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Abstract

A family of linear singularly perturbed Cauchy problems is studied. The equations defining the prob-
lem combine both partial differential operators together with the action of linear fractional transforms.
The exotic geometry of the problem in the Borel plane, involving both sectorial regions and strip-like
sets, gives rise to asymptotic results relating the analytic solution and the formal one through Gevrey
asymptotic expansions. The main results lean on the appearance of domains in the complex plane which
remain intimately related to Lambert W function, which turns out to be crucial in the construction of
the analytic solutions.

On the way, an accurate description of the deformation of the integration paths defining the analytic
solutions and the knowledge of Lambert W function are needed in order to provide the asymptotic
behavior of the solution near the origin, regarding the perturbation parameter. Such deformation varies
depending on the analytic solution considered, which lies in two families with different geometric features.

Key words: asymptotic expansion, Lambert W function, Borel-Laplace transform, Fourier transform,

initial value problem, formal power series, singular perturbation. 2010 MSC: 35C10, 35C20.

1 Introduction

This work is devoted to the study of a family of linear singularly perturbed Cauchy problems
combining partial differential operators together with the action of linear fractional transforms.
More precisely, we deal with equations of the form

Q(∂z)u(t, z, ε) = εδD(t2∂t)
δDRD(∂z)u(t, z, ε) + εδ0

(
(t2∂t)

δ0R0(∂z)u
)( t

1 + k0εt
, z, ε

)
+
∑
`∈I

ε∆`tδ`∂d`t c`(z, ε)R`(∂z)u (t, z, ε) + f(t, z, ε),(1)

under null initial data u(0, z, ε) ≡ 0, and where ε is a small perturbation complex parameter.
I ⊆ N stands for a finite set of indices, Q(X), R0(X), R`(X), RD(X) ∈ C[X], δ0, δ`,∆`, d`, δD
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and k0 are positive integers, and the coefficients c`(z, ε) and f(t, z, ε) are holomorphic functions
defined on Hβ′ × D(0, ε0) and D(0, rf ) × Hβ′ × D(0, ε0), respectively, for some rf , β

′, ε0 > 0,
where

Hβ′ = {z ∈ C : |Im(z)| < β′}.

The precise nature of each of the elements involved in the equation are detailed in Section 2.
It is worth mentioning at this point that we are dealing with the case δ0 > 0 in the present

work. However, there is no additional theoretical difficulty on considering the case δ0 = 0, which
only entangles a different geometry, explained in Section 3.2. However, we have decided to omit
further duplicated computations in this particular case for the sake of clarity.

The point of depart of the present study is the recent work [16] by the authors, where
a family of nonlinear singularly perturbed equations combining linear fractional transforms,
partial derivatives and differential operators of infinite order, was studied. More precisely, in
that previous study we considered equations of the form

(2) Q(∂z)u(t, z, ε) = exp(αεktk+1∂t)R(∂z)u(t, z, ε) + P (t, ε, {mk,t,ε}k∈I , ∂t, ∂z)u(t, z, ε)

Q1(∂z)u(t, z, ε)Q2(∂z)u(t, z, ε) + f(t, z, ε),

where Q ∈ C[X] and the polynomial P admits holomorphic coefficients in some neighborhood
of the origin with respect to the perturbation parameter ε. We write mk,t,ε for the operator

mk,t,εu(t, z, ε) = u

(
t

1 + kεt
, z, ε

)
.

The term exp(αεktk+1∂t) is the exponential formal differential operator of infinite order with
respect to t

exp(αεktk+1∂t) =
∑
p≥0

(αεk)p

p!
(tk+1∂t)

(p).

Here, (tk+1∂t)
(p) represents the p−th iterate of tk+1∂t.

The main result in that work establishes the existence of a formal power series û(t, z, ε) =∑
m≥0 hm(t, z)εm ∈ E[[ε]], where (E, ‖·‖E) is certain Banach space of functions, which is the com-

mon asymptotic expansion of a family of sectorial solutions (ε 7→ up(t, z, ε))0≤p≤ς−1, defined on
finite sectors which conform a good covering (Ep)0≤p≤ς−1 (see Definition 4), and with coefficients
in E. The previous asymptotic expansion is of Gevrey order 1/k, i.e. for every 0 ≤ p ≤ ς − 1
there exist Cp,Mp > 0 such that∥∥∥∥∥up(t, z, ε)−

n−1∑
m=0

hm(t, z)εm

∥∥∥∥∥
E

≤ Cp(Mp)
nΓ
(

1 +
n

k

)
|ε|n,

for all n ≥ 1 and ε ∈ Ep. In the case that there exists 0 ≤ p0 ≤ ς − 1 such that the aperture of
the corresponding sector of the good covering is larger than π/k, then the map ε 7→ up0(t, z, ε)
is indeed the k−sum of û(t, z, ε) on such sector. We refer to the reference [1] for further details
on the classical theory of Gevrey asymptotic expansions in sectors of the complex plane.

In that previous study, k was assumed to be a parameter smaller than 1. The techniques
used did not succeed when applied to the limit case k = 1, and were postponed to a future
study. As a matter of fact, our first hypotheses (see the introduction of [16]) based on pre-
vious experiences [20, 14] pointed to the existence of double scale structures involving 1 and
1+ Gevrey estimates. Contrary to our expectations, this work reveals that this setting has a
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limit behavior which is reflected in its exotic geometry, rather than the asymptotic expansions
involved. Therefore, the present study stands as a limit setup in [16].

For the sake of clarity, we have decided to deal with the case of a single shift operator,
whereas the general case can be treated in a similar manner, carrying cumbersome and heavy
calculations which may avoid the reader to have a clear idea of the main purpose of the study.

The statements of the main problem under study are displayed in Section 2. The first step
in the research is to search for solutions of the problem in the form of inverse Fourier and
Laplace-like transformations of an unknown function

(3) u(t, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
L
ω(u,m, ε)e−

u
εt eizm

du

u
dm,

where L is an infinite path which becomes effective in different forms through the two alternative
directions followed in the work. The problem turns out to be in some sense symbolic, before
establishing the description of the convergence conditions on appropriate domains. An auxiliary
problem satisfied by ω(τ,m, ε) (see(17)) allows to distinguish the two independent options in
order to give rise to analytic solutions to the problem.

Section 3 is devoted to construct a first family of analytic solutions of (17). The assumptions
made on the elements involved in the main problem and on its geometry give rise to certain
geometric conditions on the domains where the function ω(τ,m, ε) is well defined. The precise
knowledge of the behavior of Lambert W function is essential in order to describe such domains.
We have decided to include a particular case of this study, displayed in Section 3.2, in which the
details of this geometry can be easily illustrated. Once the adequate domains of ω(τ,m, ε) are
established, we prove the existence of the solution of the auxiliary problem within a Banach space
of function (see Section 3.3). The elements belonging to that Banach space satisfy exponential
growth/decay at infinity with respect to certain variables, giving an analytic meaning to (3).

A parallel path is traced in Section 4 where a second framework for the main problem is
established. The auxiliary equation (17) is rewritten in order to search for analytic solutions of
the main problem in this novel situation. This second setting is closer to that of the classical
results obtained on the solutions of analytic solutions to singularly perturbed differential equa-
tions in the complex domain. More precisely, the solution of the auxiliary problem, ω(τ,m, ε),
turns out to be holomorphic in a neighborhood of the origin, and can be extended to an infinite
sector with exponential growth, w.r.t. τ . The path L in (3) takes the form of a half-line with
endpoint at the origin, contained in such infinite sector. Analyticity of u(t, z, ε), as defined in
(3) makes sense, describing a second family of analytic solutions to the main problem.

