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a b s t r a c t

In Blasco and Pérez-Díaz (2014) (see [3]), a method for computing generalized asymptotes
of a real algebraic plane curve implicitly defined is presented. Generalized asymptotes are
curves that describe the status of a branch at points with sufficiently large coordinates
and thus, it is an important tool to analyze the behavior at infinity of an algebraic curve.
This motivates that in this paper, we analyze and compute the generalized asymptotes of a
real algebraic space curve which could be parametrically or implicitly defined. We present
an algorithm that is based on the computation of the infinity branches (this concept was
already introduced for plane curves in Blasco and Pérez-Díaz (2014) [1]). In particular,
we show that the computation of infinity branches in the space can be reduced to the
computation of infinity branches in the plane and thus, the methods in Blasco and Pérez-
Díaz (2014) (see [1]) can be applied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In [1], we introduce the notion of infinity branches and approaching curves. Some important properties are derived from
these concepts which allow us to obtain an algorithm that compares the behavior of two implicitly defined algebraic plane
curves at infinity. In particular, a characterization for the finiteness of the Hausdorff distance between two algebraic curves
in the n-dimensional space can be obtained (see Section 5 in [1], and [2]). The characterization is relatedwith the asymptotic
behavior of the two curves and it can be easily checked.

Based on the notions and results presented in [1], in [3] we deal with the problem of computing the asymptotes of the
infinity branches of a given plane curve C implicitly defined. The asymptotes of an infinity branch of C reflect the status of
this branch at points with sufficiently large coordinates. It is well known that an asymptote of a curve is a line such that the
distance between the curve and the line approaches zero as they tend to infinity. However, in [3], we show that an algebraic
plane curve may have more general curves than lines describing the status of a branch at infinity. Thus, in [3], we develop
an algorithm for the computation of generalized asymptotes (or g-asymptotes), and some important properties concerning
this new concept are presented.

The applicability of the results presented in [1,3] is of central importance in the field of computer aided geometric design
(CAGD) since these results provide new and important concepts as well as computational techniques that allow us to obtain
information about the behavior of a plane curve at infinity. For instance, the infinity branches of an implicit plane curve C
are essential for the study of the topology of C (see e.g. [4–6]) or for detecting its symmetries (see e.g. [7]). Also, the results
obtained play an important role in the frame of approximate parametrization problems (see e.g. [8,9]) or in analyzing the
Hausdorff distance between two curves (see [2]) which is specially interesting since the Hausdorff distance is an appropriate
tool for measuring the closeness between two curves (see e.g. [10–13]).
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The results obtained and the importance of the applications we mentioned above moved us to try to generalize the
foundations and methods in [1,3] to the case of space curves.

For this purpose, in this paper, we consider an irreducible real algebraic space curveC over the field of complex numbers
C implicitly defined by two irreducible real polynomials, and we deal with the problem of computing the asymptotes of
the infinity branches of C. For this purpose, we generalize the notions and some previous results presented in [1,3], and we
develop an algorithm for computing the g-asymptotes of C (see Sections 2–4).

In addition, we also show how to compute the g-asymptotes if the given curve is defined by a rational real parametriza-
tion. This parametric approach can be easily generalized for parametric plane curves and in general, for a rational
parametrization of a curve in the n-dimensional space (see Section 5). This new statement of the problem is specially inter-
esting in some practical applications in CAGD, where objects are often given and manipulated parametrically.

Authors have not been able to findmany references in the literature dealingwith the analysis and computation of infinity
branches and asymptotes of a given algebraic curve. Only in [14], linear asymptotes of space curves are briefly studied. In
particular, it is proved how the tangents at the simple points at infinity of the curve (i.e. non-singular points at infinity)
are related with the asymptotes. For the case of plane curves, some results concerning linear asymptotes can be found in
[15,16].

CAGD is a natural environment for practical applications of algebraic curves and surfaces. In particular, the results and
methods presented in this paper open new ways to study the behavior of algebraic space curves, with expected generaliza-
tions to higher dimension and the case of surfaces.

The applications expected of the results obtained in this paper can be included in the frame of those presented for the
plane case. More precisely, the methods and techniques developed could be very useful to deal (for instance) with the
following problems: the behavior at infinity of a space curve when approximate parametrization techniques are used (see
e.g. [14] or [17]), the sketch of the graph or the computation of the topology of real algebraic space curves (see [17–19]
or [20]), the detection of the symmetries of a given space curve (see [7]) or the computation of the Hausdorff distance
between two curves (see [2,13]). The reader may find explanations of these and other problems in the vast literature on
CAGD (see e.g. [20–25]).

The structure of the paper is as follows: in Section 2, we present the notation and we generalize some previous results
developed in Sections 2, 3 and 4 in [1]. In particular, we introduce the notions of infinity branch and convergent infinity
branches, and we characterize whether two implicit algebraic space curves approach each other at infinity. In Section 3, we
show the relation between infinity branches of plane curves and infinity branches of space curves. More precisely, we obtain
the infinity branches of a given space curve C from the infinity branches of a certain plane curve obtained by projecting C
along some ‘‘valid projection direction’’. This approach allows us to use effective computational techniques existing in the
plane case (see Section 3 in [1]) for the computation of the infinity branches of space curves. In Section 4, we introduce the
notions of perfect curve and generalized asymptote or g-asymptote. These concepts are derived from the study of approaching
curves and convergent branches in Section 3, and they generalize the notions introduced in [3] (see Section 3) for a given
plane curve. Moreover, in Section 4, we also present an efficient algorithm that computes a g-asymptote for each infinity
branch of a given space curve implicitly defined. We reach the expected situation, that is, the computation is similar to
the case of implicit plane curves although the formalization and proofs of the results use approaches totally new since the
computational techniques and tools in the space are necessarily different to those we have in the plane. Section 5 is devoted
to the computation of g-asymptotes for a given parametric space curve. Themethod presented in this section is totally new.
Moreover, it is easily applicable to parametric plane curves and in general, to rational parametrizations of curves in the
n-dimensional space. We finish with a section of conclusions (see Section 6) where we summarize the results obtained, we
emphasize the new contributions of this paper (compared with those presented in [1,3]), and we propose topics for further
study.

2. Notation and terminology

In this section, we present some notions and terminology that will be used throughout the paper. In particular, we
introduce some previous results concerning local parametrizations and Puiseux series (see Section 5.2 in [26], Section 2
in [1,27], Section 2.5 in [28,29] and Section 2 in Chapter 4 in [30]). In addition, we generalize the concept of infinity branch
introduced in [1] (see Section 3) for a given algebraic plane curve. Important results and tools derived from this notion will
be presented in the subsequent sections.

We denote by C[[t]] the domain of formal power series in the indeterminate t with coefficients in the field C, i.e. the
set of all sums of the form


∞

i=0 ait
i, ai ∈ C. The quotient field of C[[t]] is called the field of formal Laurent series, and it

is denoted by C((t)). It is well known that every non-zero formal Laurent series A ∈ C((t)) can be written in the form
A(t) = tk · (a0 + a1t + a2t2 + · · ·), where a0 ≠ 0 and k ∈ Z. In addition, the field C ≪ t ≫:=


∞

n=1 C((t1/n)) is called the
field of formal Puiseux series. Note that Puiseux series are power series of the form

ϕ(t) = m + a1tN1/N + a2tN2/N + a3tN3/N + · · · ∈ C ≪ t ≫, ai ≠ 0, ∀i ∈ N,

where N,Ni ∈ N, i ≥ 1, and 0 < N1 < N2 < · · ·. The natural number N is known as the ramification index of the series. We
denote it as ν(ϕ) (see [27]).
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Fig. 1. Infinity branches B1 (left) and B2 (right).

The order of a non-zero (Puiseux or Laurent) series ϕ is the smallest exponent of a term with non-vanishing coefficient
in ϕ. We denote it by ord(ϕ). We let the order of 0 be ∞.

The most important property of Puiseux series is given by Puiseux’s theorem, which states that if K is an algebraically
closed field, then the fieldK ≪ x ≫ is algebraically closed (see Theorems 2.77 and 2.78 in [28]). A proof of Puiseux’s theorem
can be given constructively by the Newton polygon method (see e.g. Section 2.5 in [28]).

In the following,we introduce the concept of infinity branchof a space curve,which is an essential tool in thedevelopment
of the results presented in this paper. For this purpose, letC ⊂ C3 be an irreducible space curve defined by two polynomials
fi(x1, x2, x3) ∈ R[x1, x2, x3], i = 1, 2. We assume that C is not planar (for planar space curves, one may apply the results
in [1,3]). In general, an irreducible affine real (non-planar) space curve C ⊂ C3 is defined as the zero set (over C) of a finite
set of real polynomials {f1, . . . , fs} ⊂ R[x1, x2, x3], s ≥ 2. In this paper, we consider real algebraic space curves implicitly
defined as the intersection of two surfaces.

