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Abstract: In this paper, we present an algorithm for reparametrizing birational surface parametrizations
into birational polynomial surface parametrizations without base points, if they exist. For this purpose,
we impose a transversality condition to the base points of the input parametrization.

Keywords: proper (i.e., birational) parametrization; polynomial parametrization; base point

1. Introduction

Algebraic surfaces are mainly studied from three different, but related, points of view, namely:
pure theoretical, algorithmic and because of their applications. In this paper, we deal with some
computational problems of algebraic surfaces taking into account the potential applicability.

In many different applications, as for instance in geometric design (see e.g., [1]) parametric
representations of surfaces are more suitable than implicit representations. Among the different
types of parametric representations, one may distinguish radical parametrizations (see [2]) and
rational parametrizations (see e.g., [3]), the first being tuples of fractions of nested radical of bivariate
polynomials, and the second being tuples of fractions of bivariate polynomials; in both cases the
tuples are with generic Jacobian of rank 2. Other parametric representations by means of series can
be introduced, but this is not within the scope of this paper. One may observe that the set of rational
parametrizations is a subclass of the class of radical parametrizations. Indeed, in [4], one can find
an algorithm to decide whether a radical parametrization can be transformed by means of a change
of the parameters into a rational parametrization; in this case, we say that a reparametrization has
been performed.

Now, we consider a third type of parametric representation of the surface, namely, the polynomial
parametrization. That is, tuple of bivariate polynomials with generic Jacobian of rank 2. Clearly the
class of polynomial parametrizations is a subclass of the class of the rational parametrizations,
and the natural question of deciding whether a given rational parametrization can be reparametrized
into a polynomial parametrization appears. This is, indeed, the problem we deal with in the
paper. Unfortunately the inclusion of each of these classes into the next one is strict, and hence
the corresponding reparametrizations are not always feasible. In some practical applications,
the alternative is to use piecewise parametrizations with the desired property (see e.g., [5,6]).

Before commenting the details of our approach to the problem, let us look at some reasons why
polynomial parametrizations may be more interesting than rational ones. In general, rational parametr
izations are dominant over the surface (i.e., the Zariski closure of its image is the surface), but not
necessarily surjective. This may introduce difficulties when applying the parametric representation to
a problem, since the answer might be within the non-covered area of the surface. For the curve case,
polynomial parametrizations are always surjective (see [7]). For the surface case, the result is not so
direct but there are some interesting results for polynomial parametrizations to be surjective (see [8])
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as well as subfamilies of polynomial parametrizations that are surjective (see [9]). Another issue that
could be mention is the numerical instability when the values, substituted in the parameters of the
parametrizations, get close to the poles of the rational functions; note that, in this case, the denominators
define algebraic curves which points are all poles of the parametrization. One may also think on the
advantages of providing a polynomial parametrization instead of a rational parametrization, when facing
surface integrals. Let us mention a last example of motivation: the algebra-geometric technique for solving
non autonomous ordinary differential equations (see [10,11]). In these cases, the differential equation
is seen algebraically and hence representing a surface. Then, under the assumption that this surface is
rational (resp. radical) the general rational (resp. radical) solution, if it exists, of the differential equation is
determined from a rational parametrization of the surface. This process may be simplified if the associated
algebraic parametrization admits a polynomial parametrization.

Next, let us introduce, and briefly comment on, the notion of base points of a rational parametrization.
A base point of a given rational parametrization is a common solution of all numerators and denominators
of the parametrization (see e.g., [12,13]). The presence of this type of points is a serious obstacle when
approaching many theoretical, algorithmic or applied questions related to the surface represented by the
parametrizations; examples of this phenomenon can be found in, e.g., [14–17]. In addition, it happens that
rational surface may admit, both, birational parametrizations with empty base locus and with non-empty
base locus. Moreover, the behavior of the base locus is not controlled, at least to our knowledge, by the
existing parametrization algorithms or when the resulting parametrization appears as the consequence
of the intersection of higher dimension varieties, or as the consequence of cissoid, conchoid, offsetting,
or any other geometric design process applied to a surface parametrization (see e.g., [18–21]).

In this paper, we solve the problem, by means of reparametrizations, of computing a birational
polynomial parametrization without base points of a rational surface, if it exists. For this purpose,
we assume that we are given a birational parametrization of the surface that has the property of
being transversal (this is a notion introduced in the paper, see Section 3 for the precise definition).
Essentially, the idea of transversality is to assume that the multiplicity of the base points is minimal.
Since, by definition (see Section 3) this multiplicity is introduced as a multiplicity of intersection of
two algebraic curves, one indeed is requiring the transversality of the corresponding tangents. In this
paper, we have not approached the problem of eliminating this hypothesis, and we leave it as future
work in case it exists.

The general idea to solve the problem is as follows. We are given a birational parametrization
P and let Q be the searched birational polynomial parametrization without base points; let us say,
first of all, that throughout the paper we work projectively. Then, there exists a birational map, say SP ,
that relates both parametrizations as Q = P ◦ SP . Then, taking into account that the base locus of SP
and P are the same, that they coincide also in multiplicity, and applying some additional properties on
base points stated in Section 3.1, we introduce a 2-dimensional linear system of curves, associated to
an effective divisor generated by the base points of P . Then, using the transversality we prove that
every basis of the linear system, composed with a suitable birational transformation, provides a
reparametrization of P that yields to a polynomial parametrization with empty base locus.

To give a better picture of these ideas, let us briefly illustrate them here by means of an example.
We consider the projective surface S defined by the polynomial

−2w2y2 + 2w2yz + 2w2z2 − wxy2 − wxyz− wxz2 − 8wy3 + 5wy2z + 5wyz2 − 3wz3 + x2y2 − 2xy3

+4xy2z− 2xyz2 + y4 − 4y3z + 6y2z2 − 4yz3 + z4.

S is rational and can be birationally parametrized as

P =
(
t2
2t2

3 + t3t3
1 + t3t2

2t1 − t4
1 − 2t2

1t2
2 − t4

2 : −t3(t1 + t2)(t2
1 − t1t3 + t2

2 − t2t3)

: t2
3(t1 + 2t2)(t1 + t2) : (t2

1 + t2
2)

2) .
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P provides the affine non-polynomial parametrization(
−t4

1 − 2 t2
1t2

2 − t4
2 + t3

1 + t1 t2
2 + t2

2(
t1

2 + t2
2
)2 ,−

(t1 + t2)
(
t2
1 + t2

2 − t1 − t2
)(

t2
1 + t2

2
)2 ,

(t1 + 2 t2) (t1 + t2)(
t2
1 + t2

2
)2

)
.

On the other hand, S can also be parametrized as

Q = (t2
1 + t2t3 − t1t3 − t2

3 : t2
2 − t2t3 : t2

2 + t2t1 : t2
3),

that provides the affine polynomial parametrization

(t2
1 + t2 − t1 − 1, t2

2 − t2, t2
2 + t2t1).

The question is how to computeQ from P . Since both parametrizations are birational, there exists
a birational change of parameters SP such that Q = P ◦ SP . Furthermore, it holds that the base locus
of SP and P are the same. So, the problem of finding Q is reduced to the problem of determining
a birational map SP satisfying that the base locus of SP and P are the same. For this purpose,
we introduce a 2-dimensional linear system of curves, associated to an effective divisor generated
by the base points of P and, using the transversality, we prove that every basis of the linear system
provides a polynomial parametrization of P with empty base locus.

The structure of the paper is as follows. In Section 2, we introduce the notation and we recall
some definitions and properties on base points, essentially taken from [12]. In Section 3 we state some
additional required properties on base points, we introduce the notion of transversality of a base locus,
both for birational maps of the projective plane and for rational surface projective parametrizations.
Moreover, we establish some fundamental properties that require the transversality. Section 4 is
devoted to state the theoretical frame for solving the central problem treated in the paper. In Section 5,
we derive the algorithm that is illustrated by means of some examples. We finish the paper with a
section on conclusions.

2. Preliminary on Basic Points and Notation

In this section, we briefly recall some of the notions related to base points and we introduce
some notation; for further results on this topic we refer to [12]. We distinguish three subsections.
In Section 2.1, the notation that will be used throughout the paper is introduced. The next subsection
focuses on birational surface parametrizations, and the third subsection on birational maps of the
projective plane.

2.1. Notation

Let, first of all, start fixing some notation. Throughout this paper, K is an algebraically closed field
of characteristic zero. x = (x1, . . . , x4), y = (y1, . . . , y4) and t = (t1, t2, t3). F is the algebraic closure
of K( x , y ). In addition, Pk(K) denotes the k–dimensional projective space, and G (Pk(K)) is the set of
all projective transformations of Pk(K).

Furthermore, for a rational map

M : Pk1(K) 99K Pk2(K)

h = (h1 : · · · : hk1+1) 7−→ (m1(h) : · · · : mk2+1(h)),

where the non-zero mi are homogenous polynomial in h of the same degree, we denote by deg(M) the
degree degh(mi), for mi non-zero, and by degMap(M) the degree of the mapM; that is, the cardinality
of the generic fiber ofM (see e.g., [22]).
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For L ∈ G (Pk2(K)), and M ∈ G (Pk1(K)) we denote the left composition and the right
composition, respectively, by

LM := L ◦M, MM :=M◦M.

Let f ∈ L[t1, t2, t3] be homogeneous and non-zero, where L is a field extension of K. Then C ( f )
denotes the projective plane curve defined by f over the algebraic closure of L.

Let C ( f ), C (g) be two curves in P2(K). For A ∈ P2(K), we represent by multA(C ( f ), C (g)) the
multiplicity of intersection of C ( f ) and C (g) at A. In addition, we denote by mult(A, C ( f )) the
multiplicity of C ( f ) at A.

Finally, S ⊂ P3(K) represents a rational projective surface.

2.2. Case of Surface Parametrizations

In this subsection, we consider a rational parametrization of the projective rational surface
S , namely,

P : P2(K) 99K S ⊂ P3(K)

t 7−→ (p1( t ) : · · · : p4( t )),
(1)

where t = (t1, t2, t3) and the pi are homogenous polynomials of the same degree such that
gcd(p1, . . . , p4) = 1.

Definition 1. A base point of P is an element A ∈ P2(K) such that pi(A) = 0 for every i ∈ {1, 2, 3, 4}.
We denote by B(P) the set of base points of P . That is B(P) = C (p1) ∩ · · · ∩ C (p4).