The two families of analytic solutions of the main problem, independently acquired, turn out
to be holomorphic functions on sets of the form T ×Hβ′ × E , where T , E are certain bounded
sectors in the complex plane, and 0 < β′ < β (see Proposition 5 and Proposition 7).

The existence of asymptotic results at the origin with respect to the perturbation parameter,
i.e. relating each of the analytic solutions to some formal power series in the perturbation
parameter ε, needs that both approaches converge into one. As a matter of fact, it is hopeless to
cover a full punctured neighborhood of the origin with a finite number of domains (Ep)0≤p≤ς−1

obtained from ς analytic solutions coming from just one of the approaches described above. A
finite family of solutions of the main problem (up(t, z, ε))0≤p≤ς−1, with up(t, z, ε) being analytic
on T × Hβ′ × Ep, for every 0 ≤ p ≤ ς − 1, and where (Ep)0≤p≤ς−1 defines a good covering of
the origin (see Definition 4), is constructed. We observe that a set of such functions comprises
solutions to the main problem coming from both approaches.

The first main result of the work (Theorem 1) states that for every pair of indices 0 ≤ p, q ≤
ς − 1 with p 6= q and such that Ep ∩ Eq 6= ∅, then the difference of the corresponding analytic
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solutions up(t, z, ε) and uq(t, z, ε) is exponentially small with respect to ε ∈ Ep ∩ Eq, uniformly
with respect to the rest of the variables. More precisely, there exist C,D > 0 such that

sup
t∈T ,z∈Hβ′

|up(t, z, ε)− uq(t, z, ε)| ≤ C exp

(
−D
|ε|

)
,

for all ε ∈ Ep ∩ Eq. The proof of this result faces three cases, depending on the nature of
up and uq. The work concludes with the application of the classical Ramis-Sibuya Theorem
(Theorem (RS)), achieving the existence of a common formal power series in ε, say û(t, z, ε),
with coefficients in the Banach space of holomorphic and bounded functions in T ×Hβ′ , say E.
This formal power series is the asymptotic expansion of up(t, z, ε) of Gevrey order 1 in Ep, for
every 0 ≤ p ≤ ς − 1, when considering up as a function of Ep and values in E.

We notice that the appearance of the particular linear fractional transform t 7→ t
1+k0εt

, i.e.
an homography, in the main equation under study is motivated by the fact that the change
of variable t = 1/s, and therefore the change of the unknown function u(t, z, ε) = X(1/t, z, ε),
transforms equation (1) into a singularly perturbed PDE combined with small shift operator
Tk0,εX(s, z, ε) = X(s+k0ε, z, ε), which has been studied in the literature in the field of asymptotic
analysis of functional equations. We refer to [6, 8, 9], also [21] in the framework of singularly
perturbed elliptic partial differential equations, and [2, 3, 7, 11, 12, 13] as examples of advances
in the study of difference equations.

The paper is organized as follows: in Section 2, the precise statement of the main problem
(1) and auxiliary problem (17) are established. Sections 3 and 4 describe the construction of two
families of analytic solutions of (17). In both sections, the geometry of the problem is analysed
together with the definition and main properties of the Banach space where the solutions belong.
The construction of the analytic solutions to the main problem in Section 5 is made regarding
their different nature. Section 6 is devoted to the study of the main asymptotic results of the
work (Theorems 1 and 3) in which the existence of a formal solution is attained, being the
common formal Gevrey asymptotic expansion of all the analytic solutions, with respect to the
perturbation parameter near the origin. The work concludes with two final sections on known
facts on Fourier transform and Lambert W function.

2 Statement of the main problem and related auxiliary prob-
lems

Let δD ≥ 2 be an integer. Let I ⊆ N be a finite set of indices. For every ` ∈ I, we choose
non-negative integers ∆`, d` and δ`. We assume that

(4) ∆` > δ` − d`,

and

(5) δ` > 2d`, δD ≥ d` + 2,

for every ` ∈ I. We also choose positive integers δ0 and k0.
Let Q(X), RD(X), R0(X) ∈ C[X], and R`(X) ∈ C[X] for every ` ∈ I, under the following

conditions

(6)
Q(im)

R0(im)
∈ SQ,R0 , R0(im) 6= 0, m ∈ R,
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where
SQ,R0 = {z ∈ C : αQ,R0 < arg(z) < βQ,R0 , rQ,R0 ≤ |z| ≤ RQ,R0},

for some 0 < rQ,R0 < RQ,R0 and αQ,R0 < βQ,R0 .
For all ` ∈ I one has that

(7) deg(R`) ≤ deg(RD).

In addition to this,

(8)
Q(im)

RD(im)
∈ SQ,RD , RD(im) 6= 0, m ∈ R,

where
SQ,RD = {z ∈ C : αQ,RD < arg(z) < βQ,RD , rQ,RD ≤ |z| ≤ RQ,RD},

for some 0 < rQ,RD < RQ,RD and αQ,RD < βQ,RD . Observe from the previous assumptions that

(9) deg(R`) ≤ deg(Q)

for every ` ∈ I.
We consider the main problem under study

Q(∂z)u(t, z, ε) = εδD(t2∂t)
δDRD(∂z)u(t, z, ε) + εδ0

(
(t2∂t)

δ0R0(∂z)u
)( t

1 + k0εt
, z, ε

)
+
∑
`∈I

ε∆`tδ`∂d`t c`(z, ε)R`(∂z)u (t, z, ε) + f(t, z, ε),(10)

for null initial data u(0, z, ε) ≡ 0. In the previous equation, ε acts as a small complex perturbation
parameter, and the coefficients c`(z, ε) and the forcing term f(t, z, ε) are constructed as follows.

Let ε0, β > 0. For every ` ∈ I, the function c`(z, ε) is holomorphic on Hβ′ ×D(0, ε0) for all
0 < β′ < β, where

Hβ′ = {z ∈ C : |Im(z)| ≤ β′},

and it is constructed as the inverse Fourier transform

c`(z, ε) :=
1

(2π)1/2

∫ ∞
−∞

C`(m, ε)e
izmdm,

with m 7→ C`(m, ε) being a continuous function for m ∈ R and satisfying uniform bounds with
respect to the perturbation parameter ε in D(0, ε0). More precisely, there exists C` > 0 such
that

(11) sup
ε∈D(0,ε0)

|C`(m, ε)| ≤
C`

(1 + |m|)µ
exp(−β|m|), m ∈ R,

for some µ > 1. Observe from Annex 1 that the previous property coincides with

sup
ε∈D(0,ε0)

‖m 7→ C`(m, ε)‖β,µ ≤ C`,

for all ` ∈ I.
Let ψ : C × R × D(0, ε0) → C be an entire function with respect to its first variable,

continuous on R in its second variable, and holomorphic on the disc D(0, ε0) with respect to its
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third variable. Moreover, we assume there exists Cψ, β, ν > 0 such that ψ satisfies the following
upper bounds:

(12) |ψ(τ,m, ε)| ≤
Cψ

(1 + |m|)µ
e−β|m| exp(ν|τ |)|τ |,

for every (τ,m, ε) ∈ C× R×D(0, ε0). We define the function

F (T, z, ε) :=
1

(2π)1/2

∫ ∞
−∞

∫
Ld

ψ(u,m, ε) exp
(
− u
T

)
eizm

du

u
dm,

where Ld = [0,∞)ed
√
−1 can spin around the origin in order to guarantee that F is a holomorphic

function on D(0, rF ) for 0 < rF < 1/ν, with respect to T by analytic continuation. The forcing
term f(t, z, ε), defined by

(13) f(t, z, ε) = F (εt, z, ε)

turns out to be holomorphic on D(0, rf ) ×Hβ′ ×D(0, ε0), for every 0 < β′ < β, where rf > 0
satisfies ε0rf < rF .