Intuitively speaking, the infinity branches of a curve are the regions of the curve that spread out to infinity. They are
associated to the infinity places of the corresponding projective curve (see e.g. Section 2 in [28]). In [1] (see Section 3), we
define these branches, for the case of a given plane curve C, as sets of the form B = {(z, rj(z)) ∈ C2

: z ∈ C, |z| > M} ⊂ C,
where rj(z), j = 1, . . . ,N , are conjugated Puiseux series (see [27]) and M ∈ R+ (throughout the paper, | · | represents the
module in C). Thus, in particular, f (z, rj(z)) = 0 for sufficient large values of z (f (x1, x2) denotes the polynomial defining
implicitly the plane curve C). In Fig. 1, we plot a plane curve C and some points of the infinity branches B1 and B2 (see
Example 3.5 in [1]).

In the following, we generalize the notion of infinity branch to the case of space curves and we provide a mathematical
description of these entities. In addition, we show how to (theoretically) construct the infinity branches of a given space
curve. Later, in Section 3, we will present an efficient computational method to obtain them.

We note that we work over C, but we assume that the curve has infinitely many points in the affine plane over R and
then, C has real defining polynomials (see Chapter 7 in [28]). We recall that the assumption of reality is included because
of the nature of the problem, but the theory developed in this paper can be similarly developed for the case of complex
non-real curves.

Let C∗ be the corresponding projective curve defined by the homogeneous polynomials Fi(x1, x2, x3, x4) ∈ R[x1, x2,
x3, x4], i = 1, 2. Furthermore, let P = (1 : m2 : m3 : 0), m2,m3 ∈ C, be a point at infinity of C∗.

In addition, we consider the curve implicitly defined by the polynomials gi(x2, x3, x4) := Fi(1, x2, x3, x4) ∈ R[x2, x3, x4],
for i = 1, 2. Observe that gi(p) = 0, where p = (m2,m3, 0). Let I ∈ R(x4)[x2, x3] be the ideal generated by gi(x2, x3, x4), i =

1, 2 in the ring R(x4)[x2, x3]. Since C is not contained in a hyperplane x4 = c, c ∈ C, we have that x4 is not algebraic over
R. Under this assumption, the ideal I (i.e. the system of equations g1 = g2 = 0) has only finitely many solutions in the 3-
dimensional affine space over the algebraic closure ofR(x4) (which is contained inC ≪ x4 ≫). Then, there are finitelymany
pairs of Puiseux series (ϕ2(t), ϕ3(t)) ∈ C ≪ t ≫

2 such that gi(ϕ2(t), ϕ3(t), t) = 0, i = 1, 2, and ϕk(0) = mk, k = 2, 3.
Each of the pairs (ϕ2(t), ϕ3(t)) is a solution of the system associated with the infinity point (1 : m2 : m3 : 0), and ϕ2(t)
and ϕ3(t) converge in a neighborhood of t = 0. Moreover, since ϕk(0) = mk, k = 2, 3, these series do not have terms with
negative exponents; in fact, they have the form

ϕk(t) = mk +


i≥1

ai,ktNi,k/Nk

where Nk, Ni,k ∈ N, 0 < N1,k < N2,k < · · ·.
It is important to remark that if ϕ(t) := (ϕ2(t), ϕ3(t)) is a solution of the system, then σϵ(ϕ)(t) := (σϵ(ϕ2)(t), σϵ(ϕ3)(t))

is another solution of the system, where

σϵ(ϕk)(t) = mk +


i≥1

ai,kϵλi,k tNi,k/Nk , Nk, Ni,k ∈ N, 0 < N1,k < N2,k < · · · ,
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N := lcm(N2,N3), λi,k := Ni,kN/Nk ∈ N, and ϵN
= 1 (see Section 5.2 in [26]). We refer to these solutions as the conjugates

of ϕ. The set of all (distinct) conjugates of ϕ is called the conjugacy class of ϕ, and the number of different conjugates of r is
N = ν(ϕ).

Under these conditions and reasoning as in [1] (see Section 3), we get that there existsM ∈ R+ such that for i ∈ {1, 2},

Fi(1 : ϕ2(t) : ϕ3(t) : t) = gi(ϕ2(t), ϕ3(t), t) = 0, for t ∈ C and |t| < M.

This implies that

Fi(t−1
: t−1ϕ2(t) : t−1ϕ3(t) : 1) = fi(t−1, t−1ϕ2(t), t−1ϕ3(t)) = 0,

for t ∈ C and 0 < |t| < M .
Now, we set t−1

= z, and we obtain that for i ∈ {1, 2},

fi(z, r2(z), r3(z)) = 0, z ∈ C and |z| > M−1, where
rk(z) = zϕk(z−1) = mkz + a1,kz1−N1,k/Nk + a2,kz1−N2,k/Nk + a3,kz1−N3,k/Nk + · · · ,

aj,k ≠ 0,Nk,Nj,k ∈ N, j = 1, . . ., and 0 < N1,k < N2,k < · · ·.
Since ν(ϕ) = N , we get that there are N different series in its conjugacy class. Let ϕj,k, j = 1, . . . ,N be these series, and

rj,k(z) = zϕj,k(z−1) =

mkz + a1,kc
λ1,k
j z1−N1,k/Nk + a2,kc

λ2,k
j z1−N2,k/Nk + a3,kc

λ3,k
j z1−N3,k/Nk + · · · (1)

where N := lcm(N2,N3), λi,k := Ni,kN/Nk ∈ N, and c1, . . . , cN are the N complex roots of xN = 1. Now we are ready to
introduce the notion of infinity branches. The following definitions and results generalize those presented in Sections 3 and
4 in [1] for algebraic plane curves.

Definition 1. An infinity branch of a space curve C associated to the point at infinity P = (1 : m2 : m3 : 0), m2,m3 ∈ C, is
a set B =

N
j=1 Lj, where Lj = {(z, rj,2(z), rj,3(z)) ∈ C3

: z ∈ C, |z| > M}, M ∈ R+, and the series rj,2 and rj,3 are given by
(1). The subsets L1, . . . , LN are called the leaves of the infinity branch B.

Remark 1. UsingDefinition 1,we get that the points of the infinity branch have the form (z, rj,2(z), rj,3(z)), where rj,k(z), j =

1, . . . ,N are conjugated Puiseux series (for k = 2, 3) and, by construction, they belong to the curve, so it holds that
f1(z, rj,2(z), rj,3(z)) = f2(z, rj,2(z), rj,3(z)) = 0 for every z ∈ C with |z| > M . In addition, from (1) and taking into account
that 1 − Ni,k/Nk < 1, i = 1, . . ., we get that limz→∞ rj,k(z)/z = mk for k = 2, 3. That is, limz→∞(1 : rj,2(z)/z : rj,3(z)/z :

1/z) = (1 : m2 : m3 : 0).

Remark 2. An infinity branch is uniquely determined from one leaf, up to conjugation. That is, let B be an infinity branch
and let us consider L = {(z, r2(z), r3(z)) ∈ C3

: z ∈ C, |z| > M} one of its leaves, with

rk(z) = zϕk(z−1) = mkz + a1,kz1−N1,k/Nk + a2,kz1−N2,k/Nk + a3,kz1−N3,k/Nk + · · ·

for k = 2, 3. Then, one has that any other leaf Lj of B has the form Lj = {(z, rj,2(z), rj,3(z)) ∈ C3
: z ∈ C, |z| > M} where

rj,k = rk, k = 2, 3, up to conjugation; i.e.

rj,k(z) = zϕj,k(z−1) = mkz + a1,kc
λ1,k
j z1−N1,k/Nk + a2,kc

λ2,k
j z1−N2,k/Nk + a3,kc

λ3,k
j z1−N3,k/Nk + · · ·

N,Ni,k ∈ N, λi,k = Ni,kN/Nk ∈ N, k = 2, 3 and cNj = 1, j = 1, . . . ,N .

Remark 3. Observe that the above approach and Definition 1 is presented for points at infinity of the form (1 : m2 : m3 : 0).
For the points at infinity (0 : m2 : m3 : 0), with m2 ≠ 0 or m3 ≠ 0, we reason similarly but we dehomogenize w.r.t x2 (if
m2 ≠ 0) or x3 (if m3 ≠ 0). More precisely, we distinguish two different cases:

1. If (0 : m2 : m3 : 0), m2 ≠ 0 is a point at infinity of the given space curve C, we consider the curve defined by the
polynomials gi(x1, x3, x4) := Fi(x1, 1, x3, x4) ∈ R[x1, x3, x4], i = 1, 2, and we reason as above. We get that an infin-
ity branch of C associated to the point at infinity P = (0 : m2 : m3 : 0), m2 ≠ 0, is a set B =

N
j=1 Lj, where Lj =

{(rj,1(z), z, rj,3(z)) ∈ C3
: z ∈ C, |z| > M}, M ∈ R+.

2. If (0 : m2 : m3 : 0), m3 ≠ 0 is a point at infinity of the given space curve C, we consider the curve defined by the
polynomials gi(x1, x2, x4) := Fi(x1, x2, 1, x4) ∈ R[x1, x2, x4], i = 1, 2, and we reason as above. We get that an infin-
ity branch of C associated to the point at infinity P = (0 : m2 : m3 : 0), m3 ≠ 0, is a set B =

N
j=1 Lj, where Lj =

{(rj,1(z), rj,2(z), z) ∈ C3
: z ∈ C, |z| > M}, M ∈ R+.

