

Universidad de Alcalá

Escuela Politécnica Superior

Grado en Ingeniería en Sistemas de Telecomunicación

Trabajo Fin de Grado

Evaluation of Channel Coding Methods for Next Generation

Mobile Communication Standards

Autor: Xiaoshen Li

Tutor/es: Francisco Javier Escribano Aparicio

2021

UNIVERSIDAD DE ALCALÁ

Escuela Politécnica Superior

Grado en Ingeniería en Sistemas de

Telecomunicación

Trabajo Fin de Grado

Evaluation of Channel Coding Methods for Next

Generation Mobile Communication Standards

Autor: Xiaoshen Li

Tutor: Francisco Javier Escribano Aparicio

TRIBUNAL:

Presidente: José Antonio Portilla Figueras

Vocal 1º: Fernando Cruz Roldán

Vocal 2º: Francisco Javier Escribano Aparicio

FECHA: 21 / 09 / 2021

Contents

1. Introduction .. 1

2. Historical background of mobile communication systems and channel coding 2

2.1 The evolution of mobile communication systems 2

2.1.1 The First Generation (1G) of Mobile Telecommunications 2

2.1.2 The Second Generation (2G) of Mobile Telecommunications 3

2.1.3 The Third Generation (3G) of Mobile Telecommunications 5

2.1.4 The Fourth Generation (4G) of Mobile Telecommunications 6

2.1.5 The Fifth Generation (5G) of Mobile Telecommunications 7

2.2 Channel coding .. 8

2.2.1 Convolutional Codes ... 8

2.2.2 Turbo codes .. 9

2.2.3 LDPC codes ... 9

2.2.4 Polar codes ... 9

3. Study of the channel coding of 5G standards ... 11

3.1 LDPC codes .. 11

3.1.1 Basic Theory .. 11

3.1.2 LDPC codes in 5G NR .. 16

3.1.3 NR LDPC coding chain ... 26

3.1.4 Conclusion .. 28

3.2 Polar Codes .. 28

3.2.1 Basic theory ... 28

3.2.2 Encoding and Decoding of Polar Codes .. 34

3.2.3 NR Polar coding chain ... 43

3.2.4 Conclusion .. 46

4. Simulation ... 47

4.1 Simulation environment and process ... 47

4.2 Results analysis ... 52

4.3 Discussion .. 57

5. Conclusion ... 59

6. References ... 60

7. Appendix: Matlab codes.. 63

7.1 Main.m ... 63

7.2 calculaZ.m .. 63

7.3 BPSK_nrldpc_sim_RM_FP.m ... 64

7.4 nrpolar_scdecode_ FP.m ... 67

7.5 nrpolar_sclistdecode_ FP.m .. 70

7.6 Turbo.m ... 75

7.6.1 helpTurboEnc.m ... 76

7.6.2 helpTurboDec.m ... 77

7.7 Sim_BLER.m ... 77

7.7.1 BLER-EbNodB total R=1/2 ... 78

7.7.2 BLER-EbNodB N=128 diferente Rate .. 79

7.7.3 BLER-EbNodB N=1024 .. 79

7.8 Sim_Time.m ... 80

7.8.1 Time R=1/3 ... 81

7.8.2 Time R=1/2 ... 82

7.8.3 Time R=5/6 ... 82

Xiaoshen Li i/89

Resumen
La codificación de canales es crucial para los sistemas de comunicación móvil, y los

sistemas de comunicación inalámbrica 5G han decidido utilizar los códigos LDPC como

esquema de codificación para sus canales de datos y los códigos Polares como esquema

de codificación para sus canales de control. Este estudio se centra en los fundamentos

de los códigos LDPC y los códigos Polares, especialmente los nuevos códigos polares,

explicando en detalle sus características de polarización y las técnicas de decodificación

recursiva. También se estudia las especificaciones de diseño relacionadas con estos dos

esquemas de codificación de canales en 5G. Mediante simulaciones, se compara el

rendimiento del nuevo esquema de codificación de canales inalámbricos 5G con el de

los códigos Turbo a diferentes longitudes de bloque y tasas de código, y se extraen

conclusiones relevantes para demostrar la aplicabilidad del esquema de codificación de

canales 5G NR.

Palabra Clave

5G NR; Codificación de canal; Códigos LDPC; Códigos Polares; Códigos Trubo.

Xiaoshen Li ii/89

Abstract

Channel coding is essential for mobile communication systems, and the 5G wireless

standardization committees decided to use LDPC codes as the coding scheme of its data

channel and Polar codes as the coding scheme of its control channel. This study focuses

on the fundamentals of LDPC codes and Polar codes, especially the emerging Polar codes,

with detailed explanations of their polarization characteristics and recursive decoding

techniques. It is also focused on the design specification related to these two channel

coding schemes in 5G. The performance of the 5G New Radio channel coding scheme is

compared with that of LTE Turbo codes at different block lengths and code rates through

simulations, and relevant conclusions are drawn to demonstrate the suitability of the

5G NR channel coding scheme.

Index Terms

5G NR; channel coding; LPDC codes; Polar codes; Turbo codes.

Xiaoshen Li iii/89

List of Figures and Tables

Figures

Figure 2-1 Evaluation of mobile telecommunication systems ... 2

Figure 2-2 The evolution of channel coding [23].. 8

Figure 3-1 Structure of codeword .. 11

Figure 3-2 Regular LDPC codes ... 12

Figure 3-3 Model of encoding and decoding process of LDPC codes 15

Figure 3-4 The structure of the Base Graph (BG) ... 19

Figure 3-5 Base Graph selection ... 20

Figure 3-6 Structure of BG1 .. 21

Figure 3-7 Non-zero elements of BG1 [33] ... 21

Figure 3-8 Structure of BG2 .. 22

Figure 3-9 Non-zero elements of BG2 [33] ... 23

Figure 3-10 The values of 𝑣𝑖, 𝑗 and submatrix A .. 24

Figure 3-11 The extended submatrix A of matrix H ... 25

Figure 3-12 BG2 (𝑯𝐵𝐺2) and its parity check matrices 𝑽𝑖, 𝑗 ... 25

Figure 3-13 The NR LDPC coding chain [16] ... 26

Figure 3-14 the interleaver model .. 27

Figure 3-15 An interleaving example [9] .. 28

Figure 3-16 B-DMC model .. 28

Figure 3-17 Basic model of Polar codes [5] .. 29

Figure 3-18 the model of a subchannel 𝑊𝑁(𝑖) ... 30

Figure 3-19 channel splitting [7] ... 31

Figure 3-20 The BSC and BEC models ... 32

Figure 3-21 An example of channel polarization in the BEC channel [36] 32

Figure 3-22 Model of the Polar codes with 𝑁 = 8 [7] ... 35

Figure 3-23 Example of the coding of Polar codes with 𝑁 = 8 38

Figure 3-24 SC decoder graph for Polar codes at block length 𝑁 = 8 [6] 40

Figure 3-25 SC and SCL algorithm over code tree [36] ... 42

Figure 3-26 The NR Polar coding chain [16] ... 43

Figure 3-27 Circular buffer design for rate matching [39] ... 44

Figure 3-28 Design of the sub-block interleaver .. 45

Figure 3-29 Sub-block interlearver pattern 𝑝(𝑖) [8] ... 45

Figure 3-30 Channel interleaver [39] .. 46

Figure 4-1 Comparisons of the source script of ‘BPSK_nrldpc_sim_FP codes.m’ with its

modified script .. 48

Figure 4-2 Comparisons of the source script of ‘nrpolar_sclistdecode_FP.m’ with its

modified script .. 49

Xiaoshen Li iv/89

Figure 4-3 Comparisons of the source script of ‘Turbo.m’ with its modified script 50

Figure 4-4 Experimental data processing and saving ... 51

Figure 4-5 AWAG+BPSK channel@ 𝑅 = 1/2, varying different block lengths 𝑁 and list

size 𝐿. .. 52

Figure 4-6 AWAG+BPSK channel@ 𝑁 = 128, varying low, medium, and high code rate

𝑅 ... 53

Figure 4-7 AWAG+BPSK channel@ 𝑁 = 1024, varying low, medium, and high code rate

𝑅 ... 54

Figure 4-8 Total encoding and decoding time@ 𝑅 = 1/3 ... 55

Figure 4-9 Total encoding and decoding time@ 𝑅 = 1/2 ... 56

Figure 4-10 Total encoding and decoding time@ 𝑅 = 5/6 ... 56

Tables

Table 2-1 The main characteristics of 1G cellular standards [10] 3

Table 2-2 The main characteristics of 2G cellular standards [10] 4

Table 2-3 The main characteristics of 3G cellular standards [10] 5

Table 2-4 The main characteristics of 4G cellular standards [1] 6

Table 2-5 The main characteristics of 5G NR cellular standards [19,22] 7

Table 3-1 Decoding algorithms [1,28] .. 13

Table 3-2 Lifting size set [8] .. 18

Table 3-3 Principal features of two BGs [8,16] ... 20

Table 3-4 The version of RVs and the corresponding initial position [34] 27

Table 4-1 Key parameters ... 47

Table 4-2 Performance comparison of LDPC codes and Polar codes@ 𝑅 = 1/2 52

Table 4-3 Performance comparison of LDPC codes and Polar codes@ 𝑁 = 128 54

Table 4-4 Performance comparison of LDPC codes and Polar codes@ 𝑁 = 1024 55

Xiaoshen Li v/89

Abbreviations and acronyms

3GPP .. 3rd Generation Partnership Project
3GPP2 ... 3rd Generation Partnership Project 2

AMPS.. Advanced Mobile Phone System

APP .. a Posteriori Probability

BCH ... Bose–Chaudhuri–Hocquenghem codes

B-DMC ... binary-input discrete memoryless channel
BEC ... Binary Erasure Channel
BF .. Bit-Flipping

BG .. Base graph

BI-AWGN .. Binary Input-Additive White Gaussian Noise

BSC .. Binary Symmetric Channel
CC ... Convolutional code

DE ... Decision Element
DECT ... Digital Enhanced Cordless Telecommunications

EDGE .. Enhanced Data rates for GSM Evolution

eMBB ... Enhanced Mobile Broadband

FDMA .. Frequency-Division Multiple Access

FEC .. Forward Error Correction

GSM ... Global System for Mobile Communications

i.i.d .. independently identically distributed

IDBP ... Iterative Decoding based on Belief Propagation

IMT ... International Mobile Telecommunications

IoT ... Internet of Things

IRA ... Irregular Repeat Accumulate Codes

IR-HARQ Incremental Redundancy-Hybrid Automatic Repeat Request
ITU .. International Telecommunication Union

ITU-R .. ITU- Radiocommunication Sector

LDPC .. low-density parity-check

LLR .. Log-Likelihood Ratio

MAP .. Maximum a Posteriori Probability

ML .. Maximum Likelihood

MLG.. Majority-Logic

mMTC ... Massive Machine Type Communications

NOMA ... Non-Orthogonal Multiple Access

NR ... New Radio

OFDMA ... Orthogonal Frequency Division Multiple Access

PDC ... Personal Digital Cellular
SC .. Successive Cancellation

SC-FDMA ... Single-Carrier Frequency Division Multiple Access

SCL... Successive Cancellation List

Xiaoshen Li vi/89

SCMA ... Sparse Code Multiple Access

SPA ... Sum-Product Algorithm

SPC ... Single Parity-Check

TBCC .. Tail-Biting Convolutional Code

UCI ... Uplink Control Information

UMTS .. Universal Mobile Telecommunications System

URLLC .. Ultra-Reliable and Low-Latency Communications

WARC ... World Administrative Radio Conference

WBF .. Weight BF

WCDMA .. Wideband Code Division Multiple Access

WiMax .. Worldwide Interoperability for Microwave Access

Xiaoshen Li 1/89

1. Introduction

With the 4G era, the experience of high-speed data and streaming media has

inspired people to imagine more possibilities for mobile communication networks. With

the development of the cloud, big data, artificial intelligence, blockchain, and a host of

other technologies, people want to create a network system that digitizes the real world,

but the old mobile communication system is not able to meet these needs, people need

a new network with a higher speed, lower latency, high reliability, so 5G was born. Like

the glue that holds these different technologies together so that they can be used in

different scenarios. Nowadays, the 5G era has arrived and is gaining popularity, and is

subtly changing our lives.

To this end, the ITU-Radiocommunication Sector (ITU-R) and 3GPP have defined a

series of new specifications for 5G New Radio (5G NR) that will enable 5G NR to meet

the needs of different scenarios. Although 5G NR builds on the technology of previous

generations of mobile networks, in terms of channel coding, 5G NR uses a completely

new channel coding scheme, i.e., LDPC codes are designated as the coding scheme for

the data channel and Polar codes are designated as the coding scheme for the control

channel.

Therefore, this report aims to clarify why these two channel codes stand out from

other channel codes. We focus on [1-4] to learn about the low-density parity-check

codes (LDPC), their basic definitions, decoding algorithms, and the QC-LDPC codes

constructed by their regular structure. As for Polar codes, we focus on the studies of

their inventor Erdal Arikan [5-7] to understand their polarization characteristics and

recursive decoding algorithms. Finally, according to [8-9], we can understand the

definitions and specifications of these two channel codes in the 5G NR.

In order to accomplish this goal, it is first necessary to understand the history of

mobile communication systems. The evolution of mobile communication systems from

2G to 5G can also be described as the evolution of channel coding, i.e., the constant

search for a channel coding that can reach the Shannon limit. Therefore, Chapter 2 will

present the standers of different generations of communication systems and the history

of these related channel codes. After understanding the relevant background, Chapter

3 will focus on learning the theoretical knowledge of LDPC codes and Polar codes, their

structural design, coding and decoding algorithms, etc., and their specifications by 3GPP

in 5G NR. Finally, in Chapters 4 and 5, the simulation results obtained using Matlab will

be evaluated to demonstrate the advantages or disadvantages of these two channel

codes, i.e., why 3GPP chose them in 5G NR.

Xiaoshen Li 2/89

2. Historical background of mobile communication

systems and channel coding

2.1 The evolution of mobile communication systems

Mobile communication technology means that people can accomplish the

exchanging information with each other (mobile terminal to mobile terminal or mobile

terminal to fixed terminal) through a variety of different technologies without relying on

a physical connection (fiber or cable). As shown in Figure 2-1, it can be seen that mobile

communication systems have evolved rapidly over four decades, from the initial analog

voice to today’s Internet of Things (IoT).

Figure 2-1 Evaluation of mobile telecommunication systems1

2.1.1 The First Generation (1G) of Mobile Telecommunications

In 1976, the World Administrative Radio Conference (WARC) approved frequency

allocations for cellular phones in the 800/900 MHz band. In 1979, Nippon Telephone and

Telegraph (NTT) went into operation and was the first analog cellular system to be

launched commercially. In 1981, Nordic Mobile Telephony (NMT) went into service in

Sweden and Norway. In 1983, the Advanced Mobile Phone System (AMPS) was first

deployed in the United States [10].

1 retrieved from: https://cutt.ly/zQyFiEd

https://cutt.ly/zQyFiEd

Xiaoshen Li 3/89

 NTT NMT AMPS

Frequency band

UL/DL2 (MHz)

925–940/870–885 453-457.5/463-

467.5

824–849/869–894
915–918.5/860–

863.5

890–915/917–950
922–925/867–870

Channel Bandwidth

(kHz)

25/6.25
25

30 6.25

25
6.25

Modulation Analog FM Analog FM Analog FM
Table 2-1 The main characteristics of 1G cellular standards [10]

The characteristics of each standard are shown in Table 2-1. Among them, 1G used

analog signals, and the multiple access technology was Frequency Division Multiple

Access (FDMA), which only provided voice services. Thus, it can be seen that the channel

bandwidth of these three standards was very large by design, with a minimum of

6.25KHz and a maximum of 30KHz. All three standards operated in the frequency band

specified by WARC. However, the analog voice signal was not compressed, and the voice

information was not protected by error detection and correction. Therefore, the

resource utilization rate was low, the system capacity was small, and it was

characterized by poor communication quality. At the same time, because the devices

were difficult to integrate, the hardware cost of the terminal was high, the price was

high, and the terminals were large and heavy. Today, all 1G cellular systems have

become history.

2.1.2 The Second Generation (2G) of Mobile Telecommunications

The second-generation (2G) digital cellular systems were developed in the 1980s

and early 1990s, which included the Global System for Mobile Communications (GSM)

standard in Europe, the Japanese Personal Digital Cellular (PDC) standard, and the

American IS-54 / 136, IS-95 standards [10].

The characteristics of each standard are summarized in Table 2-2, and, unlike 1G,

2G used digital signals. As mentioned in the previous paragraph, since a different

2 UL: uplink; DL: downlink.

Xiaoshen Li 4/89

country or region developed each standard, different frequency bands, access methods,

etc., were used.

The GSM standard had several different frequency bands, of which DCS1800 and

PCS1900 were also denominated GSM1800 and GSM1900. The bandwidth of each

channel had been increased to 200 KHz, and, by using TDMA technology, eight

simultaneous calls were allowed on the same frequency [11].

While the GSM standard was being developed in Europe, the United States was

developing its own IS standard. IS-54 standard and IS-136 standard were similar. The

only difference was the control channel: the IS-54 standard used an analog control

channel while the other used a digital control channel [10]. It should be noted that the

IS-95 standard, based on CDMA technology, was proposed by Qualcomm [10]. In

addition, the bandwidth of each channel was six times greater than that of GSM. Based

on these advantages, the IS-95 standard could offer higher call quality and higher

network capacity.

Examining the typical standard characteristics, it can be seen that the transmission

efficiency, system capacity, and communication quality had been improved thanks to

the new multiple access techniques, modulation, larger bandwidth, and channel coding

techniques. Although these standards used BCH (Bose-Chaudhuri-Hocquenghem codes)

and CC (Convolutional codes) coding, the performance is not very high, as shown in

Figure 2-2.

 GSM PDC IS-54/136 IS-95

Frequency band

UL/DL (MHz)

GSM: 890-915

/ 935-960

810–826/

940–956

824–829/

869/894

824–829/

869–894

DCS1800:

1710-1785/

1805-1880

1429–1453/

1477–1501

1930–1990/

1850–1910

1930–1990/

1850–1910

PCS1900:

1930-1990/

1850-1910

Multiple Access F/TDMA F/TDMA F/TDMA F/CDMA

Channel

Bandwidth (kHz)
200 25 30 1250

Modulation GMSK π/4-DQPSK π/4-DQPSK QPSK

Channel coding Rate= 1/2 CC Rate= 1/2 BCH Rate= 1/2 CC

UL: rate= 1/2

CC

DL: rate= 1/3

CC
Table 2-2 The main characteristics of 2G cellular standards [10]

Xiaoshen Li 5/89

2.1.3 The Third Generation (3G) of Mobile Telecommunications

In March 1992, WARC defined the worldwide spectrum allocation for the 1885-

2200 MHz band to support International Mobile Telecommunications-2000 (IMT-2000).

The IMT-2000 standard contains a variety of different standards, two of which are based

on TDMA technology: Enhanced Data rates for GSM Evolution (EDGE) and Digital

Enhanced Cordless Telecommunications (DECT). However, it is widely considered that

EDGE is a 2.5G network, not a 3G network. There are two widely used standards in 3G:

cdma2000, developed by 3GPP2; the other is the Universal Mobile Telecommunications

System (UMTS), a series of standards developed by 3GPP. Since Wideband Code Division

Multiple Access (WCDMA) is the primary interface technology used in UMTS, it was

generally for operators to use the denomination WCDMA in their announcements rather

than UMTS. The Worldwide Interoperability for Microwave Access (WiMax), developed

by the IEEE 802.16 working group, was also one of the IMT-2000 standards. However,

for commercial purposes, this standard is considered a 4G standard rather than a 3.5G

standard [10].

The characteristics of each standard are shown in Table 2-3. As in the case of

previous generations, there are only slight differences between them. However,

WCDMA is more efficient than cdma2000 in terms of transmission speed since the

channel bandwidth of WCDMA is 5MHz compared to 1.25MHz for cdma2000 [10].

The rapid development of 3G networks is mainly due to CDMA technology, power

control techniques, and Turbo coding. In particular, the breakthrough in channel coding

in 1993 allowed the throughput of wireless links to approach the Shannon capacity limit

[1]. Therefore, in both standards, CC codes and Turbo codes were used.

 WCDMA (UMTS) cdma2000

Multiple Access DS-CDMA DS-CDMA

Channel Bandwidth (MHz) 5 1.25

Modulation
UL: QPSK UL: QPSK / BPSK

DL: BPSK DL: BPSK

Channel coding [12], [13]

(K: constraint length)

Rate= 1/2, 1/3

K=9 CC

Rate= 1/2, 1/3, 1/4, 1/6

K=9 CC

Rate= 1/3

K3 =4 Turbo Codes

Rate= 1/3, 1/4, 1/5

K=4 Turbo Codes
Table 2-3 The main characteristics of 3G cellular standards [10]

3 It is a value of one constituent encoder.

Xiaoshen Li 6/89

2.1.4 The Fourth Generation (4G) of Mobile Telecommunications

As with the other generations, the International Telecommunication Union (ITU)

had developed a series of standards for 4G, named IMT-Advanced. Although LTE and

WiMax do not meet the technical requirements of the IMT-Advanced standard, they are

the basis for later versions of LTE-A and WiMax Release 2 and, therefore, are categorized

as 4G standards. From some points of view, it could be considered that 4G mobile

telecommunication was a further development of 3G.