We search for solutions of (10) in the form u(t, z, ε) = U(εt, z, ε), for some function U(T, z, ε)
which becomes a solution the auxiliary problem

Q(∂z)U(T, z, ε) = (T 2∂T )δDRD(∂z)U(T, z, ε) +
(

(T 2∂T )δ0R0(∂z)U
)( T

1 + k0T
, z, ε

)
+
∑
`∈I

ε∆`−δ`+d`T δ`∂d`T c`(z, ε)R`(∂z)U (T, z, ε) + F (T, z, ε).(14)

In addition to this, we explore solutions of (14) (and consequently of the main problem (10))
in the form of a Laplace-like and Fourier transform, i.e.

(15) U(T, z, ε) :=
1

(2π)1/2

∫ ∞
−∞

∫
L
ω(u,m, ε)e−

u
T eizm

du

u
dm,

where L is an infinite path which can be of different nature, to be described in the work. As a
matter of fact, the auxiliary function ω(u,m, ε) turns out to be a solution of a second auxiliary
equation, on certain domains to be specified.

We display some relations provided by the action of the operators involved in (14). At first,
these properties are considered to be symbolic, but they will become analytic provided that
convergence is guaranteed in the sequel.

Lemma 1 Given U(T, z, ε) in the form (15), it holds that

T 2∂TU(T, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
L
uω(u,m, ε)e−

u
T eizm

du

u
dm,

and for all positive m ∈ N

TmU(T, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
L

(
u

Γ(m)

∫ u

0
(u− s)m−1ω(s,m, ε)

ds

s

)
e−

u
T eizm

du

u
dm.

In addition to this, one has

U

(
T

1 + k0T
, z, ε

)
=

1

(2π)1/2

∫ ∞
−∞

∫
L
e−uk0ω(u,m, ε)e−

u
T eizm

du

u
dm.
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The following lemma ([22],p. 3630) will help on finding an auxiliary writing of our main
problem.

Lemma 2 Let m ∈ N be a positive integer. Then it holds that

T 2m∂mT = (T 2∂T )m +
∑

1≤p≤m−1

Am,pT
m−p(T 2∂T )p,

for some real numbers Am,p, 1 ≤ p ≤ m− 1.

In view of (5), we define the positive integer d`,1 by

(16) δ` = 2d` + d`,1,

for every ` ∈ I.
Taking into account (16), one can apply Lemma 2 together with Lemma 1 and the properties

of Fourier transform (see Section 7) in order to have that ω(τ,m, ε) solves the following second
auxiliary problem

(17) Q(im)ω(τ,m, ε) = τ δDRD(im)ω(τ,m, ε) + τ δ0e−τk0R0(im)ω(τ,m, ε)

+
1

(2π)1/2

∑
`∈I

∫ ∞
−∞

C`(m−m1, ε)R`(im1)ε∆`−δ`+d`
(

τ

Γ(d`,1)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s

+
∑

1≤p≤d`−1

Ad`,p
τ

Γ(d`,1 + d` − p)

∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s

 dm1 + ψ(τ,m, ε),

at least from a formal point of view. The analytic functional spaces in which the solution of (17)
is defined will be described subsequently in the paper. In that framework, (15) defines a holo-
morphic function in adequate domains, providing an actual solution of (14), and consequently
of (10).

Two different families of solutions of the auxiliary problem (17) will be provided. We give
detail on each type of solution and describe the situation for each case separately. The elements
in the first family, studied in Section 3, are related to different branches of Lambert W function
whereas the elements of the second family, analysed in Section 4, are linked to the classical
Borel-Laplace summability procedure.

3 First family of analytic solutions of (17)

We depart from the main and auxiliary problems described in Section 2, together with the
assumptions made on the elements in their construction.

In a first subsection, Section 3.1, we describe the geometry of the problem. It is worth
mentioning a particular case, considered in Section 3.2, whose geometry serves as a model for
the more complicated geometry of the general setting. For this reason, we provide a detailed
proof of Lemma 5 within the particular case, which can be adapted to the general one under
minor modifications.
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3.1 Geometry of the problem

Under the assumptions made on the problem, equation (17) reads as follows:

D(τ,m)ω(τ,m, ε) = τ δDRD(im)ω(τ,m, ε) +
1

(2π)1/2

∑
`∈I

∫ ∞
−∞

C`(m−m1, ε)R`(im1)

× ε∆`−δ`+d`

 τ

Γ(d`,1)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s
+

∑
1≤p≤d`−1

Ad`,p
τ

Γ(d`,1 + d` − p)

×
∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s

)
dm1 + ψ(τ,m, ε),(18)

where
D(τ,m) = Q(im)− τ δ0e−τk0R0(im).

In the next result, we show that the roots of D(τ,m) are related to Lambert W function.

Lemma 3 Let U be some neighborhood of the origin in C. We define

H := ∪m∈R{τ ∈ C : D(τ,m) = 0}

Then, provided that rQ,R0 > 0 is large enough, it holds that

H ∩ Ĥ = ∅,

with Ĥ := U ∪
(⋃

k∈Z Lk
)
, and where the set Lk consists of the complex numbers with negative

real part which belong to a horizontal strip-like set, for every k ∈ Z.

Proof Let m ∈ R. It holds that D(τ,m) = 0 if and only if

(19) τ δ0e−τk0 =
Q(im)

R0(im)
.

Therefore, ωeω = A(m), with ω = −τ k0δ0 , A(m) = −k0
δ0
B(m), and B(m) stands for one δ0 root

of Q(im)/R0(im). In other words, ω = W (A(m)), where W is Lambert W function. In view of
(6), and the properties of Lambert W function (see Section 8), we derive that

|A(m)| =
∣∣∣∣−k0

δ0
B(m)

∣∣∣∣ =
k0

δ0

∣∣∣∣ Q(im)

R0(im)

∣∣∣∣ 1
δ0

≥ k0

δ0
r

1
δ0
Q,R0

=: r̃Q,R0 > 0.

In addition to this,
2πj + αQ,R0

δ0
< arg(−A(m)) <

2πj + βQ,R0

δ0
,

for j ∈ {0, 1, . . . , δ0−1}. The two previous conditions describe δ0 sectors, say {SQ,R0,j}j=0...,δ0−1.
Therefore, ⋃

m∈R
A(m) ⊆

δ0−1⋃
j=0

SQ,R0,j .

We write
SQ,R0,j = {z ∈ C : αQ,R0,j < arg(z) < βQ,R0,j , r̃Q,R0 ≤ |z|}
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for each j = 0, . . . , δ0 − 1, for certain αQ,R0,j , βQ,R0,j with

0 ≤ αQ,R0,0 < βQ,R0,0 < αQ,R0,1 < βQ,R0,1 < . . . < αQ,R0,δ0−1 < βQ,R0,δ0−1 < 2π.

At this point, we describe the set W (SQ,R0,j) for j = 0, . . . , δ0 − 1. For this purpose, let
j ∈ {0, . . . , δ0 − 1} and write z = ρ exp(

√
−1θ) ∈ SQ,R0,j . We have r̃Q,R0 ≤ ρ and αQ,R0,j <

θ < βQ,R0,j . For the sake of simplicity, we write r̃, αj and βj for r̃Q,R0 , αQ,R0,j and βQ,R0,j ,
respectively. Let ω = W (z) and write ω = ξ + η

√
−1. Then, one has

ρ cos(θ) = exp(ξ)(ξ cos(η)− η sin(η)), ρ sin(θ) = exp(ξ)(η cos(η) + ξ sin(η)).