Additionally, instead of working with this type of branches, if the space curve C has points at infinity of the form (0 : m2 :

m3 : 0), one may consider a linear change of coordinates. Thus, in the following, we may assume w.l.o.g that the given
algebraic space curve C only has points at infinity of the form (1 : m2 : m3 : 0). More details on these branches for the
planar case are given in [1] (see Definition 3.3 in Section 3).
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In the following, we introduce the notions of convergent branches and approaching curves. Intuitively speaking, two
infinity branches converge if they get closer as they tend to infinity. This concept will allow us to analyze whether two space
curves approach each other and it generalizes the notion introduced for the plane case (see Section 4 in [1]).

Definition 2. Two infinity branches, B and B, are convergent if there exist two leaves L = {(z, r2(z), r3(z)) ∈ C3
: z ∈

C, |z| > M} ⊂ B and L = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M} ⊂ B such that

lim
z→∞

d((r2(z), r3(z)), (r2(z), r3(z))) = 0.

In this case, we say that the leaves L and L converge.

Remark 4. 1. In our case, since we will be working over C or R, d denotes the usual unitary or Euclidean distance
(see Chapter 5 in [31]). Taking into account that all the distances are equivalent in C2, we easily get that
limz→∞ d((r2(z), r3(z)), (r2(z), r3(z))) = 0 if and only if limz→∞(ri(z) − r i(z)) = 0, i = 2, 3.

2. Two convergent infinity branches are associated to the same point at infinity (see Remark 4.5 in [1]).

In the following lemma, we characterize the convergence of two given infinity branches. This result is obtained similarly
as in the case of plane curves and thus, we omit the proof (see Lemma 4.2, and Proposition 4.6 in [1]).

Lemma 1. The following statements hold:

• Two leaves L = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M} and L = {(z, r2(z), r3(z)) ∈ C3

: z ∈ C, |z| > M} are
convergent if and only if the terms with non negative exponent in the series ri(z) and r i(z) are the same, for i = 2, 3.

• Two infinity branches B and B are convergent if and only if for each leaf L ⊂ B there exists a leaf L ⊂ B convergent with L, and
reciprocally.

In Definition 3, we introduce the notion of approaching curves, that is, curves that approach each other. For this purpose,
we recall that given an algebraic space curve C over C and a point p ∈ C3, the distance from p to C is defined as
d(p, C) = min{d(p, q) : q ∈ C}.

Definition 3. Let C be an algebraic space curve over C with an infinity branch B. We say that a curve C approaches C
at its infinity branch B if there exists one leaf L = {(z, r2(z), r3(z)) ∈ C3

: z ∈ C, |z| > M} ⊂ B such that
limz→∞ d((z, r2(z), r3(z)), C) = 0.

In the following, we state some important results concerning two curves that approach each other. These results can be
proved similarly as in the case of plane curves (see Lemma 3.6, Theorem 4.11, Remark 4.12 and Corollary 4.13 in [1]).

Theorem 1. Let C be an algebraic space curve over C with an infinity branch B. An algebraic space curve C approaches C at B if
and only if C has an infinity branch, B, such that B and B are convergent.

Remark 5. 1. Note that C approaches C at some infinity branch B if and only if C approaches C at some infinity branch B.
In the following, we say that C and C approach each other or that they are approaching curves.

2. Two approaching curves have a common point at infinity.
3. C approaches C at an infinity branch B if and only if for every leaf L = {(z, r2(z), r3(z)) ∈ C3

: z ∈ C, |z| > M} ⊂ B, it
holds that limz→∞ d((z, r2(z), r3(z)), C) = 0.

Corollary 1. Let C be an algebraic space curve with an infinity branch B. Let C1 and C2 be two different curves that approach C
at B. Then:

1. C i has an infinity branch Bi that converges with B, for i = 1, 2.
2. B1 and B2 are convergent. Then, C1 and C2 approach each other.

For the sake of simplicity, and taking into account that an infinity branch B is uniquely determined from one leaf, up to
conjugation (see statement 1 in Remark 2), we identify an infinity branch by just one of its leaves. Hence, in the following

B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}, M ∈ R+

will stand for the infinity branch whose leaves are obtained by conjugation on

rk(z) = mkz + a1,kz1−N1,k/Nk + a2,kz1−N2,k/Nk + a3,kz1−N3,k/Nk + · · · ,

ai,k ≠ 0, ∀i ∈ N, i ≥ 1,Nk,Ni,k ∈ N, and 0 < N1,k < N2,k < · · · for k = 2, 3. Observe that the results stated above
hold for any leaf of B. In addition, we will also show that the results obtained in the following sections hold for any leaf (see
statement 3 in Remark 8).
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3. Computation of infinity branches

Let C be an irreducible algebraic space curve defined by the polynomials fi(x1, x2, x3) ∈ R[x1, x2, x3] for i = 1, 2. In
this section, we are interested in computing the infinity branches of C. That is, points of the form (z, rj,2(z), rj,3(z)), where
rj,k(z), j = 1, . . . ,N are conjugated Puiseux series (for k = 2, 3), such that f1(z, rj,2(z), rj,3(z)) = f2(z, rj,2(z), rj,3(z)) = 0
for every z ∈ C with |z| > M (see Definition 1 and Remark 1).

For this purpose, and taking into account the reasoning in Section 2, we get that we need to compute the finitely
many pairs of Puiseux series (ϕj,2(t), ϕj,3(t)) ∈ C ≪ t ≫

2 such that gi(ϕj,2(t), ϕj,3(t), t) = 0, i = 1, 2 (note that
rj,k(z) = zϕj,k(z−1)).

In order to deal with this problem, somemethods could be applied. For instance, in [26], an algorithm for computing local
parametrizations of analytic branches of an implicitly defined curve in the n-dimensional space is presented. Furthermore,
the algorithm can be used in space curve tracing near a singular point, as an alternative to symbolic computations based
on resolutions of singularities. The method requires extensive recourses for solving systems of polynomial equations with
finitely many solutions and it deals with arithmetics of algebraic numbers. Some interesting experiments are performed by
means of CoCoA 1.5.3, but there is no current implementation of the algorithm. In [1] (see Section 3), it is shown how infinity
branches for a given plane curve can be efficiently computed using well-known implemented algorithms (in particular, in
order to compute the series expansions, we use the command puiseux included in the package algcurves of the computer
algebra system Maple; see Example 3.5).

The development of this section is based on the idea of reducing the problem of computing infinity branches for space
curves to the planar case. That is, we will try to compute the infinity branches of a given space curve C from the infinity
branches of a birationally equivalent plane curve, say Cp.

In order to get Cp, we may apply the method presented in [32] (see Sections 2 and 3). The curve obtained using this
approach is birationally equivalent to C, that is, there exists a birational correspondence between the points of Cp and the
points of C. In [32], it is shown that Cp can always be obtained by projecting C along some valid projection direction.

Once we have Cp, we may compute its infinity branches by applying the procedure developed in [1]. Finally, we use the
birational correspondence mentioned above for obtaining the infinity branches of C from those of Cp.

In the following we assume that the x3-axis is a valid projection direction (otherwise, we apply a linear change of
coordinates; see Section 2 in [32]). Let Cp be the projection of C along the x3-axis, and let f p(x1, x2) ∈ R[x1, x2] be the
implicit polynomial defining Cp. In [32] (see Section 3), it is shown how to construct a birational mapping h(x1, x2) =

h1(x1, x2)/h2(x1, x2) such that (x1, x2, x3) ∈ C if and only if (x1, x2) ∈ Cp and x3 = h(x1, x2). For this purpose, one needs
to compute a polynomial remainder sequence (PRS) along the projection direction. It can be computed in various different
ways, see e.g [33], although in [32] the subresultant PRS scheme is chosen for its computational superiority (the subresultant
PRS scheme can be computed using for instance the computer algebra system Maple; for more details see e.g. Section 5.1.2
in [34]).

We refer to h(x1, x2) as the lift function, since we can obtain the points of the space curve C by applying h to the points
of the plane projected curve Cp. In addition, note that x3 = h(x1, x2) if and only if h1(x1, x2) − h2(x1, x2)x3 = 0. Thus, C can
be implicitly defined by the polynomials f p(x1, x2) and f3(x1, x2, x3) = h1(x1, x2) − h2(x1, x2)x3.

In Theorem 2, we study the relation between the infinity branches of C and Cp. The idea is to use the lift function h to
obtain the infinity branches of the space curve C from the infinity branches of the plane curve Cp. An efficient method to
compute the infinity branches of a plane curve is presented in Section 3 in [1].

Theorem 2. Bp
= {(z, r2(z)) ∈ C2

: z ∈ C, |z| > Mp
} is an infinity branch of Cp for some Mp

∈ R+ iff there exists a series
r3(z) = zϕ3(1/z), ϕ3(z) ∈ C ≪ z ≫, such that B = {(z, r2(z), r3(z)) ∈ C3

: z ∈ C, |z| > M} is an infinity branch of C for
some M ∈ R+.

Proof. Clearly, if B is an infinity branch of C, then Bp is an infinity branch of Cp. Conversely, let Bp
= {(z, r2(z)) ∈ C2

:

z ∈ C, |z| > Mp
} be an infinity branch of Cp, and we look for a series r3(z) = zϕ3(1/z), ϕ3(z) ∈ C ≪ z ≫, such

that B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M} is an infinity branch of C. Observe that, from the discussion above,

we can get it as r3(z) = h(z, r2(z)) (note that since (z, r2(z)) ∈ C2 for |z| > Mp, and r3(z) = h(z, r2(z)), we consider
(z, r2(z), r3(z)) ∈ C3 for |z| > M , where M = Mp). However, we need to prove that r3(z) = zϕ3(1/z) for some Puiseux
series ϕ3(z).

