a µ-basis for the reparametrization P(t) = Q(R(t)) with deg(p) ≤147

deg(q).148

Proof. First, we note that deg(P) = deg(R)deg(Q), and similarly deg(p) = deg(R)deg(p̃) and deg(q) =149

deg(R)deg(q̃). Thus, it is clear that deg(p) ≤ deg(q). In addition, since p̃(t), q̃(t) is a µ-basis for Q(t)150

with deg(p̃) ≤ deg(q̃), it follows from Theorem 1 that p̃ × q̃ = kQ for some non-zero constant k and151

deg(p̃) + deg(q̃) = deg(Q). Therefore, taking into account the first statement in this proof, we easily get152

that p× q = kP for some non-zero constant k and deg(p) + deg(q) = deg(P). Hence, from Theorem 1, we153

conclude that p(t), q(t) is a µ-basis for P(t).154

Notice that we consider Q(R(t)), with R(t) = r1(t)/r2(t) ∈ K(t) \ K, in homogenous form. Hence,155

in this paper, P(t) = Q(R(t)) means P(t) = Q
(
r1(t)
r2(t)

)
r2(t)deg(Q) which is a polynomial vector in ho-156

mogenous form. Similar, p(t) = p̃(R(t)) means p(t) = p̃
(
r1(t)
r2(t)

)
r2(t)deg(p̃) and q(t) = q̃(R(t)) means157

q(t) = q̃
(
r1(t)
r2(t)

)
r2(t)deg(q̃).158
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3. Inversion, Degree, Reparametrization and Implicitization159

In this section, we deal with four different problems that we solve using µ-bases: the inversion problem,160

the computation of the degree of the induced rational map, the reparametrization problem and the implici-161

tization problem. More precisely, in Subsection 3.1, we show how µ-bases allow us to compute the inverse162

of a given proper parametrization P(t) of an algebraic curve. If P(t) is not proper, we show how the degree163

of the rational map induced by P(t) can be computed as well as the elements of the fibre.164

In Subsection 3.2, we present an algorithm (Algorithm 2) that computes a proper parametrization from a165

given improper one. For this purpose, we use µ-bases and some ideas presented in [16]. Algorithm 2 outputs166

a proper reparametrization by a µ-basis without caring about the properness of the µ-basis. By Lemma 2, if167

we can construct a µ-basis, p̃(t), q̃(t), from the µ-basis, p(t) = p̃(R(t)), q(t) = q̃(R(t)), of P(t) = Q(R(t)),168

then we can recover the proper reparametrization Q(t) = p̃(t)× q̃(t) from the properties of the µ-basis. In169

Subsection 3.3, we present Algorithm 3 generated from this idea.170

Finally, in Subsection 3.4, we show how a µ-basis of an improper parametrization also allows us to171

compute the implicit equation of a given curve. More precisely, we show that the Bézout resultant of172

pP(t, x ), qP(t, x ), with respect to t gives the implicit equation of P(t) to some power. The power is deg(R),173

where P(t) = Q(R(t)) and Q(t) is a proper parametrization of the given curve.174

3.1. Inversion and Degree of the Induced Rational Map175

Let K be an algebraically closed field of characteristic zero. We denote by f(x1, x2) ∈ K[x1, x2] the176

defining polynomial of a rational affine irreducible curve C, and let177

P(t) =

(
℘1(t)

℘3(t)
,
℘2(t)

℘3(t)

)
∈ K(t)2,178

be a rational parametrization of C, where gcd(℘1, ℘2, ℘3) = 1. In general, we write the parametrization179

as P(t) = (℘1(t), ℘2(t), ℘3(t)) ∈ K[t]3. Under these conditions, we immediately get the corresponding180

projective curve defined implicitly by the homogeneous polynomial f(x ) ∈ K[x ], x = (x1, x2, x3).181

Besides implicitization, other applications of µ-bases include point inversion and singularity computation.182

The point inversion problem can be described as follows: given a point Q on a plane, decide whether or183

not the point is on a rational curve defined parametrically by P(t). In the affirmative case, compute the184

corresponding parameter value t. A singular point of the curve is a point where the tangent line is not185

unique. Singularities are critical points on a curve which help to classify the topology of the curve. Both186

point inversion and singularity computation are fundamental problems in Geometric Design. In the following187

discussion, we review efficient algorithms to compute point inversion and singular points of parametric curves188

by using µ-bases.189

First we need to introduce some additional prior concepts. Associated with the parametrization P(t), we190

consider the induced rational map φP : K −→ C ⊂ K2; t 7−→ P(t). We denote by deg(φP) the degree of the191

rational map φP (for further details see e.g. [20] pp.143, or [11] pp.80). As an important result, we recall192

that the birationality of φP , i.e. the properness of P(t), is characterized by deg(φP) = 1 (see [11] and [20]).193

Also, we recall that the degree of a rational map is the cardinality of the fibre of a generic element (see194

Theorem 7, pp. 76 in [20]). Intuitively, the degree measures the number of times the parametrization traces195

the curve when the parameter takes values in K. Finally, we denote by FP(Q) the fibre of a point Q on the196

given curve; that is FP(Q) = P−1(Q) = {t ∈ K | P(t) = Q}, where the values are counted with multiplicity197

(see e.g. [18], [19]).198

Given P(t) a rational parametrization of an algebraic curve C, and p(t), q(t) a µ-basis for P(t) with199

deg(p) ≤ deg(q), we consider the polynomials200

pP(t, x ) = p(t) ·Q ∈ K[t, x ], qP(t, x ) = q(t) ·Q ∈ K[t, x ], x = (x1, x2, x3)201

and202

GP(t, x ) = gcd(pP(t, x ), qP(t, x )) ∈ K[t, x ],203
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where Q = (x1, x2, x3) is a generic point on the curve.204