From the previous equalities we derive

ρ = exp(ξ)
√
ξ2 + η2, tan(θ) =

η cos(η) + ξ sin(η)

ξ cos(η)− η sin(η)
.

Therefore,

(20) W (SQ,R`,j) =
{
ω = ξ + η

√
−1 ∈ C : exp(ξ)

√
ξ2 + η2 ≥ r̃,

tan(θ) =
η cos(η) + ξ sin(η)

ξ cos(η)− η sin(η)
, for θ ∈ (αj , βj)

}
.

On the one hand, the set {ξ + η
√
−1 ∈ C : exp(ξ)

√
ξ2 + η2 ≥ r̃} is an infinite domain with

boundary given by the curve {(ξ, η) ∈ R2 : exp(ξ)
√
ξ2 + η2 = r̃} which intersects the vertical

axis at the points η = ±r̃, and the horizontal axis at the unique positive solution of exp(ξ)ξ = r̃,
which tends to infinity when r̃ tends to infinity. The domain contains the positive semiplane,
except from a bounded set. An example of such domain for r̃ = 1 is represented in Figure 1
(left). On the other hand, we are interested in the subset of {(ξ, η) ∈ R2 : ξ > 0} determined by

tan(θ) =
η cos(η) + ξ sin(η)

ξ cos(η)− η sin(η)
, for θ ∈ (αj , βj)

which is an infinite domain consisting of an infinite union of horizontal strip-like sets. Figure 1
(right) shows such subset for tan(θ) ∈ (−1

2 ,
1
2), together with the ranges of the branches of

Lambert W function. It is worth remarking that the principal branch of Lambert W function
is contained in the horizontal strip {ω ∈ C : −π < Im(ω) < π} and its boundary tends to the
boundary of that strip, when the real part becomes larger. Let M > 0. The set of complex
numbers contained in the set {ω ∈ C : Re(ω) ≥M} which belong to the k−th branch of Lambert
W function, for k ∈ Z\{0}, are contained in the horizontal strip {ω ∈ C : 2kπ−δ(M) < Im(ω) <
(2k + 1)π + δ(M)} for positive k (resp. in {ω ∈ C : (2k − 1)π − δ(M) < Im(ω) < 2kπ + δ(M)}
for negative k). Here, δ = δ(M) is a positive decreasing function of M , which tends to 0
if M approaches infinity. A similar behavior can be observed when restricting the branches
of Lambert W to the complex numbers of arguments in (αj , βj). It is worth mentioning the
asymptotic behavior of Lambert W function resembling the complex logarithmic function at
infinity.

Taking into account the previous remarks and the fact that ω is defined by ω = −τ k0δ0 , we
conclude the result.

2
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Figure 1: Domains exp(ξ)
√
ξ2 + η2 > r̃ = 1 (left) and −1

2 <
η cos(η)+ξ sin(η)
ξ cos(η)−η sin(η) <

1
2 (right)

Figure 2: Example of domain H̃, resembling an octopus!

Definition 1 One can slightly diminish the size of Ĥ in such a way that the distance from H to
Ĥ is positive, while preserving its geometry. Let {Lk}k∈Z denote the set of strip-like sets which
conform Ĥ. We have

(21) Lk = {z ∈ C : Re(z) < 0, αk(z) < Im(z) < βk(z)},

for some real functions αk(z) < βk(z). We remark that several strip-like sets may arise within
each branch, depending on the arguments of the elements in SQ,R0. We maintain the same
notation for the strips for the sake of simplicity. We write H̃ for the connected component of
Ĥ which contains U . Figure 2 illustrates the geometric configuration of H̃.

Remark 1: Observe that the number of horizontal strip-like sets conforming H̃ is a positive
increasing function of rQ,R0 , which tends to infinity when rQ,R0 becomes larger. As a matter
of fact, we will assume that rQ,R0 is large enough in order that the strip-like set contains a
horizontal strip. Observe this is always possible due to the geometry of Lambert W function is
asymptotically as that of the logarithm. Therefore, and for practical reasons, one can choose
the functions αk(z) and βk(z) in (21) to be constants, say αk(z) ≡ α < β ≡ βk(z).

The details proof of Lemma 4 are postponed after Lemma 5, which states the same result in
a particular case which helps to illustrate the technique of the proof of Lemma 4.
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Lemma 4 There exists C1 > 0 such that∣∣∣∣ τ δDRD(im)

Q(im)− τ δ0e−τk0R0(im)

∣∣∣∣ ≤ C1,

for all m ∈ R and τ ∈ Ĥ.

In the next subsection, we describe the geometry in a particular case in which the strip-like
sets Lk are indeed horizontal strips.

3.2 A particular case

This subsection is devoted to the particular case, under the further assumption

(22) δ0 = 0.

We find this is a situation which helps to illustrate the geometry of the problem. Under assump-
tion (22), we have

D(τ,m) = Q(im)− e−τk0R0(im).

It holds that D(τ,m) = 0 if and only if

τ = τm,k = − 1

k0

(
log

∣∣∣∣ Q(im)

R0(im)

∣∣∣∣+

(
arg

(
Q(im)

R0(im)

)
+ 2πk

)√
−1

)
, k ∈ Z,m ∈ R.

Under condition (6), one has that the roots of D(τ,m), τm,k for k ∈ Z and m ∈ R, belong to a
family of horizontal strips {Hk}k∈Z , where

Hk = {τ ∈ C : Re(τ) < −M, α+
2kπ

k0
< Im(τ) < β +

2kπ

k0
},

for M = 1
k0

log(rQ,R0) > 0, which does not depend on m ∈ R nor k ∈ Z, and α = − 1
k0
βQ,R0 ,

β = − 1
k0
αQ,R0 .

We write Ĥ for

Ĥ = {τ ∈ C : −M < Re(τ) < 0}
⋃(⋃

k∈Z
Lk

)
,

where

(23) Lk = {τ ∈ C : Re(τ) < 0, β +
2kπ

k0
< Im(τ) < α+

2(k + 1)π

k0
}.

One may slightly reduce Ĥ in such a way that its distance to ∪m∈R{τ : D(τ,m) = 0} is positive.
Figure 3 illustrates the geometric situation. Let R > 0.

We write H̃ for the connected component of D(0, R)
⋃(⋃

k∈Z Lk
)

containing the origin of
coordinates.

Remark 2: We observe that the number of horizontal strips in H̃ grows to infinity when
R→∞.

Remark 3: The previous sets have already appeared as natural domains of solutions of problems
previously studied by the authors, [14].
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Figure 3: Example of configuration of the family {Hk}k∈Z

Lemma 5 There exists C1 > 0 such that∣∣∣∣ τ δDRD(im)

Q(im)− e−τk0R0(im)

∣∣∣∣ ≤ C1,

for all m ∈ R, and τ ∈ Ĥ.

Proof Let k ∈ Z, τ ∈ Lk and m ∈ R. One can write τ = τm,k + (a+ iθ) for a well chosen θ in

a bounded interval and a ∈ (−∞, C log
∣∣∣ Q(im)
R0(im)

∣∣∣] for some C > 0, since the real part of τm,k is

−1/k0 log
∣∣∣ Q(im)
R0(im)

∣∣∣. This entails that

Q(im)− e−τk0R0(im) = Q(im)− e−(τm,k+a+iθ)k0R0(im) := A.

We observe that D(τm,k,m) = 0 which yields

A = Q(im)(1− e−(a+iθ)k0),

and therefore ∣∣∣∣ τ δDRD(im)

Q(im)− e−τk0R0(im)

∣∣∣∣ =
|τm,k + a+ iθ|δD |RD(im)|
|1− e−(a+iθ)k0 ||Q(im)|

.