As we stated above, given (a1, a2, a3) ∈ C, it holds that f3(a1, a2, a3) = h1(a1, a2)−h2(a1, a2)a3 = 0. Thus, in particular,
(z, r2(z), r3(z)) ∈ B ⊂ C verifies that f3(z, r2(z), r3(z)) = 0. Hence, F3(z, r2(z), r3(z), 1) = 0, where F3(x1, x2, x3, x4) is the
homogeneous polynomial of f3(x1, x2, x3).

Taking into account the results in Section 3 in [1], we have that r2(z) = zϕ2(1/z), where ϕ2(z) ∈ C ≪ z ≫. Now,
we look for ϕ3(z) ∈ C ≪ z ≫ such that r3(z) = zϕ3(1/z). This series must verify that (see statement above) that
F3(z, zϕ2(1/z), zϕ3(1/z), 1) = 0 for |z| > M . We set z = t−1, and we get that F3(t−1, t−1ϕ2(t), t−1ϕ3(t), 1) = 0 or
equivalently

F3(1, ϕ2(t), ϕ3(t), t) = 0. (I)
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Note that equality (I) holds for |t| < 1/M . That is, equality (I) must be satisfied in a neighborhood of the point at infinity
(1, ϕ2(0), ϕ3(0), 0).

At this point, we observe that F3 has the form

F3(x1, x2, x3, x4) = xn14 H1(x1, x2, x4) − xn24 H2(x1, x2, x4)x3

where Hi(x1, x2, x4) is the homogeneous polynomial of hi(x1, x2), i = 1, 2, and n1, n2 ∈ N. Then, we have that

F3(1, ϕ2(t), ϕ3(t), t) = tn1H1(1, ϕ2(t), t) − tn2H2(1, ϕ2(t), t)ϕ3(t)

and since (I) must hold, we obtain that

ϕ3(t) = tn1−n2
H1(1, ϕ2(t), t)
H2(1, ϕ2(t), t)

.

Obviously, ϕ3(t) can be expressed as a Puiseux series since C ≪ t ≫ is a field. Therefore, we conclude that B =

{(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}, where r3(z) = zϕ3(1/z), is an infinity branch of C. �

In the following, we illustrate the above theorem with an example.

Example 1. Let C be the irreducible space curve defined over C by

f1(x1, x2, x3) = −x22 − 2x1x3 + 2x2x3 − x1 + 3, and f2(x1, x2, x3) = x3 + x1x2 − x22.

The projection along the x3-axis, Cp is given by the polynomial

f p(x1, x2) = x22 + x1 − 3 − 2x2x21 + 4x1x22 − 2x32

(f p can be obtained by computing resultantx3(f1, f2); see Section 2.3 in [28]).
By applying the method described in [1] (see Section 3) we compute the infinity branches of Cp. For this purpose, we

consider the algcurves package included in the computer algebra system Maple; in particular, the command puiseux is
used. We obtain the branch Bp

1 = {(z, r1,2(z)) ∈ C2
: z ∈ C, |z| > Mp

1}, where

r1,2(z) =
z−1

2
−

3z−2

2
+

z−3

2
−

23z−4

8
+

37z−5

8
−

25z−6

4
+ · · · ,

that is associated to the point at infinity P1 = (1 : 0 : 0), and the branch Bp
2 = {(z, r2,2(z)) ∈ C2

: z ∈ C, |z| > Mp
2}, where

r2,2(z) = z +

√
2z1/2

2
+

1
4

+
9
√
2z−1/2

32
−

z−1

4
−

785
√
2z−3/2

1024
+ · · · ,

that is associated to the point at infinity P2 = (1 : 1 : 0). Note that Bp
2 has ramification index 2, so it has two leaves.

Once we have obtained the infinity branches of the projected curve Cp, we compute the infinity branches of the space
curve C. For this purpose, we need to compute the lift function h(x1, x2) (we apply Sections 2 and 3 in [32]) to get the third
component of these branches. In this example, we only have to compute the remainder of f1 divided by f2 w.r.t. the variable
x3 (see e.g. Section 5.1.2 in [34]). We get that remx3(f1, f2) = −x22 + 3 − x1 + 2x21x2 − 4x1x22 + 2x32. Thus, the lift function
h(x1, x2) is obtained by solving the equation f2 = 0 in the variable x3. We get that h(x1, x2) = −x1x2 + x22 and thus, the
infinity branches of the space curve are B1 = {(z, r1,2(z), r1,3(z)) ∈ C3

: z ∈ C, |z| > M1}, where

r1,3(z) = h(z, r1,2(z)) = −
1
2

−
3z−1

2
−

z−2

4
+

11z−3

8
−

15z−4

8
+

15z−5

8
+ · · ·

Fig. 2. Curve C and infinity branches B1 (left) and B2 (right).
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Fig. 3. Curve C (left) approached by a parabola and a line (right).

and B2 = {(z, r2,2(z), r2,3(z)) ∈ C3
: z ∈ C, |z| > M2}, where

r2,3(z) = h(z, r2,2(z)) =

√
2z3/2

2
+

3z
4

+
17

√
2z1/2

32
+

3
8

−
897

√
2z−1/2

1024
+ · · · .

In Fig. 2, we plot the curve C and some points of the branches B1 and B2.

4. Computation of an asymptote of a given infinity branch

In [3] (see Section 3), we show how some algebraic plane curves can be approached at infinity by other curves of less
degree. Awell-known example is the case of hyperbolas that are curves of degree 2 approached at infinity by two lines (their
asymptotes). Similar situations may also arise when we deal with curves of higher degree.

For instance, let C be the plane curve defined by the equation −x2x1 − x22 − x31 + 2x21x2 + x21 − 2x2 = 0. The curve C has
degree 3 but it can be approached at infinity by the parabola x2 − 2x21 + 3/2x1 + 15/8 = 0 (see Fig. 3). This example led us
to introduce the notions of perfect curve and g-asymptote for plane curves (see Section 3 in [3]). Some properties on these
concepts as well as some important applications for a given plane curve were presented in [3] (see Section 4).

Determining the asymptotes of an implicitly defined algebraic curve is an important topic considered inmany text-books
on analysis (see e.g. [35]). Some algorithms for computing the linear asymptotes of a real plane algebraic curve implicitly
defined can be found in the literature (see e.g. [14,15] or [16]). However, as we show in [3], an algebraic plane curve may
have more general curves than lines (that is the classical concept of asymptote) describing the status of a branch at the
points with sufficiently large coordinates. The theory and practical methods concerning these special general curves, called
generalized asymptotes, are presented in [3] (see Sections 3, 4 and 5) for the case of plane curves.

In this section, we intend to study and compute the generalized asymptotes for a given algebraic space curve. No results
approaching this problem algorithmically and theoretically were known up to the moment. The results are new and open
newways in order to explore space curves as for instance different aspect concerning its topology (see [18]), the computation
of the shapes in a family of space curves (see [19]) or even its symmetries (see [7]).

Some results cannot be seen as a straightforward generalization from the case of plane curves. Although the construction
of asymptotes is similar (in the sense that in the space curve a new component has to be computed), the formalization of
the results as well as the detailed proofs need to be considered from a different point of view (for instance, the computation
of the degree of a space curve is totally different to the computation of the degree of a plane curve). So, Lemma 2 and
Proposition 1 require new tools and different reasoning as in the plane case.

We start the sectionwith some important definitions and previous results thatwill lead to the construction of asymptotes
in Section 4.1.

Definition 4. A curve C of degree dC is a perfect curve if it cannot be approached by any curve of degree less than dC .

A curve that is not perfect can be approached by other curves of less degree. If these curves are perfect, we call them
g-asymptotes. More precisely, we have the following definition.

Definition 5. Let C be a curve with an infinity branch B. A g-asymptote (generalized asymptote) of C at B is a perfect curve
that approaches C at B.

The notion of g-asymptote is similar to the classical concept of asymptote. The difference is that a g-asymptote does not
have to be a line, but a perfect curve. Actually, it is a generalization, since every line is a perfect curve (this remark follows
from Definition 4). Throughout the paper we refer to g-asymptote simply as asymptote.
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Remark 6. The degree of an asymptote is less or equal than the degree of the curve it approaches. In fact, an asymptote of
a curve C at a branch B has minimal degree among all the curves that approach C at B (see Remark 3 in [3]).

In the following, we prove that every infinity branch of a given algebraic space curve has, at least, one asymptote and
we show how to obtain it (see Theorem 3). Most of the results introduced below for the case of space curves generalize the
results presented in [3] for the plane case.

Let C be an irreducible space curve implicitly defined by the polynomials fi ∈ R[x1, x2, x3], i = 1, 2, and let B =

{(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M} be an infinity branch of C associated to the point at infinity P = (1 : m2 : m3 : 0).