The computation of GP(t, x ) for a generic point Q = (x1, x2, x3) can be done in two different ways.205

First, one may assume that the implicit equation of the curve is known. We use the implicit equation of the206

curve to carry out the arithmetic over K(C) (where K(C) denotes the quotient field of rational functions of207

the curve C). Note that, since I(C) = 〈f〉 (where I(C) denotes the ideal of C), basic arithmetic on K[C] can208

be carried out by computing polynomial remainders. Therefore the quotient field K(C) is computable. In209

addition, note that we compute resultants of polynomials in K(C)[t] that is a UFD, and we also calculate210

GCDs of univariate polynomials over K(C), and hence in a Euclidean domain. The second way avoids the211

requirement on the implicit equation. For this purpose, elements are represented (not uniquely) as functions212

of polynomials in the variables x1, x2, x3. In order to check zero equality one may use the parametrization.213

However, this can be too time consuming. One may, for instance, test zero–equality by substituting a214

random point on the curve. The result of this zero test is correct with probability almost one. In addition,215

one may also test the correctness of the computation of the inverse by checking it on a randomly chosen216

point on the curve. Hence we can avoid computing the implicit equation.217

Proposition 1. (see [4] and [7]) The inversion formula of a particular point Q0 = (x0, y0, z0) on the curve218

is given by the roots of the polynomial GP(t) = gcd(pP(t), qP(t)) ∈ K[t], where pP(t) = p(t) ·Q0, qP(t) =219

q(t) · Q0. In particular, if Q is not on the curve, GP(t) is a nonzero constant polynomial. In addition,220

if P(t) is proper, then for a generic point Q = (x1, x2, x3) on the curve, degt(G
P(t, x )) = 1 and solving221

GP(t, x ) = 0 w.r.t the variable t, we get the inverse of P(t).222

Based upon proposition 1, one can decide whether or not a point is on a parametric curve and, in the223

affirmative case, the multiplicity of the point and the corresponding parameter values (i.e. the set FP(Q)).224

Furthermore, we may compute deg(φP) (apply the same reasoning as in [19]; see also [18]).225

Proposition 2. For a particular point Q0 = (x0, y0, z0) ∈ C,226

FP(Q0) = P−1(Q0) = {t ∈ K |GP(t) = Q0}.227

In addition, for a generic point of the form Q = (℘1(s), ℘2(s), ℘3(s)),228

deg(φP) = Card(FP(P(s))) = degt(G
P(t, s)).229

Remark 1. If Q = (℘1(s), ℘2(s), ℘3(s)) then,230

GP(t, s) = gcd(pP(t, s), qP(t, s)) ∈ K[t, s],231

where pP(t, s) = p(t) · P(s), qP(t, s) = q(t) · P(s).232

When the point Q is not given exactly, the above method fails. In this case, techniques for computing233

approximate GCD such as [2], [6] and [9], can be applied to compute the approximate inversion formula (see234

e.g. [23, 24]).235

In [3], we show that, given a rational proper parametrization, P(t), the multiplicity of a given point, Q0,236

is the cardinality of the fibre of P(t) at Q0. That is, the multiplicity of Q0 = P(s0), s0 ∈ K, is given by the237

cardinality of the set238

FP(P(s0)) = {t ∈ K : P(t) = P(s0)}.239

Observe that s0 ∈ FP(P(s0)) and hence, the cardinality of FP(P(s0)) is greater than or equal to 1. Thus,240

P(s0) is a singular point if and only if the cardinality of FP(P(s0)) is greater than 1. In fact, the multiplicity241

of P(s0) is the cardinality of FP(P(s0)).242
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Example 1. Let C be the rational curve defined by the parametrization243

P(t) = (t3 − t2 − 1− t4, 2t3 − 1, t3 + t2 + 1− t) ∈ K[t]3.244

First, we compute the polynomials245

246

pP(t, x ) = p(t) · x = (4 + t)x1 + (−t2 − 2− t)x2 + (3t2 + 2 + 2t)x3,247

248

qP(t, x ) = q(t) · x = −43tx1 + (−13t2 − 14 + 39t)x2 + (−14− 18t− 17t2)x3,249

250

where the µ-basis is given as251

p(t) = (4 + t,−t2 − 2− t, 3t2 + 2 + 2t), q(t) = (−43t,−13t2 − 14 + 39t,−14− 18t− 17t2).252

Now, we determine GP(t, x ) (see paragraph before Proposition 1). We obtain253

GP(t, x ) = (14x1x2 − 13x22 + 36x2x3 − 28x1x3 − 5x23)t+ (13x1x2 − 3x22 − 9x2x3 + 17x1x3 − 2x23).254

Since degt(G
P) = 1, we conclude that P is proper and the inverse is given as255

I(x ) =
−(13x1x2 − 3x22 − 9x2x3 + 17x1x3 − 2x23)

14x1x2 − 13x22 + 36x2x3 − 28x1x3 − 5x23
∈ K[x ].256

3.2. Proper Reparametrization257

We aim to compute a proper reparametrization for an improper algebraic curve using a µ-basis. This258

problem has been solved using alternative techniques such as resultants, Gröbner bases, numerical methods259

(see e.g. [16], [17], [23]), but the method presented in this paper is a new contribution and very novel.260

In the following algorithm, we compute a rational proper reparametrization of an improperly parametrized261

algebraic plane curve. First we outline this approach, then we illustrate it with an example, and finally we262

provide a proof of correctness after the example.263

Algorithm 2 (Proper Reparametrization for Curves using µ-Basis).264

Input a rational parametrization P(t) = (℘1(t), ℘2(t), ℘3(t)) of a plane algebraic curve C.265

Output a rational proper parametrization Q(t) of C, and a rational function R(t) such that P(t) = Q(R(t)).266