As presented in Table 2-4, unlike 3G, 4G used orthogonal frequency division

multiple access (OFDMA) and single-carrier frequency division multiple access (SC-FDMA)

technologies. Because of these new multiple access technologies, 3GPP specified a

subcarrier spacing of 15KHz in the 4G standard [14] to balance system performance and

anti-interference capability [15]. In addition, 3GPP had higher requirements for the

maximum data rate [10], so the channel bandwidth of LTE and LTE-A standards is more

extensive and is used with more flexibility.

In terms of channel coding, both LTE and LTE-A used the Turbo codes already

employed by 3G as the FEC (Forward Error Correction) system for the data channel. Both

standards specified the use of Turbo codes in the data channel and Tail-Biting

Convolutional Codes (TBCC) in the control channel [16].

 LTE LTE-A

Multiple Access
UL: OFDMA UL: OFDMA

DL: SC-FDMA DL: SC-FDMA

Channel Bandwidth (MHz) 1.4, 3, 5, 10, 15, 20

In addition, it supports

downlinks up to 100 MHz

and uplinks up to 40 MHz

with carrier aggregation.

Subcarrier spacing

(kHz)
15

Modulation

UL: QPSK, 16QAM,

64QAM

UL: QPSK, 16QAM, 64QAM,

256QAM

DL: QPSK, 16QAM,

64QAM (optional)

DL: QPSK, 16QAM,

64QAM (optional)

Channel coding
Turbo Codes Turbo Codes

TBCC TBCC

Table 2-4 The main characteristics of 4G cellular standards [1]

Xiaoshen Li 7/89

2.1.5 The Fifth Generation (5G) of Mobile Telecommunications

In early 2012, the ITU-R started developing new IMT standards for the next

generation of mobile telecommunications. In 2015, it published the IMT-2020 standard.

It proposed three main application areas: enhanced mobile broadband (eMBB), massive

machine-type communications (MMTC), and ultra-reliable and low-latency

communication (URLLC) [17-18].

As shown in Table 2-5, unlike the previous four generations, the application areas

of 5G are very diverse, so significant changes have been made in 5G cellular systems to

meet those needs, such as using Polar Codes in the control channel and LDPC codes in

the data channel. In addition to OFDMA, other new access technologies such as Non-

Orthogonal Multiple Access (NOMA) and Sparse Code Multiple Access (SCMA) are also

used [19].

Another unique feature of 5G NR is spectrum management. It can be found that 5G

NR uses two different frequency ranges (FR1 and FR2). The frequency range FR1 is

designed to match and improve 4G cellular networks, as it contains almost all the

frequency bands and channel bandwidth of LTE and LTE-A. On the other hand, the

frequency range FR2 contains the extremely high-frequency range (24.25-52.6 GHz), so

it is sometimes referred to as Millimeter Wave (mmWave), and it will mainly provide

high-speed data transmission over short distances because high frequencies always

have a higher loss in wireless link propagation and require line-of-sight (LOS) links [20].

The scalable OFDM numerology is designed to vary with the channel bandwidth, so,

unlike 4G, which specified a subcarrier spacing of 15kHz, 5G NR specifies several

different subcarrier spacings (15KHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz) to accommodate

different scenarios and applications of 5G NR [21].

 5G NR

Frequency range (FR)

(MHz)
FR1: 410-7125 FR2: 24 250-52 600

Channel bandwidth

(MHz)

5, 10, 15, 20, 25, 30, 40,

50, 60, 70, 80, 90, 100
50, 100, 200, 400

Subcarrier spacing

(kHz)
15, 30, 60 60, 120, 240

Multiple Access OFDM, NOMA (optional), SCMA (optional)

Modulation QPSK, 16QAM, 64QAM, 256QAM

Channel coding
LDPC codes

Polar codes
Table 2-5 The main characteristics of 5G NR cellular standards [19,22]

Xiaoshen Li 8/89

2.2 Channel coding

As shown in Figure 2-2, it can be seen that these channel coding systems, from right

to left, are constantly approaching the Shannon limit. According to [23], the BCH codes

used in 2G were 5.7dB away from the Shannon limit, the CC codes used in the 2G and

3G era have a minimum distance of 1.75dB from the Shannon limit, and the Turbo codes

used in the 3G and 4G era are only 0.7dB away from the Shannon limit. The LDPC codes

since then have reduced the distance to 0.0045dB [24], while the Polar codes have been

proven to completely touch the Shannon limit [16].

It is the continuous improvement in the performance of these channel coding

systems that allow mobile communication systems to meet the increasing demands of

people. With the discovery of Polar codes, a new chapter in mobile communication

systems has been opened.

Figure 2-2 The evolution of channel coding [23]

2.2.1 Convolutional Codes

In 1955, Peter Elias invented CC codes. In 1967, Andrew Viterbi proposed a

maximum likelihood (ML) decoding algorithm, known as the Viterbi Algorithm, which

finds the optimal path through the Trellis structure [1]. Another decoding method, the

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, was proposed in 1976, which solves one of

the Viterbi algorithm's limitations in that it no longer assumes that the probabilities of

all the information bits are the same. The BCJR algorithm can be considered as the basis

of the Maximum a Posteriori Probability (MAP) algorithm. Thus in the 2G era, some

standards used the convolutional codes as their channel coding. In the following decades,

surprisingly, it was found that CC codes still have a good performance and acceptable

Xiaoshen Li 9/89

decoding complexity at the same code rate when the message length is short, so it was

also widely used in control channels in the 3G and 4G era [25].

2.2.2 Turbo codes

In 1993, C. Berrou, A. Glavieux and P. Thitimajshima proposed the Turbo codes [1].

Turbo codes have significantly impacted channel coding: as shown in Figure 2-2, they

are only 1dB away from the Shannon limit, making Turbo codes the preferred channel

coding for 3G and 4G standards. Meanwhile, the two fundamental ideas of the Turbo

code, namely random encoding and iterative decoding, have led to further research on

LDPC codes [1]. However, due to the better performance of LDPC codes and the

discovery of Polar codes, Turbo codes were discouraged in 5G NR because of their

comparatively low performance [16].

2.2.3 LDPC codes

In 1962, Gallager proposed LDPC codes [1]. Although LDPC codes have been studied

for a long time, they did not receive much attention until the 1990s. With the discovery

of Turbo codes, researchers focused on LDPC codes due to the development of the belief

propagation algorithm (sum-product algorithm) and iterative decoding techniques. In

1996, MacKay and Neal constructed new LDPC codes, similar to Turbo codes, about 1dB

away from the Shannon limit [24]. In 2001, S.Y. Chung constructed another LDPC codes,

only 0.0045 dB away from the Shannon limit [24]. This has led to widespread use of LDPC

codes in the 4G era and they have eventually replaced Turbo codes as the data channel

coding method in 5G NR.

2.2.4 Polar codes

The Polar Codes are a new type of linear block code initially designed to improve

the cutoff rate 𝑅0. In random coding and ML decoding, this parameter determines the

maximum error probability of the corresponding code block: while in sequential

decoding, 𝑅0 can be considered the 'computational cutoff rate’, when the actual rate is

higher, the code decoding algorithm will not give the expected performance [5]. In 2009,

Erdal Arikan used channel combining and splitting to improve the cutoff rate [6]. He

found that as the code length (or the number of channels) increases, the capacity of

these subchannels4 will converge to two extremes: one is a channel with an approximate

capacity of 1, and the other is with the approximate capacity of 0. This phenomenon is

4 Subchannels: Channels after channel splitting operations, see Section 3.2.1 for details.

Xiaoshen Li 10/89

known as channel polarization. Therefore, this coding method is called Polar code,

where 'Polar' is an abbreviation for polarization. It is agreed that Polar codes are the first

channel coding method that can provably achieve the Shannon limit in a binary-input

discrete memoryless channel (B-DMC). Polar codes developed rapidly and have been

considered for use in the 5G NR control channel in 2016 [26].

Xiaoshen Li 11/89

3. Study of the channel coding of 5G standards

As mentioned in Section 2.1.5, there are three main application areas of 5G NR:

eMBB, MMTC, and URLLC [17]. Convolutional codes and Turbo codes can no longer fully

satisfy their requirements. So, 3GPP has specified to use of two different types of

channel coding in the next generation of mobile communication systems, where LDPC

codes will be used in the data channels, and Polar codes will be used in the control

channels.

3.1 LDPC codes

3.1.1 Basic Theory

3.1.1.1 Definition of LDPC codes

LDPC codes belong to the class of linear block codes. Like all linear block codes, a

matrix form can describe it. As shown in Figure 3-1: a message row vector u of k bits,

adding a redundancy part of m bits, can generate the codeword c of n bits. In this case,

the code rate is 𝑘/𝑛.

Figure 3-1 Structure of codeword

Since they are linear codes, the codeword c can be produced by a generator matrix

G:

𝑐 = 𝑮𝑇𝑢 , (3-1)

where the matrix G contains two parts I and P:

𝑮 = [𝑷 𝑰𝐾] . (3-2)

The parity check matrix H can be presented as:

𝑯 = [𝑰𝑛−𝑘 𝑷] . (3-3)

The characteristic of the LDPC codes is that matrix H has a low density (the matrix

contains many ‘zeros’). Thus, based on [1], if the matrix H of any code satisfies the

following conditions:

1) Each column consists of s 1’s.

2) Each row consists of v 1’s.

Xiaoshen Li 12/89

3) In any two rows or columns of the matrix, the number of 1’s in the same position

cannot be greater than 1.

4) Compared to the word length, the parameters s y v should be as small as

possible.

Then these codes can be referred to as regular LDPC codes.

The matrix H should be sparse. Since LDPC codes use the sum-product algorithm

for decoding, a large number of calculations are generated during the decoding process,

and a sparse matrix can effectively reduce the number of these calculations and reduce

the decoding time, on the other hand, sparsity means that fewer nodes need to be

processed and the algorithm can make full use of its operations to reduce the complexity

of the calculations.

3.1.1.2 Regular e irregular

Depending on whether condition 3) is satisfied, the LDPC codes can be classified

into regular and irregular codes. If this is satisfied, then LDPC codes can be called regular

LDPC codes. Otherwise, they are called irregular LDPC codes.

Figure 3-2 Regular LDPC codes5

5 Nguyen LY Thien Truong, "Efficient Hardware Implementations of LDPC Decoders, through Exploiting
Impreciseness in Message-Passing Decoding Algorithms," recuperado de: https://cutt.ly/8Qxgddc

https://cutt.ly/8Qxgddc

Xiaoshen Li 13/89

As shown in Figure 3-2 (b), each variable node represents a column of the matrix H

and each check node represents a row of the matrix H. The line between a variable node

(𝑥𝑖) and a check node (𝑐𝑗) is named as an edge, which represents the corresponding

element ℎ𝑖𝑗 of the matrix H as an non-zero element. The nodes of the same type are not

connected to each other, which means they do not directly transmit any information.

The information is only transmitted through the edge between the variable node and

the check node [24].

Moreover, based on [2,9,27], the edge degree distribution of variable nodes and

check nodes are usually used to represent the regular irregular LDPC codes. The number

of non-zero elements in each column of the matrix H is denoted as 𝑑𝑣 and the number

of non-zero elements in each row is denoted as 𝑑𝑐 , then the parameter 𝜆𝑖 and 𝜌𝑖

represent the fraction of edges connected to the variable node and check node of

degree 𝑖, respectively. Communly, the regular LDPC codes have the same edge degree

distribution for each node of the same type, while the irregular LDPC codes may have

different edge degrade distributions, two edge degree distribution polynomials are

shown as follows:

𝜆(𝑥) =∑𝜆𝑖𝑥
𝑖−1

𝑑𝑣

𝑖=1

, 𝜌(𝑥) =∑𝜌𝑖𝑥
𝑖−1

𝑑𝑐

𝑖=1

 . (3-4)

The equation (3-4) show the degree distribution of variable nodes and check nodes,

respectively. Compared with regular LDPC codes, the irregular LDPC codes are more

flexible and may yield better performance [2].

3.1.1.3 Decoding of LDPC codes

There are many different decoding algorithms for LDPC codes, and some of them

are shown in the following Table 3-1:

Types Algorithms Features

Hard-Decision
Majority-Logic decoding (MLG) Low complexity and latency

with fairly good performance.
Bit-Flipping decoding (BF)

Soft-Decision

A posterior probability (APP) High complexity and latency,

but the performance is much

better than those algorithms

of Hard-Decision.

Weighted BF (WBF)

Iterative Decoding based on Belief

Propagation (IDBP)
Table 3-1 Decoding algorithms [1,28]

Xiaoshen Li 14/89

The decoding algorithms of LDPC codes can be classified into two categories: Hard-

Decision and Soft-Decision. The difference between them is that the message

transmitted in those decoding algorithms of Hard-Decision contains the actual value of

each bit. In contrast, the Soft-Decision is based on a probabilistic decoding algorithm,

i.e., the transmitted message is a probability value of a particular bit [29].

The IDBP algorithm has the best performance among these algorithms [1], so it has

been widely used in various fields. Therefore, we will focus on this algorithm in this

section.

The IDBP algorithm is commonly known as the sum-product algorithm (SPA).

Because there are a large number of multiplications calculations in the decoding process,

the Log-Likelihood Ratio (LLR) is used in practice to reduce the computational complexity

by converting many multiplication operations into summation operations, and this

improved method is called the LLR-SPA algorithm.

Before explaining the LDPC decoding and the LLR-SPA algorithm in detail, as can be

seen in Figure 3-3, based on [2,30], assume that an LDPC code is characterized by some

variable nodes (𝐯𝟎,𝟏,𝟐…) and some check nodes (𝐜𝟎,𝟏,𝟐…). For the LDPC codes transmitted

in a binary input additive white Gaussian noise channel (BI-AWGN) with BPSK

modulation, the mean value is null and the variance equal to 𝛔𝟐.

According to [2], the following definitions apply:

• M(j) is a set of check nodes connected with the variable node 𝑣𝑗 . M(j) ∖ i is a

set of check nodes without the check node ci.

• N(i) is a set of variable nodes connected with the check node ci. N(i) ∖ j is a

set of variable nodes without the variable node 𝑣𝑗 .

• qij(x), 𝑥 ∈ {0,1} is the information transmitted from the variable node 𝑣𝑖 to the

check node 𝑐𝑗, which indicates the probability of the bit associated with 𝑣𝑖 being

equal to 𝑥. This information is calculated by combining the information of all

those check nodes connected with 𝑣𝑖, except 𝑐𝑗.

• 𝑟𝑗𝑖(𝑥), 𝑥 ∈ {0,1} is the information transmitted from the check node 𝑐𝑗 to the

variable node 𝑣𝑖, which indicates the probability of the bit associated with 𝑣𝑖

being equal to 𝑥. This information is calculated by combining the information of

all those variable nodes connected with 𝑐𝑗, except 𝑣𝑖.

Xiaoshen Li 15/89

Figure 3-3 Model of encoding and decoding process of LDPC codes

Then, the information of the received value y is defined in LLR form:

𝐿𝐿𝑅(𝑦𝑖) = ln (
𝑃(𝑦𝑖|𝑥𝑗 = 0)

𝑃(𝑦𝑖|𝑥𝑗 = 1)
) . (3-5)

The message sent from the variable node 𝑖 to the check node 𝑗 can be described as:

𝐿𝐿𝑅(𝑞𝑖𝑗) = ln (
𝑞𝑖𝑗(0)

𝑞𝑖𝑗(1)
) . (3-6)

The message sent from the check node 𝑗 to the variable node 𝑖 can be described as:

𝐿𝐿𝑅(𝑟𝑗𝑖) = ln (
𝑟𝑗𝑖(0)

𝑟𝑗𝑖(1)
) . (3-7)

Based on [2,24,30], the decoding steps are as follows:

1) Initialization

Assign the initial values to the nodes on both sides.

𝐿𝐿𝑅(𝑞𝑖𝑗) = 𝐿𝐿𝑅(𝑦𝑖) =
2𝑦𝑖
𝜎2
 . (3-8)

2) Update the check nodes

The message is transmitted from the check node to the variable node.

𝐿𝐿𝑅(𝑟𝑗𝑖) = 2 tanh−1 [∏ tanh(
1

2
𝐿𝐿𝑅(𝑞𝑖𝑗))

𝑗∈𝑁(𝑖)\y

] , (3-9)

let,

{
𝛼𝑖𝑗 = 𝑠𝑖𝑔𝑛 (𝐿𝐿𝑅(𝑞𝑖𝑗))

𝛽𝑖𝑗 = |𝐿𝐿𝑅(𝑞𝑖𝑗)|
 . (3-10)

then, it can be written as:

Xiaoshen Li 16/89

𝐿𝐿𝑅(𝑟𝑗𝑖) = (∏ 𝛼𝑖𝑗
𝑗∈𝑁(𝑖)\𝑗

)𝑓(∑ 𝑓(𝛽𝑖𝑗)

𝑗∈𝑁(𝑖)\𝑗

) , (3-11)

Where,

𝑓(𝑥) = 𝑓−1(𝑥) = − ln (
𝑥

2
) = ln (

𝑒𝑥 + 1

𝑒𝑥 − 1
) . (3-12)

3) Update the variable nodes

The message is transmitted from the variable node to the check node.

𝐿𝐿𝑅(𝑞𝑖𝑗) = 𝐿𝐿𝑅(𝑦𝑖) + ∑ 𝐿𝐿𝑅(𝑟𝑗𝑖)

𝑖∈𝑀(𝑗)\𝑖

. (3-13)

4) Update the states of 𝐿𝐿𝑅(𝑦𝑖) and make an estimate.

𝐿𝐿𝑅(𝑦𝑖)𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐿𝑅(𝑦𝑖) + ∏ 𝑟𝑗𝑖

𝑖∈𝑀(𝑗)

. (3-14)

The estimated value is:

�̂�𝑖 = {
1, 𝐿𝐿𝑅(𝑦𝑖)𝑡𝑜𝑡𝑎𝑙 < 0

0, 𝐿𝐿𝑅(𝑦𝑖)𝑡𝑜𝑡𝑎𝑙 ≥ 0
. (3-15)

The above steps are repeated until the whole codeword is decoded, i.e., �̂�𝑖𝑯
𝑇 = 0.

It can be seen from those steps above that there are still many multiplication

calculations in LLR-SPA. In order to ease the calculation and increase the decoding speed,

there is a similar algorithm called the Min-Sum algorithm [24]. In this algorithm, only the

approximate value of (3-11) is requested, i.e.:

𝑓 (∑ 𝑓(𝛽𝑖𝑗)

𝑗∈𝑁(𝑖)\𝑦

) ≈ min
𝑗∈𝑁(𝑖)\𝑦

(𝛽𝑖𝑗) , (3-16)

then (3-11) is replaced by：

𝐿𝐿𝑅(𝑟𝑗𝑖) = (∏ 𝛼𝑖𝑗
𝑗∈𝑁(𝑖)\𝑦

) min
𝑗∈𝑁(𝑖)\𝑦

(𝛽𝑖𝑗) . (3-17)

Since the Min-Sum algorithm calculates the approximate value in step 2), it can

reduce the computational complexity, but its performance will be reduced.

3.1.2 LDPC codes in 5G NR

LDPC codes can be classified into two categories based on how they are built: based

on random structures or based on regular structures [31], such as irregular LDPC codes

and regular LDPC codes, respectively, as mentioned in Section 3.1.1.2. Although random

structures perform better than regular structures because of their higher flexibility when

the code length is long, they are also very complex to encode and decode because the

Xiaoshen Li 17/89

variable nodes and check nodes are irregularly connected, making them challenging to

implement in hardware. However, regular structures can have lower complexity while

maintaining a relatively high performance [31]. Quasi-Cyclic LDPC (QC-LDPC) codes are

codes based on regular structures. They have been widely used in different standards,

e.g., IEEE 802.11n, IEEE 802.16e, etc. Therefore, 3GPP has chosen to continue to use QC-

LDPC codes as channel coding for 5G NR. In the following, we will focus on the

characteristics of QC-LDPC codes under the 5G NR standard.

3.1.2.1 Protograph construction

In general, the matrix H of the QC-LDPC codes can be defined by an exponent

matrix 𝑯𝑩 and the shift coefficients Pi,j [3-4].

The form of the exponent matrix 𝑯𝑩 is shown in (3-18):

𝑯𝑩 = [

𝑃1,1 ⋯ 𝑃1,𝑛
⋮ ⋱ ⋮

𝑃𝑚,1 ⋯ 𝑃𝑚,𝑛

] . (3-18)

The dimension of the matrix 𝑯𝑩 is (m × n), where m < n. For any integer value Pi,j,

has 0 < Pi,j < z, where 𝑖 ∈ {1,2,3,⋯ ,𝑚}, 𝑗 ∈ {1,2,3,⋯ , 𝑛}.

The matrix obtained by shifting the identity matrix 𝑰 by Pi,j units to the right is

called the cyclic permutation matrix 𝑸(Pi,j) whose size is (z × z) [3]. When Pi,j is a

negative integer, the matrix 𝑸(Pi,j) will be a zero matrix. For example, when 𝑧 = 3:

𝑸(0) = [
1 0 0
0 1 0
0 0 1

] 𝑸(2) = [
0 0 1
1 0 0
0 1 0

] 𝑸(−1) = [
0 0 0
0 0 0
0 0 0

] . (3-19)

Finally, as can be seen in (3-20), the parity check matrix H can be obtained by

replacing the elements in the matrix 𝑯𝑩 with the matrix Q. This method is called

protograph construction [3-4]. It can reduce the required memory in hardware and

allow encoding and decoding using a simple switching network [9]. In addition, the

protograph codes enable nature parallelism [9], support parallel operations in both

encoding and decoding, greatly reducing the latency of operations.