By construction of Lk, we get a constant C11 > 0 with

(24) |1− e−(a+iθ)k0 | ≥ C11

for all a ∈ (−∞, C log | Q(im)
R0(im) |], all m ∈ R, all θ ∈ I (a well chosen bounded interval). Further-

more, since e−ak0 grows exponentially as a tends to −∞, and since τm,k remains in a bounded
domain for all m ∈ R (see assumption (6)), we deduce that the quantity

|τm,k + a+ iθ|δD
|1− e−(a+iθ)k0 |
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remains bounded provided that a < −M for some fixed M > 0, for all m ∈ R, all θ ∈ I. On the
other hand, provided that a ∈ (−M,C log | Q(im)

R0(im) |], the quantity

|τm,k + a+ iθ|δD

remains bounded (again from (6)), for all m ∈ R, all θ ∈ I. As a result, from (24), the quotient

|τm,k + a+ iθ|δD
|1− e−(a+iθ)k0 |

remains bounded for all m ∈ R, all θ ∈ I and all a ∈ (−M,C log | Q(im)
R0(im) |].

At last, when τ ∈ D(0, R). According to (6) and provided that rQ,R0 > 0 is large enough,
we get a constant C̃11 > 0 with

| Q(im)

R0(im)
− e−τk0 | > C̃11

for all τ ∈ D(0, R), all m ∈ R. As a result, the quotient

| τ δDRD(im)

Q(im)− e−τk0R0(im)
| = |RD(im)

R0(im)
||τ δD | 1

| Q(im)
R0(im) − e−τk0 |

remains bounded, for all m ∈ R, all τ ∈ D(0, R).
2

proof of Lemma 4:
Let τ ∈ Lk, m ∈ R. Let τm,k be a solution of (19) associated to the k−th branch of Lambert

W function. We can write τ = τm,k + a + iθ for some well chosen a (on an interval detailed
below) and θ on a well chosen bounded interval I. Furthermore,

Q(im)− τ δ0e−τk0R0(im)

= Q(im)−
(τm,k + a+ iθ)δ0

τ δ0m,k
τ δ0m,k exp(−(τm,k + a+ iθ)k0)R0(im)

= Q(im)

(
1− (

τm,k + a+ iθ

τm,k
)δ0 exp(−(a+ iθ)k0)

)
Therefore, ∣∣∣∣ τ δDRD(im)

Q(im)− τ δ0e−τk0R0(im)

∣∣∣∣ =
|τm,k + a+ iθ|δD

|1− (
τm,k+a+iθ

τm,k
)δDe−(a+iθ)k0 |

∣∣∣∣RD(im)

Q(im)

∣∣∣∣
By construction, we know that

τm,k = − δ0

k0
Wk(A(m))

where A(m) ∈ ∪δ0−1
j=1 SQ,R0,j satisfies in particular

|A(m)| = k0

δ0

∣∣∣∣ Q(im)

R0(im)

∣∣∣∣1/δ0
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We recall that Wk(τ) is close to the k−branch of the logarithm log(z) + 2iπk as |z| tends to
infinity where log(z) denotes the principal branch of the logarithm. Provided that rQ,R0 > 0 is
large enough, we deduce that τm,k is close to the quantity

− δ0

k0
(log(A(m)) + 2iπk)

for all m ∈ R. From now on, the proof follows similar arguments as the one of Lemma 5.
However, we provide sharp bounds that will have crucial importance later on in the work.

Since e−ak0 grows exponentially as a tends to −∞, we deduce the next bounds for the
quotient

|τm,k + a+ iθ|δD

|1− (
τm,k+a+iθ

τm,k
)δDe−(a+iθ)k0 |

≤
∑

p+q=δD
δD!
p!q! |τm,k|

p|a+ iθ|q

|1− (
τm,k+a+iθ

τm,k
)δDe−(a+iθ)k0 |

≤ D1(log |Q(im)/R0(im)|)δ̃

provided that a ∈ (−∞, C log |Q(im)/R0(im)|] for a well chosen constant C,D1 > 0 and δ̃ > 0
(depending on δ0, k0, k, δD) for all m ∈ R. As a result, we get bounds of the form∣∣∣∣ τ δDRD(im)

Q(im)− τ δ0e−τk0R0(im)

∣∣∣∣ ≤ D1(log |Q(im)/R0(im)|)δ̃
∣∣∣∣RD(im)

Q(im)

∣∣∣∣
for all τ ∈ Lk, all m ∈ R.

In the last part of the proof, we provide bounds for τ on U . According to (6), provided that
rQ,R0 is taken large enough, we get a constant Ĉ11 > 0 with∣∣∣∣ Q(im)

R0(im)
− τ δ0e−k0τ

∣∣∣∣ > Ĉ11

for all τ ∈ U , all m ∈ R. As a result, the quotient

(25)

∣∣∣∣ τ δDRD(im)

Q(im)− τ δ0e−τk0R0(im)

∣∣∣∣ =

∣∣∣∣RD(im)

R0(im)

∣∣∣∣ |τ |δD 1

| Q(im)
R0(im) − τ δDe−τk0 |

remains bounded, for all m ∈ R, all τ ∈ U .
�

Taking into account (9), the proof of Lemma 4 can also be directly applied to the next result.

Lemma 6 Let γ1 > 0 and let a ∈ C be a complex number. For every ` ∈ I, there exists
C1(γ1, a, `) > 0 such that ∣∣∣∣ (a+ τ)γ1R`(im)

Q(im)− τ δ0e−τk0R0(im)

∣∣∣∣ ≤ C1(γ1, a, `)

for all m ∈ R, all τ ∈ Ĥ.

Remark 4: Observe that the constant C1 in Lemma 4 (also in Lemma 5) depends on rQ,RD
(see (8)) in such a way that C1 → 0 if rQ,RD → 0.
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3.3 Auxiliary Banach spaces of functions and solution of the auxiliary prob-
lem

Let U be some convex neighborhood of the origin in C, for example U := D(0, R) for some R > 0.
From the assumptions made on the geometry of the problem, one can restrict the domain of
study to a horizontal strip, as in Figure 3.

Let L be a horizontal strip of the form

(26) L = {z ∈ C : Re(z) < 0, α < Im(z) < β} ,

with α < β. Moreover, we assume that U ∩ L 6= ∅.

Definition 2 Let µ, β, ν > 0. The set FL(ν,β,µ) consists of all continuous functions (τ,m) 7→
h(τ,m) defined on U × R, holomorphic on U with respect to the first variable, such that

1) For every m ∈ R, the function τ 7→ h(τ,m) can be extended analytically to L.

2) For every h ∈ FL(ν,β,µ) it holds that

‖h(τ,m)‖(ν,β,µ),L := sup
τ∈(U∪L),m∈R

(1 + |m|)µ 1 + |τ |2

|τ |
exp(β|m| − ν|τ |)|h(τ,m)| <∞.

The pair (FL(ν,β,µ), ‖·‖(ν,β,µ),L) is a complex Banach space.

One has the following result, whose proof is a direct consequence of the definition of the
previous Banach space.

Lemma 7 Let µ, β, ν > 0. Let (τ,m) 7→ a(τ,m) be a continuous function defined on (U∪L)×R,
holomorphic with respect to the first variable on U ∪ L such that

sup
(τ,m)∈(U∪L)×R

|a(τ,m)|

is upper bounded. Then, for every f ∈ FL(ν,β,µ) it holds that (τ,m) 7→ a(τ,m)f(τ,m) belongs to

FL(ν,β,µ) , and

‖a(τ,m)f(τ,m)‖(ν,β,µ),L ≤

(
sup

(τ,m)∈(U∪L)×R
|a(τ,m)|

)
‖f(τ,m)‖(ν,β,µ),L .