Steps267

1. Compute a µ-basis of P. Let p(t), q(t) be this µ-basis.268

2. Compute pP(t, s) = p(t) · P(s), qP(t, s) = q(t) · P(s).269

3. Determine the polynomial GP(t, s) = gcd(pP(t, s), qP(t, s)) = Cm(t)sm + · · · + C0(t). Let m :=270

degt(G
P(t, s)).271

4. If m = 1, then return Q(t) = P(t), and R(t) = t. Otherwise go to Step 5.272

5. Consider a rational function R(t) = Ci(t)
Cj(t)

∈ K(t), such that Cj(t), Ci(t) are not associated polynomials273

(i.e. Cj(t) 6= kCi(t), k ∈ K).274

6. For i = 1, 2, determine the polynomials275

Li(s, xi) = resultantt(xi℘3(t)− ℘i(t), sCj(t)− Ci(t)) = (τi2(s)xi − τi1(s))deg(R).276

7. Return Q(t) = (τ11(t)/τ12(t), τ21(t)/τ22(t)) , and R(t) = Ci(t)/Cj(t).277

We shall prove below that the validity of this algorithm follows directly from Theorem 2 in Step 3,278

Theorem 3 in Step 5, and Theorems 4 and 5 in Step 6. Step 4 is derived from previous results (see [17] or279

[19]). In the following example, we illustrate Algorithm 2 with an example.280
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Example 2. Let C be the rational curve defined by the parametrization281

P(t) = (3t4 + 3t2 + 1− t7 − 2t5 − t3 − t9 − t8,282

283

−(t3 − t2 − 1)(t6 + 2t5 + 2t4 + 2t3 + 4t2 + 2), t6 + 6t4 + 6t2 + 2 + t7 + 2t5 + t3 + t9 − t8).284

In Step 2 of the algorithm, we compute the polynomials285

286

pP(t, s) = (2 s6 − 8 s5 − 11 s4 − 8 s3 − 22 s2 − 11)(−t+ s)(s2t2 + s2 + ts+ t2),287

288

qP(t, s) = (−t+s)(s2t2 +s2 + ts+ t2)(86 s6t3 +35 s6t2 +89 s5t3 +20 s6t+293 s5t2−40 s4t3 +63 s6−80 s5t+289

457 s4t2 + 89 s3t3 + 181 s5−110 s4t+ 293 s3t2−80 s2t3 + 303 s4−80 s3t+ 914 s2t2 + 181 s3−220 s2t−40 t3 +290

606 s2 + 457 t2 − 110 t+ 303),291

292

where the µ-basis is293

294

p(t) =

 −7 t3 + 16 t2 + 16
8 t3 − 13 t2 − 13
t3 + 5 t2 + 5

T

295

296

q(t) =

 132 t6 + 349 t5 − 656 t4 + 411 t3 − 948 t2 + 160 t− 362
−89 t6 − 419 t5 + 502 t4 − 437 t3 + 662 t2 − 130 t+ 240

43 t6 + 16 t5 − 119 t4 + 80 t3 − 188 t2 + 50 t− 59

T

.297

298

Now we determine GP(t, s),299

GP(t, s) = C0(t) + C1(t)s+ C2(t)s2 + C3(t)s3,300

where C0(t) = −t3, C1(t) = 0, C2(t) = −t3, and C3(t) = (t2 + 1).301

302

Since m := degt(G
P) > 1, we go to Step 5 of Algorithm 2, and we consider303

R(t) =
C3(t)

C0(t)
=
−1− t2

t3
.304

Note that gcd(C0, C3) = 1. Now we determine the polynomials305

L1(s, x1) = resultantt(x1℘3(t)− ℘1(t), sC0(t)− C3(t)) = (−1 + s− s2 − s3 − x1 − sx1 − s2x1 + 2s3x1)3,306

307

L2(s, x2) = resultantt(x2℘3(t)− ℘2(t), sC0(t)− C3(t)) = (−1 + s− 2s3 − x2 − sx2 − s2x2 + 2s3x2)3.308

Finally, in Step 7, Algorithm 2 outputs the proper parametrization Q(t), and the rational function R(t)309

Q(t) =
(
1− t+ t2 + t3, 1− t+ 2t3,−1− t− t2 + 2t3

)
, R(t) =

−1− t2

t3
.310

Before we can provide the theorems that establish the validity of Algorithm 2, we first introduce two311

technical lemmas, Lemma 3 and Lemma 4, that can be found in [14] and [16].312

Lemma 3. Let P, Q ∈ (K[s])[t] \ K be polynomials over K[s] with degt(P ) = m, and degt(Q) = n. Let313

R(t) = M(t)/N(t) ∈ K(t) be a non–constant rational function in reduced form, such that degt(M − βN) =314

degt(R) for every root β for the unknown t of the polynomial P (t, s)Q(t, s). Let P ′(t, s) = P (R(t), s)N(t)m,315

and Q′(t, s) = Q(R(t), s)N(t)n. If a, b are the leading coefficient of Q′ and Q w.r.t the variable t, then316

resultantt(P
′, Q′) =

am(deg(R)−deg(N))

bdeg(R)m
· resultantt(P,Q)deg(R) · resultantt(Q

′, N)m.317
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Remark 2. Observe that if the polynomial P (t, s)Q(t, s) does not have factors in K[t], then every root β318

for the unknown t of the polynomials P (t, s)Q(t, s) is in the algebraic closure of K(s) which implies that319

degt(M − βN) = degt(R).320

Lemma 4. Let P,Q ∈ K[t, s]\K be polynomials such that gcd(P,Q) = 1, and let R(s) = M(s)/N(s) ∈ K(s)321

be a non–constant rational function in reduced form such that degs(M − βN) = degs(R) for every root322