An example of protograph construction:

Xiaoshen Li 18/89

𝑯𝑩 = [
1 −1 1
0 2 0

]

⇓ 𝑧 = 3

 𝑯 = [
𝑄(1)|𝑄(−1)|𝑄(1)

𝑄(0)|𝑄(2)|𝑄(0)
] =

[

0 1 0
0 0 1
1 0 0

|
0 0 0
0 0 0
0 0 0

|
0 1 0
0 0 1
1 0 0

1 0 0
0 1 0
0 0 1

|
0 0 1
1 0 0
0 1 0

|
1 0 0
0 1 0
0 0 1]

 . (3-20)

In 5G NR, the parameter z is referred to as lifting size. Considering the parallelism

and complexity of the switch networks [9,26], 3GPP has specified the lifting size 𝑧 =

𝑎 × 2𝑗, where 𝑎 ∈ {2,3,5,7,9,11,13,15} and 𝑗 ∈ {0,1,2,3,4,5,6,7}. As shown in Table 3-2,

3GPP has specified eight sets (𝑖𝐿𝑆 = 0,1,⋯ ,7) of 51 different values, where the

minimum value of 𝑧 is 2, and the maximum value is 384. In addition, the base graph of

QC-LDPC codes should support all these values.

Set index (𝑖𝐿𝑆) 𝑎 Lifting size 𝑧 = 𝑎 × 2𝑗

0 2 {2, 4, 8, 16, 32, 64, 128, 256}, 𝑗 ∈ {0,1,2,3,4,5,6,7}

1 3 {3, 6, 12, 24, 48, 96, 192, 384}, 𝑗 ∈ {0,1,2,3,4,5,6,7}

2 5 {5, 10, 20, 40, 80, 160, 320}, 𝑗 ∈ {0,1,2,3,4,5,6}

3 7 {7, 14, 28, 56, 112, 224}, 𝑗 ∈ {0,1,2,3,4,5}

4 9 {9, 18, 36, 72, 144, 288}, 𝑗 ∈ {0,1,2,3,4,5}

5 11 {11, 22, 44, 88, 176, 352}, 𝑗 ∈ {0,1,2,3,4,5}

6 13 {13, 26, 52, 104, 208}, 𝑗 ∈ {0,1,2,3,4}

7 15 {15, 30, 60, 120, 240}, 𝑗 ∈ {0,1,2,3,4}
Table 3-2 Lifting size set [8]

3.1.2.2 Base graphs

In 5G NR, the exponent matrix is often referred to as Base Graph (BG). The structure

of the base graph is shown in Figure 3-4. The dimension of the BG is (𝑚𝑏 × 𝑛𝑏). The

columns are divided into two parts: the information part (total 𝑘𝑏 columns) and the

parity part (total 𝑚𝑏 columns), also the rows are divided into two parts: core checks part

and extension checks part [3,32]. According to [3-4], the base graph comprises five

different submatrices: A, B, O, C, and I. Submatrix A contains systematic bits. Submatrix

B corresponds to the parity bits. It is a square matrix with a dual-diagonal structure

whose first column weights 3, and other columns have a dual-diagonal structure.

Submatrix O is a null matrix. Submatrix C corresponds to the single parity check (SPC)

rows. Submatrix I is an identity matrix, which is an extension part of SPC. The extension

checks rows can be orthogonal or quasi-orthogonal, as shown in Figure 3-6 and Figure

3-8. This design can reduce the decoding latency and improve decoding reliability [9,32].

The submatrices A and B combine as the kernel matrix, which has a structure of the

Xiaoshen Li 19/89

Irregular Repeat Accumulate (IRA) code type, in order to be encoded quickly and

efficiently [9]. The other submatrices O, C, and I are called extensions and are mainly

used to support the incremental redundancy hybrid automatic repeat request (IR-HARQ)

to improve the reliability [9] and the transmission efficiency [32] of the communication.

This structure type is similar to a Raptor-like extension [3], with a high-rates kernel

matrix and other extensions are used to support low-rates.

Figure 3-4 The structure of the Base Graph (BG)

When designing the base graph, it is necessary to consider some factors:

performance, coding and decoding complexity, hardware cost, etc. Therefore,

considering all these factors, 3GPP has specified two types of base graph structures:

Base Graph 1 (BG1) and Base Graph 2 (BG2), and how they are chosen depends on the

code rate (𝑅) and transport block size (or payload length 𝐴). In general, the BG1 is

designed for a high code rate and a long information block, while the BG2 is used for a

low code rate and a small information block. As shown in Figure 3-5, the BG2 is selected

when 𝐴 < 292 , or 292 < A < 3824 ∧ R < 0.67 , or 𝑅 < 0.25 . Otherwise, BG1 is

selected.

Xiaoshen Li 20/89

Figure 3-5 Base Graph selection6

Moreover, as shown in Figure 3-4, it can be seen that the first two columns of both

BGs are always punctured to improve their performance. Consequently, these first two

columns are not transmitted at any time [32]. However, the decoder must recover them

because they contain information bits [9].

3GPP specifies two different BGs so that LDPC codes can ensure good performance

and low decoding latency at different code rates and code block sizes.

 Base Graph

 BG1 BG2

Dimension (𝑚𝑏 × 𝑛𝑏) 46x68 42x52

Number of the information

column

𝑘𝑏 = 22 𝑘𝑏 = 10

Maximum code block size

𝐾𝑐𝑏 (bits)

8448 3840

Minimum code rate 1/3 1/5
Table 3-3 Principal features of two BGs [8,16]

3.1.2.2.1 Base graph 1 (BG1)

As shown in Table 3-3, 𝑯𝑩𝑮𝟏 has a total of 46 rows and 68 columns. As shown in

Figure 3-6, the submatrix A of BG1 consists of the first 4 rows and the first 22 columns

(𝑘𝑏,𝑚á𝑥 = 22). The green dots in Figure 3-7 represent the non-zero elements of the BG1.

As mentioned in Section 3.1.2.2, submatrix B has a dual-diagonal structure, and its first

column weights 3. The maximum block code size supported by BG1 is:

𝐾𝑐𝑏 = 𝑘𝑏,𝑚á𝑥 × 𝑧𝑚á𝑥 = 22 × 384 = 8448 𝑏𝑖𝑡𝑠 , (3-21)

where the maximum value of lifting size 𝑧𝑚á𝑥 can be obtained from Table 3-2. The

minimum code rate is 1/3.

6 retrieved from: https://www.sharetechnote.com/html/5G/5G_PDSCH.html

https://www.sharetechnote.com/html/5G/5G_PDSCH.html

Xiaoshen Li 21/89

Figure 3-6 Structure of BG17

Figure 3-7 Non-zero elements of BG1 [33]

7 retrieved from: https://developer.aliyun.com/article/739879, figure 2-43

https://developer.aliyun.com/article/739879

Xiaoshen Li 22/89

3.1.2.2.2 Base graph 2 (BG2)

As shown in Table 3-3, 𝑯𝑩𝑮𝟐 has a total of 42 rows and 52 columns. As shown in

Figure 3-8, the submatrix A of BG2 consists of the first four rows and the first ten

columns (𝑘𝑏,𝑚á𝑥 = 10). The green dots in Figure 3-9 represent the non-zero elements

of the BG2. As mentioned in Section 3.1.2.2, submatrix B has a dual-diagonal structure,

and it should be noted that although the weight of the first column is 3, the zero

elements of BG1 are in the third row while BG2’s is in the second row. The maximum

block code size supported by BG2 is:

𝐾𝑐𝑏 = 𝑘𝑏,𝑚á𝑥 × 𝑧𝑚á𝑥 = 10 × 384 = 3840 𝑏𝑖𝑡𝑠 , (3-22)

where the maximum value of lifting size 𝑧𝑚á𝑥 can be obtained from Table 3-2. The

minimum code rate is 1/5.

Figure 3-8 Structure of BG28

8 retrieved from: https://developer.aliyun.com/article/739879, figure 2-45.

https://developer.aliyun.com/article/739879

Xiaoshen Li 23/89

Figure 3-9 Non-zero elements of BG2 [33]

3.1.2.2.3 Example of the construction of the matrices 𝑯𝑩𝑮 and 𝑯 in 5G NR

As shown in Figure 3-5, it is already known how to select the type of BGs. As shown

in Figure 3-13, we assume that the uncoded code 𝐵 is 15 bits and the code rate R is 0.5.

Based on [3], the steps to construct the matrix H are as follows:

1) As shown in Figure 3-5, 𝐵 = 15 < 292 bits, and choose BG2.

2) Determine the value of 𝑘𝑏.

According to [8], it can be summarized as (3-23):

{

𝐵𝐺1 → 𝑘𝑏 = 22

𝐵𝐺2 → {

𝐵 > 640 → 𝑘𝑏 = 10
𝐵 > 560 → 𝑘𝑏 = 9
𝐵 > 192 → 𝑘𝑏 = 8
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 → 𝑘𝑏 = 6

 , (3-23)

since BG2 has been selected in steps one and B=15, then we can obtain 𝑘𝑏 = 6.

3) Determine the minimum value of z.

Xiaoshen Li 24/89

𝑘𝑏 × 𝑧 ≥ 𝐵 . (3-24)

Based on (3-24) and Table 3-2, we can obtain the following results 𝑧𝑚𝑖𝑛 =

3 (𝑖𝐿𝑆 = 1, 𝑎 = 3).

4) Determine the value of Pi,j.

Pi,j = {
−1, vi,j = Null9

mod(vi,j , z), otherwise
, (3-25)

In reference [8], there are relevant tables that can be found to determine

the values of vi,j10. As can be seen in Figure 3-12, when 𝑖𝐿𝑆 = 1, the value of vi,j

in row 0, column 0 is 174, then based on (3-25), it has:

Pi,j = mod(vi,j, z) = mod(174, 3) = 0 , (3-26)

moreover, for row 0 column 1, it has:

Pi,j = mod(vi,j, z) = mod(97, 3) = 1 . (3-27)

Similarly like (3-26) and (3-27), the matrix 𝑯𝑩𝑮𝟐 can be obtained by calculating

each row and column in turn. For example, the values of submatrix A are shown

in Figure 3-10.

Figure 3-10 The values of 𝑣𝑖,𝑗 and submatrix A

5) As mentioned in Section 3.1.2.1, once the values of the matrix 𝑯𝑩𝑮𝟐 and z are

obtained, a parity check matrix H of size (𝑚𝑏 × 𝑧) × (𝑛𝑏 × 𝑧) can be obtained

by extending the matrix 𝑯𝑩𝑮𝟐 with the matrix 𝑸(Pi,j) using the protograph

construction method. As a result, submatrix A of matrix H is extended to a matrix

of size 12 × 30, as shown in Figure 3-11.

9 There is no corresponding value in the tables.
10 There are two tables in [8], corresponding to BG1 and BG2, respectively. See [8] pp. 21-25 for details.

Xiaoshen Li 25/89

Figure 3-11 The extended submatrix A of matrix H

As described in steps 1 to 5, although only the submatrices A are shown due to the

large computational requirements, the base graph is not fully computed and presented.

However, it is also described in detail the steps and methods how to select the base

graph and construct a parity check matrix H. Repeating the same steps, the submatrices

B, O, I, and C are computed sequentially, and then extended to yield the complete parity

check matrix H.

Figure 3-12 BG2 (𝑯𝐵𝐺2) and its parity check matrices 𝑽𝑖,𝑗11

11 The complete table are shown in [8], pp. 25.

Xiaoshen Li 26/89

3.1.3 NR LDPC coding chain

Figure 3-13 The NR LDPC coding chain [16]

3.1.3.1 Segmentation

As shown in Table 3-3, for each BG, there is a maximum code block size (𝐾𝑐𝑏) it

supports. As presented in Figure 3-13, according to [8], when the length of the uncoded

code 𝐵 is greater than 𝐾𝑐𝑏, this code B will be split into several new segments 𝐵′. The

number of segments 𝐶 is defined as :

𝐶 = ⌈
𝐵

𝐾𝑐𝑏 − 𝐿
⌉ , (3-28)

where L is an additional CRC sequence of 24 bits, thus, the length of the new segment

is equal to:

𝐵′ = 𝐵 + 𝐶𝐿 . (3-29)

3.1.3.2 Rate matching

Since the amount of resources transmitted in mobile communication systems is

dynamically changing, 5G NR LDPC codes need to support a rate matching feature to

select any number of bits for transmission [9]. Moreover, this feature is applied to each

code block. The rate matching operation is controlled by several redundancy versions

(RVs) in the circular buffer. Each RV corresponds to a column position in a BG. The length

of each RV is different, depending on the number of transmission resources available

[9]. The starting position of RV is a multiple of 𝑧, where 𝑧 is the lifting size. The initial

transmission always starts with RV0. As can be seen in Table 3-4, the position of its

corresponding column is 0. However, as mentioned in Section 3.1.2.2, the first two

columns of the base graph are always punctured and not transferred. Therefore, the

actual corresponding column is the third column of the base graph [9,34]. 3GPP has not

specified the transmission order, but for both BGs, better performance can usually be

obtained by RV0 → RV2 → RV3 → RV1 [34].

Xiaoshen Li 27/89

RVs
Corresponding column index

BG1 BG2

RV0 0 0

RV1 17z 13z

RV2 33z 25z

RV3 56z 43z
Table 3-4 The version of RVs and the corresponding initial position [34]

3.1.3.3 Interleaving

After rate matching, bit interleaving is required. This operation can increase the

reliability of the systematic bits and improve the performance of the QC-LDPC codes [32].

According to [8], input bits are defined as 𝑒0, ⋯ , 𝑒𝐸−1and output bits are defined as

𝑓0, ⋯ , 𝑓𝐸−1, where 𝐸 is the rate matching output sequence length. As shown in Figure

3-14, in the interleaver, the bits are written row-by-row, read column-by-column, and

their number of rows is the same as the modulation order 𝑄𝑚 [8,32]. For example, for

16-QAM, 64-QAM, 256-QAM, the order is 4, 6, and 8, respectively. According to the

definition of [8]12, the relationship between 𝑒 and 𝑓 is:

𝑓𝑖+𝑗𝑄𝑚 = 𝑒𝑖𝐸 𝑄𝑚+𝑗⁄ , (3-30)

where 𝑗 ∈ {0,⋯ , 𝐸 𝑄𝑚⁄ − 1}, y 𝑖 ∈ {0,⋯ , 𝑄𝑚 − 1}.

As shown in Figure 3-13 and Figure 3-15, the operation of interleaving comes after

rate matching, thus the rate matching output E is also the same a the interleaving input.

when the input length 𝐸 = 16, and the modulation order 𝑄𝑚 = 2, in the interleaver,

the input bits 𝑒 are written in two rows of eight columns, starting from the first column,

read out sequentially by columns, and then recombined into a row of 16 columns as the

output bits 𝑓.

Figure 3-14 the interleaver model

12 In clause 5.4.2.2 of [8], pp. 33.

Xiaoshen Li 28/89

Figure 3-15 An interleaving example [9]

3.1.4 Conclusion

Section 3.1 focuses on some basic definitions, theories, and the most widely used

decoding algorithm of LDPC codes. In addition, it introduces the structure and design

requirements of its regular construction form, QC-LDPC codes, in 5G NR. Finally, the

processes that need to be carried out in the 5G NR coding chain are presented, as well

as the specification of 3GPP for each process.

3.2 Polar Codes

3.2.1 Basic theory

Before detailing the Polar codes, the following definition of channel capacity is

made according to [6,7]. For a B-DMC, as shown in Figure 3-16, define its input as 𝑋 =

{0,1}, and the transition probability as 𝑊(𝑦|𝑥), where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

Figure 3-16 B-DMC model

Therefore, when the B-DMC is symmetric with equal probability of the input 𝑥, the

channel capacity is the same as the mutual information 𝐼(𝑋; 𝑌):

𝐶(𝑊) ≜ 𝐼(𝑋; 𝑌) = ∑∑
1

2
𝑊(𝑦|𝑥) log

𝑊(𝑦|𝑥)

1
2𝑊

(𝑦|0) +
1
2𝑊

(𝑦|1)𝑥∈𝑋𝑦∈𝑌

 . (3-31)

In general, the Bhattacharyya parameter is used to measure transmission reliability

[6]. It is defined as:

Xiaoshen Li 29/89

𝑍(𝑊) ≜ ∑√𝑊(𝑦|0)𝑊(𝑦|1)

𝑦∈𝑌

 . (3-32)

According to [6-35], 𝑍(𝑊) refers to the upper bound on the error probability of the ML

decision when the channel 𝑊 transmits only a single bit. Thus, this parameter is also

considered as the maximum probability of transmission error.

It can likewise be found that 𝑍(𝑊) ∈ [0,1]. By using the base-2 logarithm, similar

as 𝑍(𝑊), 𝐶(𝑊) will also belong to [0,1]. At this point, 𝐶(𝑊) is inversely related to

𝑍(𝑊), i.e., 𝐶(𝑊) ≈ 1 iff 𝑍(𝑊) ≈ 0, and vice versa [6]. In addition, for any B-DMC 𝑊,

𝐶(𝑊) is bounded as:

log
2

1 + 𝑍(𝑊)
 ≤ 𝐶(𝑊) ≤ √1 − 𝑍(𝑊)2 . (3-33)

3.2.1.1 Channel combining

A basic model of the channel combination is shown in Figure 3-17, where two (𝑁 =

2) independent individual channels 𝑊:𝑋 → 𝑌 are combined into a new channel

𝑊2: 𝑋
2 → 𝑌2 by a one-to-one bit mapping [5]. The mapping 𝑓2 is defined as:

𝑓2(𝑢1, 𝑢2) ≜ (𝑢1⨁𝑢2, 𝑢2) , (3-34)

where ⨁ is the modulo-2 addition in the binary field.

Figure 3-17 Basic model of Polar codes [5]

Xiaoshen Li 30/89

According to [5,7], 𝑢1 y 𝑢2 are i.i.d (independently identically distributed) uniform

over {0,1}, and 𝑢 and 𝑥 are related to each other by a one-to-one mapping, thus the

mutual information 𝐼(𝑈2; 𝑌2) is equal to 𝐼(𝑋2; 𝑌2). Moreover, since each individual

channel W is independent, the total capacity of the channel 𝑊2 is the sum of the

capacity of each individual channel. It can be expressed as follows:

𝐶(𝑊2) = 𝐼(𝑈
2; 𝑌2) = 𝐼(𝑋2; 𝑌2) = 2C(W), (3-35)

where 𝑈2 = [𝑢1, 𝑢2], 𝑋
2 = [𝑥1, 𝑥2], 𝑌

2 = [𝑦1, 𝑦2]. This combined operation is lossless

and is known as the conservation of capacity [5].

Further, if there are N independent individual channels, they can be combined into

a vector channel 𝑊𝑁: 𝑋
𝑁 → 𝑌𝑁 , where 𝑁 = 2𝑛, 𝑛 ≥ 0 [6]. Then, the capacity of the

vector channel is 𝑁 times the capacity of the individual channels :

𝐶(𝑊𝑁) = 𝑁 ∙ 𝐶(𝑊) . (3-36)

3.2.1.2 Channel splitting

According to [6,7], channel splitting can be considered an inverse operation with

respect to channel combining. As shown in Figure 3-18, a channel 𝑊𝑁 may be re-split to

a set of N new binary-input coordinate channels: 𝑊𝑁
(𝑖)
: 𝑋 → 𝑌𝑁 × 𝑋𝑖−1, 1 ≤ 𝑖 ≤ 𝑁. The

corresponding transition probability is defined as:

𝑊𝑁
(𝑖)(𝑦1

𝑁 , 𝑢1
𝑖−1|𝑢𝑖) ≜ ∑

1

2𝑁−1
𝑊𝑁(𝑦1

𝑁|𝑢1
𝑁)

𝑢𝑖+1
𝑁 ∈𝑋𝑁−𝑖

 , (3-37)

where 𝑢𝑖 is the input of 𝑊𝑁
(𝑖)

, and (𝑦1
𝑁 , 𝑢1

𝑖−1) is the output.

Figure 3-18 the model of a subchannel 𝑊𝑁
(𝑖)

Xiaoshen Li 31/89

Figure 3-19 channel splitting [7]

As shown in Figure 3-19, the individual channels 𝑊 are uniform and independent

and are first combined into a vector channel 𝑊𝑣𝑒𝑐, and then they are split into 𝑁 new

individual channels (𝑊1⋯𝑊𝑁), where we find the phenomenon of polarization. These

new individual channels are not uniform anymore, and the transition probabilities of the

odd-order split subchannels and the even-order split subchannels can be obtained by

two recursive equations [6]:

𝑊2𝑁
(2𝑖−1)(𝑦1

2𝑁 , 𝑢1
2𝑖−1|𝑢2𝑖−1) =

∑
1

2
𝑊𝑁

(𝑖)(𝑦1
𝑁 , 𝑢1,𝑜𝑑𝑑

2𝑖−2 ⊕𝑢1,𝑒𝑣𝑒𝑛
2𝑖−2 |𝑢2𝑖−1⊕𝑢2𝑖) ⋅

𝑢2𝑖

𝑊𝑁
(𝑖)(𝑦𝑁+1

2𝑁 , 𝑢1,𝑒
2𝑖−2|𝑢2𝑖),

𝑊2𝑁
(2𝑖)(𝑦1

2𝑁 , 𝑢1
2𝑖−1|𝑢2𝑖) =

1

2
𝑊𝑁

(𝑖)(𝑦1
𝑁 , 𝑢1,𝑜𝑑𝑑

2𝑖−2 ⊕𝑢1,𝑒𝑣𝑒𝑛
2𝑖−2 |𝑢2𝑖−1⊕𝑢2𝑖) ⋅ 𝑊𝑁

(𝑖)(𝑦𝑁+1
2𝑁 , 𝑢1,𝑒

2𝑖−2|𝑢2𝑖), (3-38)

where 𝑛 ≥ 0, 𝑁 = 2𝑛, 1 ≤ 𝑖 ≤ 𝑁.