We know that r2 and r3 are given as

r2(z) = m2z + a1,2z−N1,2/N2+1
+ a2,2z−N2,2/N2+1

+ a3,2z−N3,2/N2+1
+ · · ·

r3(z) = m3z + a1,3z−N1,3/N3+1
+ a2,3z−N2,3/N3+1

+ a3,3z−N3,3/N3+1
+ · · ·

where ai,2 ≠ 0, N2,Ni,2 ∈ N, i ≥ 1, 0 < N1,2 < N2,2 < · · ·, and ai,3 ≠ 0, N3,Ni,3 ∈ N, i ≥ 1, and 0 < N1,3 < N2,3 < · · ·.
Let N := lcm(N2,N3), and note that ν(B) = N .

Lemma 2. It holds that deg(C) ≥ N.

Proof. In Section 2, we show that there exist N := lcm(N2,N3) conjugate tuples, (ϕ2(z), ϕ3(z)), which are solutions of the
system gi(x2, x3, x4) = 0, i = 1, 2. Hence, the tuples (z, rj,2(z), rj,3(z)) with rj,2(z) = zϕj,2(z−1) and rj,3(z) = zϕj,3(z−1) for
j = 1, . . . ,N , are solutions of the system fi(x1, x2, x3) = 0, i = 1, 2. That is, they are points of the curve C.

Then, given z0 such that |z0| > M , we have N intersections between the curve C and the plane defined by the equation
x1 − z0 = 0 (these points are (z0, rj,2(z0), rj,3(z0)), j = 1, . . . ,N). Thus, by definition of degree of a space curve (see e.g. [23]
or [36]), we get that deg(C) ≥ N . �

In the following, let ℓk, k = 1, 2, be the first integer verifying that Nℓk,k ≤ Nk < Nℓk+1,k. Then, we can write

r2(z) = m2z + a1,2z
−

N1,2
N2

+1
+ · · · + aℓ2,2z

−
Nℓ2,2
N2

+1
+ aℓ2+1,2z

−
Nℓ2+1,2

N2
+1

+ · · ·

r3(z) = m3z + a1,3z
−

N1,3
N3

+1
+ · · · + aℓ3,3z

−
Nℓ3,3
N3

+1
+ aℓ3+1,3z

−
Nℓ3+1,3

N3
+1

+ · · ·

where the exponents −Nj,k/Nk + 1 are non-negative for j ≤ ℓk and negative for j > ℓk.
Now, we simplify (if necessary) the non-negative exponents and rewrite the above expressions, and we get

r2(z) = m2z + a1,2z
−

n1,2
n2

+1
+ · · · + aℓ2,2z

−
nℓ2,2
n2

+1
+ aℓ2+1,2z

−
Nℓ2+1,2

N2
+1

+ · · ·

r3(z) = m3z + a1,3z
−

n1,3
n3

+1
+ · · · + aℓ3,3z

−
nℓ3,3
n3

+1
+ aℓ3+1,3z

−
Nℓ3+1,3

N3
+1

+ · · ·

(2)

where gcd(nk, n1,k, . . . , nℓk,k) = 1, k = 1, 2. Note that 0 < n1,k < n2,k < · · · , nℓk,k ≤ nk.
Under these conditions, we introduce the definition of degree of a branch B as follows:

Definition 6. Let B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M} defined by (2), be an infinity branch associated to

P = (1 : m2 : m3 : 0), mj ∈ C, j = 1, 2. We say that n := lcm(n2, n3) is the degree of B, and we denote it by deg(B).

Remark 7. Note that ni ≤ Ni, i = 1, 2. Thus, n = lcm(n2, n3) = deg(B) ≤ N = lcm(N2,N3), and from Lemma 2 we get
that deg(C) ≥ deg(B).

Proposition 1. Let C be a curve that approaches C at its infinity branch B. It holds that deg(C) ≥ deg(B).

Proof. From Theorem 1, we get that C has an infinity branch B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M} convergent

with the branch B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}. From Lemma 1, we deduce that the terms with non negative

exponent in the series ri(z) and r i(z), for i = 2, 3, are the same, and hence B is a branch of degree n of the form given in (2).
Now, the result follows taking into account Remark 7. �

4.1. Construction of asymptotes

In this subsection, we present an algorithm that allows us to compute an asymptote for each of the infinity branches of
a given implicit space curve. An example illustrating the algorithm is presented.

The algorithm is obtained from the results presented above and the construction developed throughout this subsection.
In Theorem 3 we formally prove that, indeed, the construction presented leads to an asymptote of the given space curve. In
addition, we show how the asymptote can be easily parametrized and in fact, we prove that this parametrization is proper.
Although the results are equivalent to those presented for the plane case (see Section 3 in [3]), the proofs and detailed
discussions have to be different since the tools used to deal with the space curve differ from those used in the plane case.
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Let C be a space curve with an infinity branch B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}. Taking into account the

results presented above, we have that any curve C approaching C at B has an infinity branch B = {(z, r2(z), r3(z)) ∈ C3
:

z ∈ C, |z| > M} such that the terms with non negative exponent in ri(z) and r i(z) (for i = 2, 3) are the same. We consider
the series r̃2(z) and r̃3(z), obtained from r2(z) and r3(z) by removing the terms with negative exponent (see Eq. (2)). Then,
we have that

r̃2(z) = m2z + a1,2z−n1,2/n2+1
+ · · · + aℓ2,2z

−nℓ2,2/n2+1

r̃3(z) = m3z + a1,3z−n1,3/n3+1
+ · · · + aℓ3,3z

−nℓ3,3/n3+1
(3)

where aj,k, . . . ∈ C \ {0}, mk ∈ C, nk, nj,k . . . ∈ N, gcd(nk, n1,k, . . . , nℓ,k) = 1, and 0 < n1,k < n2,k < · · ·. That is, r̃k has the
same terms with non negative exponent as rk, and r̃k does not have terms with negative exponent.

Let C be the space curve containing the branchB = {(z, r̃2(z), r̃3(z)) ∈ C3
: z ∈ C, |z| > M}. Observe thatQ(t) = (tn,m2tn + a1,2t r2(n2−n1,2) + · · · + aℓ2,2t

r2(n2−nℓ2,2),

m3tn + a1,3t r1(n3−n1,3) + · · · + aℓ3,3t
r3(n3−nℓ3,3)) ∈ C[t]3, (4)

where n = lcm(n2, n3), rk = n/nk, nk, n1,k, . . . , nℓk,k ∈ N, 0 < n1,k < n2,k < · · · nℓk,k and gcd(nk, n1,k, . . . , nℓk,k) =

1, k = 2, 3, is a polynomial parametrization of C. In addition, in Lemma 3, we prove that Q is proper (i.e. invertible).

Lemma 3. The parametrization Q given in (4) is proper.

Proof. Let us assume that Q is not proper. Then, there exists R(t) ∈ C[t], with deg(R) = r > 1, and Q(t) = (q1(t), q2(t),
q3(t)) ∈ C[t]3, such thatQ(R) = Q (see [37]). In particular, we get that q1(R(t)) = tn, which implies that q1(t) = (t−R(0))k,
and R(t) = t r + R(0), where rk = n. Let us consider R⋆(t) = R(t) − R(0) = t r ∈ C[t], and

Q⋆(t) = Q(t + R(0)) = (tk, q⋆
2(t), q

⋆
3(t))

= (tk, c0 + c1t + c2t2 + · · · + cutu, d0 + d1t + d2t2 + · · · + dvtv) ∈ C[t]3.

Then, Q⋆(R⋆) = Q(R) = Q and, in particular,

q⋆
2(R

⋆) = q⋆
2(t

r) = m2tn + a1,2t r2(n2−n1,2) + · · · + aℓ2,2t
r2(n2−nℓ2,2).

That is,

c0 + c1t r + c2t2r + · · · + cutur = m2tn + a1,2t r2(n2−n1,2) + · · · + aℓ2,2t
r2(n2−nℓ2,2).

From this equality, and taking into account that r2 = n/n2 = rk/n2, we deduce that k/n2(n2−ni,2) ∈ Z, and thus kni,2/n2 ∈ Z
for i = 1, . . . , ℓ2. This implies that n2 divides k since, otherwise, n2 should divide ni,2 for i = 1, . . . , ℓ2, which contradicts
the assumption that gcd(n2, n1,2, . . . , nℓ2,2) = 1 (see Eq. (4)).

On the other hand, reasoning similarly with the third component, we have that q⋆
3(R

⋆) = q⋆
3(t

r) = q̃3(t) and we get that
n3 also divides k. Therefore, k is a common multiple of n2 and n3, which is impossible since k < n (note that rk = n, r > 1)
and n = lcm(n2, n3). �

From Lemma 3 and using the definition of degree for an implicitly defined space curve (see e.g. [23] or [36]), we obtain
the following lemma.

Lemma 4. Let C be the space curve containing the infinity branch given in (3). It holds that deg(C) = deg(B).

Proof. The intersection of C with a generic plane provides n points since C is parametrized by the proper parametrizationQ that has degree n (see Lemma 3). In addition, we note that n = deg(B) (see Definition 6). �

In the following theorem, we prove that for any infinity branch B of a space curve C, there always exists an asymptote
that approaches C at B. Furthermore, we provide a method to obtain it (see algorithm Space Asymptotes Construction). The
proof of this theorem is obtained from Lemmas 2 and 4, and Proposition 1. This proof is similar to the proof of Theorem 2
in [3], but for the sake of completeness, we include it.