In order to deal with the base points of the parametrization, we introduce the following
auxiliary polynomials:

W1( x , t ) := ∑4
i=1 xi pi(t1, t2, t3)

W2( y , t ) := ∑4
i=1 yi pi(t1, t2, t3),

(2)

where xi, yi are new variables. We will work with the projective plane curves C (Wi) in P3(F). Similarly,
for M = (M1 : M2 : M3) ∈ G (P3(K)), we define,

WM
1 ( x , t ) := ∑4

i=1 xi Mi(P( t ))

WM
2 ( y , t ) := ∑4

i=1 yi Mi(P( t )).
(3)

Remark 1. Sometimes, we will need to specify the parametrization in the polynomials above. In those cases,
we will write WPi or WM,P

i instead of Wi or WM
i ; similarly, we may write C (WP1 ) and C (WM,P

1 ).

Using the multiplicity of intersection of these two curves, we define the multiplicity of a base
point as follows.

Definition 2. The multiplicity of a base point A ∈ B(P) is multA(C (W1), C (W2)), that is, is the
multiplicity of intersection at A of C (W1) and C (W2); we denote it by

mult(A, B(P)) := multA(C (W1), C (W2)) (4)

In addition, we define the multiplicity of the base points locus of P , denoted mult(B(P)), as

mult(B(P)) := ∑
A∈B(P)

mult(A, B(P)) = ∑
A∈B(P)

multA(C (W1), C (W2)). (5)

Note that, since gcd(p1, . . . , p4) = 1, the set B(P) is either empty of finite.
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For the convenience of the reader we recall here some parts of Proposition 2 in [12].

Lemma 1. If L ∈ G (P3(K)), then:

1. If A ∈ B(P), then

mult(A, C (WL
1 )) = mult(A, C (WL

2 )) = min{mult(A, C (pi)) | i = 1, . . . , 4}.

2. If A ∈ B(P), then the tangents to C (WL
1 ) at A (similarly to C (WL

2 )), with the corresponding
multiplicities, are the factors in K[ x , t ] \K[ x ] of

ε1x1T1 + ε2x2T2 + ε3x3T3 + ε4x4T4,

where Ti is the product of the tangents, counted with multiplicities, of C (Li(P)) at A, and where εi = 1
if mult(A, C (Li(P))) = min{mult(A, C (Li(P))) | i = 1, . . . , 4} and 0 otherwise.

2.3. Case of rational maps of P2(K)

In this subsection, let

S : P2(K) 99K P2(K)

t = (t1 : t2 : t3) 7−→ S( t ) = (s1( t ) : s2( t ) : s3( t )),
(6)

where gcd(s1, s2, s3) = 1, is a dominant rational transformation of P2(K).

Definition 3. A ∈ P2(K) is a base point of S( t ) if s1(A) = s2(A) = s3(A) = 0. That is, the base points of
S are the intersection points of the projective plane curves, C (si), defined over K by si( t ), i = 1, 2, 3. We denote
by B(S) the set of base points of S .

We introduce the polynomials

V1 = ∑3
i=1 xi si( t ) ∈ K( x , y )[ t ]

V2 = ∑3
i=1 yi si( t ) ∈ K( x , y )[ t ],

(7)

where xi, yj are new variables and we consider the curves C (Vi) over the field F; compare with (3).
Similarly, for every L ∈ G (P2(K)) we introduce the polynomials

VL
1 = ∑3

i=1 xi Li(S) ∈ K( x , y )[ t ]

VL
2 = ∑3

i=1 yi Li(S) ∈ K( x , y )[ t ],
(8)

Remark 2. Sometimes, we will need to specify the rational map in the polynomials above. In those cases, we will
write VSi or VL,S

i instead of Vi or VL
i ; similarly, we may write C (VS1 ) and C (VL,S

1 ).

As we did in Section 2.2, we have the following notion of multiplicity.

Definition 4. For A ∈ B(S), we define the multiplicity of intersection of A, and we denote it by
mult(A, B(S)), as

mult(A, B(S)) := multA(C (V1), C (V2)). (9)
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In addition, we define the multiplicity of the base points locus of S , denoted mult(B(S)), as (note that,
since gcd(s1, s2, s3) = 1, B(S) is either finite or empty)

mult(B(S)) := ∑
A∈B(S)

mult(A, B(S)) = ∑
A∈B(S)

multA(C (V1), C (V2)) (10)

The next result is a direct extension of Proposition 2 in [12] to the case of birational transformation
of P2(K).

Lemma 2. If L ∈ G (P2(K)) then

1. B(S) = C (VL
1 ) ∩ C (VL

2 ) ∩ P2(K).
2. Let A ∈ B(S) then

mult(A, C (VL
1 )) = mult(A, C (VL

2 )) = min{mult(A, C (si)) | i = 1, 2, 3}.

3. Let A ∈ B(S). The tangents to C (VL
1 ) at A (similarly to C (VL

2 )), with the corresponding multiplicities,
are the factors in K[ x , t ] \K[ x ] of

ε1x1T1 + ε2x2T2 + ε3x3T3,

where Ti is the product of the tangents, counted with multiplicities, of C (Li(S)) at A, and where εi = 1 if
mult(A, C (Li(S))) = min{mult(A, C (Li(S))) | i = 1, 2, 3} and 0 otherwise.

3. Transversal Base Locus

In this section, we present some new results on base points that complement those in [12] and we
introduce and analyze the notion of transversality in conexion with the base locus.

Throughout this section, let S = (s1 : s2 : s3), with gcd(s1, s2, s3) = 1, be as in (6). In the
sequel, we assume that S is birational. Let the inverse of S be denoted by R = (r1 : r2 : r3);
that is R := S−1. In addition, we consider a rational surface parametrization P = (p1 : · · · : p4),
with gcd(p1, . . . , p4) = 1, be as in (1). We assume that P is birational.

3.1. Further Results on Base Points

We start analyzing the rationality of the curve C (VL
i ) (see (8)).

Lemma 3. There exists a non-empty open subset Ω1 of G (P2(K)) such that if L ∈ Ω1 then C (VL
1 ) is a

rational curve. Furthermore,

V1( x , h1, h2) = RL−1
(h1x3, h2x3,−(h1x1 + x2h2))

is a birational parametrization of C (VL
1 ).

Proof. We start proving that for every L ∈ G (P2(K)), VL
1 is irreducible. Indeed, let L = (∑ λiti : ∑ µiti :

∑ γiti) ∈ G (P2(K)). Then VL
1 = (λ1x1 + µ1x2 + γ1x3)s1 + (λ2x1 + µ2x2 + γ2x3)s2 + (λ3x1 + µ3x2 +

γ3x3)s3. gcd(s1, s2, s3) = 1 and gcd(λ1x1 + µ1x2 + γ1x3, λ2x1 + µ2x2 + γ2x3, λ3x1 + µ3x2 + γ3x3) = 1
because the determinant of the matrix associated to L is non-zero. Therefore, VL

1 is irreducible.
In the following, to define the open set Ω1, let L(t1, t2, t3) = (L1 : L2 : L3) be a generic element

of G (P2(K)); that is, Li = zi,1t1 + zi,2t2 + zi,3t3, where zi,j are undetermined coefficients satisfying that
the determinant of the corresponding matrix is not zero. Furthermore, for L ∈ G (P2(K)), we denote
by z L the coefficient list of L. We also introduce the polynomial RL = x1L1 + x2L2 + x3L3 =

(∑ zi,1xi)t1 + (∑ zi,2xi)t2 + (∑ zi,3xi)t3. Similarly, for L ∈ G (P2(K)), we denote RL = RL( z L, x , t ).
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We consider the birational extensionR x : P2(F) 99K P2(F) ofR from P2(K) to P2(F). Let U x ⊂
P2(F) be the open set where the R x is bijective; say that U x = P2(F) \ ∆. We express the close set
∆ as ∆ = ∆1 ∪ ∆2 where ∆1 is either empty or it is a union of finitely many curves, and ∆2 is either
empty or finite many points. We fix our attention in ∆1. Let f ( t ) be the defining polynomial of ∆1.
Let Z( z , t1, t2) be the remainder of f when diving by VL1 w.r.t t3. Note that RL does not divide f since
RL is irreducible and depends on z . Hence Z is no zero. Let α( z ) be the numerator of a non-zero
coefficient of Z w.r.t. {t1, t2} and let β( z ) the l.c.m. of the denominators of all coefficients of Z w.r.t.
{t1, t2}. Then, we define Ω1 as

Ω1 = {L ∈ G (P2(K)) | α( z L)β( z L) 6= 0}

We observe that, by construction, if L ∈ Ω1 then C (RL) ∩ U x is dense in C (RL).
Let a, b ∈ C (RL) ∩ U x be two different points, then by injectivity R x (C (RL)) contains at least

two points, namelyR x (a) andR x (b). In this situation, sinceR x (C (RL)) and C (V1) are irreducible
we get thatR x (C (RL)) = C (V1), and hence C (V1) is a rational curve P2(F). Furthermore, one easily
may check that V1 parametrizes C (V1) and it is proper sinceR is birational.

Remark 3. Note that V1(t3, 0,−t1, t1, t2) = RL−1
(−t1t1,−t1t2,−t1t3) = RL−1

( t ). Hence

LS(V1(t3, 0,−t1, t1, t2)) =
LS(RL−1

( t )) = (t1 : t2 : t3).

Therefore,
Li(S(V1(t3, 0,−t1, t1, t2)) = ti · ℘( t ), i = 1, 2, 3.

Next lemma analyzes the rationality of the curves C (Li(S)) where L = (L1 : L2 : L3) ∈ G (P2(K)).

Lemma 4. There exists a non-empty Zariski open subset Ω2 of G (P2(K)) such that if L ∈ G (P2(K)) then
C (Li(S)), where i ∈ {1, 2, 3}, is rational.

Proof. Let U be the open subset whereR is a bijective map, and let {ρj,1t1 + ρj,2t2 + ρj,3t3}j=1,...,n be
the linear forms defining the lines, if any, included in P2(K) \ U . Then, we take Ω2 = ∩n

j=1Σj where

Σj =

(∑ λiti : ∑ µiti : ∑ γiti
)
∈ G (P2(K))

∣∣∣ (λ1 : λ2 : λ3) 6= (ρj,1 : ρj,2 : ρj,3),
(µ1 : µ2 : µ3) 6= (ρj,1 : ρj,2 : ρj,3),
(γ1 : γ2 : γ3) 6= (ρj,1 : ρj,2 : ρj,3)

 .

Now, let L = (L1 : L2 : L3) ∈ Ω2. By construction, C (Li) ∩ U is dense in C (Li), for i ∈ {1, 2, 3}.
In this situation, reasoning as in the last part of the proof of Lemma 3, we get that R(C (Li)) =

C (Li(S)). Therefore, C (Li(S)) is rational.

The following lemma follows from Lemma 2.