β for the unknown s of the polynomial P (t, s)Q(t, s). Let P ?(t, s) = P (t, R(s))N(s)r, and Q?(t, s) =323

Q(t, R(s))N(s)l, where r := degs(P ), and l := degs(Q). Then gcd(P ?, Q?) = 1.324

By Lüroth’s Theorem, there exists a rational proper parametrization325

U(t) =

(
u1(t)

u3(t)
,
u2(t)

u3(t)

)
∈ K(t)2326

of C, gcd(u1, u2, u3) = 1 such that P(t) = U(B(t)), where B(t) = M(t)/N(t) ∈ K(t)\K, and gcd(M,N) = 1.327

In Lemma 5, we shall show a relation between the polynomials GU (t, s) = gcd(pU , qU ), GP(t, s) =328

gcd(pP , qP) and the rational function B(t). Recall that pU (t, s) = p̃(t) · U(s), qU (t, s) = q̃(t) · U(s), and329

p̃(t), q̃(t) is a µ-basis for U(t) with deg(p̃) ≤ deg(q̃). Observe that since U is a proper parametrization,330

GU (t, s) = t − s (see [17], [18] or [19]). Furthermore, pP(t, s) = p(t) · P(s), qP(t, s) = q(t) · P(s), where331

p = p̃(B(t))N(t)deg(p̃), q = q̃(B(t))N(t)deg(q̃) is a µ-basis for P(t) with deg(p) ≤ deg(q) (see Lemma 2).332

Denote by m1 = degt(p
U ), m2 = degt(q

U ) (note that mj ≥ 1). From P(t) = U(B(t)) and using Lemma 2,333

we deduce that334

pP(t, s) = pU (B(t), B(s))N(t)m1N(s)m1 , qP(t, s) = qU (B(t), B(s))N(t)m2N(s)m2 .335

Then,336

GP(t, s) = gcd(pP(t, s), qP(t, s)) = gcd(pU (B(t), B(s))N(t)m1N(s)m1 , qU (B(t), B(s))N(t)m2N(s)m2).
(2)337

On the other hand, since GU (t, s) = gcd(pU (t, s), qU (t, s)), we can write that338

pU (t, s) = GU (t, s)AU1 (t, s), qU (t, s) = GU (t, s)AU2 (t, s),339

where AUj ∈ K[t, s], j = 1, 2 and gcd(AU1 , A
U
2 ) = 1.340

Lemma 5. GP(t, s) = (N(s)M(t)−M(s)N(t))·341

gcd(AU1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU2 (B(t), B(s))N(t)m2−1N(s)m2−1).342

Proof. First, we observe that since U is a proper parametrization, degt(G
U ) = 1 which implies that343

degt(A
U
j ) = mj − 1 (note that mj ≥ 1). Moreover, the polynomials AUj do not have factors in K[t] or344

in K[s]. Indeed, let us assume that K(t) ∈ K[t] is a factor of the polynomial AUj . Then K(t) is a factor of345

the polynomials pU , qU which is impossible since p̃ and q̃ are K[t]-linearly independent. Similarly we reason346

there is no factor in K[s] since gcd(u1(s), u3(s)) = gcd(u2(s), u3(s)) = 1.347

Under these conditions, and taking into account that up to constants in K? := K \ {0}, GU (t, s) = t− s,348

we get349

pU (B(t), B(s))N(t)m1N(s)m1 = GU (B(t), B(s)) ·AU1 (B(t), B(s)) ·N(t)m1N(s)m1 =350
351

(N(s)M(t)−M(s)N(t)) ·AU1 (B(t), B(s)) ·N(t)m1−1N(s)m1−1.352

Similarly,353

qU (B(t), B(s))N(t)m2N(s)m2 = GU (B(t), B(s)) ·AU2 (B(t), B(s)) ·N(t)m2N(s)m2 =354
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355

(N(s)M(t)−M(s)N(t)) ·AU2 (B(t), B(s)) ·N(t)m2−1N(s)m2−1.356

Therefore, from (2), we deduce that GP(t, s) = (N(s)M(t)−M(s)N(t))·357

gcd(AU1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU2 (B(t), B(s))N(t)m2−1N(s)m2−1).358

359

Let K? := K \ {0}. We have the following lemma.360

Lemma 6. Up to constants in K?,361

gcd(AU1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU2 (B(t), B(s))N(t)m2−1N(s)m2−1) = 1.362

Proof. The statement of this lemma is equivalent to proving that R(s) 6= 0, where363

R(s) := resultantt(A
U
1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU2 (B(t), B(s))N(t)m2−1N(s)m2−1).364

For this purpose, first note that if mj = 1 for some j, then AUj ∈ K?, so the above statement follows trivially.

Let us assume that mj ≥ 2, which implies that degt(A
U
j ) = mj − 1 ≥ 1. Under these conditions, we apply

Lemma 3 to

P (t, s) := AU1 (t, B(s))N(s)m1−1, Q(t, s) := AU2 (t, B(s))N(s)m2−1, and R(t) = B(t).