The next result describes continuous operators regarding the previous Banach space and
(E(β,µ), ‖·‖(β,µ)) (see Annex 1).

Lemma 8 Let µ > 1 and β, ν > 0. For every f ∈ E(β,µ) and g ∈ FL(ν,β,µ), the function φ(τ,m)
defined by

φ(τ,m) :=

∫ ∞
−∞

f(m1)g(τ,m−m1)dm1

belongs to FL(ν,β,µ). In addition to this, there exists D1 > 0 such that

‖φ(τ,m)‖(ν,β,µ),L ≤ D1 ‖f‖(β,µ) ‖g‖(ν,β,µ),L .



16

Proof Let f ∈ E(β,µ) and g ∈ FL(ν,β,µ). From the definition of the Banach spaces FL(ν,β,µ) and
E(β,µ) we get

(27) ‖φ(τ,m)‖(ν,β,µ),L

= sup
(τ,m)∈(U∪L)×R

(1 + |m|)µ 1 + |τ |2

|τ |
exp(β|m| − ν|τ |)

∫ ∞
−∞

(1 + |m1|)µ exp(β|m1|)|f(m1)|

× (1 + |m−m1|)µ
1 + |τ |2

|τ |
exp(β|m−m1| − ν|τ |)|g(τ,m−m1)|G(τ,m,m1)dm1,

with

G(τ,m,m1) :=
1

(1 + |m1|)µ
exp(−β1|m1|)

1

(1 + |m−m1|)µ
|τ |

1 + |τ |2
exp(−β|m−m1|+ ν|τ |).

This entails that

‖φ(τ,m)‖(ν,β,µ),L ≤ sup
m∈R

(1 + |m|)µ
∫ ∞
−∞

1

(1 + |m1|)µ(1 + |m−m1|)µ
dm1 ‖f‖(β,µ) ‖g‖(ν,β,µ),L .

At this point, one can apply Lemma 2.2 in [5] or Lemma 4 in [19] to conclude the result. 2

The following Proposition can be proved under minor modifications following analogous
arguments as those in Proposition 5, [18], or Proposition1 [15]. We give the details of the proof
for a self-contained presentation.

Proposition 1 Let γ1 ≥ 0, η2 > −1 be real numbers. Let ν2 > 0 be an integer. We also
consider the function aγ1(τ), holomorphic on U ∪ L, continuous up to its boundary, such that

|aγ1(τ)| ≤ 1

(1 + |τ |)γ1
, τ ∈ U ∪ L.

We assume that γ1 > ν2 + η2 + 1. Then, there exists D2 > 0 which only depends on the values
of the previous parameters, such that∥∥∥∥aγ1(τ)

∫ τ

0
(τ − s)η2sν2f(s,m)ds

∥∥∥∥
(ν,β,µ),L

≤ D2 ‖f(τ,m)‖(ν,β,µ),L

for every f(τ,m) ∈ FL(ν,β,µ). In the previous bounds, the integral is performed along a path totally
contained in U ∪ L.

Proof Let f(τ,m) ∈ FL(ν,β,µ) From the definition of the norm, one has

(28)∥∥∥∥aγ1(τ)

∫ τ

0
(τ − s)η2sν2f(s,m)ds

∥∥∥∥
(ν,β,µ),L

= sup
τ∈U∪L,m∈R

(1 + |m|)µ 1 + |τ |2

|τ |
exp(β|m| − ν|τ |)

×
∣∣∣∣aγ1(τ)

∫ τ

0
(1 + |m|)µeβ|m| exp(−ν|s|)1 + |s|2

|s|
f(s,m)F(τ, s,m)ds

∣∣∣∣ ,
with

F(τ, s,m) =
1

(1 + |m|)µ
e−β|m|

exp(ν|s|)
1 + |s|2

|s|(τ − s)η2sν2 .
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The path of integration relying 0 and τ is given by the next construction. When τ ∈ U ,
the path is merely given by the segment [0, τ ]. When τ ∈ L, take some τ1 ∈ U such that
Im(τ) = Im(τ1), then the path is given by the union of the two segment L1 = [0, τ1] and
L2 = [τ1, τ ]. The integral in (28) can be parametrized by splitting the integration path as
described above. We show upper bounds in the two following cases:

a) If τ ∈ U , we are reduced to give upper estimates for

1 + |τ |2

|τ |
e−ν|τ |

1

(1 + |τ |)γ1

∫ |τ |
0

eνh

1 + h2
h1+ν2(|τ | − h)η2dh

which is bounded by a constant since U is bounded.

b) In the case that τ ∈ L, the integration along L1 implies to give bounds for the next
quantity

1 + |τ |2

|τ |
e−ν|τ |

1

(1 + |τ |)γ1

∫ |τ1|
0

eνh

1 + h2
h1+ν2(|τ | − h)η2dh

for |τ | ≥ 1. The previous expression is upper bounded by

1 + |τ |2

|τ |
eν(|τ1|−|τ |) 1

(1 + |τ |)γ1
|τ |1+ν2+η2

∫ |τ1|
0

1

1 + h2
dh,

which is upper bounded for any value of the parameters involved.

On the other hand, for the integration along L2, we parametrize L2 by h 7→ s(h) =
−h +

√
−1Im(τ1) on the segment [|Re(τ1)|, |Re(τ)|]. We are reduced to give bounds for

the quantity

(29)
1 + |τ |2

|τ |
e−ν|τ |

1

(1 + |τ |)γ1

∫ |Re(τ)|

|Re(τ1)|

exp(ν(
√
h2 + (Im(τ1))2))

1 + h2 + (Im(τ1))2

× (
√
h2 + (Im(τ1))2)ν2+1 × |τ − (−h+

√
−1Im(τ1))|η2dh

for τ ∈ L. The expression in (29) is upper estimated by

1 + |τ |2

|τ |
1

(1 + |τ |)γ1

(∫ ∞
0

dh

1 + h2

)
|τ |ν2+1(2|τ |)η2 .

One concludes the proof regarding the assumption made on the parameters.

2

Lemma 9 Let the auxiliary equation (17) be constructed as in Section 2, and let k ∈ Z such
that Lk∩U 6= ∅. Here, Lk and U stand for the sets of C of Lemma 3. Let β, ν,$ > 0 and µ > 1.
Then, there exists ξψ > 0 and rQ,RD such that if Cψ ≤ ξψ (Cψ is the constant in (12), then for
every ε ∈ D(0, ε0) the following properties of the map

Hε(ω(τ,m)) :=
τ δDRD(im)ω(τ,m, ε)

D(τ,m)
+

1

(2π)1/2

∑
`∈I

∫ ∞
−∞

C`(m−m1, ε)R`(im1)ε∆`−δ`+d`

×

 τ

D(τ,m)Γ(d`,1)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s
+

∑
1≤p≤d`−1

Ad`,p
τ

D(τ,m)Γ(d`,1 + d` − p)

×
∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s

)
dm1 +

1

D(τ,m)
ψ(τ,m, ε)
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hold:

1. Hε : D(0, $) → D(0, $), where D(0, $) stands for the closed disc of radius $ in the
Banach space FLk(ν,β,µ).

2. For every ω1, ω2 ∈ D(0, $) ⊆ FLk(ν,β,µ), it holds that

‖Hε(ω1)−Hε(ω2)‖(ν,β,µ),Lk
≤ 1

2
‖ω1 − ω2‖(ν,β,µ),Lk

.

Proof Let ε ∈ D(0, ε0), ω ∈ FLk(ν,β,µ). In view of Lemma 4 and Lemma 7 we derive that

(30)

∥∥∥∥τ δDRD(im)

D(τ,m)
ω(τ,m)

∥∥∥∥
(ν,β,µ),Lk

≤ C1 ‖ω(τ,m)‖(ν,β,µ),Lk
.