Lemma 5. If L ∈ G (P2(K)) then

1. B(S) = B(LS).
2. For A ∈ B(S) it holds that mult(A, B(S)) = mult(A, B(LS)).
3. mult(B(S)) = mult(B(LS)).

Proof. (1) Let A ∈ B(S) then s1(A) = s2(A) = s3(A) = 0. Thus, L1(S)(A) = L2(S)(A) =

L3(S)(A) = 0. So, A ∈ B(LS). Conversely, let A ∈ B(LS). Then expressing L(S(A)) = 0 in
terms of matrices, since L is invertible, we have that S(A) = L−1(0, 0, 0) = (0, 0, 0). Thus, A ∈ B(S).
(2) and (3) follows from Theorem 5 in [12].
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Lemma 6. There exists a non-empty Zariski open subset Ω3 of G (P2(K)) such that if L ∈ Ω3 then for every
A ∈ B(S) it holds that

mult(A, C (VL
1 )) = mult(A, C (L1(S))) = mult(A, C (L2(S))) = mult(A, C (L3(S))).

Proof. Let A ∈ B(S). Then, by Lemma 2(2), we have that

mA := mult(A, C (VL
1 )) = min{mult(A, C (si) | i ∈ {1, 2, 3}}, ∀ L ∈ G (P2(K)). (11)

Let us assume w.l.o.g. that the minimum above is reached for i = 1. Then all (mA − 1)—order
derivatives of the forms si vanish at A, and there exists an mA–order partial derivative of s1 not
vanishing at A. Let us denote this partial derivative as ∂mA .

Now, let L be as in the proof of Lemma 3. Then,

gi( z ) := ∂mALi(S)(A) = zi,1∂mA s1(A) + zi,2∂mA s2(A) + zi,3∂mA s3(A) ∈ K[ z ]

is a non-zero polynomial because ∂mA s1(A) 6= 0. We then consider the open subset (see proof of
Lemma 3 for the notation z L)

ΩA = {L ∈ G (P2(K)) | g1( z L)g2( z L)g3( z L) 6= 0} 6= ∅.

In this situation, we take
Ω3 =

⋂
A∈B(S)

ΩA

Note that, since B(S) is finite then Ω3 is open. Moreover, since G (P2(K)) is irreducible then Ω3

is not empty.
Let us prove that Ω3 satisfies the property in the statement of the lemma. Let L ∈ Ω3 and

A ∈ B(S). Let mA be as in (11). Then all partial derivatives of Li(S), of any order smaller than mA,
vanishes at A. Moreover, since L ∈ Ω3 ⊂ ΩA, it holds that ∂mA Li(S)(A) 6= 0 for i = 1, 2, 3. Therefore,

mult(A, C (VL
1 )) = mA = mult(A, C (L1(S)) = mult(A, C (L2(S)) = mult(A, C (L3(S))

Remark 4. We note that the proofs of Lemmas 5 and 6 are directly adaptable to the case of birational surface
parametrizations. So, both lemmas hold if M ∈ G (P3(K)) and we replace S by the birational surface
parametrizaion P and LS by MP := M ◦ P .

In the following, we denote by Sing(D), the set of singularities of an algebraic plane curve D.

Corollary 1. Let Ω3 be the open subset in Lemma 6 and L ∈ Ω3. It holds that

1. ∩3
i=1Sing(C (Li(S))) ∩B(S) ⊂ Sing(C (VL

1 )).
2. Let A ∈ B(S). The tangents to C (VL

1 ) at A, with the corresponding multiplicities, are the factors in
K[ x , t ] \K[ x ] of

x1T1 + x2T2 + x3T3,

where Ti is the product of the tangents, counted with multiplicities, to C (Li(S)) at A.
3. Let A ∈ B(S), and let Ti be the product of the tangents, counted with multiplicities, to C (Li(S)), at A.

If gcd(T1, T2, T3) = 1, then

multA(C (VL
1 ), C (VL

2 )) = mult(A, C (Li(S))2, i ∈ {1, 2, 3}
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Proof.

(1) Let A ∈ ∩3
i=1Sing(C (Li(S))) ∩B(S). By Lemma 6, m := mult(A, C (Li(S))) > 0, for i ∈

{1, 2, 3}, and mult(A, C (VL
1 )) = m > 0. So, A ∈ Sing(C (VL

1 )).
(2) follows from Lemmas 2 and 6.
(3) By (2) the tangents to C (VL

1 ) and to C (VL
2 ) at A are T1 := ∑ xiTi and T2 := ∑ yiTi, respectively.

Since gcd(T1, T2, T3) = 1, then Ti is primitive, and hence gcd(T1, T2) = 1. That is, C (VL
1 ) and

C (VL
2 ) intersect transversally at A. From here, the results follows.

3.2. Transversality

We start introducing the notion of transversality for birational maps of P2(K).

Definition 5. We say that S is transversal if either B(S) = ∅ or for every A ∈ B(S) it holds that (see (7))

mult(A, B(S)) = mult(A, C (V1))
2

In this case, we also say that the base locus of S is transversal.

In the following lemma, we see that the transversality is invariant under left composition with
elements in G (P2(K)).

Lemma 7. If S is transversal, then for every L ∈ G (P2(K)) it holds that LS is transversal.

Proof. By Lemma 5(1), B(S) = B(LS). So, if B(S) = ∅, there is nothing to prove. Let A ∈ B(S) 6=
∅, and let L := (L1 : L2 : L3). Then

mult(A, B(LS)) = mult(A, B(S)) (see Lemma 5(2))
= mult(A, C (V1))

2 (S is transversal)
= mult(A, C (VL,S

1 ))2 (see Lemma 2(2) and Remark 2)

Therefore, LS is transversal.

The next lemma characterizes the transversality by means of the tangents of C (si) at the base
points. A direct generalization of this lemma to the case of surface parametrizations appears in
Lemma 10, and will be used in Algorithm 1 for checking the transversality.

Lemma 8. The following statements are equivalent

1. S is transversal.
2. For every A ∈ B(S) it holds that gcd(T1, T2, T3) = 1, where Ti is the product of the tangents,

counted with multiplicities, to C (si) at A.

Proof. If B(S) = ∅, the result if trivial. Let B(S) 6= ∅. First of all, we observe that, because of
Lemma 7, we may assume w.l.o.g. that Lemma 6 applies to S . So, by Definition 5, S is transversal if
and only if for every A ∈ B(S) it holds that

mult(A, B(S)) = mult(A, C (V1))
2,

and, by Definition 2, if and only if

mult(A, C (V1))
2 = multA(C (V1), C (V2)).
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Furthermore, using Theorem 2.3.3 in [23], we have that

multA(C (V1), C (V2)) = mult(A, C (V1))mult(A, C (V2))

if and only V1 and V2 intersect transversally at A i.e., if the curves have no common tangents at A
which is equivalent to gcd(T1, T2, T3) = 1. The proof finishes taking into account that, by Lemma 6
mult(A, C (V1)) = mult(A, C (V2)).

In the last part of this section, we analyze the relationship of the transversality of a birational map
of the projective plane and the transversality of a birational projective surface parametrization. For this
purpose, first we introduce the notion of transversality for parametrizations.

Definition 6. Let P be a birational surface parametrization of P3(K). We say that P is transversal if either
B(P) = ∅ or for every A ∈ B(P) it holds that (see (3))

mult(A, B(P)) = mult(A, C (W1))
2

In this case, we say that the base locus of P is transversal.

We start with some technical lemmas. The next lemma states that transversality does not change
under projective transformations of the cartesian coordinates, i.e., under left composition. This has to
be taken into account when extending the results of this paper to the case of non-transversality.

Lemma 9. If P is transversal, then for every M ∈ G (P2(K)) it holds that MP is transversal.

Proof. The proof is analogous to the proof of Lemma 7.

The next lemma provides a characterization of the transversality of a parametrization by means
of the tangents that will be used in Algorithm 1. The proof of this lemma is a direct generalization of
the proof of Lemma 8.

Lemma 10. The following statements are equivalent

1. P is transversal.
2. For every A ∈ B(P) it holds that gcd(T1, . . . , T4) = 1, where Ti is the product of the tangents,

counted with multiplicities, to C (pi) at A.

The following lemma focusses on the behavior of the base points of P when right composing
with elements in G (P2(K)).

Lemma 11. Let L ∈ G (P2(K)). It holds that

1. B(P) = L(B(P L)). Furthermore, A ∈ B(P) if and only L−1(A) ∈ B(P L).
2. For A ∈ B(P), mult(A, B(P)) = mult(L−1(A), B(P L))

3. mult(B(P)) = mult(B(P L)).
4. If P is transversal then P L is also transversal.

Proof. (1) A ∈ B(P) iff pi(A) = 0 for i ∈ {1, . . . , 4} iff pi(L(L−1(A))) = 0 for i ∈ {1, . . . , 4} iff
L−1(A) ∈ B(P L) iff A ∈ L(B(P L)). So (1) follows.

We consider the curves C (WPi ) and C (WP
L

i ) (see Remark 1), and we note that C (WP
L

i ) is the
transformation of C (Wi) under the birational transformation L−1 of P2(K). Now, (2) and (3) follow
from Definition 2, and (4) from Lemma 10.
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The next results analyze the base loci of birational surface parametrizations assuming that there
exists one of them with empty base locus.

Lemma 12. Let P and Q be two birational projective parametrizations of the same surface S such that
Q(S) = P and B(Q) = ∅. It holds that

1. B(S) = B(P).
2. If A ∈ B(S) then deg(S )mult(A, B(S)) = mult(A, B(P)).

Proof. SinceQ = P(S) and B(Q) = ∅, by Theorem 11 in [12] we get that B(LSS) = B(LPP) for LS in
a certain open subset of G (P2(K)) and LP in a certain open subset of G (P3(K)). Now, using Lemma 5,
and Remark 4 one concludes the proof of statement (1). Statement (2) follows from Theorem 11 in [12],
taking into account that Q is birational.

Lemma 13. Let P and Q be two birational projective parametrizations of the same surface S such that
Q(S) = P and B(Q) = ∅. Then, for every A ∈ B(S) it holds that (see (3) and (7))

mult(A, C (W1)) = mult(A, C (V1))deg(Q).

Proof. Let P = (p1 : · · · : p4), and Q = (q1 : · · · : q4), where gcd(q1, . . . , q4) = 1. We know that
pi = qi(S). Moreover, since B(Q) = ∅, by Theorem 10 in [12], we have that gcd(p1, . . . , p4) = 1.