We observe that since the polynomials AUj (t, s) do not have factors in K[t], then AUj (t, B(s))N(s)mj−1 do365

not have factors in K[t], which implies that degt(M − βN) = degt(B) for every root β for the unknown t of366

P ·Q (see Remark 2). Hence, from Lemma 3, we deduce that367

R(s) = λ · resultantt(P,Q)deg(B) · resultantt(A
U
2 (B(t), B(s))N(t)m2−1N(s)m2−1, N(t))(m1−1),368

where λ := a(m1−1)(deg(B)−deg(N))

b(m1−1)deg(B) 6= 0, and a and b are the leading coefficients ofAU2 (B(t), B(s))N(t)m2−1N(s)m2−1369

and Q(t, s) w.r.t the variable t. Under these conditions, we first observe that resultantt(P,Q) 6= 0, since370

gcd(AU1 (t, s), AU2 (t, s)) = 1, which implies that gcd(P,Q) = 1 (see Lemma 4). Furthermore, we also have371

that372

resultantt(A
U
2 (B(t), B(s))N(t)m2−1N(s)m2−1, N(t)) 6= 0.373

Indeed, let AU2 (t, s) := am2−1(s)tm2−1 + · · ·+ a0(s). Then,374

AU2 (B(t), B(s))N(t)m2−1N(s)m2−1 = a′m2−1(s)M(t)m2−1 + · · ·+ a′0(s)N(t)m2−1.375

Taking into account that gcd(M,N) = 1, we deduce that gcd(AU2 (B(t), B(s))N(t)m2−1N(s)m2−1, N(t)) =376

1. Therefore, we derive that R(s) 6= 0.377

By Lemmas 5 and 6, we can conclude the following theorem.378

Theorem 2. Up to constants in K?, GP(t, s) = N(s)M(t)−M(s)N(t).379

In the following results, we express the polynomialsN, M defining the rational functionB(t) = M(t)/N(t)380

as M(t) = amt
m + · · ·+ a0, N(t) = bmt

m + · · ·+ b0, where ai, bi ∈ K and am 6= 0 or bm 6= 0. By Theorem 2,381

we deduce that, up to constants in K?,382

GP(t, s) = Cm(t)sm + Cm−1(t)sm−1 + · · ·+ C0(t),383

where Cj(t) = ajN(t) − bjM(t), for j = 0, . . . ,m. Under these conditions, we have the following theorem384

which is proved in [16].385
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Theorem 3. The following statements are equivalent: 1.) ajbi 6= aibj. 2.) gcd(Cj , Ci) = 1. 3.) Cj(t), Ci(t)386

are not associated polynomials (i.e. Cj(t) 6= kCi(t), k ∈ K). Moreover, if gcd(M, N) = 1, there exist387

aj , bj , ai, bi ∈ K such that ajbi 6= aibj.388

Let H(t, s) = Dm(t)sm + Dm−1(t)sm−1 + · · · + D0(t) ∈ (K[t])[s] (we think of H(t, s) as a polynomial389

in the variable s with coefficients in K[t]) be such that there exist i, j ∈ {0, . . . ,m} with gcd(Di, Dj) = 1,390

and Di ∈ K[t] \ K or Dj ∈ K[t] \ K. Then by Theorem 3, we may write H(t, s) = M(t)N(s) −M(s)N(t)391

(M(t), N(t) ∈ K[t] are not both constant and gcd(M,N) = 1) if and only if Di(t)Dj(s) − Di(s)Dj(t) =392

cH(t, s), with c ∈ K?.393

Taking into account these results, we consider the rational function394

R(t) =
Ci(t)

Cj(t)
=
aiN(t)− biM(t)

ajN(t)− bjM(t)
∈ K(t) \K, i 6= j,395

where aibj 6= ajbi, and Ci, Cj are coefficients of the polynomial GP(t, s) = Cm(t)sm +Cm−1(t)sm−1 + · · ·+396

C0(t). Under these conditions, we have the following theorem.397

Theorem 4. There exists a proper parametrization Q(t) of the curve C satisfying P(t) = Q(R(t)).398

Proof. First, note that we may express R(t) = g(B(t)), where g(t) = (bit− ai)/(bjt− aj). Since ajbi 6= aibj399

(see Theorem 3), we get that g(t) is invertible. Then we consider Q = U(g−1), and we prove that Q is a400

proper parametrization of C. Indeed:401

Q(R(t)) = U(g−1(t)) ◦R(t) = U(g−1(t)) ◦ g(B(t)) = U(B(t)) = P(t),402

so Q parametrizes C. In addition, since U and g are invertible, we get that Q = U(g−1) is proper.403

Once the rational function R(t) = r1(t)/r2(t), with gcd(r1, r2) = 1, is computed, one has to determine404

the proper rational parametrization Q(t) ∈ K(t)2 of the curve C, satisfying P = Q(R) (note that Q exists405

by Theorem 4). For this purpose, one may use the method of undetermined coefficients as in [10] or [17], or406

the following theorem where we establish an alternative method based on univariate resultants that provides407

running times more satisfactory than the known algorithms (see [16]).408

Theorem 5. For i = 1, 2, let Li(s, xi) = resultantt(xi℘3(t)−℘i(t), sr2(t)− r1(t)). Then, up to constants in409

K?, Li(s, xi) = (τi2(s)xi− τi1(s))deg(R), and Q(s) = (τ11(s)/τ12(s), τ21(s)/τ22(s)) is the proper parametriza-410

tion, in reduced form, given by Theorem 4.411

3.3. Alternative Proper Reparametrization412

In Algorithm 2, we compute a proper reparametrization using a µ-basis without caring about the proper-413

ness of the µ-basis. Using the fact that p(t) = p̃(R(t)), q(t) = q̃(R(t)), where P(t) = Q(R(t)) (see414

Lemma 2), in the following discussion we show that we can recover the µ-basis p̃, q̃, and compute the415

proper reparametrization Q(t) = p̃(t)× q̃(t) from the properties of µ-bases.416

We observe that in this case, using p̃, q̃, we can get the implicit equation of the given curve as417

resultantt(p
Q(t, x ), qQ(t, x )) = 0 (see property 10 of Theorem 1).418

We start with the following technical lemma.419

Lemma 7. Let p(t), q(t),deg(p) ≤ deg(q) be a µ-basis for P(t) = Q(R(t)), where R(t) ∈ K(t) \K, and let420

p̃(t), q̃(t),deg(p̃) ≤ deg(q̃) be a µ-basis for Q(t). Then,421

1. if 0 < deg(p) < deg(q), then p(t) = kp̃(R(t)) where k is a nonzero constant.422
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2. if 0 < deg(p) = deg(q), then (p q)T =