Xiaoshen Li 32/89

3.2.1.3 Channel polarization

As mentioned in Section 3.2.1, the channel type is B-DMC, and there are two typical

examples of B-DMC that satisfy the symmetry condition: binary erasure channel (BEC)

and binary symmetric channel (BSC).

Figure 3-20 The BSC and BEC models

As shown in Figure 3-20, it can be found that both BSC and BEC have a probability

of 1 − 𝑝 to keep them in their original states. However, the difference is that the BSC

has a probability of 𝑝 to change to another state, while the BEC has a probability of p to

change to an erased state, i.e., a state that does not provide any information to the

receiver. In addition, it can be observed that it will be simpler to calculate the capacity

of the BEC, which only needs the value of the probability of erroneous transition 𝑝.

Figure 3-21 An example of channel polarization in the BEC channel [36]

Xiaoshen Li 33/89

As shown in Figure 3-21, based on [6], assuming that the channel 𝑊 is BEC with an

erasure probability 𝑝 = 0.5, then the capacity can be calculated by using the recursive

relationships:

𝐶(𝑊𝑁
(2𝑖−1)) = 𝐶(𝑊𝑁 2⁄

(𝑖))
2

 ,

𝐶(𝑊𝑁
(2𝑖)) = 2𝐶(𝑊𝑁/2

(𝑖)) − 𝐶(𝑊𝑁 2⁄
(𝑖))2. (3-39)

where 𝑖 ∈ {1,⋯ ,𝑁}, 𝑁 = 2𝑛.

If n=0, as shown in Figure 3-21 (a), there is only one channel, the capacity is

𝐶(𝑊) = 1 − 𝑝 = 0.5 . (3-40)

If n=1, as shown in Figure 3-21 (b), there are two individual channels, the capacity

of the two channels can be calculated based on (3-29) and (3-39):

𝐶(𝑊2
(1)) = 𝐶(𝑊)2 = 0.25,

𝐶(𝑊2
(2)) = 2𝐶(𝑊) − 𝐶(𝑊)2 = 0.75. (3-41)

Based on (3-36), the total capacity is:

𝐶(𝑊2) = 2 × 𝐶(𝑊) = 𝐶(𝑊2
(1)) + 𝐶(𝑊2

(2)) . (3-42)

As mentioned in Section 3.2.1.2, it can be found that two independent individual

channels W are combined into a vector channel 𝑊2 and then split into two new channels

𝑊2
(1)and 𝑊2

(2). However, the two newly split channels and the previous channel have

different channel capacities. The relationship is shown in (3-43).

𝐶(𝑊2
(1)) ≤ 𝐶(𝑊) ≤ 𝐶(𝑊2

(2)) . (3-43)

According to [5,36], The channel 𝑊2
(1) with a lower capacity is referred to as the

'bad' channel. Correspondingly, the channel 𝑊2
(2) with a higher capacity is referred to

as the 'good' channel. Typically, the notation 𝑊− and 𝑊+ is used for the 'bad' and

'good' channels, respectively. The equation (3-43) is also written as:

𝐶(𝑊−) ≤ 𝐶(𝑊) ≤ 𝐶(𝑊+) . (3-44)

This phenomenon is called channel polarization and is the origin of the term 'polar'.

Moreover, according to [6,36], polarization will become more extreme as 𝑁 approaches

infinity, and the polarized channel capacity will converge to two limits: one end is as an

ideal channel with a capacity approximately equal to 1, and the other end will have a

capacity approximately equal to 0, like pure noise.

Further, in [5], for a group of input variables 𝑢𝑖 , 𝑖 ∈ {1,⋯ , 𝑁} , the following

notation is used: 𝐴 is used to denote the set of 'active' variables, while 𝐴𝑐 is used to

Xiaoshen Li 34/89

denote the set of 'frozen' variables. The 'active' variables are defined as 𝑈𝐴 ≜ (𝑈𝑖: 𝑖 ∈ 𝐴)

and the 'frozen' variables are defined as 𝑈𝐴𝑐 ≜ (𝑈𝑖: 𝑖 ∈ 𝑐𝐴
𝑐), each vector is a subvector

of the vector 𝑈𝑁. In simpler terms, 'active' and 'frozen' are the inputs to the 'good' and

'bad' channels, respectively.

3.2.2 Encoding and Decoding of Polar Codes

3.2.2.1 Polar encoding

In general, there are three Polar encoding methods: non-systematic coding,

systematic coding, and generalized concatenated coding [36]. Since Erdal Arikan used

non-systematic coding in [6], we will also focus on that method.

According to [6,35-36], it can be found that, like any linear code, Polar codes can

be expressed in the form of a generator matrix, as shown in (3-45):

𝑥1
𝑁 = 𝑢1

𝑁 ∙ 𝑮𝑵 , (3-45)

𝑮𝑵 = 𝑩𝑵𝑭
⊗𝑛 , (3-46)

where,𝑢1
𝑁 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑁} is the data bit vector, 𝑥1

𝑁 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑁} is the encoding

vector, and 𝑮𝑵 is the generator matrix, 𝑁 = 2𝑛, 𝑛 ≥ 0. Moreover, 3GPP has specified

the maximum value of 𝑁 in [8]13 : for the uplink, 𝑁𝑚𝑎𝑥 = 210 = 1024 , and for the

downlink, 𝑁𝑚𝑎𝑥 = 2
9 = 512.

The operation ⊗ is the Kronecker product, and it is defined as:

(𝑨𝑚×𝑛⊗𝑩𝑝×𝑞)𝑚𝑝×𝑛𝑞 = [
𝑎11𝑩 ⋯ 𝑎1𝑛𝑩
⋮ ⋱ ⋮

𝑎𝑚1𝑩 ⋯ 𝑎𝑚𝑛𝑩
] . (3-47)

The matrix 𝑭⊗𝑛 is defined as:

𝐹⊗𝑛 = 𝐹 ∙ 𝐹⊗(𝑛−1) , (3-48)

where the matrix 𝑭 is a kernel matrix [36], equal to [
1 0
1 1

]. The matrix 𝑩𝑵 is calculated

by the following recursion:

𝑩𝑵 = 𝑹𝑵 (𝐼2⊗𝑩𝑵
𝟐⁄
) , (3-49)

where the initial value of 𝑩𝑁 is 𝑩2 = 𝐼2. 𝑹𝑁 is called the reverse shuffle permutation

matrix (or odd-even permutation matrix) [35], defined by:

(𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑁)𝑹𝑁 = (𝑠1, 𝑠3, ⋯ , 𝑠𝑁−1, 𝑠2, 𝑠4, ⋯ , 𝑠𝑁) . (3-50)

13 In clause 7.1.4 of [8], pp. 84.

Xiaoshen Li 35/89

Thus, the matrix form of 𝑹𝑵 is:

𝑹𝑵 =

[

1 0
0 0
0 1

⋯
0
0
0

0
1
0

⋯
0 0
0 0
0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0
0 0
0 0

⋯
0
1
0

0
0
0

⋯
1 0
0 0
0 1]

 . (3-51)

For example, as shown in Figure 3-22, we can consider a setup where the input data

bit vector belongs to an i.i.d uniform distribution over {0,1}, the channel is BEC with an

erasure probability 𝑝 = 0.5, the number of individual channels is 𝑁 = 8, and the code

rate is 𝑅 = 1/2. In this case, the coding process is as follows:

Figure 3-22 Model of the Polar codes with 𝑁 = 8 [7]

1) Determine the 'active' variables and 'frozen' variables:

As shown in Figure 3-22, these capacities of eight individual channels have

been calculated and according to (3-31), 𝐼(𝑊𝑖) = 𝐶(𝑊𝑖) for these individual

channels. As described in Section 3.2.1, the Bhattacharyya parameter is used to

Xiaoshen Li 36/89

evaluate the reliability of a channel transmission, i.e., the smaller 𝑍(𝑊), the

more reliable the channel transmission. Since 𝑍(𝑊) is inversely proportional to

𝐶(𝑊), it can be found that the channels 1, 2, 3, and 5 correspond to the large

values of the Bhattacharyya parameters and, as mentioned in Section 3.2.1.3,

the ‘active’ variables and 'frozen' variables can be expressed in terms of 𝑈𝐴 and

𝑈𝐴𝑐:

𝑈𝐴 = {𝑢4, 𝑢6, 𝑢7, 𝑢8} ,

𝑈𝐴𝑐 = {𝑢1, 𝑢2, 𝑢3, 𝑢5} .

In addition, assume that the 'active' bit is 1, and the 'frozen' bit is 0, then

the input bits are:

𝑢1
8 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

= [0 0 0 1 0 1 1 1] . (3-52)

2) Calculate 𝑩𝟖:

Based on (3-49), we have:

𝑩𝟖 = 𝑹𝟖(𝑰𝟐⊗𝑩𝟒) , (3-53)

𝑩𝟒 = 𝑹𝟒(𝑰𝟐⊗𝑩𝟐) , (3-54)

and we can see that to calculate 𝐵8, we first have to calculate 𝑩𝟒 and 𝑹𝟒. Since

𝑩𝟐 = 𝑰𝟐 and 𝑹𝟒 can be obtained from (3-50) and (3-51), we can thus write:

𝑰𝟐⊗𝑩𝟐 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , (3-55)

𝑹𝟒 = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] . (3-56)

Once the value of 𝑹𝟒 and 𝑰𝟐⊗𝑩𝟐 are obtained, 𝑩𝟒 can be calculated

according to (3-54):

𝑩𝟒 = 𝑹𝟒(𝑰𝟐⊗𝑩𝟐) = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] . (3-57)

We can calculate 𝑰𝟐⊗𝑩𝟒, 𝑹𝟖, and 𝑩𝟖 sequentially in the same way:

𝑰𝟐⊗𝑩𝟒 =

[

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1]

 , (3-58)

Xiaoshen Li 37/89

𝑹𝟖 =

[

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1]

 , (3-59)

𝑩𝟖 = 𝑹𝟖(𝑰𝟐⊗𝑩𝟒) =

[

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1]

 . (3-60)

3) Based on (3-48), calculate 𝑭⊗3:

𝑭⊗2 = 𝑭⊗𝑭 = [

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

] ,

𝑭⊗3 = 𝑭⊗𝑭⊗2 =

[

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1]

 . (3-61)

4) Calculate the generator matrix 𝑮𝟖:

Once the value of 𝑭⊗3 and 𝑅8 are obtained, according to (3-46), we can

calculate 𝑮8:

𝑮𝟖 = 𝑩𝟖𝑭
⊗3 =

[

1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1]

 . (3-62)

5) Get the codeword:

Finally, substituting the value of (3-52) and (3-62) in (3-45), we can get the

codeword 𝑥1
8:

𝑥1
8 = 𝑢1

8 ∙ 𝑮𝟖 = [0 1 1 0 1 0 0 1] . (3-63)

Xiaoshen Li 38/89

As shown in Figure 3-23, a clumsier method, calculated node by node, the final

result obtained is the same as that of (3-63) to prove the correctness of the previous

method.

Figure 3-23 Example of the coding of Polar codes with 𝑁 = 8

3.2.2.2 Polar decoding

Since Erdal Arikan proposed the use of the successive cancellation (SC) algorithm

as a decoding algorithm for Polar codes in his paper [6], this algorithm has become one

of the most basic and classical algorithms. Therefore, we will focus on this algorithm in

the sequel.

According to [5-6,37-38], the estimated message can be written as:

�̂�𝑖 = {
𝑢𝑖 , 𝑖 ∈ 𝐴𝑐

ℎ𝑖(𝑦1
𝑁 , �̂�1

𝑖−1), 𝑖 ∈ 𝐴
 , (3-64)

Xiaoshen Li 39/89

where 𝑖 ∈ {1,⋯ ,𝑁} and ℎ𝑖: 𝑌
𝑁 × 𝑋𝑖−1 → 𝑋 are the decision functions [37], defined as

follows:

ℎ𝑖(𝑦1
𝑁 , �̂�1

𝑖−1) = {
0,

𝑊𝑁
(𝑖)(𝑦1

𝑁 , �̂�1
𝑖−1|0)

𝑊𝑁
(𝑖)(𝑦1

𝑁 , �̂�1
𝑖−1|1)

≥ 1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (3-65)

where for all the 𝑦1
𝑁 ∈ 𝑌𝑁 , �̂�1

𝑖−1 ∈ 𝑋𝑖−1.

As explained in Section 3.1.1.3, the decision function can be written in the form of

LLR as follows:

𝐿𝐿𝑅(𝑦1
𝑁 , �̂�1

𝑖−1) = ln(
𝑊𝑁

(𝑖)(𝑦1
𝑁 , �̂�1

𝑖−1|0)

𝑊𝑁
(𝑖)(𝑦1

𝑁 , �̂�1
𝑖−1|1)

) . (3-66)

Then, the equation (3-64) in [5] can be rewritten as:

�̂�𝑖 = {

𝑢𝑖 , 𝑖 ∈ 𝐴𝑐

0, 𝑖 ∈ 𝐴 ⋀ 𝐿𝐿𝑅(𝑦1
𝑁 , �̂�1

𝑖−1) ≥ 0

1, 𝑖 ∈ 𝐴 ⋀ 𝐿𝐿𝑅(𝑦1
𝑁 , �̂�1

𝑖−1) < 0

. (3-67)

The equation (3-68) is then obtained by calculating (3-38) using the recursive

formulas [6]:

𝐿𝑁
2𝑖−1(𝑦1

𝑁 , �̂�1
2i−2) =

𝐿𝑁
2

(𝑖) (𝑦1

𝑁
2 , �̂�1,𝑜𝑑𝑑

2i−2 ⊕ �̂�1,ⅇ𝑣𝑒𝑛
2𝑖−2)𝐿𝑁

2

(𝑖) (𝑦𝑁
2
+1

𝑁 , �̂�1,𝑒𝑣𝑒𝑛
2i−2) + 1

𝐿𝑁
2

(𝑖) (𝑦1

𝑁
2 , �̂�1,𝑜𝑑𝑑

2i−2 ⊕ �̂�1,ⅇ𝑣𝑒𝑛
2𝑖−2) + 𝐿𝑁

2

(𝑖) (𝑦𝑁
2
+1

𝑁 , �̂�1,𝑒𝑣𝑒𝑛
2i−2)

 ,

𝐿𝑁
2𝑖(𝑦1

𝑁 , �̂�1
2i−1) = [𝐿𝑁

2

(𝑖)
(𝑦1

𝑁
2 , �̂�1,𝑜𝑑𝑑

2i−2 ⊕ �̂�1,ⅇ𝑣𝑒𝑛
2𝑖−2)]

1−2𝑢2𝑖−1

𝐿𝑁
2

(𝑖)
(𝑦𝑁

2
+1

𝑁 , �̂�1,𝑒𝑣𝑒𝑛
2i−2) . (3-68)

With these two recursive formulas, the computations for a block of length 𝑁 can

be reduced to two computation blocks of length 𝑁/2. The simplification continues until

𝐿1
(1)(𝑦𝑖) = 𝑊(𝑦𝑖|0) 𝑊(𝑦𝑖|1)⁄ , which can be computed directly [6].

Moreover, we can denote:

𝐿𝑁
2

(𝑖)
(𝑦1

𝑁
2 , �̂�1,𝑜𝑑𝑑

2i−2 ⊕ �̂�1,ⅇ𝑣𝑒𝑛
2𝑖−2) = 𝑒𝛼 , (3-69)

𝐿𝑁
2

(𝑖)
(𝑦𝑁

2
+1

𝑁 , �̂�1,𝑒𝑣𝑒𝑛
2i−2) = 𝑒𝛽 , (3-70)

Performing logarithmic operations on both sides of (3-68) and substituting (3-69) and

(3-70) into the previous result, we have:

Xiaoshen Li 40/89

𝐿𝐿𝑅𝑁
2𝑖−1(𝑦1

𝑁 , �̂�1
2i−2) =

𝑒𝛼+𝛽 + 1

𝑒𝛼 + 𝑒𝛽
 ,

𝐿𝐿𝑅𝑁
2𝑖(𝑦1

𝑁 , �̂�1
2i−2) = (1 − 2�̂�1

2i−2)𝛼 + 𝛽 , (3-71)

where 𝛼, 𝛽 ∈ 𝑅, �̂�1
2𝑖−2𝜖{0,1} [38].

Figure 3-24 SC decoder graph for Polar codes at block length 𝑁 = 8 [6]

As an example, we can assume that a parameter set (𝑁, 𝐾, 𝐴, 𝑢𝐴𝑐) is equal to

(8, 5, {3,5,6,7,8}, {0,0,0}), where N is the block length, K specifies the size of A, A is the

information set (‘active’ variables) and 𝑢𝐴𝑐 is the frozen bit set. As shown in Figure 3-24,

and according to [6], there are a total of 𝑁(1 + log2𝑁) = 32 nodes. From left to right,

each column of nodes correspond to LLR requests at length 8, 4, 2, and 1 in turn, where

the leftmost column is referred to as the decision level, while the rightmost column is

Xiaoshen Li 41/89

referred to as the channel level. The leftmost node of the decoder graph labeled

(𝑦1
8, �̂�1

𝑖−1) is associated with the i-th Decision Element (DE), 1 ≤ 𝑖 ≤ 8. Thus, the order

of the DEs from top to bottom is: {1,5,3,7,2,6,4,8}.

The decoding starts with DE 1. In general, a node activates all nodes connected to

its right side, and the result is returned to all nodes connected to its left side. Thus, to

obtain the value of 𝐿𝐿𝑅8
(1)(𝑦1

8) node 1 activates node 2 and node 9, at which point the

control program is passed to node 2, and node 1 is pending until node 2 returns the

result to node 1. In the same way, node 2 activates nodes 3 and 6, and node 3 activates

nodes 4 and 5. These two nodes then return their calculated results 𝐿𝐿𝑅1
(1)(𝑦1

1) and

𝐿𝐿𝑅1
(1)(𝑦2

1) back to node 3 and node 23, respectively. Next, node 3 derives 𝐿𝐿𝑅2
(1)(𝑦1

2)

from the messages received from nodes 4 and 5, and it returns to nodes 2 and 18. Node

6, similar to node 3, activates nodes 7 and 8, then returns its result to nodes 2 and 18.

Node 2 derives 𝐿𝐿𝑅4
(1)(𝑦1

4) from the message received, then send it to nodes 1 and 16.

Node 9 also returns 𝐿𝐿𝑅4
(1)(𝑦5

8) to nodes 1 and 16 in the same way. At this point, node

1 derives 𝐿𝐿𝑅8
(1)(𝑦1

8) from nodes 2 and 9, then sends the result obtained to DE 1. Since

𝑢1 is a 'frozen' bit, and DE 1 ignores the received message, the choice is �̂�1 = 0, and

passes control to DE 2.

Next, DE 2 activates node 16. Since node 16 has already obtained the values of

nodes 2 and 9 in the previous step, there is no need to activate other nodes, the value

of 𝐿𝐿𝑅8
(2)(𝑦1

8, �̂�1) can be directly obtained. For the same reason in the previous step, 𝑢2

is a 'frozen' bit, DE 2 chooses �̂�2 = 0, and passes control to DE 3.

Finally, the DE 3 activates node 17 to get the values of 𝐿𝐿𝑅8
(3)(𝑦1

8, �̂�1
2). Node 17

activates nodes 18 and 19 because the values of nodes 3, 6, 10, and 13 have already

been derived in the previous two steps, so no further activation of other nodes is needed.

Since 𝑢3 is an "active" bit, then DE 3 determines the value of �̂�3 based on the value of

𝐿𝐿𝑅8
(3)(𝑦1

8, �̂�1
2) in (3-67).

The rest of the nodes are chosen by DEs in the same way until all the values of �̂�𝑖

are obtained.

Xiaoshen Li 42/89

Figure 3-25 SC and SCL algorithm over code tree [36]

However, as shown in Figure 3-25 (a), it can be found that the SC algorithm

performs decoding by searching the code tree level by level, and only one decision result

is retained at each level, thus if an incorrect decision is made at one level, its subsequent

decoding results will also be affected. Therefore, further research has proposed an

improved method based on the SC algorithm called the successive cancellation list (SCL)

algorithm.

Nowadays, the SCL algorithm has replaced the SC algorithm and is being widely

used. According to [36-38], simply put, the SCL algorithm converts the Greedy One-Time-

Pass search of the SC algorithm into a Breadth-First search [38], which allows exploring

at most L candidate paths instead of the SC algorithm that can only explore one path. In

some views, the SC algorithm can be considered as the SCL algorithm with 𝐿 = 1.