Theorem 3. The curve C is an asymptote of C at B.

Proof. From the construction of C, we have that C approaches C at B. Thus, we need to show that C cannot be approached
by any curve with degree less than deg(C) (that is, C is perfect).

For this purpose,we first note thatC has a polynomial parametrization given by the form in (4). Hence, the unique infinity
branch of C isB (see [37]). In addition, we observe that by construction,B and B are convergent.

Under these conditions, we consider a space curve,C, that approachesC atB. Then,C has an infinity branch B convergent
withB (see Theorem 1). SinceB and B are convergent, we deduce that B and B are convergent (see Corollary 1) which implies
thatC approachesC at B. Finally, from Proposition 1 and Lemma 4, we deduce that deg(C) ≥ deg(C) and thus, we conclude
that C is perfect. �
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From these results, in the following we present an algorithm that computes an asymptote for each infinity branch of a
given space curve.

We assume that we have prepared the input curve C, by means of a suitable linear change of coordinates if necessary,
such that (0 : a : b : 0) (a ≠ 0 or b ≠ 0) is not a point at infinity of C (see Remark 3). In addition, we assume that there
exists a birational correspondence between the points of Cp and the points of C, where Cp is the plane curve obtained by
projecting C along the x3-axis (see Section 3).

Algorithm Space Asymptotes Construction.

Given an irreducible real algebraic space curve C implicitly defined by two polynomials f1(x1, x2, x3), f2(x1, x2, x3) ∈

R[x1, x2, x3], the algorithm outputs an asymptote for each of its infinity branches.

1. Compute the projection of C along the x3-axis. Let Cp be this projection and f p(x1, x2) the implicit polynomial
defining Cp.

2. Determine the lift function h(x1, x2) (see Sections 2 and 3 in [5]).
3. Compute the infinity branches of Cp by applying the results in Section 3 in [8].
4. For each branch Bp

i = {(z, ri,2(z)) ∈ C2
: z ∈ C, |z| > Mp

i,2}, i = 1, . . . , s, do:
4.1. Compute the corresponding infinity branch of C:

Bi = {(z, ri,2(z), ri,3(z)) ∈ C3
: z ∈ C, |z| > Mi}

where ri,3(z) = h(z, ri,2(z)) is given as a Puiseux series.
4.2. Consider the series r̃i,2(z) and r̃i,3(z) obtained by eliminating the terms with negative exponent in ri,2(z) and

ri,3(z), respectively (see equation (3)).
4.3. Return the asymptoteCi defined by the proper parametrization (see Lemma 3),Qi(t) = (tni , r̃i,2(tni), r̃i,3(tni)) ∈

C[t]3, where ni = deg(Bi) (see Definition 6).

Remark 8. 1. The implicit polynomial f p(x1, x2) definingCp (see step 1) can be computed as f p(x1, x2) = resultantx3(f1, f2)
(see Section 4.5 in [28]).

2. Since we have assumed that the given algebraic space curve C only has points at infinity of the form (1 : m2 : m3 : 0)
(see Remark 3), we have that (0 : m : 0) is not a point at infinity of the plane curve Cp. Thus, results in Section 3 in [1]
can be applied.

3. Reasoning as in the correctness of the algorithmAsymptotes Construction in Section 3 in [3], oneproves that the algorithm
Space Asymptotes Construction outputs an asymptote C that is independent of the leaf chosen to define the branch B
(see Section 2).

In the following example, we illustrate algorithm Space Asymptotes Construction.

Example 2. Let C be the algebraic space curve over C introduced in Example 1. In Example 1, we show that C has two
infinity branches Bi = {(z, ri,2(z), ri3,(z)) ∈ C3

: z ∈ C, |z| > Mi}, i = 1, 2. These branches were obtained by applying
steps 1, 2, 3, and 4.1 of Algorithm Space Asymptotes Construction. Now we apply step 4.2, and we compute the series r̃i,j(z)
by removing the terms with negative exponent from the series ri,j(z), i = 1, 2, j = 2, 3. We get:

r̃1,2(z) = 0, r̃2,2(z) = z +

√
2z1/2

2
+

1
4
,

r̃1,3(z) = −
1
2
, r̃2,3(z) =

√
2z3/2

2
+

3z
4

+
17

√
2z1/2

32
+

3
8
.

Thus, in step 4.3, we obtain:Q1(t) = (t, r̃1,2(t), r̃1,3(t)) = (t, 0, −1/2), and

Q2(t) = (t2, r̃2,2(t2), r̃2,3(t2)) =


t2, t2 +

√
2t
2

+
1
4
,

√
2t3

2
+

3t2

4
+

17
√
2t

32
+

3
8


.

Q1 andQ2 are proper parametrizations (see Lemma 3) of the asymptotesC1 andC2, which approachC at its infinity branches
B1 and B2, respectively.

In Fig. 4, we plot the curve C and its asymptotes C1 and C2.
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Fig. 4. Curve C approached by asymptotes C1 (left) and C2 (right).

5. Asymptotes of a parametric curve

Throughout this paper so far, we have dealt with real algebraic space curves implicitly defined by two polynomials. In
this section, we present a method to compute infinity branches and asymptotes of rational curves from their parametric
representation (without implicitizing).

The approach presented provides a newapproach to construct generalized asymptotes by using only the parametrization.
We have not been able to find a reference in the literature where this problem is solved (even for the plane case). Only some
partial algorithms for parametric curves where the (linear) asymptotes are constructed can be found in classical text-books
on analysis.

Thus, the contribution and advantage of the approach presented in this section is important not only because we avoid
the computation of the implicit equation defining the curve but also for the important applications to the frame of the study
of algebraic curves from its parametrization (see e.g. [7] or [17]).

In the following, we deal with real space curves defined parametrically. However, the method described can be trivially
applied to the case of parametric real plane curves and in general, for a rational parametrization of a curve in the
n-dimensional space. Similarly as in the previous sections, we work over C, but we assume that the curve has infinitely
many points in the affine plane over R and then, the curve has a real parametrization (see Chapter 7 in [28]).

Under these conditions, in the following, we consider a real space curve C defined by the parametrization

P (s) = (p1(s), p2(s), p3(s)) ∈ R(s)3 \ R3, pi(s) = pi1(s)/p(s), i = 1, 2, 3.

We assume that we have prepared the input curve C, by means of a suitable linear change of coordinates (if necessary) such
that (0 : a : b : 0) (a ≠ 0 or b ≠ 0) is not a point at infinity (see Remark 3). Note that this implies that deg(p1) ≥ 1.

Observe that if C∗ represents the projective curve associated to C, we have that a parametrization of C∗ is given by
P ∗(s) = (p11(s) : p21(s) : p31(s) : p(s)) or, equivalently,

P ∗(s) =


1 :

p21(s)
p11(s)

:
p31(s)
p11(s)

:
p(s)
p11(s)


.

A method to construct the asymptotes of C.
In order to compute the asymptotes of C, first we need to determine the infinity branches of C. That is, the sets

B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}, where rj(z) = zϕj(z−1), j = 2, 3.

For this purpose, taking into account Remark 1 in Section 2, we have that

fi(z : r2(z) : r3(z)) = Fi(1 : ϕ2(z−1) : ϕ3(z−1) : z−1) = Fi(1 : ϕ2(t) : ϕ3(t) : t) = 0

around t = 0, where t = z−1 and Fi, i = 1, 2 are the polynomials defining implicitly C∗. Observe that in this section, we
are given the parametrization P ∗ of C∗ and then,

Fi(P ∗(s)) = Fi


1 :

p21(s)
p11(s)

:
p31(s)
p11(s)

:
p(s)
p11(s)


= 0.

Thus, intuitively speaking, in order to compute the infinity branches of C, and in particular the series ϕj, j = 2, 3, one needs

to rewrite the parametrization P ∗(s) =


1 :

p21(s)
p11(s)

:
p31(s)
p11(s)

:
p(s)

p11(s)


in the form (1 : ϕ2(t) : ϕ3(t) : t) around t = 0. For this

purpose, the idea is to look for a value of the parameter s, say ℓ(t) ∈ C ≪ t ≫, such that P ∗(ℓ(t)) = (1 : ϕ2(t) : ϕ3(t) : t)
around t = 0.

Hence, from the above reasoning, we deduce that first, we have to consider the equation p(s)/p11(s) = t (or equivalently,
p(s)−tp11(s) = 0), andwe solve it in the variable s around t = 0 (note that deg(p1) ≥ 1). FromPuiseux’s theorem, there exist
solutions ℓ1(t), ℓ2(t), . . . , ℓk(t) ∈ C ≪ t ≫ such that, p(ℓi(t))− tp11(ℓi(t)) = 0, i = 1, . . . , k, in a neighborhood of t = 0.
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Thus, for each i = 1, . . . , k, there exists Mi ∈ R+ such that the points (1 : ϕi,2(t) : ϕi,3(t) : t) or equivalently, the points
(t−1

: t−1ϕi,2(t) : t−1ϕi,3(t) : 1), where

ϕi,j(t) =
pj,1(ℓi(t))
p11(ℓi(t))

, j = 2, 3, (5)

are in C∗ for |t| < Mi (note that P ∗(ℓ(t)) ∈ C∗ since P ∗ is a parametrization of C∗). Observe that ϕi,j(t), j = 2, 3 are
Puiseux series, since pj,1(ℓi(t)), j = 2, 3 and p11(ℓi(t)) can be written as Puiseux series and C ≪ t ≫ is a field.