(
α1 α2

β1 β2

)
(p̃(R(t)) q̃(R(t)))T , where

(
α1 α2

β1 β2

)
is a423

nonsingular constant matrix.424

Proof. These statements can be derived from Lemma 1.425

Remark 3. 1. For the degenerate case where deg(p) = 0, i.e. p = (k1, k2, k3) is a nonzero constant426

vector, the parametrization P(t) defines a line k1x1 + k2x2 + k3x3 = 0. Thus one can always easily427

write a proper parametrization. Hence we shall assume deg(p) > 0.428

2. To simplify our notation, we write p1 = p2 instead of p1 = kp2 if k is a nonzero constant, since we429

consider these functions in homogenous form.430

3. Since

(
α1 α2

β1 β2

)
(p̃ q̃)T is still a mu-basis for Q, statement 2 can be written as: there exists a431

µ-basis p̃, q̃ for Q(t) such that p = p̃(R(t)), q = q̃(R(t)).432

Given P(t) and its µ-basis, p(t), q(t),deg(p) ≤ deg(q), one can find the rational function R(t) by433

Theorem 2 (see Steps 2-5 in Algorithm 2). By Lemma 7, there exists p̃ such that deg(p̃) = deg(p)/deg(R)434

and p(t) = p̃(R(t)). Set p̃ to be a polynomial vector with undetermined coefficients. Then we get a linear435

system by comparing the coefficients with respect to the variable t of p(t) = p̃(R(t)). Solving this linear436

system, we get p̃.437

In order to find q̃, we note that q̃(R(t)) comes from the µ-basis p = p̃(R), q = q̃(R) of P(t). Thus, by the438

definition of a µ-basis, q̃(R(t)) = h1(t)p(t) + h2(t)q(t), where h1(t), h2(t) ∈ K[t], and deg(q̃(R)) = deg(q)439

(by the uniqueness of the degree of a µ-basis). Note that440

k1P = p̃(R)× q̃(R) = p× (h1(t)p + h2(t)q) = p× h2(t)q = k2h2(t)P,441

where k1, k2 are nonzero constants. So h2(t)k2 = k1 which implies that h2(t) must be a constant. Thus, we442

have443

q̃(R) = h1(t)p + q, deg(h1) + deg(p) ≤ deg(q̃(R)).444

Taking into account that deg(P) = deg(p̃(R)) + deg(q̃(R)) = deg(p) + deg(q̃(R)), we get that deg(h1) ≤445

deg(P) − 2 deg(p). Therefore, by setting q̃ and h1(t) to have undetermined coefficients and deg(h1) ≤446

deg(P) − 2deg(p), deg(q̃) = deg(q)/deg(R), we can solve for q̃ and h1(t) from the linear system derived447

from q̃(R) = h1(t)p + q.448

Finally recall that we are considering the µ-basis and the parametrizations in homogeneous form. There-449

fore, the equalities to solve, p = p̃(R), q̃(R) = h1p + q, have to be considered over the projective space of450

parameters. That is451

p(t) = p̃(r1(t), r2(t)), q̃(r1(t), r2(t)) = h1(t)p(t) + q(t).452

Based on the above discussion, here we give an alternative proper reparametrization algorithm to Algo-453

rithm 2. In addition, we illustrate this algorithm with an example.454

Algorithm 3 (Alternative Proper Reparametrization for Curves using µ-Bases).455

Input a rational parametrization P(t) = (℘1(t), ℘2(t), ℘3(t)) of a plane algebraic curve C.456

Output a rational proper parametrization Q(t) of C, and a rational function R(t) such that P(t) = Q(R(t)).457

Steps458

1. Compute a µ-basis p(t),q(t),deg(p) ≤ deg(q) of P(t).459

2. Compute R(t) = r1(t)/r2(t) applying Steps 2-5 of Algorithm 2.460

3. Compute a µ-basis, p̃, q̃, of Q(t) using p,q and R(t) as follows:461

3.1. Set p̃(t) to have undetermined coefficients with deg(p̃) = deg(p)/deg(R). Consider the linear sys-462

tem generated by comparing the coefficients with respect to the variable t of p(t) = p̃(r1(t), r2(t)).463

Solving this linear system, we get p̃(t).464

12



3.2. Set q̃(t) and h1(t) to have undetermined coefficients with deg(h1) ≤ deg(P)−2 deg(p), deg(q̃) =465

deg(q)/deg(R). Consider the linear system generated by comparing the coefficients with respect466

to the variable t of q̃(r1(t), r2(t)) = h1(t)p(t) + q(t). Solving this linear system, we get q̃(t).467

4. Return Q(t) = p̃(t)× q̃(t) and R(t).468

Example 3. Let C be the rational curve considered in Example 2 and defined by the parametrization469

P(t) = (3t4 + 3t2 + 1− t7 − 2t5 − t3 − t9 − t8,470

471

−(t3 − t2 − 1)(t6 + 2t5 + 2t4 + 2t3 + 4t2 + 2), t6 + 6t4 + 6t2 + 2 + t7 + 2t5 + t3 + t9 − t8).472

We compute a µ-basis and applying Steps 2-5 of Algorithm 2, we obtain the rational function R(t) =473