Xiaoshen Li 43/89

As shown in Figure 3-25 (b), the SCL algorithm (𝐿 = 2) saves two candidate paths

at each level, and finally, a more reliable path (red path) '0001 0000' was found instead

of SC finding a less reliable path '0000 0011'.

3.2.3 NR Polar coding chain

Figure 3-26 The NR Polar coding chain [16]

3.2.3.1 Segmentation

As shown in Figure 3-26, the segmentation process is performed only on the uplink.

According to [8], when the payload size is 𝐴 ≥ 360 and the rate matching output

sequence length 𝐸 ≥ 1088, or 𝐴 ≥ 1033, the code can be split into a miximum of two

segments. The payload size 𝐴 should not exceed 1706.

3.2.3.2 Rate matching

Rate matching is a process of adapting (increasing or decreasing the number of bits)

the mother code length 𝑁 to match the corresponding radio resources [16]. To achieve

this process, the value of 𝑁 must first be determined, as specified in [8]14, where the

following steps are described:

14 In clause 5.3.1 of the [8], pp. 13-14.

Xiaoshen Li 44/89

1) 𝑛1 = {
⌈ log2 𝐸 ⌉ − 1, 𝑖𝑓 𝐸 ≤ (9 8⁄) × 2(⌈ log2𝐸 ⌉−1) 𝑦 𝐾 𝐸⁄ ≤ (9 16⁄)

⌈ log2 𝐸 ⌉ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2) 𝑛2 = ⌈ log2(𝐾 𝑅𝑚𝑖𝑛⁄) ⌉, where 𝐾 is the number of bits to encode, and 𝑅𝑚𝑖𝑛 is

the minimum code rate equal to 1 8⁄ .

3) 𝑁 = 2𝑛, where 𝑛 = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝑛1, 𝑛2, 𝑛𝑚𝑎𝑥}, 5}.

It should be noted that the calculation results of 𝑛1 and 𝑛2 are rounded up to the

nearest integer, and then substituting into step 3) to calculate the maximum value 𝑛.

Since the maximum mother code length (𝑁𝑚𝑎𝑥) supported by Polar codes in 5G NR is

1024 for uplink and 512 for downlink, we can say that 𝑛max_𝑢𝑙 = 10, 𝑛max_𝑑𝑙 = 9 [39].

Finally, based on the obtained value for 𝑛, we can find the mother code length 𝑁 that

needs to be matched.

Figure 3-27 Circular buffer design for rate matching [39]

As shown in Figure 3-27, there are three matching methods: repetition, puncturing,

and shortening. According to [815-9,39], the output bit sequence of the interleaver 𝑦𝑛

(see Section 3.2.3.3 for details) is written into a circular buffer as the input bit sequence

of rate matching, the rate matching output size is denoted by 𝐸, therefore, the output

bit sequence 𝑒𝑘, 𝑘 ∈ {0,1,⋯ , 𝐸 − 1} is defined as follows:

• Repetition (as shown by the green line)

if 𝐸 ≥ 𝑁 , 𝑒𝑘 = 𝑦𝑚𝑜𝑑(𝑘,𝑁) . It can be found that the first (𝐸 − 𝑁) bits are

transmitted twice.

• Shortening (as shown by the red line)

if 𝐸 < 𝑁 and 𝐾 𝐸⁄ > 7 16⁄ , 𝑒𝑘 = 𝑦𝑘. It can be found that the code is shortened

and the last (𝑁 − 𝐸) bits are not transmitted,

15 In Clause 5.4.1.2 of [8], pp. 29.

Xiaoshen Li 45/89

• Puncturing (as shown by the blue line)

if 𝐸 < 𝑁 and 𝐾 𝐸⁄ ≤ 7 16⁄ , 𝑒𝑘 = 𝑦𝑘+𝑁−𝐸 . It can be found that the code is

punctured and the first (𝑁 − 𝐸) bits are not transmitted.

3.2.3.3 Interleaving

As shown in Figure 3-26, the interleaving process consists of three parts: the CRC

interleaver, the sub-block interleaver, and the channel interleaver.

According to [16,39], the CRC interleaver works only on the downlink. The CRC bits

are inserted evenly into the information blocks of the mother Polar codes. The

distributed CRC bits can be checked in advance during the decoding process. When the

candidate path of the decoding algorithm does not pass CRC verification, this path can

be terminated early, reducing complexity and decoding latency.

Figure 3-28 Design of the sub-block interleaver

As shown in Figure 3-26, the sub-block interleaver rearranges the coded bits before

they are written into the circular buffer. As shown in Figure 3-28, and according to [39],

the interleaver segments the 𝑁 coded bits of block 𝑑 into 32 blocks of length 𝑁/32 bits,

and interleaves these blocks based on the corresponding 32 𝑝(𝑖) values as shown in

Figure 3-29. According to [8], the output sequence 𝑦𝑛, 𝑛 ∈ {0,⋯ ,𝑁 − 1} is defined as:

𝐽(𝑛) = 𝑃(𝑖)𝑥 (
𝑁

32
) + 𝑚𝑜𝑑 (𝑛,

𝑁

32
) ,

𝑦𝑛 = 𝑑𝐽(𝑛) , (3-72)

Figure 3-29 Sub-block interlearver pattern 𝑝(𝑖) [8]16

16 In clause 5.4.1.1.1 of [8], pp. 27-28.

Xiaoshen Li 46/89

Figure 3-30 Channel interleaver [39]

As shown in Figure 3-26, in contrast to the CRC interleaver, the channel interleaver

works only on the uplink. Since channel fading and reliability differences between

individual bits can cause different codes to have different channel quality in uplink

control information (UCI) transmissions, the channel interleaver is designed to average

out this effect and improve the performance of Polar codes [16]. As shown in Figure 3-30,

and according to [9,39], an isosceles triangular interleaver of length 𝑇 bits is used, where

denote 𝑇 as the smallest integer such that 𝑇(𝑇 + 1) 2⁄ ≥ 𝐸 [9]. The rate matching

output bit sequence 𝑒 is written to the interleaver row by row, and then the interleaver

reads the bit sequence 𝑓 column by column.

3.2.4 Conclusion

Section 3.2 describes in detail the underlying theory of Polar codes, as well as their

coding and decoding algorithms, and finally also describes its specifications in 5G NR by

3GPP. It can be found that Polar code, as an emerging channel coding, attracts attention

due to its excellent performance and eventually becomes the control channel coding

scheme for 5G NR.

Xiaoshen Li 47/89

4. Simulation

4.1 Simulation environment and process

Chapter 3 clarifies the underlying theory of LDPC codes and Polar codes and their

specification in 5G NR. Therefore, in this chapter, we will perform a series of

experimental simulations and use these experimental results to understand these two

channel codes more intuitively. We will use Matlab to evaluate the performance of these

two channel codes vs Turbo codes. All simulation experiments will be performed on the

same laptop (CPU: i5-8250U, RAM: 8G).

Furthermore, the simulation experiments for LDPC codes and Polar codes are based

on the scripts provided in the NPTEL online course [40], and the Turbo codes are based

on the pre-existing examples in the Matlab Communications Toolbox [41]. Moreover,

these scripts were purposely modified before being used in the simulation experiments

of this paper. These simulation scripts are detailed in Appendix 7.

Fixed parameter values

Maximum number of

blocks (num_blocks)
10 000

𝐸𝑏 𝑁0⁄ (𝑑𝐵) -1 to 7 dB (in 0.5 dB steps)

Variable parameter values

Code rate (𝑅) 1/3, 1/2, 5/6

Block length (𝑁) 128, 1024

List size (𝑙𝑖𝑠𝑡 𝑜𝑟 𝐿) 8, 32
Table 4-1 Key parameters

As shown in Table 4-1, the experiment will change the value of some key

parameters to simulate different situations. Each experiment should ensure the range

of 𝐸𝑏 𝑁0⁄ and the value of num_blocks, and only one variable (𝑅 or 𝑁 or 𝑙𝑖𝑠𝑡) can be

changed per simulation.

First, the parameter 𝑅 takes values of {1/3, 1/2, 5/6}, which correspond to three

situations, i.e., low code rate, medium code rate, and high code rate, respectively. Since

5G NR has a widely use scenario, varying this parameter can help us understand the

performance differences of these channel codes in different situations. Due to the

specifications in the LTE standard, the Turbo codes will only simulate a code rate of 1/3

[14].

Second, the parameter 𝑁 represents the block length, where denotes 𝑁 = 128 a

short block, 𝑁 = 1024 denotes a long block. This is because 5G NR uses two different

channel coding schemes, generally, the block length of the data channel is longer while

the block length of the control channel is shorter, so that the results obtained by varying

this parameter can be used to justify the 5G NR channel coding scheme.

Xiaoshen Li 48/89

The final parameter 𝐿 is only used for Polar codes and is mainly used to compare

the performance difference between the SC and SCL decoding algorithms.

Figure 4-1 Comparisons of the source script of ‘BPSK_nrldpc_sim_FP codes.m’ with its modified script

Xiaoshen Li 49/89

Since the performance of LDPC codes must be evaluated in different cases, as

shown in Figure 4-1 (b), the value of EbNodB and Rate are fixed, moreover, for different

block lengths 𝑁 , their base graph 𝐵 and lifting size 𝑧 need to be recalculated each time.

Therefore, I decided to modify this script into a function (as shown in Figure 4-1 (a)) that

can be called in the program ‘main.m’ (as shown in Appendix 7.1), which can be used to

simulate different situations by changing different parameters for quick and repeated

experiments.

As mentioned in the previous paragraph, it is necessary to calculate the

corresponding BG and 𝑧 values for different block lengths 𝑁 . Therefore, referring to

Section 3.1.2.2.3, I wrote a new function ‘calculaZ.m’ (as shown in Appendix 7.2) and

called in ‘main.m’ to return the corresponding BG and 𝑧 values for block lengths 𝑁, after

passing it to the funcion ‘BPSK_nrldpc_sim_FP codes.m’ to facilitate the simulation.

Figure 4-2 Comparisons of the source script of ‘nrpolar_sclistdecode_FP.m’ with its modified script

Xiaoshen Li 50/89

As shown in Figure 4-2, the Polar codes only need to vary the parameter 𝑅 and

𝑙𝑖𝑠𝑡 (𝑜𝑟 𝐿) . Therefore, I also modified the two decoding algorithms SC and SCL to

function form (as shown in Appendices 7.4 and 7.5) to facilitate the calls in ‘main.m’.

Figure 4-3 Comparisons of the source script of ‘Turbo.m’ with its modified script

Xiaoshen Li 51/89

Similar to the LDPC and Polar codes, I also modified the original script (as shown in

Figure 4-3 (b)) of the Turbo codes into a function form(as shown in Appendix 7.6) to

facilitate the calls in ‘main.m’. As shown in Figure 4-3, compared to the original script, I

removed the ‘for’ loop of 𝑒𝑏𝑁𝑜𝐼𝑑𝑥, and modified the calculation equation and changed

the return value 𝑏𝑒𝑟 of the original script to 𝑏𝑒𝑟 𝑎𝑛𝑑 𝑏𝑙𝑒𝑟 to ensure the consistency of

the comparison results with other scripts.

Furthermore, I added the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑖𝑐 and 𝑡𝑖𝑚𝑒𝑒𝑛𝑑 = 𝑡𝑜𝑐(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡)

commands in each function to count the time (in seconds) used for the whole process.

Once the simulation results were obtained, as shown in Figure 4-4 (a), a new array

'codes_Nvalue_Rvalue= [EbNodB BLER time]' was created in the Matlab Command

Window. Then it was saved with the 'save' command under a name whose format

corresponds to''standard_codes_Nvalue_Rvalue.mat', and the files were saved in the

data folder, as shown in Figure 4-4 (b).

Figure 4-4 Experimental data processing and saving

By changing the parameters (𝑅, 𝑁, and 𝑙𝑖𝑠𝑡) in Table 4-1, respectively, 24 results

were obtained, as shown in Figure 4-4 (b). Next, two new functions were written (as

Xiaoshen Li 52/89

shown in Appendices 7.7 and 7.8), so that the previously saved results were imported

using the 𝑙𝑜𝑎𝑑 command, and the 𝑠𝑒𝑚𝑖𝑙𝑜𝑔𝑦 command was used to present the results

of 𝐵𝐿𝐸𝑅 𝑣𝑠 𝐸𝑏 𝑁0(𝑑𝐵)⁄ and 𝑇𝐼𝑀𝐸 𝑣𝑠 𝐸𝑏 𝑁0⁄ (𝑑𝐵).

4.2 Results analysis

As shown in Figure 4-5, fix the codes rate 𝑅 to 1/2, and varied one parameter 𝑁

(128, 1024) or 𝐿 (8, 32) in turn, and carried out a total of 8 controlled experiments. The

results are shown in Table 4-2:

Figure 4-5 AWAG+BPSK channel@ 𝑅 = 1/2, varying different block lengths 𝑁 and list size 𝐿.

Block length (𝑁) List size (𝐿)
Gain compared to LDPC codes@ 𝐵𝐿𝐸𝑅 = 10−2

BG1 BG2

128

1 (SC) 0.1 dB -0.6 dB

8 1.6 dB 0.9 dB

32 2 dB 1.3 dB

1024 8 -0.1 dB -0.2 dB
Table 4-2 Performance comparison of LDPC codes and Polar codes@ 𝑅 = 1/2

Xiaoshen Li 53/89

It can be seen that Polar codes generally outperform LDPC codes for a block length

𝑁 = 128 bits. With 𝐵𝐿𝐸𝑅 = 10−2 as error rate target, the SCL Polar codes have a 0.9

dB gain for 𝐿 = 8 and 1.3 dB for 𝐿 = 32 compared with BG2; the SC Polar codes also

have 0.1 dB gain if compared with BG1 of LDPC codes.

Furthermore, when 𝑁 = 128, comparing Polar codes with each other, it can be

found that Polar codes using SCL decoding algorithm have much better performance

than those using SC decoding algorithm, and the larger the list size, the better the

performance of the codes.

Similarly, when 𝑁 = 128 , comparing LDPC codes with each other, it can be

observed that BG2 performs much better than BG1, exhibiting a gain of 0.7 dB.

When N= 1024, the results are different and Polar codes no longer perform better

than LDPC codes. When 𝐵𝐿𝐸𝑅 = 10−2 , the gains are negative, -0.1 dB and -0.2 dB

compared to BG1 and BG2, respectively. While there is no change in LDPC codes, BG2

still outperforms BG1, but the performance gap between them is significantly reduced

to 0.1 dB compared to 0.7 dB in the case of the short block length.

Figure 4-6 AWAG+BPSK channel@ 𝑁 = 128, varying low, medium, and high code rate 𝑅

Xiaoshen Li 54/89

Code rate (𝑅)
Gain compared to LDPC and Turbo codes@ 𝐵𝐿𝐸𝑅 = 10−2

BG1 BG2 Turbo

1/3 1.65 dB 0.85 dB 2 dB

1/2 1.6 dB 0.9 dB N/A

5/6 3.1 dB 3 dB N/A
Table 4-3 Performance comparison of LDPC codes and Polar codes@ 𝑁 = 128

In the following experiments, we fixed the block length and varied the code rate.

For the short block length 𝑁 = 128 , as shown in Figure 4-6, Polar codes generally

outperform LDPC codes for any code rate. As shown in Table 4-3, for any code rate, Polar

codes have positive gains compared to LDPC codes, and, additionally, the performance

of BG2 is better than that of BG1. Especially for higher code rates, the Polar codes have

a significantly better performance. Moreover, it can also be seen that both LDPC codes

and Polar codes have better performance than Turbo codes when the code rate is 1/3.

Figure 4-7 AWAG+BPSK channel@ 𝑁 = 1024, varying low, medium, and high code rate 𝑅

Xiaoshen Li 55/89

Code rate (𝑅)
Gain compared to LDPC and Turbo codes@ 𝐵𝐿𝐸𝑅 = 10−2

BG1 BG2 Turbo

1/3 -0.6 dB -0.7 dB 1.9 dB

1/2 -0.1 dB -0.2 dB N/A

5/6 1.05 dB 2.1 dB N/A
Table 4-4 Performance comparison of LDPC codes and Polar codes@ 𝑁 = 1024

When the block length is 𝑁 = 1024, the results are shown in Figure 4-7 and Table

4-4. In the case with code rate 𝑅 = 1/3 and 1/2, Polar codes perform worse than LDPC

codes, as shown by the negative gains. However, for code rate 𝑅 = 5/6, the Polar code

outperforms LDPC code.

Comparing BG1 and BG2, it can be seen that for low or medium code rates, the

performance gap is small, and only when the binary rate is high, the performance of BG1

is much better than BG2. When the code rate is 1/3, the performance of Turbo codes is

worse than that of the other two code types.

Figure 4-8 Total encoding and decoding time@ 𝑅 = 1/3

Xiaoshen Li 56/89

Figure 4-9 Total encoding and decoding time@ 𝑅 = 1/2

Figure 4-10 Total encoding and decoding time@ 𝑅 = 5/6

Xiaoshen Li 57/89

Figure 4-8,Figure 4-9, and Figure 4-10 show the time taken for each channel code

to complete the simulation for different block lengths at different code rates. It can be

noticed that for short block lengths, Polar codes can complete the whole simulation

quickly, regardless of the code rate. On the other hand, for long block lengths, LDPC

codes outperform Polar codes, both BG1 and BG2, completing the whole simulation

process at any code rate. Moreover, Turbo codes perform better than LDPC codes but

worse than Polar codes at a 1/3 code rate for short block lengths. For long block lengths,

it takes longer than the other channel codes.

4.3 Discussion

It can be found through Section 4.1 that the findings of this study are restricted to

𝑁 = 128 and 1024 and num_blocks = 10 000. Theoretically, the 𝑁 and 𝑛𝑢𝑚_𝑏𝑙𝑜𝑐𝑘𝑠

should be increased to obtain more accurate simulation results. However, the weak

performance of the laptop cannot support larger 𝑁 and 𝑛𝑢𝑚_𝑏𝑙𝑜𝑐𝑘𝑠.

Notwithstanding the limitations, this study does suggest that the performance of

LDPC codes is proportional to the block length (𝑁) and inversely proportional to the code

rate (𝑅). Comparing BG1 and BG2, BG1 outperforms BG2 with a high code rate and a

long block length.

On the other hand, similar to LDPC codes, the performance of the Polar codes is

proportional to the block length (𝑁) and the list size (𝑙𝑖𝑠𝑡 𝑜𝑟 𝐿), and inversely

proportional to the code rate (𝑅). Although Polar codes outperform LDPC codes in long

block lengths, the whole process takes a long time and cannot meet the low latency

communication requirements of 3GPP. In the case of the short block length, its

performance is better than that of LDPC codes, and the time required is much lower

than that of LDPC codes, regardless of code rate.

Finally, Turbo codes have worse performance than the other two in both short and

long block lengths. The time required is also longer.

The reasons for these conclusions obtained can be attributed to the differences in

principle and design between LDPC codes and Polar codes. As mentioned in Chapter 3,

LDPC codes use the protograph method in 5GNR to construct its regular structure, QC-

LDPC codes, and the protograph codes have high parallelism, while Polar codes are

decoded less quickly than parallel decoding methods due to their serial decoding by

recursive methods. Therefore, for long block size, although the improved SCL algorithm

of Polar codes is similar to parallel decoding when 𝐿 is large enough, the cost is to

require a too high complexity to achieve a good performance and short latency, while

LDPC codes strike a good balance between complexity and performance due to their

nature parallelism, and for short block size, the low complexity decoding algorithm of

Polar codes exhibits great advantages and has unmatched performance and latency. In

Xiaoshen Li 58/89

addition, the Turbo codes have worse performance and latency than the other two

channel codes due to their high complexity of decoding.

In addition, since BG1 and BG2 are specified differently. As shown in Table 3-3, BG1

supports a larger code block size, and BG2 supports smaller code rates. Therefore, in

general, BG1 is more suitable for high code rates and large code block sizes, while BG2

is mostly used for small code rates and small code block sizes.

Therefore, this study makes it possible to clarify the reasons for the choice of LDPC

and Polar codes for 5G NR. Comparing these new channel codes with Turbo codes, the

excellent performance of these new codes is highlighted, with LDPC codes as the coding

scheme for the data channel due to their better performance and relatively low latency

at long block lengths, and Polar codes as the coding scheme for the control channel due

to their unmatched performance in short block lengths only.

Xiaoshen Li 59/89

5. Conclusion

In this paper, two channel codes, LDPC codes and Polar codes, of the 5G NR channel

coding scheme are described in detail. Each code is described with its basic theory,

coding and decoding algorithm, and its specification in 5G NR. Furthermore, we

understand the unique features of each of these two channel codes, i.e., the parallelism

of LDPC codes and the polarization and recursion characteristics of Polar codes.

Moreover, by comparing with the LTE Turbo codes, we highlight the excellent

performance of these two channel codes.

However, during the study process, we also found some limitations and drawbacks

of these two channel codes. Compared with LDPC codes, Polar codes perform better

than LDPC codes in short block size due to the lower complexity of the SC algorithm.

However, due to the recursive characteristics of this algorithm, which makes Polar codes

unlike LDPC codes with nature parallelism, perform worse in long block size.

In the case of LDPC codes, although 3GPP defines a series of regulations, such as

the design of the base graph, the process of rate matching and interleaving to reduce its

complexity and improve its performance, its complexity is still an obstacle to achieve the

best performance under practical industrial hardware constraints. On the other hand,

for Polar codes, although the interleaver with CRC distribution and the SCL algorithm

can be used to reduce the decoding time, the latency is still high for long block size.