Finally, we set z = t−1. Then, we have that the points (z, ri,2(z), ri,3(z)), where ri,j(z) = zϕi,j(z−1), j = 2, 3, are in C for
|z| > M−1

i . Hence, the infinity branches of C are the sets

Bi = {(z, ri,2(z), ri,3(z)) ∈ C3
: z ∈ C, |z| > M−1

i }, i = 1, . . . , k.

Remark 9. Note that the series ℓi(t) satisfies that p(ℓi(t))/p11(ℓi(t)) = t , for i = 1, . . . , k. Then, from equality (5), we have
that for j = 2, 3

ϕi,j(t) =
pj,1(ℓi(t))
p(ℓi(t))

t = pj(ℓi(t))t, and ri,j(z) = zϕi,j(z−1) = pj(ℓi(z−1)).

Once we have the infinity branches, we can compute an asymptote for each of them by simply removing the terms with
negative exponent from ri,2 and ri,3 (see Section 4.1).

The following algorithm computes the infinity branches of a given parametric space curve and provides an asymptote
for each of them. We remind that the input curve C is prepared such that (0 : a : b : 0) (a ≠ 0 or b ≠ 0) is not a point at
infinity of C∗ (see Remark 3).

Algorithm Space Asymptotes Construction-Parametric Case.

Given a rational irreducible real algebraic space curve C defined by a parametrization P (s) = (p1(s), p2(s), p3(s)) ∈

R(s)3,pj(s) = pj1(s)/p(s), j = 1, 2, 3, the algorithm outputs one asymptote for each of its infinity branches.

1. Compute the Puiseux solutions of p(s) − tp11(s) = 0 around s = 0. Let them be ℓ1(t), ℓ2(t), . . . , ℓk(t) ∈ C ≪ t ≫.
2. For each ℓi(t) ∈ C ≪ t ≫, i = 1, . . . , k, do:
2.1. Compute the corresponding infinity branch of C:

Bi = {(z, ri,2(z), ri,3(z)) ∈ C3
: z ∈ C, |z| > Mi}, where

ri,j(z) = pj(ℓi(z−1)), j = 2, 3 is given as Puiseux series (see Remark 9).
2.2. Consider the series r̃i,2(z) and r̃i,3(z) obtained by eliminating the terms with negative exponent in ri,2(z) and

ri,3(z), respectively (see equation (3) in Subsection 4.1).
2.3. Return the asymptoteCi defined by the proper parametrization (see Lemma 3),Qi(t) = (tni , r̃i,2(tni), r̃i,3(tni)) ∈

C[t]3, where ni = deg(Bi) (see Definition 6).

Remark 10. We note that:
1. In step 1 of the algorithm, some of the solutions ℓ1(t), ℓ2(t), . . . , ℓk(t) ∈ C ≪ t ≫ might belong to the same conjugacy

class. Thus, we only consider one solution for each of these classes.
2. Reasoning as in statement 3 in Remark 8, one also gets that the algorithm Space Asymptotes Construction-Parametric

Case outputs an asymptote C that is independent of the solutions ℓ1(t), ℓ2(t), . . . , ℓk(t) ∈ C ≪ t ≫ chosen in step 1
(see statement 1 above), and of the leaf chosen to define the branch B.
In the following example, we study a parametric space curve with only one infinity branch. We use algorithm Space

Asymptotes Construction-Parametric Case to obtain the branch and compute an asymptote for it.

Example 3. Let C be the space curve defined by the parametrization

P (s) =


−1 + s2

s3
,
−1 + s2

s2
,
1
s


∈ R(s)3.

Step 1: We compute the solutions of the equation

p(s) − tp11(s) = s3 − t(−1 + s2) = s3 − ts2 + t = 0

around t = 0. For this purpose, we may use, for instance, the command puiseux included in the package algcurves of the
computer algebra system Maple. There is only one solution that is given by the Puiseux series (see Proposition 2)

ℓ(t) = (−t)1/3 + 1/3t + 1/9(−t)5/3 − 2/81(−t)7/3 + 2/729(−t)11/3 + · · ·

(note that ℓ(t) represents a conjugacy class composed of three conjugated series; one of them is real and the other two are
complex).
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Fig. 5. Curve C (left), infinity branch B (center) and asymptote C (right).

Step 2:

Step 2.1: We compute (see Proposition 2)

r2(z) = p2(ℓ(z−1)) = −z2/3 + 1/3 − 1/9z−2/3
+ 2/81z−4/3

− 2/729z−8/3
+ · · ·

r3(z) = p3(ℓ(z−1)) = −z1/3 − 1/3z−1/3
+ 1/81z−5/3

− 1/243z−7/3
+ · · ·

(we may use, for instance, the command series included in the computer algebra systemMaple). The curve has only one
infinity branch given by

B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}

for someM ∈ R+ (note that this branch has three leaves; one of them is real and the other two are complex).
Step 2.2: We obtain r̃2(z) and r̃3(z) by eliminating the terms with negative exponent in r2(z) and r3(z) respectively:

r̃2(z) = −z2/3 + 1/3 and r̃3(z) = −z1/3.

Step 2.3: The input curve C has an asymptote C at B that can be polynomially parametrized by:Q (t) = (t3, r̃2(t3), r̃3(t3)) = (t3, −t2 + 1/3, −t).

In Fig. 5, we plot the curve C, the infinity branch B, and the asymptote C.

Correctness.
The application of the algorithm Space Asymptotes Construction-Parametric Case presents some technical difficulties

since infinite series are involved. In particular, when we compute the series ℓi in step 1, we cannot handle its infinite terms
so it must be truncated, whichmay distort the computation of the series ri,j in step 2. However, this distortionmay not affect
to all the terms in ri,j. In fact, the number of affected terms depends on the number of terms considered in ℓi. Nevertheless,
note that we do not need to know the full expression of ri,j but only the terms with non negative exponent. Proposition 2
states that the terms with non negative exponent in ri,j can be obtained from a finite number of terms considered in ℓi. In
fact, it provides a lower bound for the number of terms needed in ℓi.

Proposition 2. Let ℓ(z) ∈ C ≪ z ≫ be a solution obtained in step 1 of the algorithm Space Asymptotes Construction-
Parametric Case. Let B = {(z, r2(z), r3(z)) ∈ C3

: z ∈ C, |z| > M}, rj(z) = pj(ℓ(z−1)), j = 2, 3, be the infinity branch of C
obtained in step 2.1 of the algorithm Space Asymptotes Construction-Parametric Case. It holds that the terms with non negative
exponent in r2 and r3 can be obtained from the computation of 2 deg(p1) + 1 terms of ℓ.

Proof. We prove the proposition for r2 (similarly, one gets the result for r3). For this purpose, we write ℓ(z) as

ℓ(z) := b0 + b1z−1/N
+ · · · + bkz−k/N

+ B(z), B(z) =

∞
j=1

ajz j/N , N ∈ N+,

ai, bi ∈ C, and we consider ℓ∗(z) := ℓ(zN) = ν/zk where

ν := b0zk + b1zk−1
+ · · · + bk−1z + bk + zkB(zN), B(zN) =

∞
j=1

ajz j.

Note that the terms with non negative exponent in r2(z) are the terms with non positive exponent in r2(1/z). In
addition, these terms are the terms with non positive exponent in r2(1/zN). On the other hand, r2(z) = p2(ℓ(z−1)) so
r2(1/zN) = p2(ℓ∗(z)). Therefore, we need to determine the terms with non positive exponent in p2(ℓ∗(z)).

Now, we distinguish two different cases:
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1. Let us assume that ℓ(z) has terms with negative exponent and thus, we assume w.l.o.g. that bk ≠ 0, k > 0. Thus,

p2(ℓ∗(z)) =
p2,1(ν/zk)
p(ν/zk)

=
p̄2,1(z)

zk(m−n)p̄(z)
, m := deg(p2,1), n := deg(p),

p̄2,1(z) = cmνm
+ cm−1zkνm−1

+ cm−2z2kνm−2
+ · · · + c0zkm, cm ≠ 0

p̄(z) = dnνn
+ dn−1zkνn−1

+ dn−2z2kνn−2
+ · · · + d0zkn, dn ≠ 0.

Under these conditions, the generalized series expansion of p2(ℓ∗(z)) around z = 0 is given by p̄2,1(z)
zk(m−n) G(z), where G(z)

is the Taylor series of 1/p̄(z) at z = 0. Observe that G(z) exists since all the derivatives of 1/p̄(z) at z = 0 exist (note that
the denominator of all the derivatives is a power of the polynomial p̄(z), and p̄(0) = dnν(0)n = dnbnk ≠ 0). In addition,
taking into account that

ν(j)(0) = bk−j, 0 ≤ j ≤ k, and ν(j)(0) = aj−k, j ≥ k + 1,

and that ∂ j(1/p̄(z))
∂zj |z=0

is obtained from ν(i)(0), 0 ≤ i ≤ j, we get that

G(z) =
1

p̄(0)
+ z

∂(1/p̄(z))
∂z |z=0

+ · · · = h0(bk) + · · · + zkhk(bk, . . . , b0)

+ zk+1hk+1(bk, . . . , b0, a1) + · · · + zk+uhk+u(bk, . . . , b0, a1, . . . , au) + · · · ,

where hj(bk, . . . , b0, a1, . . . , aj−k), j ≥ 0, denotes a rational function depending on bk, . . . , b0, a1, . . . , aj−k.
As we stated above, we need to determine the terms with non positive exponent in

p2(ℓ∗(z)) =
p̄2,1(z)
zk(m−n)

G(z).