(−1− t2)/t3 (reason as in Example 2).474

Now, we compute a µ-basis, p̃, q̃, of Q(t) using p,q and R(t). For this purpose, we first set p̃(t) to have475

undetermined coefficients with deg(p̃) = deg(p)/deg(R) = 3/3 = 1. Consider the linear system generated by476

comparing the coefficients with respect to the variable t of p(t) = p̃(r1(t), r2(t)). Solving this linear system,477

we get478

p̃(t) = (7 + 16t,−1 + 5t,−1 + 5t).479

Set q̃(t) and h1(t) to have undetermined coefficients with deg(h1) ≤ deg(P) − 2 deg(p) = 9 − 2 · 3 = 3,480

deg(q̃) = deg(q)/deg(R) = 6/3 = 2. Consider the linear system generated by comparing the coefficients with481

respect to the variable t of q̃(r1(t), r2(t)) = h1(t)p(t) + q(t). Solving this linear system, we get482

q̃(t) = (−132 + 349t+ 586t2,−43 + 16t+ 129t2,−43 + 16t+ 129t2).483

Finally, the algorithm outputs the proper parametrization Q(t), and the rational function R(t)484

Q(t) =
(
1− t+ t2 + t3, 1− t+ 2t3,−1− t− t2 + 2t3

)
, R(t) =

−1− t2

t3
.485

We finish this subsection by comparing our methods (Algorithms 2 and 3 presented in this subsection486

and Subsection 3.2) with the methods in [10], [16] and [17].487

In [16] a comparative discussion of the existing methods that solve the proper reparametrization problem488

for the case of plane curves is presented. We compare our algorithms to the algorithm in [17] (A1), the489

algorithm in [10] (A2), and the proper reparametrization algorithm presented in [16] (A3).490

Algorithm A1 is heuristic, and the other two algorithms, A2 and A3, are deterministic. A1 finds the491

rational function R(t) by computing several GCDs, and solving some linear systems of equations. Algorithms492

A2 and A3 require only computing a GCD. However, the GCD computed by A3 is more general, and allows493

one to determine the rational function R(t) simply by choosing two of the coefficients of the GCD. In the494

case of A1, evaluations and computations of solutions of some linear systems of equations generated from the495

parametrization are required, and therefore A1 is not as direct as A2 and A3. In order to compute the proper496

rational parametrization Q(t), algorithm A3 is much better since A3 computes a simple univariate resultant497

whereas algorithms A1 and A2 solve the problem by means of the method of undetermined coefficients.498

In the algorithms proposed here, the computation of the rational function R(t) is also done by means of a499

GCD whose computational complexity in general is O(n2) (see [1, 2]). But the polynomials used to compute500

the GCD are of smaller degree than those used in A3. However, first one needs to compute a µ-basis whose501

computational complexity is also O(n2) (see [4, 8]). Then the complexity and efficiency of Algorithm 2 is502

similar to the algorithm presented in A3, since the computation of Q(t) is carried out using the method503

presented in A3. In Algorithm 3, avoiding the resultant computations of Q(t), we solve an expected µ-basis504

p̃, q̃ for Q(t) by solving a linear system and then computing Q(t) = p̃ × q̃. Notice that the degrees of p̃505

and q̃ are given exactly and smaller than in the other methods. One more advantage of Algorithm 3 is506

that we can easily get the implicit equation of the given curve as the resultantt(p
Q(t, x ), qQ(t, x )) = 0 (see507

property 10 of Theorem 1 and Example 4).508
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3.4. Implicitization509

A µ-basis provides a compact representation for the implicit equation of the rational curve parametrized510

by P(t), with deg(P) = n. In fact, the Bézout resultant of pP(t, x ), qP(t, x ) with respect to t gives the511

implicit equation of P(t) expressed as a determinant of size (n−µ)× (n−µ) (see e.g. [13]). For the generic512

case with µ = n/2, the size of the determinant computed from a µ-basis is half of the size of the determinant513

computed by the classical method. In this regard, a µ-basis serves as a bridge to connect the parametric514

form and the implicit form of a rational parametric curve. All the above properties hold for improperly515

parameterized curves, except that the resultant gives the implicit equation to some power. The power is516

deg(R) if P = Q(R), where Q is a proper parametrization of the given curve, and deg(R) is in fact deg(φP)517

(compare with [18, 19] and [25]). This fact is proved with subtle algebraic analysis in [7]. In the following518

theorem, we give a simple proof based on the properties of µ-bases and resultants.519

Theorem 6. Let p(t), q(t) be a µ-bases for the rational curve C defined by P(t) with deg(p) ≤ deg(q).520

Then521

resultantt(p
P(t, x ), qP(t, x )) = f(x )deg(φP),522

where f(x ) is the defining polynomial of the curve C, and pP(t, x ) = p(t) · x , qP(t, x ) = q(t) · x .523

Proof. From Lüroth’s Theorem it is well known that there exists R(t) = r1(t)/r2(t) ∈ K(t) \ K such that524

P = Q(R), where Q is a proper parametrization of C. In addition, from Lemma 2, p(t) = p̃(R(t)), q(t) =525

q̃(R(t)) is a µ-basis for P(t) with deg(p) ≤ deg(q), where p̃, q̃ is a µ-basis for Q, with deg(p̃) ≤ deg(q̃).526