As the Focus Group on Technologies for Network 2030 (FG-NET-2030) describes in

its report:“ In the next decade, ubiquitous connectivity will be more pronounced; among

everything, by whichever means and everywhere.” Therefore, in the coming years, it will

be a challenge to optimize and improve existing channel coding schemes or to use

artificial intelligence to create new ones to meet the demand for more diverse and more

complex application scenarios of 6G.

Finally, I sincerely hope that the following students will continue my study to

explore the evolution and improvement of channel coding schemes in 5.5G or 6G, to

find out how they meet the requirements of increasingly complex application scenarios.

Xiaoshen Li 60/89

6. References

[1] S. Lin and D. J. Costello, Error control coding : fundamentals and applications, 2nd ed.,

Pearson-Prentice Hall, 2004.

[2] M. Baldi, QC-LDPC code-based cryptography, Springer, Cham, 2014.

[3] T. T. B. Nguyen, T. Nguyen Tan and H. Lee, "Efficient QC-LDPC Encoder for 5G New

Radio," Electronics, vol. 8, no. 6, p. 668, 2019.

[4] H. Li, B. Bai, X. Mu, J. Zhang and H. Xu, "Algebra-Assisted Construction of Quasi-Cyclic

LDPC Codes for 5G New Radio," in IEEE Access, vol. 6, 2018, pp. 50229-50244.

[5] E. Arikan, "On the Origin of Polar Coding," IEEE Journal on Selected Areas in

Communications, vol. 34, no. 2, pp. 209-223, Feb. 2016.

[6] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes

for Symmetric Binary-Input Memoryless Channels," IEEE Transactions on Information

Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

[7] E. Arikan, "Polar Codes Tutorial," 16 Jan. 2015. [Online]. Available:

https://simons.berkeley.edu/talks/erdal-arikan-2015-01-14.

[8] 3GPP, "5G; NR; Multiplexing and channel coding (3GPP TS 38.212 version 16.3.0

Release 16)," 2020. [Online]. Available: https://cutt.ly/QmTIC0F.

[9] J. H. Bae, A. Abotabl, H.-P. Lin, K.-B. Song and J. Lee, "An overview of channel coding

for 5G NR cellular communications," APSIPA Transactions on Signal and Information

Processing, vol. 8, p. e17, 2019.

[10] G. L. Stüber, "Introduction," in Principles of Mobile Communication, 4th ed., Atlanta,

USA, Springer, Cham, 2017, pp. 1-9.

[11] V. Pereira, T. Sousa, P. Mendes and E. Monteiro, "Evaluation of Mobile

Communications: From Voice Calls to Ubiquitous," 2004.

[12] 3GPP, “ Universal Mobile Telecommunications System (UMTS); Multiplexing and

channel coding (FDD) (3GPP TS 25.212 version 16.0.0 Release 16),” July 2020. [Online].

Available: https://bit.ly/3Bul5tm.

[13] 3GPP2, “Physical Layer Standard for cdma2000 Spread,” Sep 2009. [Online]. Available:

https://bit.ly/3kLfuZN.

[14] 3GPP, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and

channel coding (3GPP TS 36.212 version 14.15.0 Release 14)," 2021. [Online].

Available: https://bit.ly/3yC4Bg6.

[15] E. Dahlman, S. Parkvall and J. Sköld, "OFDM Transmission," in 4G LTE LTE-Advanced for

Mobile Broadband, 2011, pp. 27-44.

[16] D. Hui, S. Sandberg, Y. Blankenship, M. Andersson and L. Grosjean, "Channel Coding in

5G New Radio: A Tutorial Overview and Performance Comparison with 4G LTE,"

Vehicular Technology Magazine, vol. 13, no. 4, pp. 60-69, Dec. 2018.

[17] "Setting the scene for 5G: opportunities and challenges," 2018. [Online]. Available:

http：//handle.itu.int/11.1002/pub/811d7a5f-en.

Xiaoshen Li 61/89

[18] E. Dahlman, S. Parkvall and J. Skold, "What is 5G?; 5G Standardization," in 5G NR: The

Next Generation Wireless Access Technology, 1st ed., Academic Press, 2018, pp. 1-24.

[19] Colegio Oficial de Ingenieros de Telecomunicación, "Modulación y multiacceso en 5G,"

2018.

[20] A. V. Lopez, A. Chervyakov, G. Chance, S. Verma and Y. Tang, "Opportunities and

Challenges of mmWave NR," IEEE Wireless Communications, vol. 26, no. 2, pp. 4-6, Apr

2019.

[21] J. Flores de valgas, J. F. Monserrat and H. Arslan, "Flexible Numerology in 5G NR:

Interference Quantification and Proper Selection Depending on the Scenario," Mobile

Information Systems, vol. 2021, 2021.

[22] 3GPP, "5G; NR; Base Station (BS) radio transmission and reception (3GPP TS 38.104

version 16.7.0 Release 16)," 29 4 2021. [Online]. Available:

https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=62878.

[23] C. B. Schlegel and L. C. Perez, "A Brief History–The Drive Towards Capacity," in Trellis

and Turbo Coding: Iterative and Graph-Based Error Control Coding, Wiley-IEEE Press,

2015, pp. 20-22.

[24] Z. Tu and S. Zhang, "Overview of LDPC Codes," 7th IEEE International Conference on

Computer and Information Technology (CIT 2007), pp. 469-474, 2007.

[25] O. Iscan, D. Lentner and W. Xu, "A Comparison of Channel Coding Schemes for 5G

Short Message Transmission," 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1-6,

2016.

[26] J. Xu, F. Peng and J. Xu, "Research on 5G NR Channel Coding," 邮电设计技术, pp. 16-

21, MAR. 2019.

[27] E. Ram and Y. Cassuto, "LDPC Codes with Local and Global Decoding," in 2018 IEEE

International Symposium on Information Theory (ISIT), 2018.

[28] S. J. Johnson, "Introducing Low-Density Parity-Check Codes," [Online]. Available:

https://bit.ly/3zUoMaG.

[29] R. Jose and A. Pe, "Analysis of hard decision and soft decision decoding algorithms of

LDPC codes in AWGN," 2015 IEEE International Advance Computing Conference (IACC),

pp. 430-435, 2015.

[30] A. A. Ovchinnikov and A. A. Fominykh, "Decoding of LDPC Codes for 5G Standard Using

Source Distribution," 2020 Wave Electronics and its Application in Information and

Telecommunication Systems (WECONF), pp. 1-5, 2020.

[31] D. Peng, S. Zhu and J. Song, "A Novel Construction of QC-LDPC Codes Based on

Combinatorial Mathematics," Procedia Computer Science, vol. 131, pp. 786-792, 2018.

[32] H. Wu and H. Wang, "A High Throughput Implementation of QC-LDPC Codes for 5G

NR," in IEEE Access, vol. 7, 2019, pp. 185373-185384.

[33] V. L. Petrović, D. M. El Mezeni and A. Radošević, "Flexible 5G New Radio LDPC Encoder

Optimized for High Hardware Usage Efficiency," Electronics, vol. 10, p. 1106, May

2021.

Xiaoshen Li 62/89

[34] F. Hamidi-Sepehr, A. Nimbalker and G. Ermolaev, "Analysis of 5G LDPC Codes Rate-

Matching Design," in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring),

Porto, 2018.

[35] O. Gazi, Polar Codes, Springer, Singapore, 2019.

[36] K. Niu, K. Chen, J. Lin and Q. T. Zhang, "Polar codes: Primary concepts and practical

decoding algorithms," IEEE Communications Magazine, vol. 52, no. 7, pp. 192-203, Jul.

2014.

[37] J. Wang and Y. Zhang, "Polar code and its characters," Modern Electronic Technique,

vol. 35, no. 1, pp. 65-67, 2012.

[38] A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, "LLR-Based Successive Cancellation

List Decoding of Polar Codes," IEEE Transactions on Signal Processing, vol. 63, no. 19,

pp. 5165-5179, Oct. 2015.

[39] V. Bioglio, C. Condo and I. Land, "Design of Polar Codes in 5G New Radio," IEEE

Communications Surveys & Tutorials, vol. 23, no. 1, pp. 29-40, 2020.

[40] A. Thangaraj, "NOC:LDPC and Polar Codes in 5G Standard," [Online]. Available:

https://nptel.ac.in/courses/108/106/108106137/.

[41] Matlab Communications Toolbox, "High Rate Convolutional Codes for Turbo Coding,"

[Online]. Available: https://ww2.mathworks.cn/help/comm/ug/high-rate-

convolutional-codes-for-turbo-coding.html.

Xiaoshen Li 63/89

7. Appendix: Matlab codes

7.1 Main.m

clear

clc

%%%%%%%% Variable %%%%%%%%

n=1024; %longitud de bloque

r=1/3; %tasa de codigo

num_blocks=10000; % numero maximo de bloques

list=8; %list size de SCL

%esta funcion solo se llama cuando se simulan los codigos LDPC

[z1,z2,bg1,bg2]=calculaZ(n,r);

bg=bg2;

z=z2;

%%%%%%%% Definicion de matrices %%%%%%%%

EbNodB=[-1:0.5:7].';

BLER=zeros(length(EbNodB),1);

BER=zeros(length(EbNodB),1);

time=zeros(length(EbNodB),1);

for i=1:length(EbNodB)

 %llama las distinas funciones para simular

 [bler,ber,t]=turbo(EbNodB(i),n,num_blocks);

 %[bler,t]=BPSK_nrldpc_sim_RM_FP(EbNodB(i),r,bg,z,num_blocks);

 %[bler,t]=nrpolar_scdecode_FP(EbNodB(i),r,n,num_blocks);

 %[bler,t]=nrpolar_sclistdecode_FP(EbNodB(i),r,n,list,num_blocks);

 BLER(i)=bler;

 BER(i)=ber;

 time(i)=t;

end

disp(num2str([EbNodB BLER BER time]))

Published with MATLAB® R2020b

7.2 calculaZ.m
function [z1,z2,BG1,BG2]=calculaZ(n,r)

% calcula z

table=[

2 4 8 16 32 64 128 256;%iLS=0

3 6 12 24 48 96 192 384;%iLS=1

5 10 20 40 80 160 320 0;%iLS=2

7 14 28 56 112 224 0 0;%iLS=3

9 18 36 72 144 288 0 0;%iLS=4

11 22 44 88 176 352 0 0;%iLS=5

13 26 52 104 208 0 0 0;%iLS=6

15 30 60 120 240 0 0 0;%iLS=7

https://www.mathworks.com/products/matlab

Xiaoshen Li 64/89

];

% variable

N=n;

R=r;

% selecciona el valor de kb1 &kb2

kb1=22;

if N>640

 kb2=10;

elseif N>560

 kb2=9;

elseif N>192

 kb2=8;

else

 kb2=6;

end

info=['N=',num2str(N),', R=',num2str(R)];

disp(info)

%%%%%%% BG1 %%%%%%%

z1=ceil((N*R)/kb1);

temp=table-z1;

temp_min=min(abs(temp),[],'all');

[i,j]=find(temp==temp_min);

sol=table(i,j);

[i,j]=find(table==sol);

iLS_1=i-1;

BG1=['NR_1_',num2str(iLS_1),'_',num2str(sol),'.txt'];

%%%%%%% BG2 %%%%%%%

z2=ceil((N*R)/kb2);

temp2=table-z2;

temp_min2=min(abs(temp2),[],'all');

[i,j]=find(temp2==temp_min2);

sol2=table(i,j);

[i,j]=find(table==sol2);

iLS_2=i-1;

BG2=['NR_2_',num2str(iLS_2),'_',num2str(sol2),'.txt'];

end

Published with MATLAB® R2020b

7.3 BPSK_nrldpc_sim_RM_FP.m
function [FER_sim,timeend]=BPSK_nrldpc_sim_RM_FP(x,r,bg,z,num_blocks);

timestart=tic;

%%%%%%%% Variable %%%%%%%%

EbNodB = x;

Rate = r;

Nblocks = num_blocks;

https://www.mathworks.com/products/matlab

Xiaoshen Li 65/89

path=strcat('base_matrices/',bg);

load(path);

B = eval(bg(1:end-4));

[mb,nb] = size(B);

z = z;

MaxItrs = 20;

rmax = 3;

maxqr = 31;

maxqL = 127;

offset = 2;

Slen = sum(B(:)~=-1); %number of non -1 in B

Slenmax = max(sum(B ~= -1,2));

kb = nb - mb;

k = kb * z; %number of message bits

nbRM = ceil(kb/Rate) + 2;

n = nbRM * z;

mbRM = nbRM - kb;

EbNo = 10^(EbNodB/10);

sigma = sqrt(1/(2*(k/(n-2*z))*EbNo));

Nbiterrs = 0; Nblkerrs = 0;

parfor i = 1: Nblocks

 msg = randi([0 1],1,k); %generate random k-bit message

 %Encoding

 cword = nrldpc_encode(B,z,msg);

 cword = cword(1:n);

 s = 1 - 2 * cword; %BPSK bit to symbol conversion

 r = s + sigma * randn(1,n); %AWGN channel I

 %Puncturing of message

 r(1:2*z) = 0;

 %quantization

 rq = floor(r/rmax*maxqr);

 rq(rq>maxqr) = maxqr;

 rq(rq<-(maxqr+1)) = -(maxqr+1);

 %Soft-decision, iterative message-passing layered decoding

 L = rq; %total belief

 itr = 0; %iteration number

 R = zeros(Slen,z); %storage for row processing

 treg = zeros(Slenmax,z); %register storage for minsum

 while itr < MaxItrs

 Ri = 0;

 for lyr = 1:mbRM

 ti = 0; %number of non -1 in row=lyr

 for col = find(B(lyr,1:nbRM) ~= -1)

 ti = ti + 1;

 Ri = Ri + 1;

 %Subtraction

 L((col-1)*z+1:col*z) = L((col-1)*z+1:col*z)-R(Ri,:);

 %Row alignment and store in treg

 temp = mul_sh(L((col-1)*z+1:col*z),B(lyr,col));

 temp(temp>maxqr) = maxqr;

Xiaoshen Li 66/89

 temp(temp<-(maxqr+1)) = -(maxqr+1);

 treg(ti,:) = temp;

 end

 %minsum on treg: ti x z

 for i1 = 1:z %treg(1:ti,i1)

 [min1,pos] = min(abs(treg(1:ti,i1))); %first minimum

 min2 = min(abs(treg([1:pos-1 pos+1:ti],i1))); %second minimum

 S = 2*(treg(1:ti,i1)>=0)-1;

 parity = prod(S);

 %offset

 min1 = min1 - offset;

 if min1<0

 min1 = 0;

 end

 min2 = min2 - offset;

 if min2<0

 min2 = 0;

 end

 treg(1:ti,i1) = min1; %absolute value for all

 treg(pos,i1) = min2; %absolute value for min1 position

 treg(1:ti,i1) = parity*S.*treg(1:ti,i1); %assign signs

 end

 %column alignment, addition and store in R

 Ri = Ri - ti; %reset the storage counter

 ti = 0;

 for col = find(B(lyr,1:nbRM) ~= -1)

 Ri = Ri + 1;

 ti = ti + 1;

 %Column alignment

 R(Ri,:) = mul_sh(treg(ti,:),z-B(lyr,col));

 %Addition

 temp = L((col-1)*z+1:col*z)+R(Ri,:);

 temp(temp>maxqL) = maxqL;

 temp(temp<-(maxqL+1)) = -(maxqL+1);

 L((col-1)*z+1:col*z) = temp;

 end

 end

 msg_cap = L(1:k) < 0; %decision

 itr = itr + 1;

 end

 %Counting errors

 Nerrs = sum(msg ~= msg_cap);

 if Nerrs > 0

 Nbiterrs = Nbiterrs + Nerrs;

 Nblkerrs = Nblkerrs + 1;

 end

end

%BER_sim = Nbiterrs/k/Nblocks;

FER_sim = Nblkerrs/Nblocks;

timeend=toc(timestart);

disp(num2str([EbNodB FER_sim timeend]))

Published with MATLAB® R2020b

https://www.mathworks.com/products/matlab

Xiaoshen Li 67/89

7.4 nrpolar_scdecode_ FP.m
function [FER_sim,timeend]=nrpolar_scdecode_FP(x,r,N_len,num_blocks)

Tstart=tic;

%Reliability sequence % Table 5.3.1.2-1: Polar sequence 3GPP

Q=[0 1 2 4 8 16 32 3 5 64 9 6 17 10 18 128 12 33 65 20 256 34 24 36 7 129 66 512 11 40

68 130 ...

 19 13 48 14 72 257 21 132 35 258 26 513 80 37 25 22 136 260 264 38 514 96 67 41 144

28 69 42 ...

 516 49 74 272 160 520 288 528 192 544 70 44 131 81 50 73 15 320 133 52 23 134 384 76

137 82 56 27 ...

 97 39 259 84 138 145 261 29 43 98 515 88 140 30 146 71 262 265 161 576 45 100 640 51

148 46 75 266 273 517 104 162 ...

 53 193 152 77 164 768 268 274 518 54 83 57 521 112 135 78 289 194 85 276 522 58 168

139 99 86 60 280 89 290 529 524 ...

 196 141 101 147 176 142 530 321 31 200 90 545 292 322 532 263 149 102 105 304 296

163 92 47 267 385 546 324 208 386 150 153 ...

 165 106 55 328 536 577 548 113 154 79 269 108 578 224 166 519 552 195 270 641 523

275 580 291 59 169 560 114 277 156 87 197 ...

 116 170 61 531 525 642 281 278 526 177 293 388 91 584 769 198 172 120 201 336 62 282

143 103 178 294 93 644 202 592 323 392 ...

 297 770 107 180 151 209 284 648 94 204 298 400 608 352 325 533 155 210 305 547 300

109 184 534 537 115 167 225 326 306 772 157 ...

 656 329 110 117 212 171 776 330 226 549 538 387 308 216 416 271 279 158 337 550 672

118 332 579 540 389 173 121 553 199 784 179 ...

 228 338 312 704 390 174 554 581 393 283 122 448 353 561 203 63 340 394 527 582 556

181 295 285 232 124 205 182 643 562 286 585 ...

 299 354 211 401 185 396 344 586 645 593 535 240 206 95 327 564 800 402 356 307 301

417 213 568 832 588 186 646 404 227 896 594 ...

 418 302 649 771 360 539 111 331 214 309 188 449 217 408 609 596 551 650 229 159 420

310 541 773 610 657 333 119 600 339 218 368 ...

 652 230 391 313 450 542 334 233 555 774 175 123 658 612 341 777 220 314 424 395 673

583 355 287 183 234 125 557 660 616 342 316 ...

 241 778 563 345 452 397 403 207 674 558 785 432 357 187 236 664 624 587 780 705 126

242 565 398 346 456 358 405 303 569 244 595 ...

 189 566 676 361 706 589 215 786 647 348 419 406 464 680 801 362 590 409 570 788 597

572 219 311 708 598 601 651 421 792 802 611 ...

 602 410 231 688 653 248 369 190 364 654 659 335 480 315 221 370 613 422 425 451 614

543 235 412 343 372 775 317 222 426 453 237 ...

 559 833 804 712 834 661 808 779 617 604 433 720 816 836 347 897 243 662 454 318 675

618 898 781 376 428 665 736 567 840 625 238 ...

 359 457 399 787 591 678 434 677 349 245 458 666 620 363 127 191 782 407 436 626 571

465 681 246 707 350 599 668 790 460 249 682 ...

 573 411 803 789 709 365 440 628 689 374 423 466 793 250 371 481 574 413 603 366 468

655 900 805 615 684 710 429 794 252 373 605 ...

 848 690 713 632 482 806 427 904 414 223 663 692 835 619 472 455 796 809 714 721 837

716 864 810 606 912 722 696 377 435 817 319 ...

 621 812 484 430 838 667 488 239 378 459 622 627 437 380 818 461 496 669 679 724 841

629 351 467 438 737 251 462 442 441 469 247 ...

 683 842 738 899 670 783 849 820 728 928 791 367 901 630 685 844 633 711 253 691 824

902 686 740 850 375 444 470 483 415 485 905 ...

 795 473 634 744 852 960 865 693 797 906 715 807 474 636 694 254 717 575 913 798 811

379 697 431 607 489 866 723 486 908 718 813 ...

 476 856 839 725 698 914 752 868 819 814 439 929 490 623 671 739 916 463 843 381 497

930 821 726 961 872 492 631 729 700 443 741 ...

 845 920 382 822 851 730 498 880 742 445 471 635 932 687 903 825 500 846 745 826 732

Xiaoshen Li 68/89

446 962 936 475 853 867 637 907 487 695 746 ...

 828 753 854 857 504 799 255 964 909 719 477 915 638 748 944 869 491 699 754 858 478

968 383 910 815 976 870 917 727 493 873 701 ...

 931 756 860 499 731 823 922 874 918 502 933 743 760 881 494 702 921 501 876 847 992

447 733 827 934 882 937 963 747 505 855 924 ...

 734 829 965 938 884 506 749 945 966 755 859 940 830 911 871 639 888 479 946 750 969

508 861 757 970 919 875 862 758 948 977 923 ...

 972 761 877 952 495 703 935 978 883 762 503 925 878 735 993 885 939 994 980 926 764

941 967 886 831 947 507 889 984 751 942 996 ...