We start observing that because of Lemma 12 one has that B(S) = B(P). Now, let us consider
L ∈ G (P2(K)) and M ∈ G (P3(K)). Let Q∗ = MQL−1

, S∗ = LS and P∗ = MP . Note that Q∗(S∗) = P∗.
Moreover, B(Q∗) = ∅. Indeed: if A ∈ P3(K) then B := L−1(A) ∈ P3(K) and, since B(Q) = ∅,
C := Q(B) ∈ P3(K). Therefore Q∗(A) = M(B) ∈ P3(K) and, in consequence, B(Q∗) = ∅. Moreover,
Q∗ and P∗ parametrize the same surface. Furthermore, by Lemma 7, S∗ is transversal. Thus,
S∗,P∗,Q∗ satisfy the hypotheses of the lemma. On the other hand, by Lemma 5 and Remark 4,
we have that B(S∗) = B(S) = B(P) = B(P∗). Furthermore, by Lemmas 1 and 2 we have that
mult(A, C (V1)) = mult(A, C (VL

1 )) and mult(A, C (W1)) = mult(A, C (WM
1 )). Therefore, by Lemma 6

and Remark 4, we can assume w.l.o.g. that for every A ∈ B(S) = B(P) it holds that

mult(A, C (V1)) = mult(A, C (si)) for i ∈ {1, 2, 3}
mult(A, C (W1)) = mult(A, C (pi)) for i ∈ {1, 2, 3, 4} (12)

Now, let A ∈ B(P) and let m := mult(A, C (V1)). We can assume w.l.o.g that A = (0 : 0 : 1).
Let Ti denote the product of the tangents to si at A. Additionally, let deg(S) = s deg(P) = p,
and deg(Q) = q Then, by (12), we may write:

si = Tits−m
3 + gm+1,its−m−1

3 + · · ·+ gs,i (13)

where gj,i(t1, t2) are homogeneous forms of degree j. In addition, let qi be expressed as

qi( t ) = Fq,i + Fq−1,it3 + · · ·+ F`i ,it
q−`i
3 , (14)

where Fj,i(t1, t2) are homogeneous forms of degree j. Then

pi( t ) = Fq,i(s1, s2) + Fq−1,i(s1, s2)s3 + · · ·+ F`i ,i(s1, s2)s
q−`i
3 .

Using this expression and (13) it can be expressed as

pi( t ) =
(

Fq,i(T1, T2) + Fq−1,i(T1, T2)T3 + · · ·+ F`i ,i(T1, T2)T
q−`i
3

)
tq(s−m)
3

+ (terms of degree in t3 strictly smaller than q(s−m)) .
(15)
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Let
Hi := Fq,i(T1, T2) + Fq−1,i(T1, T2)T3 + · · ·+ F`i ,i(T1, T2)T

q−`i
3 .

Now, let us prove that Hi is not identically zero. We first observe that Hi = qi(T1, T2, T3) for
i ∈ {1, 2, 3, 4}. We also note that if there exists i ∈ {1, 2, 3, 4} such that Hi = 0, by (12), it must happen
that for all i ∈ {1, 2, 3, 4} it holds that Hi = 0. Let H1 be zero. Then, T = (T1 : T2 : T3) /∈ P2(K),
because otherwise T ∈ B(Q) and B(Q) = ∅. Therefore, T is a curve parametrization. Thus,
if Hi = 0, then T parametrizes a common component of the four curves C (pi). However, this implies
that gcd(q1, q2, q3, q4) 6= 1 which is a contradiction.

Thus, by (12), mult(A, C (p1)) = mult(A, C (Wi)) = qm = deg(Q)mult(A, C (Vi)).

We finish this section stating the relationship between the transversality of S and P under the
assumption that P(S−1) does not have base points.

Theorem 1. Let P and Q be two birational projective parametrizations of the same surface S such that
Q(S) = P and B(Q) = ∅. Then, S is transversal if and only if P is transversal.

Proof. Let A ∈ B(S) = B(P). First we note that from Lemma 13, and Corollary 5 in [12], it holds
that

mult(A, C (W1))
2 = mult(A, C (V1))

2deg(Q)2 = mult(A, C (V1))
2deg(S )

Using Corollary 9 in [12], we have that

mult(A, B(P)) = deg(S )mult(A, B(S)).

Therefore,

mult(A, B(S))mult(A, C (W1))
2 = mult(A, B(P))mult(A, C (V1))

2.

Thus, S is transversal if and only if P is transversal.

4. Proper Polynomial Reparametrization

In this section, we deal with the central problem of the paper, namely, the determination, if they
exist, of proper (i.e., birational) polynomial parametrizations of rational surfaces. For this purpose,
we distinguish several subsections. In the first subsection, we fix the general assumptions and we
propose our strategy. In the second subsection, we perform the theoretical analysis, and in the last
subsection we prove the existence of a linear subspace, computable from the input data, and containing
the solution to the problem.

We start recalling what we mean with a polynomial projective parametrization. We say that
a projective parametrization is polynomial if its dehomogenization w.r.t. the fourth component,
taking ti = 1 for some i ∈ {1, 2, 3}, is polynomial; note that the fourth component of a polynomial
projective parametrization has to be a power of ti for some i ∈ {1, 2, 3}. Clearly, a similar reasoning is
applicable w.r.t. other dehomogenizations. On the other hand, we say that a parametrization is almost
polynomial if its fourth component is the power of a linear form.

The important fact is that a rational surface admits a birational polynomial parametrization if and
only if it admits a birational almost polynomial parametrization. Furthermore, if we have an almost
polynomial parametrization, and its fourth component is a power of the linear form L∗3( t ), we may
consider two additional linear forms L∗1 , L∗2 such that L∗ = (L∗1 : L∗2 : L∗3) ∈ G (P2(K)) and then the
composition of the almost polynomial parametrization with (L∗)−1 is a polynomial parametrization of
the same surface.
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4.1. General Assumptions and Strategy

In our analysis we have two main assumptions. We assume that the rational surface S admits a
polynomial birational parametrization with empty base locus. Throughout the rest of the paper, let us
fix one of these parametrizations and denote it by Q; that is,

Q( t ) = (q1( t ) : q2( t ) : q3( t ) : q4( t )), (16)

with qi homogenous polynomials of the same degree such that gcd(q1, . . . , q4) = 1, is a proper
polynomial parametrization of S satisfying that B(Q) = ∅. Note that, by Corollary 6 in [12], the degree
of S is then the square of a natural number. Moreover, we introduce a second assumption. We assume
that we are given a transversal birational parametrization of S . Note that, because Lemmas 9 and 11,
this hypothesis is invariant under right and/or left projective transformations. Throughout the rest of the
paper, let us fix P as a transversal proper parametrization of S , and let P be expressed as in (1).

Our goal is to reach Q, or more precisely an almost polynomial parametrization of S , from P .
For this purpose, first we observe that, since both P and Q are birational, they are related by means
of a birational map of P2(K), say SP . More precisely, SP := Q−1 ◦ P . In the following, we represent
SP as

SP ( t ) = (s1( t ) : s2( t ) : s3( t )), (17)

where gcd(s1, s2, s3) = 1. Note that, because of Theorem 1, since P is transversal, then SP is transversal.
In addition, letRP := S−1

P ( t ) = P−1 ◦ Q. In the sequel, we representRP as

RP ( t ) = (r1( t ) : r2( t ) : r3( t )), (18)

where gcd(r1, r2, r3) = 1.
So, in order to derive Q from P it would be sufficient to determine SP , and hence RP ,

because Q = P(RP ). Furthermore if, instead of determining SP , we obtain LSP := L ◦ SP , for some
L ∈ G (P2(K)), then instead of Q we get

P((LSP )−1) = P(RL−1

P ) = Q(L−1) = QL−1
,

which is almost polynomial, and hence solves the problem. Taking into account this fact we make the
following two considerations:

1. We can assume w.l.o.g. that B(P) 6= ∅. Indeed, if B(P) = ∅, by Theorem 10 and Corollary
9 in [12], we get that B(SP ) = ∅. Furthermore, by Corollary 7 in [12], we obtained that
deg(SP ) = 1. Thus, using that Q is indeed polynomial, we get that the fourth component of P is
the power of a linear form, and therefore the input parametrization P would be already almost
polynomial, and hence the problem would be solved.

2. We can assume w.l.o.g. that SP satisfies whatever property reachable by means of a left
composition with elements in G (P2(K)), as for instance those stated in Lemma 3, or Lemma 4,
or Lemma 6. In particular, by Lemma 7, the transversality is preserved. In other words, in the set
R of all birational transformations of P2(K), we consider the equivalence relation ∼, defined as
S ∼ S∗ if there exists L ∈ G (P2(K)) such that L ◦ S = S∗, and we work with the equivalence
classes in R/ ∼.

Therefore, our strategy will be to find a birational map M of P2(K) such that P(M−1) is
almost polynomial. For this purpose, we will see that it is enough to determine a dominant rational
transformation M of P2(K) (later, we will prove that such a transformation is indeed birational)
such that

1. deg(M) = deg(SP ).
2. B(M) = B(SP ).
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3. ∀ A ∈ B(M) it holds that mult(A, B(M)) = mult(A, B(SP )).

The difficulty is that bothM and SP are unknown. Nevertheless, by Corollary 10 and Theorem 3
in [12], we have that

deg(SP ) =
deg(P)√
deg(S )

.

Note that deg(P) is given and deg(S ) can be determined by applying, for instance, the formulas
in [24] (see also [25]). On the other hand, taking into account Lemma 12, we can achieve our
goal by focusing on P . More precisely, we reformulate the above conditions into the equivalent
following conditions.

Conditions 1. We say that a rational dominant mapM of P2(K) satisfies Conditions 1 if

1. deg(M) =
deg(P)√
deg(S )

.

2. B(M) = B(P),
3. mult(A, B(M)) = mult(A,B(P))

deg(S )
for all A ∈ B(P).

In the following subsections, we will see that rational dominant maps satisfying Conditions 1
provide an answer to the polynomiality problem.

4.2. Theoretical Analysis

We start this analysis with some technical lemmas. For this purpose, S ,Q,P ,SP ,RP are as
in the previous subsection. We recall that Q(SP ) = P , B(Q) = ∅, RP = S−1

P , P is transversal,
and hence SP is also transversal. Moreover, by Lemma 12, SP satisfies Conditions 1. Furthermore,
in the sequel, let

S( t ) = (s1( t ) : s2( t ) : s3( t )), (19)

with gcd(s1, s2, s3) = 1, be dominant rational map of P2(K) satisfying Conditions 1.

Lemma 14. LetM be a birational map of P2(K). Then, deg(M) = deg(M−1).