Since Q is proper, from property 10 of Theorem 1,527

resultantt(p
Q(t, x ), qQ(t, x )) = f(x ),528

where pQ(t, x ) = p̃(t) · x , qQ(t, x ) = q̃(t) · x . Note that by the properties of resultants (see e.g. Appendix529

in [18]),530

f(x ) = resultantt(p
Q(t, x ), qQ(t, x )) = Ar

∏
U( x ) ∈ L

pQ(U( x ), x ) = 0

qQ(U(x ), x ),531

where L denotes the algebraic closure of K(x ), A is the leading coefficient of pQ(t, x ) w.r.t. t and r :=532

degt(q
Q). Similarly,533

resultantt(p
P(t, x ), qP(t, x )) = Bs

∏
V ( x ) ∈ L

pP(V ( x ), x ) = 0

qP(V (x ), x ),534

where B is the leading coefficient of pP(t, x ) w.r.t. t and s := degt(q
P). Since p(t) = p̃(R(t)), q(t) =535

q̃(R(t)),536

resultantt(p
P(t, x ), qP(t, x )) = Bs

∏
V ( x ) ∈ L

pQ(R(V ( x )), x ) = 0

qQ(R(V (x )), x ).537

Then V (x ) = R−1(U(x )) and thus538

resultantt(p
P(t, x ), qP(t, x )) = Bs

∏
V ( x ) ∈ L

R(V ) = U, pQ(U( x ), x ) = 0

qQ(U(x ), x )deg(R).539

Hence540

resultantt(p
P(t, x ), qP(t, x )) = f(x )deg(R) = f(x )deg(φP).541

542
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Note that as an alternative to the approach in Theorem 6, we can find p̃(t) and q̃(t) from Algorithm 3543

and compute the implicit equation from a resultant with smaller size.544

Example 4. Let C be the rational curve introduced in Example 2 defined by the parametrization545

P(t) = (3t4 + 3t2 + 1− t7 − 2t5 − t3 − t9 − t8,546

547

−(t3 − t2 − 1)(t6 + 2t5 + 2t4 + 2t3 + 4t2 + 2), t6 + 6t4 + 6t2 + 2 + t7 + 2t5 + t3 + t9 − t8).548

We determine the polynomials pP(t, x ) = p(t) · x , qP(t, x ) = q(t) · x , where the µ-basis is computed in549

Example 2. Now we get550

551

resultantt(p
P(t, x ), qP(t, x )) = (102x31−265x2x

2
1+237x22x1−73x32+98x3x

2
1−164x2x1x3+70x22x3+23x23x1−552

18x2x
2
3 + 2x33)3.553

554

Thus Theorem 6 holds (note that in Example 2, we get that deg(R) = deg(φP) = 3) and555

556

f(x ) = 102x31 − 265x2x
2
1 + 237x22x1 − 73x32 + 98x3x

2
1 − 164x2x1x3 + 70x22x3 + 23x23x1 − 18x2x

2
3 + 2x33.557

Alternatively, we can use the polynomials pQ(t, x ) = p̃(t) · x , qQ(t, x ) = q̃(t) · x , where p̃(t), q̃(t) is558

the µ-basis given in Example 3 (see property 10 of Theorem 1). Then one gets559

resultantt(p
Q(t, x ), qQ(t, x )) = −433f(x).560

4. Conclusion561

We study the µ-bases of improper rational planar curves. Two proper reparametrization algorithms are562

given based on µ-bases. The theoretical complexities of the proposed methods are similar to the current563

best method [16]; however, the results are essential to the theoretical completeness of the theory of µ-bases.564

In addition, one can get additional benefits from µ-bases. In summary, we provide an interchange graph for565

the rational curves that are not necessarily proper (see Figure 1). The red parts can be found in previous566

works while the blue parts are proposed in this paper.567

Inversionp̃, q̃p , q

Q(t)

ffdeg(φP )

P(t)

deg(φP)

Figure 1: A µ-basis serves as a bridge for a planar curve

We show how µ-bases allow us to compute the inversion formula for a given proper parametrization P(t)568

of an algebraic curve. If P(t) is not proper, we show how the degree of the rational map induced by P(t) can569

be computed as well as the elements of the fibre. Directly from P(t), we propose a method to find a µ-basis570

for a proper reparametrization Q(t). Finally, we show how the µ-basis of a given improper parametrization571

also allows us to compute the implicit equation of a given curve. More precisely it is shown that the Bézout572
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resultant of pP(t, x ), qP(t, x ), with respect to t gives the implicit equation of P(t) to the power deg(R),573

where P(t) = Q(R(t)) and Q(t) is a proper parametrization of the given curve. We can also compute the574

implicit equation from the µ-basis constructed for Q(t).575

Our methods can be generalized to rational curves in arbitrary dimensions, since the study of proper576

reparametrization still deals with one variable. The papers [12, 26] focus on applications of µ-basis for general577

proper rational curves in arbitrary dimensions. They generalize the µ-basis algorithm for the parametric578

forms whose coordinators having common factors. Combining our results with those in [12, 26], we could579

attempt to compute the µ-basis for a general rational curve in arbitrary dimensions, not necessarily proper,580

with the coordinate functions having common factors. In this case there will be some additional interesting581

properties that will require further study, so we leave these problems for future research.582

Acknowledgements583

This work has been partially supported by FEDER/Ministerio de Ciencia, Innovación y Universidades-584

Agencia Estatal de Investigación/MTM2017-88796-P (Symbolic Computation: new challenges in Algebra585

and Geometry together with its applications), Beijing Natural Science Foundation under Grant Z190004586

and NSFC under Grant 61872332, 11731013. The first author belongs to the Research Group ASYNACS587

(Ref. CT-CE2019/683). We are grateful to the anonymous referees for the valuable suggestions and, in588

particular, for the careful grammar checking.589

References590

[1] Belhaj S., Kahla H. B. (2013). On the complexity of computing the GCD of two polynomials via Hankel matrices. ACM591

Communications in Computer Algebra, 46(3/4), 74-75.592

[2] Bini D. A., Boito P. (2010). A Fast Algorithm for Approximate Polynomial GCD Based on Structured Matrix Computa-593

tions. Numerical Methods for Structured Matrices and Applications: The Georg Heinig Memorial Volume, 155-173.594
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[23] Shen L., Pérez-Dı́az S. (2015). Numerical Proper Reparametrization of Parametric Plane Curves. Journal of Computa-632

tional and Applied Mathematics, 277, 138-161.633
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