In view of Lemma 8, we observe for every ` ∈ I

(31)

∥∥∥∥ τ

D(τ,m)

∫ ∞
−∞

C`(m−m1, ε)R`(im1)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s

∥∥∥∥
(ν,β,µ),Lk

≤ D1 ‖C`(m)‖(β,µ)

∥∥∥∥τR`(im)

D(τ,m)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m, ε)

ds

s
dm1

∥∥∥∥
(ν,β,µ),Lk

and for every 1 ≤ p ≤ d` − 1,

(32)

∥∥∥∥ τ

D(τ,m)

∫ ∞
−∞

C`(m−m1, ε)R`(im1)

∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s
dm1

∥∥∥∥
(ν,β,µ),Lk

≤ D1 ‖C`(m)‖(β,µ)

∥∥∥∥τR`(im)

D(τ,m)

∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m, ε)

ds

s

∥∥∥∥
(ν,β,µ),Lk

for some constant D1 > 0.
Let a ∈ C be a complex number with dist(Lk ∪ U ,−a) > 0. From Lemma 6, for any given

γ1 > 0, we get a constant C1(γ1 + 1, a, `) > 0 with∣∣∣∣τR`(im)

D(τ,m)

∣∣∣∣ =

∣∣∣∣ τ

(a+ τ)γ1+1

∣∣∣∣ ∣∣∣∣(a+ τ)γ1+1Rl(im)

D(τ,m)

∣∣∣∣ ≤ D3
C1(γ1 + 1, a, `)

(1 + |τ |)γ1

for every ` ∈ I, some D3 > 0, provided that τ ∈ Lk ∪ U .
We apply Lemma 7 and Proposition 1 to (31) and (32) with γ1 > max`∈I{δ` − d` + 1} to

arrive at
(33)∥∥∥∥τR`(im)

D(τ,m)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m, ε)

ds

s
dm1

∥∥∥∥
(ν,β,µ),Lk

≤ D3C1(γ1+1, a, `)D2 ‖ω(τ,m)‖(ν,β,µ),Lk
,

and
(34)∥∥∥∥τR`(im)

D(τ,m)

∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m, ε)

ds

s

∥∥∥∥
(ν,β,µ),Lk

≤ D3C1(γ1+1, a, `)D2 ‖ω(τ,m)‖(ν,β,µ),Lk
.
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On the other hand, in view of (12), Lemma 7 and the slight diminishing of H̃ we get

(35)

∥∥∥∥ 1

D(τ,m)
ψ(τ,m, ε)

∥∥∥∥
(ν,β,µ),Lk

≤

(
sup

τ∈(U∪Lk),m∈R

1

|D(τ,m)|

)
Cψ ≤ C2ξψ,

for some C2 > 0.
In addition to this, the remark after the proof of Lemma 4, we derive that if the geometry

of the problem is such that rQ,RD > 0 is large enough, then the constant C1 can be chosen
arbitrary small. In this situation, assume that ξψ > 0 and ε0 are small enough in such a way
that

(36) C1$ +
1

(2π)1/2
D1D2D3

∑
`∈I

ε∆`−δ`+d`
0 C1(γ1 + 1, a, `) ‖C`‖(β,µ)

(
1

Γ(d`,1)
$

+
∑

1≤p≤d`−1

|Ad`,p|
1

Γ(d`,1 + d` − p)
$

+ C2ξψ ≤ $.

Then, the application of (30), (31), (32), (33), (34), (35), and (4) to the definition of Hε
yields the first part of the proof. For the second part, let ω1, ω2 ∈ D(0, $) ⊆ FLk(ν,β,µ). Then,
analogous estimates as in the first part of the proof guarantee that if C1, ε0 are small enough so
that

C1 +
D1D2D3

(2π)1/2

∑
`∈I

ε∆`−δ`+d`
0 C1(γ1 +1, a, `) ‖C`‖(β,µ)

 1

Γ(d`,1)
+

∑
1≤p≤d`−1

|Ad`,p|
Γ(d`,1 + d` − p)

 ≤ 1

2
.

then the second statement is attained. We recall that if rQ,RD > 0 is large enough, then C1

becomes closer to 0. 2

Proposition 2 Under the hypotheses of Lemma 9, for every $ > 0 and ε0 > 0 there ex-
ists ξψ > 0 such that if Cψ ≤ ξψ and rQ,RD is large enough, then the auxiliary equation

(17) admits a solution ωLk(τ,m, ε) for every ε ∈ D(0, ε0) with ωLk(τ,m, ε) ∈ FLk(ν,β,µ) and

‖ωLk(τ,m, ε)‖(ν,β,µ),Lk
≤ $.

Proof In view of Lemma 9, for every ε ∈ D(0, ε0), the map Hε is contractive from D(0, $) into
itself. The fixed point theorem in Banach spaces guarantees the existence of a fixed point for
Hε, say ωLk(τ,m, ε). The function ωLk(τ,m, ε) belongs to FLk(ν,β,µ) for every ε ∈ D(0, ε0), with

‖ωLk(τ,m, ε)‖(ν,β,µ),Lk
≤ $. The definition of Hε guarantees that ωLk is a solution of (17), and

also the holomorphy with respect to ε in D(0, ε0). 2

4 Second family of analytic solutions of (17)

We depart from the construction of the main and auxiliary problems described in Section 2,
together with the assumptions made on the elements involved therein. The structure of this
section is similar to that of Section 3.
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4.1 Geometry of the problem II

We rewrite equation (17) in the form

(37) D2(τ,m)ω(τ,m, ε) = τ δ0e−τk0R0(im)ω(τ,m, ε)

+
1

(2π)1/2

∑
`∈I

∫ ∞
−∞

C`(m−m1, ε)R`(im1)ε∆`−δ`+d`
(

τ

Γ(d`,1)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s

+
∑

1≤p≤d`−1

Ad`,p
τ

Γ(d`,1 + d` − p)

∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s

 dm1 + ψ(τ,m, ε),

with
D2(τ,m) = Q(im)− τ δDRD(im).

The next result describes the geometry of the roots of D2(τ,m). The technique used for
dealing with this case resembles that of [17]. We provide a detailed proof of the results for the
sake of completeness in a self-contained work.

Lemma 10 There exists d ∈ R and ρ > 0 such that if the opening of the sector SQ,RD in (8) is
small enough, then there exist positive constants M1,M2 such that

(38) sup
τ∈(D(0,ρ)∪Sd)

|D2(τ,m)|
(1 + |τ |)δD−1

≥M δD−1
1 M2r

1/δD
Q,RD

|RD(im)|,

for every m ∈ R. Here, Sd stands for an unbounded sector of bisecting direction d, and small
opening, i.e. Sd = {τ ∈ C : |arg(τ)− d| < η}, for some η > 0.

Proof We factorize the polynomial τ 7→ D2(τ,m) in the form

D2(τ,m) = −RD(im)

δD−1∏
`=0

(τ − q`(m)),

where

q`(m) =

(
|Q(im)|
|RD(im)|

) 1
δD

exp

(√
−1

(
arg(

Q(im)

RD(im)
)

1

δD
+

2π`

δD

))
,

for every 0 ≤ ` ≤ δD − 1 and m ∈ R. We choose small enough ρ > 0 and Sd with small enough
opening satisfying the following properties:

1) There exists a constant M1 > 0 such that

(39) |τ − q`(m)| ≥M1(1 + |τ |)

for every m ∈ R and τ ∈ Sd ∪D(0, ρ).