Proof. We use the notation introduced in Lemma 3. We take L ∈ G (P3(K)) such that

1. C (VL
1 ) is rational (see (8) for the definition of VL

1 constructed fromM, and Lemma 3 for the
existence of L).

2. gcd(ηL
1 , ηL

3 ) = 1, whereM−1 = (η1 : η2 : η3).

In addition, we consider a projective transformation N( t ) in the parameters t such
that deg t (V

L
1 ( x , N( t )) = degt2

(VL
1 ( x , N( t )) and deg t (η

L
1 (N( t )) = degt2

(ηL
1 (N( t )) =

degt2
(ηL

3 (N( t )). Then, it holds

deg(M) = deg t (V
L
1 ( x , t ))

= deg t (V
L
1 ( x , N( t )) (M is a proj. transf.)

= degt2
(VL

1 ( x , N( t )) (see above)
= degt2

(ηL
1 (N(x1, h1, x3))/ηL

3 (N(x1, h1, x3)) (*)
= degt2

(ηL
1 ((N(x1, h1, x3))) (gcd(ηL

1 , ηL
3 ) = 1)

= deg(M−1)

* See Theorem 4.21 in [26].

Our goal will be to compute birational transformations satisfying Conditions 1. Next lemma
shows that the birationality will be derived from Conditions 1, and hence we will not have to check
it computationally.
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Lemma 15. LetM be a rational dominant map of P2(K). IfM satisfies Conditions 1, thenM is birational.

Proof. Since deg(M) = deg(SP ), and mult(B(M)) = mult(B(SP )), by Theorem 7(a) in [12],
we have that degMap(M) = degMap(SP ). So S is birational.

Therefore, since we have assume above (see (19)) that S satisfies Conditions 1, S is birational
(see Lemma 15). Let

R( t ) = S−1
( t ) = (r1( t ) : r2( t ) : r3( t )) (20)

be its inverse. Clearly, S(R) = (t1 : t2 : t3), which implies that si(R( t )) = ti ℘( t ), for i ∈
{1, 2, 3}, and where deg(℘) = deg(S)2 − 1 (see Lemma 14) and hence deg(℘) = mult(B(S)) =

mult(B(SP )) = mult(B(P)). In the next result we prove that ℘ is directly related to B(S), and using
that B(S) = B(SP ), we study the common factor appearing in the composition S(R). We start with
a technical lemma.

Lemma 16. Let L ∈ G (P2(K)). It holds that

1. B(SL
P ) = B(P L) = B(S L

).
2. If A ∈ B(SL

P ) then mult(A, B(SL
P )) = mult(A,P L)/deg(S )

3. S L satisfies Conditions 1.
4. SL

P is transversal

5. If S is transversal, then SL is transversal.

Proof.

(1) A ∈ B(SL
P ) iff SL

P (A) = 0 iff SP (L(A)) = 0 iff L(A) ∈ B(SP ) = B(P) iff P L(A) =

P(L(A)) = 0 iff A ∈ B(P L). Moreover, the second equality follows as in the previous reasoning,
taking into account that S satisfies Condition 1, and hence B(SP ) = B(S) = B(P).

(2) follows taking into account that the multiplicity of a point on a curve, as well as the multiplicity
of intersection, does not change under projective transformations.

(3) Condition (1) follows taking into account that deg(L) = 1. Statement (1) implies condition (2).
For condition (3), we apply statement (2) and that mult(A, B(S L

)) = mult(A, B(S)) because
the multiplicity of intersection does not change with L.

(4) and (5) follow arguing as in the proof of Lemma 11(4).

Theorem 2. Let S be transversal. If i ∈ {1, 2, 3} then si(R) = ti ℘( t ) where deg(℘( t )) = mult(B(P))
and such that ℘ is uniquely determined by B(P).

Proof. We first observe that we can assume w.l.o.g. that no base point of P is on the line at infinity x3 =

0. Indeed, let L ∈ G (P2(K)) be such that B(P) is contained in the affine plane x3 = 1. We consider
S ∗ := SL

= (s ∗1 : s ∗2 : s ∗3 ) and R ∗ := (SL
)−1, then s ∗i (R

∗
) = s ∗i (L−1(R)), and s ∗i = si(L);

hence s ∗i (R
∗
) = si(R). In addition, because of Lemma 16, S ∗ satisfies the hypothesis of the theorem.

Let C (V1) denote the curve associated to S as in (7). By Lemma 3, taking L in the corresponding
open subset of G (P2(K)), we have that C (VL

1 ) is a rational curve. So, we assume w.l.o.g. that
C (V1) is rational. Let V( x , h1, h2) be the rational parametrization of C (V1) provided by Lemma
3. We apply a Möbius transformation φ ∈ G (P1(K)) such that if W( x , h1, h2) = (w1( x , h1, h2) :
w2( x , h1, h2) : w3( x , h1, h2)) := V( x , φ(h1, h2)) then the affine parametrization ρ( x , h1) :=
(w1( x , h1, 1)/w3( x , h1, 1), w2( x , h1, 1)/w3( x , h1, 1)) is affinely surjective (see [7,23]).
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Now, let A = (a1 : a2 : 1) ∈ B(P). By Lemma 2, P ∈ C (V1). We observe that, by taking L in the
open subset of Lemma 6, we may assume that

mA := mult(A, C (V1)) = mult(A, C (si)), i ∈ {1, 2, 3}. (21)

We consider the polynomial

gA = gcd(w1( x , h1, h2)− a1w3( x , h1, h2), w2( x , h1, h2)− a2w3( x , h1, h2)).

Since the affine parametrization has been taken surjective, we have that

degh(gA) = mA (22)

and that for every root t0 of gA it holds that ρ(t0) = (a1, a2). We write wi as

wi = gA · w ∗i + aiw3, i = 1, 2.

On the other hand, we express si as

si( t ) = Ti,mA( t )tdeg(S)−mA
3 + · · ·+ Ti,deg(S)( t ),

where deg(Ti,j) = j, j ∈ {mA, . . . , deg(S)}, and Ti,j( t ) = ∑k1+k2=j(t1− a1t3)
k1(t2− a2t3)

k2 . Therefore

si(W) = gmA
A ·

(
Ti,mA(w

∗
1 , w ∗2 )w deg(S)−mA

3 + · · ·+ gdeg(S)−mA
A Ti,deg(S)(w

∗
1 , w ∗2 )

)
.

In other words, gA divides si(W). Now, for B = (b1 : b2 : 1) ∈ B(P), with A 6= B, it holds
that gcd(gA, gB) = 1, since otherwise there would exist a root t0 of gcd(gA, gB), and this implies that
ρ(t0) = (a1, a2) = (b1, b2) = ρ(t0) which is a contradiction. Therefore, we have that

si(W) = ∏
A∈B(P)

gA( x , h1, h2)
mA fi( x , h1, h2) (23)

We observe that the factor defined by the base points does not depend on i. Thus, since si(W)

does depend on i, we get that fi is the factor depending on i. Furthermore,

degh

(
∏A∈B(P) gmA

A

)
= ∑A∈B(P) degh(gA)

mA

= ∑A∈B(P) m2
A (see (22))

= ∑A∈B(P) mult(A, C (V1))
2 (see (21))

= ∑A∈B(P) mult(A, B(S)) (S is transversal)
= ∑A∈B(P) mult(A, B(P)) (See Conditions 1)
= mult(B(P)) (See Definition 2)

Moreover, by Theorem 4.21 in [23], sinceW is birational it holds that deg(W) = deg(C (V1)) =

deg(S). Hence, deg(si(W)) = deg(S)2 = mult(B(P)) + 1. Therefore, fi in (28) is a linear form.
In this situation, let us introduce the notation t ∗ := (t3, 0,−t1, t1, t2) and t ∗∗ =

(t3, 0,−t1, φ−1(t1, t2)). Then, for i ∈ {1, 2, 3}, we have that

ti ℘ = si(R)
= si(V( t ∗)) (see Remark 3)
= si(W( t ∗∗)) (see definition ofW)
= ∏A∈B(P) gA( t ∗∗)mA fi( t ∗∗) (see (28))
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Taking into account that ∏A∈B(P) gA( t ∗∗)mA does not depend on i, we get that t1 f2( t ∗∗) =

t2 f1( t ∗∗). This implies that t1 divides f1( t ∗∗), and since f1( t ∗∗) is linear we get that t1 = λ f1( t ∗∗)
for λ ∈ K \ {0}. Then, substituting above, we get λ f1( t ∗∗) f2( t ∗∗) = t2 f1( t ∗∗), which implies that
t2 = λ f2( t ∗∗). Similarly, for t3 = λ f3( t ∗∗) . Therefore, we get that

si(R) = ti λ ∏
A∈B(P)

gA( t ∗∗)mA , with λ ∈ K \ {0}

This concludes the proof.

For the next theorem, we recall that SP = (s1 : s2 : s3) with gcd(s1, s2, s3) = 1; see (17).

Theorem 3. Let S be transversal. If i ∈ {1, 2, 3} then si(R) = Zi( t )℘( t ) where Zi is a linear form,
deg(℘( t )) = mult(B(P)) and such that ℘ is uniquely determined by B(P).

Proof. We first observe that we can assume w.l.o.g. that no base point of P is on the line at infinity x3 =

0. Indeed, let L ∈ G (P2(K)) be such that B(P) is contained in the affine plane x3 = 1. We consider
S ∗ := SL

P = (s ∗1 : s ∗2 : s ∗3 ), S
∗

:= SL
, and R ∗ := (S ∗)−1. Then s ∗i (R

∗
) = si(L(L−1(R))) = si(R).

In addition, because of Lemma 16, S ∗ and S∗ satisfy the hypotheses of the theorem.

Let C (V1), V( x , h1, h2),W( x , h1, h2) = (w1 : w2 : w3) and ρ be as in the proof of Theorem 2.
Now, let A = (a1 : a2 : 1) ∈ B(P). By Lemma 2, P ∈ C (V1). We recall that B(P) =

B(S) = B(SP ). Let ΩS3 and ΩSP3 be the open subset in Lemma 6 applied to S and SP , respectively.
Taking L ∈ ΩS3 ∩ ΩSP3 (note that G (P2(K)) is irreducible and hence the previous intersection is
non-empty), we may assume that

mA := mult(A, C (V1)) = mult(A, C (si)), i ∈ {1, 2, 3}. (24)

and
mult(A, C (V1)) = mult(A, C (si)), i ∈ {1, 2, 3}. (25)

Since SP and S are transversal, and taking into account Condition 1, it holds that

mult(A, C (V1))
2 = mult(A, B(SP )) = mult(A, B(S)) = mult(A, C (V1))

2

Therefore,
mult(A, C (V1)) = mA = mult(A, C (V1)). (26)

We consider the polynomial gA = gcd(w1 − a1w3, w2 − a2w3). Reasoning as in the Proof of
Theorem 2 we get that

degh(gA) = mA (27)

and that for every root t0 of gA it holds that ρ(t0) = (a1, a2). We write wi as wi = gA · w ∗i + aiw3 for
i =∈ {1, 2}.