In the following, we prove that they can be obtained by just computing bk, . . . , b0, a1, . . . , akm. Indeed:
1.1. Letm = n. Then, we need to compute the terms with non positive exponent in

p̄2,1(z)G(z) = (cmνm
+ cm−1zkνm−1

+ cm−2z2kνm−2
+ · · · + c0zkm)

(h0(bk) + · · · + zkhk(bk, . . . , b0) + zk+1hk+1(bk, . . . , b0, a1) + · · ·).
Thus, we only need the independent term cmbmk h0(bk).

1.2. Letm < n. In this case, we need to determine the terms with non positive exponent in zk(n−m)p̄2,1(z)G(z). However,
since n − m > 0, we conclude that there are no such terms.

1.3. Letm > n. Then, we need to compute the terms with non positive exponent in p̄2,1G/zk(m−n) which implies that we
need to determine the terms having degree less or equal to k(m − n) in the product p̄2,1(z)G(z). Those terms are
included in the product

(cm(b0zk + b1zk−1
+ · · · + bk−1z + bk)m + cm−1zk(b0zk + b1zk−1

+ · · · + bk−1z + bk)m−1
+ · · · + c0zkm)

· (h0(bk) + · · · + zkhk(bk, . . . , b0) + zk+1hk+1(bk, . . . , b0, a1) + · · ·

+ zk(m−n)hk(m−n)(bk, . . . , b0, a1, . . . , ak(m−n)))

(we do not include the term zkB(zN) in this product since after multiplying, it only provides terms of degree greater
than km). Therefore, at most we have to compute ℓ(z) till the terms bk, . . . , b0, a1, . . . , ak(m−n) appear. That is,
k + 1 + k(m − n) terms are needed.

Taking into account the cases 1.1–1.3, we deduce that at most we have to compute k+1+k(m−n) terms in ℓ(z). Finally,
we prove that k+ 1+ k(m− n) ≤ 2 deg(p1) + 1. For this purpose, let d(r2) denote the maximum exponent of z in r2(z).
We observe that d(r2) ≤ 1; otherwise, since

F(z : r2(z) : r3(z) : 1) = F(z/r2(z) : 1 : r3(z)/r2(z) : 1/r2(z)) = 0

(for |z| > M) by continuity, we get

lim
z→∞

F(z/r2(z) : 1 : r3(z)/r2(z) : 1/r2(z)) = F(0 : 1 : C : 0) = 0

where C := limz→∞ r3(z)/r2(z). If C ∈ C, we get that (0 : 1 : C : 0) is a point at infinity of the input curve which is
impossible since we have assumed that the input curve does not have points at infinity of the form (0 : a : b : 0). If
C = ∞, we reason as above but we divide by r3(z). In this case, we get the point at infinity (0 : 0 : 1 : 0) which is again
impossible.

On the other hand, since r2(z) = p2(ℓ(z−1)) =
p21(ℓ(z−1))
p(ℓ(z−1))

, we get that d(r2) = (m − n)k/N , where m = deg(p21)
and n = deg(p) (see Chapter 4 in [30]). Hence, (m − n)k/N ≤ 1 which implies that (m − n)k ≤ N . In addition, since
N ≤ degs(p(s)− tp11(s)) = deg(p1) (see Remark 4 in [3]), we get that k+1+k(m−n) ≤ 2k(m−n)+1 ≤ 2 deg(p1)+1.

2. Let us assume that bk = 0 for k > 0. That is, there are no terms with negative exponent in ℓ(z). Then, we write
ℓ(z) := b0 + B(z), where

B(z) =

∞
j=1

ajzqj/N , N ∈ N+, qj ∈ N+, 0 < q1 < q2 < · · · , aj ∈ C \ {0},
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and

ℓ∗(z) := ℓ(zN) = b0 + B(zN) = b0 + zq1

a1 +

∞
j=2

ajzqj−q1


, B(zN) =

∞
j=1

ajzqj .

In this case, we denote ν := b0 + zq1(a1 +


∞

j=2 ajz
qj−q1). In addition, we write

p(t) = p∗(t)(t − b0)r , gcd(p∗(t), t − b0) = 1 for some r ∈ N.

Under these conditions, we get that p2(ℓ∗(z)) =

p2,1(ν)

p(ν)
=

p2,1(ν)

p∗(ν)(ν − b0)r
=

p2,1(ν)

zrq1p∗(ν)


a1 +

∞
j=2

ajzqj−q1

r :=
p̄2,1(z)
zrq1 p̄(z)

,

where

p̄2,1(z) = p2,1(ν) = cmνm
+ cm−1ν

m−1
+ · · · + c0, cm ≠ 0, m = deg(p2,1)

and p̄(z) = p∗(ν)(a1 +


∞

j=2 ajz
qj−q1)r =

(dnνn
+ dn−1ν

n−1
+ · · · + d0)


a1 +

∞
j=2

ajzqj−q1

r

, dn ≠ 0, n := deg(p∗).

The generalized series expansion of p2(ℓ∗(z)) around z = 0 is given by p̄2,1(z)
zrq1 G(z), where G(z) is the Taylor series of

1/p̄(z) at z = 0. Observe that G(z) exists since all the derivatives of 1/p̄(z) at z = 0 exist (note that the denominator of
all the derivatives is a power of the polynomial p̄(z), and p̄(0) = p∗(ν(0))a1 = p∗(b0)a1 ≠ 0). Reasoning as in case 1,
one may check that G(z) =

1
p̄(0) + z ∂(1/p̄(z))

∂z |z=0 + · · · =

= h0(b0, a1) + zh1(b0, a1, a2) + · · · + zkhk(b0, a1, . . . , ak+1) + · · · ,

where hj(b0, a1, . . . , aj+1), j ≥ 0 is a rational function depending on b0, a1, . . . , aj+1.
Since we need to compute the terms with non positive exponent in

p2(ℓ∗(z)) =
p̄2,1(z)
zrq1

G(z),

we reason as in case 1.1 (if r = 0), or case 1.3 (if r > 0), and we conclude that at most, we have to determine ℓ(z)
till the terms b0, a1, . . . , arq1+1 appear. That is, in this case, at most rq1 + 2 terms are needed. Finally, we prove that
rq1 + 2 ≤ 2 deg(p1) + 1. For this purpose, we reason as above and since

r2(z) =
p21(ℓ(z−1))

p(ℓ(z−1))
=

p21(ℓ(z−1))
∞
j=1

ajz−qj/N

r

p∗(ℓ(z−1))

,

and limz→∞ p21(ℓ(z−1))/p∗(ℓ(z−1)) = p21(b0)/p∗(b0) ∈ C (and thus, d(p21(ℓ(z−1))) = d(p∗(ℓ(z−1))), we get that
d(r2) = rq1/N (see Chapter 4 in [30])). Since d(r2) ≤ 1, we deduce that rq1 ≤ N . In addition, since N ≤ deg(p1) (see
Remark 4 in [3]), we get that rq1 ≤ deg(p1), and thus rq1 + 2 ≤ deg(p1) + 2 ≤ 2 deg(p1) + 1. �

6. Conclusion

In this paper, we present some important tools that will allow us to analyze the behavior at infinity of a real algebraic
space curve implicitly or parametrically defined. In particular, we introduce the notions of infinity branches and generalized
asymptotes, we study some properties, and we present algorithms where we show how to compute them. These notions
were already introduced for an implicit real algebraic plane curve (see [1,3]) but the treatment in the space case has to be
necessarily different. More precisely, in this paper, the following results and methods are obtained:
1. Some important previous notions and results are presented for a given algebraic space curve. In particular, the concepts

of infinity branch and approaching curves are defined. These concepts are a straightforward generalization from the
notions introduced in the case of plane curves (see Sections 3 and 4 in [1]).

2. A method for computing infinity branches in the space is presented. For this purpose, we reduce the problem from the
space to the plane where effective and simply computations can be applied (see Sections 3 and 4 in [1]).

3. The computation of asymptotes of an implicitly defined space curve is presented.We reach the expected situation, that is,
the computation is similar to the case of plane curves (see Section 3 in [3]). However, the construction and formalization
of the results use approaches totally new since the computational techniques and tools in the space are necessarily
different to those we have in the plane.
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4. Finally, we show how to compute asymptotes for a given space curve parametrically defined. This approach developed
for the parametric case is new and it can be easily applied to any algebraic curve in the n-dimensional space.

The results obtained in this paper open new ways to explore the algebraic space curves (and in particular, its behavior at
infinity), with expected generalizations to surfaces. As amatter of future research, we plan to extend the results of this paper
to surfaces.
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