 971 890 509 949 973 1000 892 950 863 759 1008 510 979 953 763 974 954 879 981 982

927 995 765 956 887 985 997 986 943 891 998 766 ...

 511 988 1001 951 1002 893 975 894 1009 955 1004 1010 957 983 958 987 1012 999 1016

767 989 1003 990 1005 959 1011 1013 895 1006 1014 1017 1018 ...

 991 1020 1007 1015 1019 1021 1022 1023]+1;

%%%%%%%% Variable %%%%%%%%

Rate = r;

N = N_len;

K = floor(N*Rate);

n = log2(N);

EbNodB = x;

Nblocks = num_blocks;

rmax = 4; %max received value

maxqr = 31; %max integer received value

EbNo = 10^(EbNodB/10);

sigma = sqrt(1/(2*Rate*EbNo));

Q1 = Q(Q<=N); %reliability sequence for N

F = Q1(1:N-K); %Frozen positions: Q1(1:N-K)

%Message positions: Q1(N-K+1:end)

%Simulate

Nbiterrs = 0; Nblkerrs = 0;

parfor blk = 1:Nblocks

 msg = randi([0 1],1,K); %generate random K-bit message

 u = zeros(1,N);

 u(Q1(N-K+1:end)) = msg; %assign message bits

 m = 1; %number of bits combined

 for d = n-1:-1:0

 for i = 1:2*m:N

 a = u(i:i+m-1); %first part

 b = u(i+m:i+2*m-1); %second part

 u(i:i+2*m-1) = [mod(a+b,2) b]; %combining

 end

 m = m * 2;

 end

 cword = u;

 s = 1 - 2 * cword; %BPSK bit to symbol conversion

 r = s + sigma * randn(1,N); %AWGN channel I

 %quantization

 rq = floor(r/rmax*maxqr);

Xiaoshen Li 69/89

 rq(rq>maxqr) = maxqr;

 rq(rq<-(maxqr+1)) = -(maxqr+1);

 %SC decoder

 L = zeros(n+1,N); %beliefs

 ucap = zeros(n+1,N); %decisions

 ns = zeros(1,2*N-1); %node state vector

 satx = @(x) min(max(x,-(maxqr+1)),maxqr); %saturate FP value

 f = @(a,b) (1-2*(a<0)).*(1-2*(b<0)).*min(abs(a),abs(b)); %minsum

 g = @(a,b,c) satx(b+(1-2*c).*a); %g function

 L(1,:) = rq; %belief of root

 node = 0; depth = 0; %start at root

 done = 0; %decoder has finished or not

 while (done == 0) %traverse till all bits are decoded

 %leaf or not

 if depth == n

 if any(F==(node+1)) %is node frozen

 ucap(n+1,node+1) = 0;

 else

 if L(n+1,node+1) >= 0

 ucap(n+1,node+1) = 0;

 else

 ucap(n+1,node+1) = 1;

 end

 end

 if node == (N-1)

 done = 1;

 else

 node = floor(node/2); depth = depth - 1;

 end

 else

 %nonleaf

 npos = (2^depth-1) + node + 1; %position of node in node state vector

 if ns(npos) == 0 %step L and go to left child

 %disp('L')

 %disp([node depth])

 temp = 2^(n-depth);

 Ln = L(depth+1,temp*node+1:temp*(node+1)); %incoming beliefs

 a = Ln(1:temp/2); b = Ln(temp/2+1:end); %split beliefs into 2

 node = node *2; depth = depth + 1; %next node: left child

 temp = temp / 2; %incoming belief length for left child

 L(depth+1,temp*node+1:temp*(node+1)) = f(a,b); %minsum and storage

 ns(npos) = 1;

 else

 if ns(npos) == 1 %step R and go to right child

 %disp('R')

 %disp([node depth])

 temp = 2^(n-depth);

 Ln = L(depth+1,temp*node+1:temp*(node+1)); %incoming beliefs

 a = Ln(1:temp/2); b = Ln(temp/2+1:end); %split beliefs into 2

 lnode = 2*node; ldepth = depth + 1; %left child

 ltemp = temp/2;

 ucapn = ucap(ldepth+1,ltemp*lnode+1:ltemp*(lnode+1)); %incoming

decisions from left child

 node = node *2 + 1; depth = depth + 1; %next node: right child

Xiaoshen Li 70/89

 temp = temp / 2; %incoming belief length for right child

 L(depth+1,temp*node+1:temp*(node+1)) = g(a,b,ucapn); %g and storage

 ns(npos) = 2;

 else %step U and go to parent

 temp = 2^(n-depth);

 lnode = 2*node; rnode = 2*node + 1; cdepth = depth + 1; %left and

right child

 ctemp = temp/2;

 ucapl = ucap(cdepth+1,ctemp*lnode+1:ctemp*(lnode+1)); %incoming

decisions from left child

 ucapr = ucap(cdepth+1,ctemp*rnode+1:ctemp*(rnode+1)); %incoming

decisions from right child

 ucap(depth+1,temp*node+1:temp*(node+1)) = [mod(ucapl+ucapr,2)

ucapr]; %combine

 node = floor(node/2); depth = depth - 1;

 end

 end

 end

 end

 msg_cap = ucap(n+1,Q1(N-K+1:end));

 %Counting errors

 Nerrs = sum(msg ~= msg_cap);

 if Nerrs > 0

 Nbiterrs = Nbiterrs + Nerrs;

 Nblkerrs = Nblkerrs + 1;

 end

end

BER_sim = Nbiterrs/K/Nblocks;

FER_sim = Nblkerrs/Nblocks;

timeend=toc(Tstart);

disp(num2str([EbNodB FER_sim timeend]))

Published with MATLAB® R2020b

7.5 nrpolar_sclistdecode_ FP.m
function [FER_sim,timeend]=nrpolar_sclistdecode_FP(x,r,N_len,list,num_blocks)

timestart=tic;

%Reliability sequence

Q=[0 1 2 4 8 16 32 3 5 64 9 6 17 10 18 128 12 33 65 20 256 34 24 36 7 129 66 512 11 40

68 130 ...

 19 13 48 14 72 257 21 132 35 258 26 513 80 37 25 22 136 260 264 38 514 96 67 41 144

28 69 42 ...

 516 49 74 272 160 520 288 528 192 544 70 44 131 81 50 73 15 320 133 52 23 134 384 76

137 82 56 27 ...

 97 39 259 84 138 145 261 29 43 98 515 88 140 30 146 71 262 265 161 576 45 100 640 51

148 46 75 266 273 517 104 162 ...

 53 193 152 77 164 768 268 274 518 54 83 57 521 112 135 78 289 194 85 276 522 58 168

139 99 86 60 280 89 290 529 524 ...

 196 141 101 147 176 142 530 321 31 200 90 545 292 322 532 263 149 102 105 304 296

163 92 47 267 385 546 324 208 386 150 153 ...

https://www.mathworks.com/products/matlab

Xiaoshen Li 71/89

 165 106 55 328 536 577 548 113 154 79 269 108 578 224 166 519 552 195 270 641 523

275 580 291 59 169 560 114 277 156 87 197 ...

 116 170 61 531 525 642 281 278 526 177 293 388 91 584 769 198 172 120 201 336 62 282

143 103 178 294 93 644 202 592 323 392 ...

 297 770 107 180 151 209 284 648 94 204 298 400 608 352 325 533 155 210 305 547 300

109 184 534 537 115 167 225 326 306 772 157 ...

 656 329 110 117 212 171 776 330 226 549 538 387 308 216 416 271 279 158 337 550 672

118 332 579 540 389 173 121 553 199 784 179 ...

 228 338 312 704 390 174 554 581 393 283 122 448 353 561 203 63 340 394 527 582 556

181 295 285 232 124 205 182 643 562 286 585 ...

 299 354 211 401 185 396 344 586 645 593 535 240 206 95 327 564 800 402 356 307 301

417 213 568 832 588 186 646 404 227 896 594 ...

 418 302 649 771 360 539 111 331 214 309 188 449 217 408 609 596 551 650 229 159 420

310 541 773 610 657 333 119 600 339 218 368 ...

 652 230 391 313 450 542 334 233 555 774 175 123 658 612 341 777 220 314 424 395 673

583 355 287 183 234 125 557 660 616 342 316 ...

 241 778 563 345 452 397 403 207 674 558 785 432 357 187 236 664 624 587 780 705 126

242 565 398 346 456 358 405 303 569 244 595 ...

 189 566 676 361 706 589 215 786 647 348 419 406 464 680 801 362 590 409 570 788 597

572 219 311 708 598 601 651 421 792 802 611 ...

 602 410 231 688 653 248 369 190 364 654 659 335 480 315 221 370 613 422 425 451 614

543 235 412 343 372 775 317 222 426 453 237 ...

 559 833 804 712 834 661 808 779 617 604 433 720 816 836 347 897 243 662 454 318 675

618 898 781 376 428 665 736 567 840 625 238 ...

 359 457 399 787 591 678 434 677 349 245 458 666 620 363 127 191 782 407 436 626 571

465 681 246 707 350 599 668 790 460 249 682 ...

 573 411 803 789 709 365 440 628 689 374 423 466 793 250 371 481 574 413 603 366 468

655 900 805 615 684 710 429 794 252 373 605 ...

 848 690 713 632 482 806 427 904 414 223 663 692 835 619 472 455 796 809 714 721 837

716 864 810 606 912 722 696 377 435 817 319 ...

 621 812 484 430 838 667 488 239 378 459 622 627 437 380 818 461 496 669 679 724 841

629 351 467 438 737 251 462 442 441 469 247 ...

 683 842 738 899 670 783 849 820 728 928 791 367 901 630 685 844 633 711 253 691 824

902 686 740 850 375 444 470 483 415 485 905 ...

 795 473 634 744 852 960 865 693 797 906 715 807 474 636 694 254 717 575 913 798 811

379 697 431 607 489 866 723 486 908 718 813 ...

 476 856 839 725 698 914 752 868 819 814 439 929 490 623 671 739 916 463 843 381 497

930 821 726 961 872 492 631 729 700 443 741 ...

 845 920 382 822 851 730 498 880 742 445 471 635 932 687 903 825 500 846 745 826 732

446 962 936 475 853 867 637 907 487 695 746 ...

 828 753 854 857 504 799 255 964 909 719 477 915 638 748 944 869 491 699 754 858 478

968 383 910 815 976 870 917 727 493 873 701 ...

 931 756 860 499 731 823 922 874 918 502 933 743 760 881 494 702 921 501 876 847 992

447 733 827 934 882 937 963 747 505 855 924 ...

 734 829 965 938 884 506 749 945 966 755 859 940 830 911 871 639 888 479 946 750 969

508 861 757 970 919 875 862 758 948 977 923 ...

 972 761 877 952 495 703 935 978 883 762 503 925 878 735 993 885 939 994 980 926 764

941 967 886 831 947 507 889 984 751 942 996 ...

 971 890 509 949 973 1000 892 950 863 759 1008 510 979 953 763 974 954 879 981 982

927 995 765 956 887 985 997 986 943 891 998 766 ...

 511 988 1001 951 1002 893 975 894 1009 955 1004 1010 957 983 958 987 1012 999 1016

767 989 1003 990 1005 959 1011 1013 895 1006 1014 1017 1018 ...

 991 1020 1007 1015 1019 1021 1022 1023]+1;

%%%%%%%% Variable %%%%%%%%

N = N_len;

Rate = r;

nL = list; %list size

Xiaoshen Li 72/89

crcL = 11;

A = floor((N*Rate)-crcL); %A=N*R-crc

crcg = fliplr([1 1 1 0 0 0 1 0 0 0 0 1]); %CRC polynomial

K = A + crcL; %CRC length = crcL

EbNodB = x;

n = log2(N);

Nblocks = num_blocks;

rmax = 3; %max received value

maxqr = 31; %max integer received value

EbNo = 10^(EbNodB/10);

sigma = sqrt(1/(2*Rate*EbNo));

Q1 = Q(Q<=N); %reliability sequence for N

F = Q1(1:N-K); %Frozen positions: Q1(1:N-K)

%Message positions: Q1(N-K+1:end)

satx = @(x,th) min(max(x,-th),th); %saturate FP value

f = @(a,b) (1-2*(a<0)).*(1-2*(b<0)).*min(abs(a),abs(b)); %minsum

g = @(a,b,c) satx(b+(1-2*c).*a,maxqr); %g function

%Simulate

Nbiterrs = 0; Nblkerrs = 0;

for blk = 1:Nblocks

 msg = randi([0 1],1,A); %generate random K-bit message

 [quot,rem] = gfdeconv([zeros(1,crcL) fliplr(msg)],crcg);

 msgcrc = [msg fliplr([rem zeros(1,crcL-length(rem))])];

 u = zeros(1,N);

 u(Q1(N-K+1:end)) = msgcrc; %assign message bits

 %encoding

 m = 1; %number of bits combined

 for d = n-1:-1:0

 for i = 1:2*m:N

 a = u(i:i+m-1); %first part

 b = u(i+m:i+2*m-1); %second part

 u(i:i+2*m-1) = [mod(a+b,2) b]; %combining

 end

 m = m * 2;

 end

 cword = u;

 s = 1 - 2 * cword; %BPSK bit to symbol conversion

 r = s + sigma * randn(1,N); %AWGN channel I

 %quantization

 r = satx(r,rmax);

 rq = round(r/rmax*maxqr);

 %nL SC decoders

 LLR = zeros(nL,n+1,N); %beliefs in nL decoders

 ucap = zeros(nL,n+1,N); %decisions in nL decoders

 PML = Inf*ones(nL,1); %Path metrics

 PML(1) = 0;

 ns = zeros(1,2*N-1); %node state vector

Xiaoshen Li 73/89

 LLR(:,1,:) = repmat(rq,nL,1,1); %belief of root

 DML = zeros(nL,N);

 PMLL = zeros(nL,N);

 node = 0; depth = 0; %start at root

 done = 0; %decoder has finished or not

 while (done == 0) %traverse till all bits are decoded

 %leaf or not

 if depth == n

 DM = squeeze(LLR(:,n+1,node+1)); %decision metrics

 DML(:,node+1) = DM;

 PMLL(:,node+1) = PML;

 if any(F==(node+1)) %is node frozen

 ucap(:,n+1,node+1) = 0; %set all decisions to 0

 PML = PML + abs(DM).*(DM < 0); %if DM is negative, add |DM|

 else

 dec = DM < 0; %decisions as per DM

 PM2 = [PML; PML+abs(DM)];

 [PML, pos] = mink(PM2,nL); %In PM2(:), first nL are as per DM

 %next nL are opposite of DM

 pos1 = pos > nL; %surviving with opposite of DM: 1, if pos is above nL

 pos(pos1) = pos(pos1) - nL; %adjust index

 dec = dec(pos); %decision of survivors

 dec(pos1) = 1 - dec(pos1); %flip for opposite of DM

 LLR = LLR(pos,:,:); %rearrange the decoder states

 ucap = ucap(pos,:,:);

 ucap(:,n+1,node+1) = dec;

 end

 if node == (N-1)

 done = 1;

 else

 node = floor(node/2); depth = depth - 1;

 end

 else

 %nonleaf

 npos = (2^depth-1) + node + 1; %position of node in node state vector

 if ns(npos) == 0 %step L and go to left child

 %disp('L')

 %disp([node depth])

 temp = 2^(n-depth);

 Ln = squeeze(LLR(:,depth+1,temp*node+1:temp*(node+1))); %incoming

beliefs

 a = Ln(:,1:temp/2); b = Ln(:,temp/2+1:end); %split beliefs into 2

 node = node *2; depth = depth + 1; %next node: left child

 temp = temp / 2; %incoming belief length for left child

 LLR(:,depth+1,temp*node+1:temp*(node+1)) = f(a,b); %minsum and storage

 ns(npos) = 1;

 else

 if ns(npos) == 1 %step R and go to right child

 %disp('R')

 %disp([node depth])

 temp = 2^(n-depth);

 Ln = squeeze(LLR(:,depth+1,temp*node+1:temp*(node+1))); %incoming

beliefs

 a = Ln(:,1:temp/2); b = Ln(:,temp/2+1:end); %split beliefs into 2

 lnode = 2*node; ldepth = depth + 1; %left child

 ltemp = temp/2;

Xiaoshen Li 74/89

 ucapn =

squeeze(ucap(:,ldepth+1,ltemp*lnode+1:ltemp*(lnode+1))); %incoming decisions from left

child

 node = node *2 + 1; depth = depth + 1; %next node: right child

 temp = temp / 2; %incoming belief length for right child

 LLR(:,depth+1,temp*node+1:temp*(node+1)) = g(a,b,ucapn); %g and

storage

 ns(npos) = 2;

 else %step U and go to parent

 temp = 2^(n-depth);

 lnode = 2*node; rnode = 2*node + 1; cdepth = depth + 1; %left and

right child

 ctemp = temp/2;

 ucapl =

squeeze(ucap(:,cdepth+1,ctemp*lnode+1:ctemp*(lnode+1))); %incoming decisions from left

child

 ucapr =

squeeze(ucap(:,cdepth+1,ctemp*rnode+1:ctemp*(rnode+1))); %incoming decisions from right

child

 ucap(:,depth+1,temp*node+1:temp*(node+1)) = [mod(ucapl+ucapr,2)

ucapr]; %combine

 node = floor(node/2); depth = depth - 1;

 end

 end

 end

 end

 %check CRC

 msg_capl = squeeze(ucap(:,n+1,Q1(N-K+1:end))); %get candidate messages

 cout = 1; %candidate codeword to be outputted, initially set to best PM

 for c1 = 1:nL

 [q1,r1] = gfdeconv(fliplr(msg_capl(c1,:)),crcg);

 if isequal(r1,0) %check if CRC passes

 cout = c1;

 break

 end

 end

 msg_cap = msg_capl(cout,1:A);

 %Counting errors

 Nerrs = sum(msg ~= msg_cap);

 if Nerrs > 0

 Nbiterrs = Nbiterrs + Nerrs;

 Nblkerrs = Nblkerrs + 1;

 end

end

BER_sim = Nbiterrs/A/Nblocks;

FER_sim = Nblkerrs/Nblocks;

timeend=toc(timestart);

disp(num2str([EbNodB FER_sim timeend]))

Published with MATLAB® R2020b

https://www.mathworks.com/products/matlab

Xiaoshen Li 75/89

7.6 Turbo.m

function [bler,ber,timeend]=turbo(x,n,num_blocks)

timestart=tic;

%%%%%%%% Variable %%%%%%%%

EbNo = x; % Eb/No values to loop over

blkLength = n; % Block length

maxNumBlks = num_blocks; % maximum number of blocks per Eb/No value

numIter = 3; % Number of decoding iterations

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);

k = log2(trellis.numInputSymbols); % number of input bits

n = log2(trellis.numOutputSymbols); % number of output bits

intrIndices = randperm(blkLength/k)'; % Random interleaving

decAlg = 'True App'; % Decoding algorithm

modOrder = 2; % PSK-modulation order BPSK

cEnc1 = comm.ConvolutionalEncoder('TrellisStructure',...

 trellis,'TerminationMethod','Truncated');

cEnc2 = comm.ConvolutionalEncoder('TrellisStructure',...

 trellis,'TerminationMethod','Truncated');

cAPPDec1 = comm.APPDecoder('TrellisStructure',trellis,...

 'TerminationMethod','Truncated','Algorithm',decAlg);

cAPPDec2 = comm.APPDecoder('TrellisStructure',trellis,...

 'TerminationMethod','Truncated','Algorithm',decAlg);

bpskMod = comm.BPSKModulator;

bpskDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...

 'VarianceSource','Input port');

awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...

 'VarianceSource','Input port');

numferr=0;

bitError = comm.ErrorRate; % BER measurement

bitsPerSymbol = log2(modOrder);

turboEncRate =k/(2*n);

% Calculate the noise variance from EbNo

EsNo = EbNo+ 10*log10(bitsPerSymbol);

SNRdB = EsNo + 10*log10(turboEncRate); % Account for code rate

noiseVar = 10^(-SNRdB/10);

for numBlks = 1:maxNumBlks

 % Generate binary data

 data = randi([0 1],blkLength,1);

 % Turbo encode the data

 [encodedData,outIndices] = helperTurboEnc(data,cEnc1,cEnc2, ...

 trellis,blkLength,intrIndices);

 % Modulate the encoded data

 modSignal = bpskMod(encodedData);

 % Pass the modulated signal through an AWGN channel

 receivedSignal = awgnChan(modSignal,noiseVar);

Xiaoshen Li 76/89

 % Demodulate the noisy signal using LLR to output soft bits

 demodSignal = bpskDemod(receivedSignal,noiseVar);

 % Turbo decode the demodulated data

 receivedBits = helperTurboDec(-demodSignal,cAPPDec1,cAPPDec2, ...

 trellis,blkLength,intrIndices,outIndices,numIter);

 % Calculate the error statistics

 errStates = bitError(data,receivedBits);

 numferr = numferr + any(receivedBits~=data);

end

ber= errStates(1);

bler = numferr/maxNumBlks;

timeend=toc(timestart);

disp(num2str([EbNo bler ber timeend]))

Published with MATLAB® R2020b

7.6.1 helpTurboEnc.m

function [yEnc,outIndices] =

helperTurboEnc(data,hCEnc1,hCEnc2,trellis,blkLength,intrIndices)

% Turbo encoding using two parallel convolutional encoders.

% No tail bits handling and assumes no output stream puncturing.