On the other hand, by (25) and (26), we have that mult(A, C (si)) = mA. Therefore, we can
express si as

si( t ) = Ti,mA( t )tdeg(SP )−mA
3 + · · ·+ Ti,deg(SP )( t ),

where deg(Ti,j) = j, j ∈ {mA, . . . , deg(SP )}, and Ti,j( t ) = ∑k1+k2=j(t1 − a1t3)
k1(t2 −

a2t3)
k2 . Therefore

si(W) = gmA
A ·

(
Ti,mA(w

∗
1 , w ∗2 )w deg(SP )−mA

3 + · · ·+ gdeg(SP )−mA
A Ti,deg(S)(w

∗
1 , w ∗2 )

)
.
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In other words, gA divides si(W). Now, for B = (b1 : b2 : 1) ∈ B(P), with A 6= B, reasoning as
in the proof of Theorem 2, it holds that gcd(gA, gB) = 1. Therefore, we have that

si(W) = ∏
A∈B(P)

gA( x , h1, h2)
mA fi( x , h1, h2) (28)

Furthermore,

degh

(
∏A∈B(P) gmA

A

)
= ∑A∈B(P) degh(gA)

mA

= ∑A∈B(P) m2
A (see (27))

= ∑A∈B(P) mult(A, C (V1))
2 (see (24))

= ∑A∈B(P) mult(A, B(S)) (S is transversal)
= ∑A∈B(P) mult(A, B(P)) (See Conditions 1)
= mult(B(P)) (See Definition 2)

Moreover, by Theorem 4.21 in [23], sinceW is birational it holds that deg(W) = deg(C (V1)) =

deg(S). Hence, by Condition 1, deg(si(W)) = deg(SP )deg(S) = deg(SP )2 = mult(B(P)) + 1.
Therefore, fi in (28) is a linear form.

In this situation, let us introduce the notation t ∗ := (t3, 0,−t1, t1, t2) and t ∗∗ =

(t3, 0,−t1, φ−1(t1, t2)). Then, for i ∈ {1, 2, 3}, we have that

si(R) = si(V( t ∗)) (see Remark 3)
= si(W( t ∗∗)) (see definition ofW)
= ∏A∈B(P) gA( t ∗∗)mA fi( t ∗∗) (see (28))

This concludes the proof.

Corollary 2. If S is transversal, there exists L ∈ G (P2(K)) such that S = LSP .

Proof. From Theorem 3, we get that SP (R) = (Z1( t ) : Z2( t ) : Z3( t )), where Zi is a linear form.
Thus, LSP = S , where L ∈ G (P2(K)) is the inverse of (Z1, Z2, Z3).

Corollary 3. The following statements are equivalent

1. S is transversal.
2. There exists L ∈ G (P2(K)) such that S = LSP .

Proof. If (1) holds, then (2) follows from Corollary 2. Conversely, if (2) holds, then (1) follows from
Lemma 7

4.3. The Solution Space

In this subsection we introduce a linear projective variety containing the solution to our problem
and we show how to compute it. We start identifying the set of all projective curves, including multiple
component curves, of a fixed degree d, with the projective space (see [23,27,28] for further details)

Vd := P
d(d+3)

2 (K).

More precisely, we identify the projective curves of degree d with the forms in K[ t ] of degree d,
up to multiplication by non-zero K-elements. Now, these forms are identified with the elements in
Vd corresponding to their coefficients, after fixing an order of the monomials. By abuse of notation,
we will refer to the elements in Vd by either their tuple of coefficients, or the associated form, or the
corresponding curve.
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LetM = (m1( t ) : m2( t ) : m3( t )), gcd(m1, m2, m3) = 1, be a birational transformation of P2(K).
We consider Vdeg(M). Then, m1, m2, m3 ∈ Vdeg(M). Moreover, in Vdeg(M), we introduce the projective
linear subspace

L(M) := {a1m1( t ) + a2m2( t ) + a3m3( t ) | (a1 : a2 : a3) ∈ P2(K)}.

We observe that if {m1, m2, m3} are linearly dependent, then the image of P2(K) viaM−1 would
be a line in P2(K) which is impossible becauseM is birational on P2(K). Therefore, the following holds.

Lemma 17. IfM is a birational transformation of P2(K), then dim(L(M)) = 2.

Similarly, one has the next lemma.

Lemma 18. IfM is a birational transformation of P2(K) and L ∈ G (P2(K)) then L(M) = L(LM).

Furthermore, the following theorem holds

Theorem 4. Let M be a birational transformation of P2(K) and let {n1, n2, n3} be a basis of L(M) and
N := (n1 : n2 : n3). There exists L ∈ G (P2(K)) such that LM = N .

Proof. LetM = (m1 : m2 : m3), with gcd(m1, m2, m3) = 1. Since m1, m2, m3 ∈ L(M), and {n1, n2, n3}
is a basis of L(M), there exist (λi,1 : λi,2 : λi,3) ∈ P2(K) such that

mi = ∑ λi,jnj.

Since {m1, m2, m3} is also a basis of L(M), one has that L := (∑ λ1,jtj : ∑ λ2,jtj : ∑ λ3,jtj) ∈
G (P2(K)) and N = L ◦M.

Remark 5. Observe that, by Theorem 4, all bases of L(M) generate birational maps of P2(K).

Corollary 4. LetM be a birational transformation of P2(K). The following statements are equivalent

1. M is transversal.
2. There exists a basis {n1, n2, n3} of L(M) such that (n1 : n2 : n3) is transversal.
3. For all bases {n1, n2, n3} of L(M) it holds that (n1 : n2 : n3) is transversal.

Proof. It follows from Theorem 4 and Lemma 7.

In the following results we analyze the bases of L(SP ). So, S ,R,P ,Q and S are as the in
previous subsections.

Corollary 5. Let {m1, m2, m3} a basis of L(SP ). Then, (m1 : m2 : m3) satisfies Conditions 1.

Proof. It is a direct consequence of Theorem 4.

Corollary 6. IfM := (m1 : m2 : m3) is transversal and satisfies Condition 1, then {m1, m2, m3} is a basis
of L(SP ).

Proof. By Corollary 3, there exists L ∈ G (P2(K)) such thatM = LSP . Now, by Lemma 18, L(SP ) =
L(M). Taking into account that {m1, m2, m3} are linearly independent, we get the result.

The previous results show that the solution to our problem lies in L(SP ). However,
knowing L(SP ) implies knowing SP , which is essentially our goal. In the following, we see how
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to achieve L(SP ) by simply knowing B(SP ) and the base point multiplicities; note that, under the
hypotheses of this section, this information is given by P .

Definition 7. LetM be a birational transformation of P2(K). We define the linear system of base points of
M, and we denote it by L (M), as the linear system of curves, of degree deg(M),

L (M) = { f ∈ Vdeg(M) |mult(A, C ( f )) ≥
√

mult(A, B(M)) ∀A ∈ B(M)}

Observe that L (M) is the deg(M)-linear system associated to the effective divisor

∑
A∈B(M)

√
mult(A, B(M)) · A

Remark 6. We observe that ifM satisfies Condition 1, in particular SP , then L (M) is the deg(SP )-degree
linear system generated by the effective divisor

∑
A∈B(P)

√
mult(A, B(P)) · A.

The following lemma is a direct consequence of the definition above. In Section 4.1, we have
mentioned that we will work with equivalence classes. The next lemma states that the deg(SP )-degree
linear system generated by the effective divisor is invariant within the equivalence class, and hence we
may take whatever representant for our computations.

Lemma 19. LetM be a birational transformation of P2(K). If L ∈ G (P2(K)) then L(M) = L(LM) and
L (M) = L (LM).

The next lemma relates the L(M) and L (M).

Lemma 20. IfM is a transversal birational map of P2(K), then L(M) ⊂ L (M).

Proof. LetM = (m1 : m2 : m3), let f ∈ L(M) and A ∈ B(M). Then, deg( f ) = deg(M). On the
other hand

mult(A, C ( f )) ≥ min{mult(A, C (mi)) | i ∈ {1, 2, 3}}
= mult(A, C (V1)) (see Lemma 2(2))
=

√
mult(A, B(M)) (M is transversal).

Therefore, f ∈ L (M).

Lemma 21. IfM is a transversal birational map of P2(K), then dim(L (M)) = 2.

Proof. LetM = (m1 : m2 : m3). By Lemmas 17 and 20, we have that dim(L (M)) ≥ 2. Let us assume
that dim(L (M)) = k > 2 and let {n1, . . . , nk+1} be a basis of L (M) where n1 = m1, n2 = m2, n3 =

m3. Then
L (M) = {λ1n1 + · · ·+ λk+1nk+1 | (λ1 : · · · : λk+1) ∈ Pk+1(K)}.

Now, we take three points in P2(K) that will be crucial later. For their construction, we first
consider an open Zariski subset Σ ⊂ P2(K) where M : Σ → M(Σ) ⊂ P2(K) is a bijective map.
Then,M(Σ) is a constructible set of P2(K) (see e.g., Theorem 3.16 in [22]). Thus, P2(K) \M(Σ) can
only contain finitely many lines. On the other hand, we consider the open subset Ω2 ⊂ G (P2(K))

introduced in Lemma 4, and we take L = (L1 : L2 : L3) ∈ Ω2 such that a non-empty open subset
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of C (L1) is included inM(Σ). We take three points B1, B2, B3 ∈ Σ (this, in particular, implies that
B1, B2, B3 6∈ B(M)) such that:

1. M(B1) 6=M(B2)

2. M(B1),M(B2) ∈ C (L1),
3. M(B3) 6∈ C (L1); note thatM(B1),M(B2),M(B3) are not on a line

SinceM(B1),M(B2),M(B3) are not collinear, the system{
k+1

∑
i=1

λini(Bj) = 0

}
j∈{1,2,3}

has solution. Let (b1 : · · · : bk+1) be a solution. Then, we consider the polynomials (say that
L1 := a1t1 + a2t2 + a3t3)

f ( t ) := L1(M) = a1m1 + a2m2 + a3m3, g( t ) := b1n1 + · · ·+ bk+1nk+1.