 % Trellis parameters

 k = log2(trellis.numInputSymbols);

 n = log2(trellis.numOutputSymbols);

 cLen = blkLength*n/k;

 punctrVec = [0;0;0;0;0;0]; % assumes all streams are output

 N = length(find(punctrVec==0));

 % Encode random data bits

 y1 = step(hCEnc1, data);

 y2 = step(hCEnc2, reshape(intrlv(reshape(data, k, [])',intrIndices)', [], 1));

 y1D = reshape(y1(1:cLen), n, []);

 y2D = reshape(y2(1:cLen), n, []);

 yDTemp = [y1D; y2D];

 y = yDTemp(:);

 % Generate output indices vector using puncturing vector

 idx = 0 : 2*n : (blkLength - 1)*2*(n/k);

 punctrVecIdx = find(punctrVec==0);

 dIdx = repmat(idx, N, 1) + punctrVecIdx;

 outIndices = dIdx(:);

 yEnc = y(outIndices);

end

Published with MATLAB® R2020b

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab

Xiaoshen Li 77/89

7.6.2 helpTurboDec.m

function yDec =

helperTurboDec(yEnc,cAPPDec1,cAPPDec2,trellis,blkLength,intrIndices,inIndices,numIter)

% Turbo decoding using two a-posteriori probability (APP) decoders

 % Trellis parameters

 k = log2(trellis.numInputSymbols);

 n = log2(trellis.numOutputSymbols);

 rCodLen = 2*(n/k)*blkLength;

 typeyEnc = class(yEnc);

 % Re-order encoded bits according to outIndices

 x = zeros(rCodLen, 1);

 x(inIndices) = yEnc;

 % Generate output of first encoder

 yD = reshape(x(1:rCodLen), 2*n, []);

 lc1D = yD(1:n, :);

 Lc1_in = lc1D(:);

 % Generate output of second encoder

 lc2D = yD(n+1:2*n, :);

 Lc2_in = lc2D(:);

 % Initialize unencoded data input

 Lu1_in = zeros(blkLength, 1, typeyEnc);

 % Turbo Decode

 out1 = zeros(blkLength/k, k, typeyEnc);

 for iterIdx = 1 : numIter

 [Lu1_out, ~] = step(cAPPDec1, Lu1_in, Lc1_in);

 tmp = Lu1_out(1:blkLength);

 Lu2_in = reshape(tmp, k, [])';

 [Lu2_out, ~] = step(cAPPDec2, ...

 reshape(Lu2_in(intrIndices, :)', [], 1), Lc2_in);

 out1(intrIndices, :) = reshape(Lu2_out(1:blkLength), k, [])';

 Lu1_in = reshape(out1', [], 1);

 end

 % Calculate llr and decoded bits for the final iteration

 llr = reshape(out1', [], 1) + Lu1_out(1:blkLength);

 yDec = cast((llr>=0), typeyEnc);

end

Published with MATLAB® R2020b

7.7 Sim_BLER.m
clc

clear

% Polar code

%SC decode

load data\NR_Polar_N128_SC_R12.mat Polar_N128_SC_R12;

%SCL decode

https://www.mathworks.com/products/matlab

Xiaoshen Li 78/89

%N=128

load data\NR_Polar_N128_L8_R13.mat Polar_N128_L8_R13;

load data\NR_Polar_N128_L8_R12.mat Polar_N128_L8_R12;

load data\NR_Polar_N128_L8_R56.mat Polar_N128_L8_R56;

load data\NR_Polar_N128_L32_R12.mat Polar_N128_L32_R12;

%N=1024

load data\NR_Polar_N1024_L8_R13.mat Polar_N1024_L8_R13;

load data\NR_Polar_N1024_L8_R12.mat Polar_N1024_L8_R12;

load data\NR_Polar_N1024_L8_R56.mat Polar_N1024_L8_R56;

% LDPC code

%BG1

%N=128

load data\NR_LDPC_BG1_N128_R13.mat LDPC_BG1_N128_R13;

load data\NR_LDPC_BG1_N128_R12.mat LDPC_BG1_N128_R12;

load data\NR_LDPC_BG1_N128_R56.mat LDPC_BG1_N128_R56;

%N=1024

load data\NR_LDPC_BG1_N1024_R13.mat LDPC_BG1_N1024_R13;

load data\NR_LDPC_BG1_N1024_R12.mat LDPC_BG1_N1024_R12;

load data\NR_LDPC_BG1_N1024_R56.mat LDPC_BG1_N1024_R56;

%BG2

%N=128

load data\NR_LDPC_BG2_N128_R13.mat LDPC_BG2_N128_R13;

load data\NR_LDPC_BG2_N128_R12.mat LDPC_BG2_N128_R12;

load data\NR_LDPC_BG2_N128_R56.mat LDPC_BG2_N128_R56;

%N=1024

load data\NR_LDPC_BG2_N1024_R13.mat LDPC_BG2_N1024_R13;

load data\NR_LDPC_BG2_N1024_R12.mat LDPC_BG2_N1024_R12;

load data\NR_LDPC_BG2_N1024_R56.mat LDPC_BG2_N1024_R56;

% Turbo code

load data\LTE_Turbo_N128_R13.mat Turbo_N128_R13;

load data\LTE_Turbo_N1024_R13.mat Turbo_N1024_R13;

7.7.1 BLER-EbNodB total R=1/2

figure()

%polar

semilogy(Polar_N128_SC_R12(:,1),Polar_N128_SC_R12(:,2),'rs-');

hold on;

semilogy(Polar_N128_L8_R12(:,1),Polar_N128_L8_R12(:,2),'rs--');

hold on;

semilogy(Polar_N128_L32_R12(:,1),Polar_N128_L32_R12(:,2),'rs-.');

hold on;

semilogy(Polar_N1024_L8_R12(:,1),Polar_N1024_L8_R12(:,2),'r*--');

hold on;

%ldpc

semilogy(LDPC_BG1_N128_R12(:,1),LDPC_BG1_N128_R12(:,2),'bs-');

hold on;

semilogy(LDPC_BG1_N1024_R12(:,1),LDPC_BG1_N1024_R12(:,2),'b*-');

hold on;

semilogy(LDPC_BG2_N128_R12(:,1),LDPC_BG2_N128_R12(:,2),'bs--');

hold on;

semilogy(LDPC_BG2_N1024_R12(:,1),LDPC_BG2_N1024_R12(:,2),'b*--');

hold on;

Xiaoshen Li 79/89

grid on

grid minor

axis([-1 7 1e-4 1]);

xlabel('Eb/No (dB)','FontName','Times','FontSize',16);

ylabel('BLER','FontName','Times','FontSize',16);

title('AWAG, BPSK, Rate=1/2','FontName','Times','FontSize',14);

legend('Polar SC, N=128','Polar SCL, N=128, L=8, CRC=11',...

'Polar SCL, N=128, L=32,CRC=11','Polar SCL, N=1024, L=8, CRC=11',...

'LDPC BG1 N=128','LDPC BG1 N=1024','LDPC BG2 N=128','LDPC BG2 N=1024',...

'FontSize',18,'location','best');

7.7.2 BLER-EbNodB N=128 diferente Rate

figure()

%polar

semilogy(Polar_N128_L8_R13(:,1),Polar_N128_L8_R13(:,2),'ro-');

hold on;

semilogy(Polar_N128_L8_R12(:,1),Polar_N128_L8_R12(:,2),'r*-');

hold on;

semilogy(Polar_N128_L8_R56(:,1),Polar_N128_L8_R56(:,2),'rd-');

hold on;

%ldpc

semilogy(LDPC_BG1_N128_R13(:,1),LDPC_BG1_N128_R13(:,2),'bo--');

hold on;

semilogy(LDPC_BG1_N128_R12(:,1),LDPC_BG1_N128_R12(:,2),'b*--');

hold on;

semilogy(LDPC_BG1_N128_R56(:,1),LDPC_BG1_N128_R56(:,2),'bd--');

hold on;

semilogy(LDPC_BG2_N128_R13(:,1),LDPC_BG2_N128_R13(:,2),'bo-.');

hold on;

semilogy(LDPC_BG2_N128_R12(:,1),LDPC_BG2_N128_R12(:,2),'b*-.');

hold on;

semilogy(LDPC_BG2_N128_R56(:,1),LDPC_BG2_N128_R56(:,2),'bd-.');

hold on;

%turbo

semilogy(Turbo_N128_R13(:,1),Turbo_N128_R13(:,2),'go-');

hold on;

grid on

grid minor

axis([-1 7 1e-4 1]);

xlabel('Eb/No (dB)','FontName','Times','FontSize',16);

ylabel('BLER','FontName','Times','FontSize',16);

title('AWAG, BPSK, N=128','FontName','Times','FontSize',14);

legend('Polar, L=8, R=1/3','Polar, L=8, R=1/2','Polar, L=8, R=5/6',...

'LDPC BG1, R=1/3','LDPC BG1, R=1/2','LDPC BG1, R=5/6',...

'LDPC BG2, R=1/3','LDPC BG2, R=1/2','LDPC BG2, R=5/6',...

'LTE Turbo, R=1/3','FontSize',18,'location','best');

7.7.3 BLER-EbNodB N=1024

figure()

%polar

semilogy(Polar_N1024_L8_R13(:,1),Polar_N1024_L8_R13(:,2),'ro-');

hold on;

semilogy(Polar_N1024_L8_R12(:,1),Polar_N1024_L8_R12(:,2),'r*-');

Xiaoshen Li 80/89

hold on;

semilogy(Polar_N1024_L8_R56(:,1),Polar_N1024_L8_R56(:,2),'rd-');

hold on;

%ldpc

semilogy(LDPC_BG1_N1024_R13(:,1),LDPC_BG1_N1024_R13(:,2),'bo--');

hold on;

semilogy(LDPC_BG1_N1024_R12(:,1),LDPC_BG1_N1024_R12(:,2),'b*--');

hold on;

semilogy(LDPC_BG1_N1024_R56(:,1),LDPC_BG1_N1024_R56(:,2),'bd--');

hold on;

semilogy(LDPC_BG2_N1024_R13(:,1),LDPC_BG2_N1024_R13(:,2),'bo-.');

hold on;

semilogy(LDPC_BG2_N1024_R12(:,1),LDPC_BG2_N1024_R12(:,2),'b*-.');

hold on;

semilogy(LDPC_BG2_N1024_R56(:,1),LDPC_BG2_N1024_R56(:,2),'bd-.');

hold on;

%turbo

semilogy(Turbo_N1024_R13(:,1),Turbo_N1024_R13(:,2),'go-');

hold on;

grid on

grid minor

axis([-1 7 1e-4 1]);

xlabel('Eb/No (dB)','FontName','Times','FontSize',16);

ylabel('BLER','FontName','Times','FontSize',16);

title('AWAG, BPSK, N=1024','FontName','Times','FontSize',14);

legend('Polar, L=8, R=1/3','Polar, L=8, R=1/2','Polar, L=8, R=5/6',...

'LDPC BG1, R=1/3','LDPC BG1, R=1/2','LDPC BG1, R=5/6',...

'LDPC BG2, R=1/3','LDPC BG2, R=1/2','LDPC BG2, R=5/6',...

'LTE Turbo, R=1/3','FontSize',18,'location','best');

Published with MATLAB® R2020b

7.8 Sim_Time.m
clc

clear

% Polar code

%SC decode

load data\NR_Polar_N128_SC_R12.mat Polar_N128_SC_R12;

%SCL decode

%N=128

load data\NR_Polar_N128_L8_R13.mat Polar_N128_L8_R13;

load data\NR_Polar_N128_L8_R12.mat Polar_N128_L8_R12;

load data\NR_Polar_N128_L8_R56.mat Polar_N128_L8_R56;

load data\NR_Polar_N128_L32_R12.mat Polar_N128_L32_R12;

%N=1024

load data\NR_Polar_N1024_L8_R13.mat Polar_N1024_L8_R13;

load data\NR_Polar_N1024_L8_R12.mat Polar_N1024_L8_R12;

load data\NR_Polar_N1024_L8_R56.mat Polar_N1024_L8_R56;

https://www.mathworks.com/products/matlab

Xiaoshen Li 81/89

% LDPC code

%BG1

%N=128

load data\NR_LDPC_BG1_N128_R13.mat LDPC_BG1_N128_R13;

load data\NR_LDPC_BG1_N128_R12.mat LDPC_BG1_N128_R12;

load data\NR_LDPC_BG1_N128_R56.mat LDPC_BG1_N128_R56;

%N=1024

load data\NR_LDPC_BG1_N1024_R13.mat LDPC_BG1_N1024_R13;

load data\NR_LDPC_BG1_N1024_R12.mat LDPC_BG1_N1024_R12;

load data\NR_LDPC_BG1_N1024_R56.mat LDPC_BG1_N1024_R56;

%BG2

%N=128

load data\NR_LDPC_BG2_N128_R13.mat LDPC_BG2_N128_R13;

load data\NR_LDPC_BG2_N128_R12.mat LDPC_BG2_N128_R12;

load data\NR_LDPC_BG2_N128_R56.mat LDPC_BG2_N128_R56;

%N=1024

load data\NR_LDPC_BG2_N1024_R13.mat LDPC_BG2_N1024_R13;

load data\NR_LDPC_BG2_N1024_R12.mat LDPC_BG2_N1024_R12;

load data\NR_LDPC_BG2_N1024_R56.mat LDPC_BG2_N1024_R56;

% Turbo code

load data\LTE_Turbo_N128_R13.mat Turbo_N128_R13;

load data\LTE_Turbo_N1024_R13.mat Turbo_N1024_R13;

7.8.1 Time R=1/3

figure()

%polar

semilogy(Polar_N128_L8_R13(:,1),Polar_N128_L8_R13(:,3),'rs-');

hold on;

semilogy(Polar_N1024_L8_R13(:,1),Polar_N1024_L8_R13(:,3),'r*-');

hold on;

%ldpc

semilogy(LDPC_BG1_N128_R13(:,1),LDPC_BG1_N128_R13(:,3),'bs--');

hold on;

semilogy(LDPC_BG1_N1024_R13(:,1),LDPC_BG1_N1024_R13(:,3),'b*--');

hold on;

semilogy(LDPC_BG2_N128_R13(:,1),LDPC_BG2_N128_R13(:,3),'bs-.');

hold on;

semilogy(LDPC_BG2_N1024_R13(:,1),LDPC_BG2_N1024_R13(:,3),'b*-.');

hold on;

%turbo

semilogy(Turbo_N128_R13(:,1),Turbo_N128_R13(:,3),'go-');

hold on;

semilogy(Turbo_N1024_R13(:,1),Turbo_N1024_R13(:,3),'g*-');

hold on;

grid on

grid minor

axis([-1 7 0 1e4]);

xlabel('Eb/No (dB)','FontName','Times','FontSize',16);

ylabel('Time (s)','FontName','Times','FontSize',16);

title('AWAG, BPSK, Rate=1/3','FontName','Times','FontSize',14);

legend('Polar SCL, N=128, L=8, CRC=11','Polar SCL, N=1024, L=8, CRC=11',...

'LDPC BG1, N=128','LDPC BG1, N=1024','LDPC BG2, N=128',...

Xiaoshen Li 82/89

'LDPC BG2, N=1024','LTE Turbo, N=128','LTE Turbo, N=1024',...

'FontSize',16,'location','best');

7.8.2 Time R=1/2

figure()

%polar

semilogy(Polar_N128_SC_R12(:,1),Polar_N128_SC_R12(:,3),'ro-');

hold on;

semilogy(Polar_N128_L8_R12(:,1),Polar_N128_L8_R12(:,3),'rs-');

hold on;

semilogy(Polar_N128_L32_R12(:,1),Polar_N128_L32_R12(:,3),'rp-');

hold on;

semilogy(Polar_N1024_L8_R12(:,1),Polar_N1024_L8_R12(:,3),'r*-');

hold on;

%ldpc

semilogy(LDPC_BG1_N128_R12(:,1),LDPC_BG1_N128_R12(:,3),'bs--');

hold on;

semilogy(LDPC_BG1_N1024_R12(:,1),LDPC_BG1_N1024_R12(:,3),'b*--');

hold on;

semilogy(LDPC_BG2_N128_R12(:,1),LDPC_BG2_N128_R12(:,3),'bs-.');

hold on;

semilogy(LDPC_BG2_N1024_R12(:,1),LDPC_BG2_N1024_R12(:,3),'b*-.');

hold on;

grid on

grid minor

axis([-1 7 0 1e4]);

xlabel('Eb/No (dB)','FontName','Times','FontSize',16);

ylabel('Time (s)','FontName','Times','FontSize',16);

title('AWAG, BPSK, Rate=1/2','FontName','Times','FontSize',14);

legend('Polar SC, N=128','Polar SCL, N=128, L=8, CRC=11',...

'Polar SCL, N=128, L=32,CRC=11','Polar SCL, N=1024, L=8, CRC=11',...

'LDPC BG1, N=128','LDPC BG1, N=1024','LDPC BG2, N=128','LDPC BG2, N=1024',...

'FontSize',12,'location','best');

7.8.3 Time R=5/6

figure()

%polar

semilogy(Polar_N128_L8_R56(:,1),Polar_N128_L8_R56(:,3),'rs-');

hold on;

semilogy(Polar_N1024_L8_R56(:,1),Polar_N1024_L8_R56(:,3),'r*-');

hold on;

%ldpc

semilogy(LDPC_BG1_N128_R56(:,1),LDPC_BG1_N128_R56(:,3),'bs--');

hold on;

semilogy(LDPC_BG1_N1024_R56(:,1),LDPC_BG1_N1024_R56(:,3),'b*--');

hold on;

semilogy(LDPC_BG2_N128_R56(:,1),LDPC_BG2_N128_R56(:,3),'bs-.');

hold on;

semilogy(LDPC_BG2_N1024_R56(:,1),LDPC_BG2_N1024_R56(:,3),'b*-.');

hold on;

grid on

grid minor

Xiaoshen Li 83/89

axis([-1 7 0 1e4]);

xlabel('Eb/No (dB)','FontName','Times','FontSize',16);

ylabel('Time (s)','FontName','Times','FontSize',16);

title('AWAG, BPSK, Rate=5/6','FontName','Times','FontSize',14);

legend('Polar SCL, N=128, L=8, CRC=11','Polar SCL, N=1024, L=8, CRC=11',...

'LDPC BG1 N=128','LDPC BG1 N=1024','LDPC BG2 N=128','LDPC BG2 N=1024',...

'FontSize',16,'location','best');

Published with MATLAB® R2020b

https://www.mathworks.com/products/matlab

Universidad de Alcalá

Escuela Politécnica Superior

	1. Introduction
	2. Historical background of mobile communication systems and channel coding
	2.1 The evolution of mobile communication systems
	2.1.1 The First Generation (1G) of Mobile Telecommunications
	2.1.2 The Second Generation (2G) of Mobile Telecommunications
	2.1.3 The Third Generation (3G) of Mobile Telecommunications
	2.1.4 The Fourth Generation (4G) of Mobile Telecommunications
	2.1.5 The Fifth Generation (5G) of Mobile Telecommunications

	2.2 Channel coding
	2.2.1 Convolutional Codes
	2.2.2 Turbo codes
	2.2.3 LDPC codes
	2.2.4 Polar codes

	3. Study of the channel coding of 5G standards
	3.1 LDPC codes
	3.1.1 Basic Theory
	3.1.1.1 Definition of LDPC codes
	3.1.1.2 Regular e irregular
	3.1.1.3 Decoding of LDPC codes

	3.1.2 LDPC codes in 5G NR
	3.1.2.1 Protograph construction
	3.1.2.2 Base graphs
	3.1.2.2.1 Base graph 1 (BG1)
	3.1.2.2.2 Base graph 2 (BG2)
	3.1.2.2.3 Example of the construction of the matrices ,𝑯-𝑩𝑮. and 𝑯 in 5G NR

	3.1.3 NR LDPC coding chain
	3.1.3.1 Segmentation
	3.1.3.2 Rate matching
	3.1.3.3 Interleaving

	3.1.4 Conclusion

	3.2 Polar Codes
	3.2.1 Basic theory
	3.2.1.1 Channel combining
	3.2.1.2 Channel splitting
	3.2.1.3 Channel polarization

	3.2.2 Encoding and Decoding of Polar Codes
	3.2.2.1 Polar encoding
	3.2.2.2 Polar decoding

	3.2.3 NR Polar coding chain
	3.2.3.1 Segmentation
	3.2.3.2 Rate matching
	3.2.3.3 Interleaving

	3.2.4 Conclusion

	4. Simulation
	4.1 Simulation environment and process
	4.2 Results analysis
	4.3 Discussion

	5. Conclusion
	6. References
	7. Appendix: Matlab codes
	7.1 Main.m
	7.2 calculaZ.m
	7.3 BPSK_nrldpc_sim_RM_FP.m
	7.4 nrpolar_scdecode_ FP.m
	7.5 nrpolar_sclistdecode_ FP.m
	7.6 Turbo.m
	7.6.1 helpTurboEnc.m
	7.6.2 helpTurboDec.m

	7.7 Sim_BLER.m
	7.7.1 BLER-EbNodB total R=1/2
	7.7.2 BLER-EbNodB N=128 diferente Rate
	7.7.3 BLER-EbNodB N=1024

	7.8 Sim_Time.m
	7.8.1 Time R=1/3
	7.8.2 Time R=1/2
	7.8.3 Time R=5/6