We have that C ( f ) is irreducible because L ∈ Ω2. Moreover, deg(C ( f )) = deg(C (g)). In addition,
C ( f ) 6= C (g): indeed, B3 ∈ C (g) and B3 6∈ C ( f ) because otherwise m1(B1) m2(B1) m3(B1)

m1(B2) m2(B2) m3(B2)

m1(B3) m2(B3) m3(B3)


 a1

a2

a3

 =

 0
0
0

 ,

and sinceM(B1),M(B2),M(B3) are not collinear we get that a1 = a2 = a3 = 0 that is a contradiction.
Therefore, C ( f ) and C (g) do not share components. Thus, by Bézout’s theorem the number of
intersections of C ( f ) and C (g), properly counted, is deg(M)2. In addition, we oberve that f ∈
L(M) ⊂ L (M) (see Lemma 20) and g ∈ L (M). Thus,

B(M) ∪ {B1, B2} ⊂ C ( f ) ∩ C (g). (29)

Therefore

deg(M)2 = ∑
A∈C ( f )∩C (g)

multA(C ( f ), C (g))

≥ ∑
A∈B(M)

multA(C ( f ), C (g)) + ∑
A∈{B1,B2}

multA(C ( f ), C (g)) (see (29))

≥ ∑
A∈B(M)

multA(C ( f ), C (g)) + 2 (B1, B2 6∈ B(M))

≥ ∑
A∈B(M)

mult(A, C ( f ))mult(A, C (g)) + 2

≥ ∑
A∈B(M)

mult(A, B(M)) + 2 ( f , g ∈ L (M)))

= mult(B(M)) + 2 (see Definition 4)
= deg(M)2 + 1 (see Corollary 7 in [12]).

which is a contradiction.

Theorem 5. IfM is a transversal birational map of P2(K), then L(M) = L (M).

Proof. By Lemma 20, L(M) ⊂ L (M). Thus, using Lemmas 17 and 21, we get the result.
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5. Algorithm and Examples

In this section, we use the previous results to derive an algorithm for determining polynomial
parametrizations of rational surface, under the conditions stated in Section 4.1. For this purpose we
first introduce an auxiliary algorithm for testing the transversality of parametrizations. In addition,
we observe that we require to the input parametrization to be proper (i.e., birational). This can be
checked for instance using the algorithms in [29].

Observe that Step 2 in Algorithm 1 provides a first direct filter to detect some non-transversal
parametrizations, and Step 5 applies the characterization in Lemma 10. This justifies the next theorem.

Algorithm 1 Transversality of a Parametrization

Require: A rational proper projective parametrization P( t ) of an algebraic surface S .

1: Compute B(P) = ⋂4
i=1 C (pi) and mult(A, B(P)) = multA(C (W1), C (W2)) for every A ∈ B(P).

2: if ∃ A ∈ B(P), such that mult(A, B(P)) 6= m2
A for some mA ∈ N, mA ≥ 1 then

3: return “P is not transversal”.
4: end if
5: if ∀ A ∈ B(P), gcd(T1, T2, T3, T4) = 1, where Ti is the product of the tangents, counted with

multiplicities, to C (pi) at A, then

6: return “P is transversal” else return “P is not transversal”.
7: end if

Theorem 6. Algorithm 1 is correct.

The following algorithm is the central algorithm of the paper.

Theorem 7. Algorithm 2 is correct.

Proof. For the correctness of the first steps (1-4) we refer to the preamble in Section 4 where the almost
polynomial parametrizations are treated. For the rest of the steps, we use the notation introduced
in Section 4 and we assume the hypotheses there, namely, Q(SP ) = P and B(Q) = ∅. Since P
is transversal, by Theorem 1, we have that SP is transversal. Now, by Theorem 5, L = L(SP ).
In this situation, by Theorem 4, S = LSP for some L ∈ G (P2(K)). Therefore, P(R) has to be almost
polynomial, and hence the last step generates a polynomial parametrization. If the fourth component
of Q, namely q4 is not the power of a linear form, then B(Q) 6= ∅.

Remark 7. Let us comment some consequences and computational aspects involved in the execution of the
previous algorithms.

1. We observe that if Algorithm 2 returns a parametrization, then it is polynomial and its base locus is empty.
2. In order to check the properness of P , one may apply, for instance, the results in [29] and, for determining

deg(S ), one may apply, for instance, the results in [24,25,30]. For the computation ofR one may apply
well known elimination techniques as resultants or Gröbner basis; see e.g., [31].

3. In different steps of both algorithms one need to deal with the base points. Since the base locus is
zero-dimensional, one may consider a decomposition of its elements in families of conjugate points, so that
all further step can be performed exactly by introducing algebraic extensions of the ground field. For further
details on how to deal with conjugate points we refer to Section 3.3 (Chapter 3) in [23]

We finish this section illustrating the algorithm with some examples. The first two examples
provide polynomial parametrizations, while in the third the algorithm detects that the input
parametrization, although proper, is not transversal.
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Algorithm 2 Birational Polynomial Reparametrization for Surfaces

Require: A rational proper projective parametrization P( t ) =
(

p1( t ) : p2( t ) : p3( t ) : p4( t )
)

of an
algebraic surface S , with gcd(p1, . . . , p4) = 1.

1: if p4( t ) is of the form (a1t1 + a2t2 + a3t3)
deg(P), then

2: Consider the projective transformation L = (ti, tj, a1t1 + a2t2 + a3t3) where i, j ∈ {1, 2, 3} are
different indexes such if {k} = {1, 2, 3} \ {i, j}, then ak 6= 0.

3: Compute the inverse L−1 of L and return “P(L−1) is a rational proper polynomial
parametrization of S ”.

4: end if
5: Apply Algorithm 1 to check whether P is transversal. In the affirmative case go to the next Step.

Otherwise return “Algorithm 2 is not applicable”.
6: Compute deg(S ) and deg(S) = deg(P)/

√
deg(S ).

7: Compute the deg(S)-linear system associated to the effective divisor

L := ∑
A∈B(P)

√
mult(A, B(P))/deg(S ) · A

8: Determine S( t ) = (s1( t ) : s2( t ) : s3( t )), where {s1, s2, s3} is a basis of L .

9: ComputeR( t ) = S−1
( t ).

10: Compute Q( t ) = (q1 : q2 : q3 : q4), where Q( t ) = P(R( t )).
11: if q4( t ) is of the form (a1t1 + a2t2 + a3t3)

deg(Q), then

12: return “Q(L−1) (where L is as in Step 2) is a rational proper polynomial parametrization of S ”
else return “S does not admit a polynomial proper parametrization with empty base locus”.

13: end if

Example 1. Let P( t ) = (p1( t ) : p2( t ) : p3( t ) : p4( t )) be a rational parametrization of an algebraic
surface S , where

p1 = −6t4
3t1t2 + 6t2

3t2
2t2

1 − t3t2t4
1 − 2t3t3

2t2
1 + 5t3

3t2
1t2 + 3t3

3t1t2
2 − t6

2 + 3t2
3t4

1 + 3t2
3t4

2−

t3t5
2 − 3t4

1t2
2 − 3t2

1t4
2 + t3

3t3
1 − 6t4

3t2
1 + 3t5

3t1 + 3t3
3t3

2 − 6t4
3t2

2 + 2t5
3t2 − t6

1.

p2 = −(t1 − t3)t3(t2
2 + t2

1 − t1t3)(t2
2 + t2

1 − 2t2
3 + t1t3).

p3 = t2
3t3

2t1 + t2
3t3

1t2 − 3t4
3t1t2 + 39t2

3t2
2t2

1 − 8t3t2
2t3

1 − 4t3t1t4
2 − 4t3t2t4

1 − 8t3t3
2t2

1 + 8t3
3t2

1t2

+6t3
3t1t2

2 + 6t6
3 − 5t6

2 − 4t3t5
1 + 20t2

3t4
1 + 19t2

3t4
2 − 4t3t5

2 − 15t4
1t2

2 − 15t2
1t4

2 + 8t3
3t3

1

−29t4
3t2

1 + 4t5
3t1 + 7t3

3t3
2 − 22t4

3t2
2 − 2t5

3t2 − 5t6
1.

p4 = (t2
1 + t2

2 − t2
3)

3.

Applying the results in [29], one deduces that P is proper. We apply Algorithm 2 in order to compute
a rational proper polynomial parametrization Q( t ) of S , without base points, if it exists. Clearly, P is not
almost polynomial and hence steps 1–4 does not apply. In Step 5, we perform Algorithm 1. The base locus is
(we denote by ±ı the square roots of −1)

B(P) =
4⋂

i=1

C (pi) = {(1 : 0 : 1), (1 : ı : 0), (1 : −ı : 0)}.

Moreover, it holds that

mult(A, B(P)) = multA(C (W1), C (W2)) = 9, ∀A ∈ B(P .)
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Therefore, for every A ∈ B(P) we have that mult(A, B(P)) = m2
A for some mA ∈ N, mA ≥ 1. Thus,

the necessary condition in Algorithm 1 is fulfilled. In addition, one may also check that the gcd of the tangents is
1, for each base point. As a consequence, we deduce that P is transversal.

In Step 6 of Algorithm 2, we get that deg(S ) = 9 (see [30]). Now, using that

deg(S) = deg(P)/
√

deg(S ) = 6/3 = 2,

and that

mult(A, B(S)) = mult(A, B(P))/deg(S ) = 9/9 = 1 for every A ∈ B(P),

we compute the 2-linear system associated to the effective divisor

∑
A∈B(P)

A.

For this purpose, one considers a generic polynomial of degree 2 with undetermined coefficients (note that
we have 6 undetermined coefficients). We impose the three conditions, i.e., {(1 : 0 : 1), (1 : ±ı : 0)} should be
simple points, and we get

L := λ1(−9t2
1 − 9t2

2 + 9t1t3 + t2t3) + λ2(−10t2
1 − 10t2

2 + 9t1t3 + t2
3) + λ3(t2

1 + t2
2 − t2

3).

Let

S( t ) = (s1 : s2 : s3) = (−9t2
1 − 9t2

2 + 9t1t3 + t2t3 : −10t2
1 − 10t2

2 + 9t1t3 + t2
3 : t2

1 + t2
2 − t2

3),

where {s1, s2, s3} is a basis of L Next, we compute

R( t ) = S−1
( t ) = (r1( t ) : r2( t ) : r3( t )) =

where
r1 = 81t2

1 − 162t1t2 − 162t1t3 + 71t2
3 + 151t2t3 + 80t2

2,
r2 = −9(2t2 + 11t3)(t1 − t2 − t3),
r3 = 181t2

3 + 82t2
2 + 81t2

1 − 162t1t2 + 182t2t3 − 162t1t3.

In the last step, the algorithm returns

Q( t ) = P(R( t )) = (t3
1 + t2t2

3 − t1t2
3 − t3

3 : t2(t2 − t3)(t2 + t3) : t3
2 + t1t2

2 + t3t2t1 − 4t1t2
3 − 5t3

3 : t3
3)

that is a rational proper polynomial parametrization of S with empty base locus. Note that the affine polynomial
parametrization is given as

(t3
1 + t2 − t1 − 1, t2(t2 − 1)(t2 + 1), t3

2 + t1t2
2 + t2t1 − 4t1 − 5).

Observe that in this example we have introduced ±ı. Nevertheless we could have considered conjugate
points. More precisely, the base locus decomposes as

{(1 : 0 : 1)} ∪ {(1 : s : 0) | s2 + 1 = 0}

Then, all remaining computations could have been carried out working in the field extension Q(α) where
α2 + 1 = 0.
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Example 2. Let P( t ) = (p1( t ) : p2( t ) : p3( t ) : p4( t )) be a rational parametrization of an algebraic
surface S , where

p1 = 2891876933101
7056 t4

2t2
3 −

94253497
42 t5

2t3 +
79182089

24 t5
1t3 − 15185833

35 t5
2t1 +

230745016769
19600 t4

2t2
1

− 789948757
280 t4

1t2
2 −

314171
4 t5

1t2 − 3324893202046
2205 t3

2t2
3t1 +

17297334852139
29400 t2

2t2
3t2

1

+ 835536822991
5880 t4

2t3t1 − 3567593339657
14700 t3

2t3t2
1 +

8869391921
420 t4

1t2t3 +
199437407

140 t3
1t3

2

+ 56021820649
144 t4

1t2
3 +

925548000997
630 t3

1t2t2
3

− 35094007283
210 t3

1t2
2t3 +

28561
4 t6

2 +
3455881

16 t6
1,

p2 = − 1097019300247
2352 t4

2t2
3 −

246980149
56 t5

2t3 − 2485483 t5
1t3 − 32737835

56 t5
2t1 − 35410335273

3920 t4
2t2

1

+ 321945
4 t4

1t2
2 +

314171
4 t5

1t2 +
287134716635

168 t3
2t2

3t1 − 52659146973
80 t2

2t2
3t2

1 −
35536353385

294 t4
2t3 t1

+ 60928171523
280 t3

2t3t2
1 +

52899535
3 t4

1t2t3 − 446331197
140 t3

1t3
2 −

5296771655
12 t4

1t2
3 −

49879553251
30 t3

1t2t2
3

+ 23802911463
140 t3

1t2
2t3 − 257049

16 t6
2,

p3 = − 2676488123101
7056 t4

2t2
3 +

94253497
42 t5

2t3 − 379182089
24 t5

1t3 +
15185833

35 t5
2t1 − 219513256369

19600 t4
2t2

1

+ 797945837
280 t4

1t2
2 +

314171
4 t5

1t2 +
3079803152296

2205 t3
2t2

3t1 − 16059945270739
29400 t2

2t2
3t2

1

− 786351504991
5880 t4

2t3t1 +
3371173762457

14700 t3
2t3t2

1 −
9628594001

420 t4
1t2t3 − 163616167

140 t3
1t3

2

− 51903261673
144 t4

1t2
3 −

857765630677
630 t3

1t2t2
3 +

32679676343
210 t3

1t2
2t3 − 28561

4 t6
2 −

3455881
16 t6

1,

p4 = (−5348t2
1t3 + 5525t2

2t3 + 169t2
1t2 + 757t1t2

2 − 10059t1t2t3)
2.

Applying the results in [29], one deduces that P is proper. We apply Algorithm 2. Clearly, P is not almost
polynomial and hence steps 1–4 does not apply. In Step 5, we perform Algorithm 1. The base locus is

B(P) = {(0 : 0 : 1), (1 : 2 : 1), (5 : 7 : 1), (1/3 : −1/7 : 1), (−13 : 7 : 1)}.

Moreover, it holds that
mult(A, B(P)) = 4

for every A ∈ B(P) except for A = (0 : 0 : 1) that satisfies that mult(A, B(P)) = 16. Thus, the necessary
condition in Algorithm 1 is fulfilled. In addition, one may also check that the gcd of the tangents is 1, for each
base point. As a consequence, we deduce that P is transversal. Now, using that

deg(S) = deg(P)/
√

deg(S ) = 6/2 = 3,

and that
mult(A, B(S)) = mult(A, B(P))/deg(S ) = 1,

for every A ∈ B(P) except for A = (0 : 0 : 1) that satisfies that mult(A, B(S)) = 4, we compute the 3-linear
system associated to the effective divisor

4 (0 : 0 : 1) + (1 : 2 : 1) + (5 : 7 : 1) + (1/3 : −1/7 : 1) + (−13 : 7 : 1).

We get that L = λ1s1 + λ2s2 + λ3s3 where

s1 = 203971
12 t2

1t3 − 1463501
84 t2

2t3 +
3373732

105 t1t2t3 +
1859

4 t3
1 +

169
2 t3

2 −
169

2 t2
1t2 − 438913

140 t1t2
2,

s2 = 37443
2 t2

1t3 − 538707
28 t2

2t3 +
140997

4 t1t2t3 − 507
4 t3

2 − 507t2
1t2 − 71637

28 t1t2
2,

s2 = 26747
2 t2

1t3 − 384007
28 t2

2t3 − 338t2
1t2 − 50441

28 t1t2
2 +

100761
4 t1t2t3 − 507

4 t3
2.

So, we take, for instance, S( t ) = (s1( t ) : s2( t ) : s3( t )) and we computeR( t ) = S−1
( t ) = (r1( t ) :

r2( t ) : r3( t )) where
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r1 =
1
11

(−34331t2 + 7140t1 + 39091t3)(−1240370879t2
2 + 4693319730t2t3

−957816090t1t2 − 4096303731t2
3 + 26989200t2

1 + 1272637170t1t3),

r2 = − 7
3
(−5349t3 + 3821t2)(−1240370879t2

2 + 4693319730t2t3 − 957816090t1 t2

−4096303731t2
3 + 26989200t2

1 + 1272637170t1t3),

r3 = 9122349600t2
1t3 − 6081566400t2

1t2 + 5962839694227t3
3 − 13840668860013t2t2

3

+10640657052993t2
2t3 − 2711599696487t3

2 + 503701536030t1t2
2

−1409880894660t1t2t3 + 985048833510t1t2
3.

Finally, we obtain

Q( t ) = P(R( t )) = (t2
1 + t2

2 − t2t3 : −t1t2 − t2
2 + t1t3 : −t2

1 + t2
3 − t2t3 : (t2 − t3)

2).

Since q4( t ) = (t2 − t3)
2, the algorithm returns

Q((t1, t2, t2 − t3)
−1) = (t2

1 + t2t3 : −t2
2 − t1t3 : −t2

1 + t2
3 − t2t3 : t2

3)

that is a rational proper polynomial parametrization of S with empty base locus. Note that the affine polynomial
parametrization is given as

(t2
1 + t2,−t2

2 − t1,−t2
1 + 1− t2).

Example 3. Let P( t ) = (p1( t ) : p2( t ) : p3( t ) : p4( t )) be a rational parametrization of an algebraic
surface S , where

p1 = (−14065142t3
1t3 + 29410550t3

2t3 − 29410550t2t2
1t3 + 14065142t2

2t1t3 + 27633480t4
1

−46976541t1t3
2 + 64760061t3

1t2)
2,

p2 = 15452942581758441/7 t2t6
1t3 − 317479084729363299/49 t6

2t1t3

−68267697305871459/7 t5
2t2

1t3 − 18666824719928010/7 t5
2t1t2

3

+212684946864036627/49t4
2t2

1t2
3 + 37333649439856020/7t3

2t3
1t2

3

−2927680573060371t2
2t5

1t3 − 18666824719928010/7t2t5
1t2

3

+10954535298967494/7t3
2t5

1 + 1789545850442280t2
2t6

1 − 1587369926524977t2t7
1

−700212410256675t6
1t2

3 + 1255537783884564t7
1t3 + 69932525820304176/7t7

2 t1

−202783295759585328/49t6
2t2

1 − 3042203660729001t5
2t3

1 + 48537853394156778/7t7
2 t3

−123497677483306851/49t6
2t2

3 + 399414081398977842/49t4
2t3

1 t3

−4193865500723721t8
2 − 987075578994849t8

1 − 217339297920270t4
2t4

1

−54876861278152701/49t2
2t4

1t2
3 + 4276901329956240/7t3

2t4
1t3,

p3 = 3/7(24511557t4
1 − 64760061t2

1t2
2 + 11755445t2t2

1t3 + 38554704t1t3
2 − 1125425t2

2t1 t3

−11755445t3
2t3 + 1125425t3

1t3)(−151106809t4
2 + 97487778t3

2t3 + 269939512t1t3
2

+59811570t2
2t1t3 − 151106809t2

1t2
2 − 97487778t2t2

1t3 + 98258706t4
1 − 59811570t3

1t3)

p4 = (24511557t4
1 − 64760061t2

1t2
2 + 11755445t2t2

1t3 + 38554704t1t3
2 − 1125425t2

2t1 t3

−11755445t3
2t3 + 1125425t3

1t3)
2.
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Applying the results in [29], one gets that P is proper. However, when applying Algorithm 1, we get that

B(P) = {(0 : 0 : 1), (1 : 2 : 1), (5 : 7 : 1), (1/3 : −1/7 : 1), (−13 : 7 : 1)}

and that mult(A, B(P)) = 4 for every A ∈ B(P) except for A = (0 : 0 : 1) where mult(A, B(P)) = 44.
Since mult(A, B(P)) = 44, which is not the square of a natural number, the algorithm returns that P is not
transversal. Thus, we can not apply Algorithm 2.

6. Conclusions

Some crucial difficulties in many applications, and algorithmic questions, dealing with surface
parametrizations are, on one hand, the presence of base points and, on the other, the existence of
non-constant denominators of the parametrizations. In this paper, we have seen how to provide
a polynomial parametrization with empty base locus, and hence an algorithm to avoid the two
complications mentioned above, if it is possible. For this purpose, we have had to introduce, and indeed
impose, the notion of transversal base locus. This notion directly affects to the transversality of the
tangents at the base points of the algebraic plane curves Vi or Wi (see (3) and (7)). This, somehow,
implies that in general one may expect transversality in the input. In any case, we do deal here with the
non-transversal case and we leave it as an open problem. We think that using the ideas, pointed out by
J. Schicho in [32], on blowing up the base locus, one might transform the given problem (via a finite
sequence of Cremone transformations and projective transformations) into the case of transversality.
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