Proof The condition (8) guarantees the existence of ρ > 0 such that for every 0 ≤ ` ≤
δD− 1 one has |q`(m)| > 2ρ for all m ∈ R. We observe that the set ∪m∈R{q`(m)}0≤`≤δD−1

is contained in the union of unbounded sectors with vertex at the origin that do not cover a
punctured neighborhood of the origin, provided that the opening of SQ,RD is small enough.
Condition 1) follows from here. 2
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2) There exists a constant M2 > 0 and 0 ≤ `1 ≤ δD − 1 such that

(40) |τ − q`1(m)| ≥M2|q`1(m)|

for every m ∈ R and τ ∈ Sd ∪D(0, ρ).

Proof Observe that the previous choice of Sd and ρ > 0 guarantees that for any fixed
0 ≤ `1 ≤ δD − 1, the distance from the set {τ/q`1(m) : τ ∈ (Sd ∪D(0, ρ)),m ∈ R} to the
complex number 1 is positive. Therefore, statement 2) holds for some M2 > 0. 2

Taking into account (39), (40), and the factorization of D2(τ,m), we conclude that

|D2(τ,m)| ≥ |RD(im)|M δD−1
1 (1 + |τ |)δD−1M2

(
|Q(im)|
|RD(im)|

)1/δD

≥ |RD(im)|M δD−1
1 M2r

1/δD
Q,RD

(1 + |τ |)δD−1(41)

for every τ ∈ Sd ∪D(0, ρ) and m ∈ R. The result follows directly from the previous inequality.
2

Remark 5: Observe from the proof of Lemma 10 that the direction d ∈ R can be chosen such
that −π

2 < d < π
2 .

Lemma 11 Let ρ > 0 and −π
2 < d < π

2 from Lemma 10. Then, there exists C̃1(0) > 0 such
that ∣∣∣∣τ δ0 e−τk0R0(im)

D2(τ,m)

∣∣∣∣ ≤ C̃1(0),

for all m ∈ R and τ ∈ Sd ∪D(0, ρ).

Proof In view of the choice of d, if the opening of Sd is small enough, there exists ∆1 > 0 such
that Re(τ) ≥ ∆1|τ | for every τ ∈ Sd. Therefore, the expression

sup
τ∈Sd

∣∣∣∣ τ δ0

(1 + |τ |)δD−1
e−τk0

∣∣∣∣ = sup
r≥0

rδ0

(1 + r)δD−1
e−∆1r

is bounded from above by a positive constant, say C̃1.1. In addition to this, we observe that the
same holds for

sup
τ∈D(0,ρ)

∣∣∣∣ τ δ0

(1 + |τ |)δD−1
e−τk0

∣∣∣∣ ≤ C̃1.2,

for some C̃1.2 > 0. Taking into account the previous statements, and Lemma 10, one derives
that for all m ∈ R and τ ∈ Sd ∪D(0, ρ) one has∣∣∣∣τ δ0 e−τk0R0(im)

D2(τ,m)

∣∣∣∣ ≤ max{C̃1.1, C̃1.2}
M δD−1

1 M2r
1/δD
Q,RD

sup
m∈R

|R0(im)|
|RD(im)|

= C̃1(0),

for every ` ∈ I. 2

Remark 6: In the work, for technical reasons, we need that both constants C1 > 0 introduced
in Lemma 4 (from the geometry of the problem I) and the above constant C̃1(0) > 0 from
Lemma 11 (from the geometry of the problem II) must be chosen small enough (at least strictly
less than 1/2). We explain now how to achieved both constraints. Namely, from the proof of
Lemma 4 together with (6),(8) the next two conditions are required :
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A) Condition 1:

(log(RQ,R0))δ̃/rQ,RD

is small (stemming from the bounds on Lk),

B) Condition 2:
RQ,R0/rQ,RD

is small (stemming from the bounds on U). Furthermore, from Lemma 11 and (6),(8) ,
the next condition must hold:

C) Condition 3:
RQ,RD

r
1/δD
Q,RD

× 1

rQ,R0

is small.

In order to have both constants C1 and C̃1(0) small, we will need to make rQ,RD large enough
(as in the problem I) but also rQ,R0 > 0 must be chosen large in a related manner as explained
below.

Indeed, we make the assumption that RQ,RD is very close to rQ,RD and that RQ,R0 is very
close to rQ,R0 in other words the annulus SQ,RD from (8) and SQ,R0 from (6) are very thin.

We assume that

(42) RQ,R0 = rQ,RD/10.

In other words, RQ,R0 (and hence rQ,R0) is proportional to rQ,RD with a small factor of propor-
tionality.

From (42), we see that Condition 2 above is fulfilled. For the condition 1 above, observe that

(log(RQ,R0))δ̃/rQ,RD = (log(1/10) + log(rQ,RD))δ̃/rQ,RD

is small provided that rQ,RD is taken large enough. In concern with the condition 3, we see that

RQ,RD

r
1/δD
Q,RD

× 1

rQ,R0

∼
rQ,RD
rQ,R0

1

(rQ,RD)1/δD
∼ (

rQ,RD
RQ,R0

)
1

(rQ,RD)1/δD
∼ 10

(rQ,RD)1/δD

which is small whenever rQ,RD is chosen large enough (where the symbol ∼ means that the
quantities are comparable).

4.2 Auxiliary Banach spaces of functions and solution of the auxiliary prob-
lem II

The structure and results of this section is analogous to that of Section 3.3. We omit unnecessary
repetitions. Let d ∈ R with −π

2 < d < π
2 , and Sd be an infinite sector with bisecting direction

d. We also choose ρ > 0.

Definition 3 Let µ, β, ν > 0. We write F d(ν,β,µ) for the set of all continuous functions (τ,m) 7→
h(τ,m) defined on (Sd∪D(0, ρ))×R, holomorphic with respect to the first variable on Sd∪D(0, ρ)
and such that

‖h(τ,m)‖(ν,β,µ),d := sup
τ∈(Sd∪D(0,ρ)),m∈R

(1 + |m|)µ 1 + |τ |2

|τ |
exp(β|m| − ν|τ |)|h(τ,m)| <∞.

The pair (F d(ν,β,µ), ‖·‖(ν,β,µ),d) is a complex Banach space.
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Lemma 12 Let µ, β, ν > 0. Let (τ,m) 7→ a(τ,m) be a continuous function defined on (Sd ∪
D(0, ρ))× R, holomorphic with respect to the first variable on Sd ∪D(0, ρ) such that

sup
(τ,m)∈(Sd∪D(0,ρ))×R

|a(τ,m)|,

is upper bounded. Then, for every f ∈ F d(ν,β,µ) it holds that (τ,m) 7→ a(τ,m)f(τ,m) belongs to

F d(ν,β,µ) , and

‖a(τ,m)f(τ,m)‖(ν,β,µ),d ≤

(
sup

(τ,m)∈(Sd∪D(0,ρ))×R
|a(τ,m)|

)
‖f(τ,m)‖(ν,β,µ),d .

The proof of the next lemma follows the same lines as that of Lemma 8, so its proof is
omitted.

Lemma 13 Let µ > 1 and β, ν > 0. For every f ∈ E(β,µ) and g ∈ F d(ν,β,µ), the function φ(τ,m)
defined by

φ(τ,m) :=

∫ ∞
−∞

f(m1)g(τ,m−m1)dm1

belongs to F d(ν,β,µ). Moreover, there exists D1 > 0 such that

‖φ(τ,m)‖(ν,β,µ),d ≤ D1 ‖f‖(β,µ) ‖g‖(ν,β,µ),d .

Lemma 14 Let γ1 > 0, γ2, γ3 be real numbers such that

(43) γ2 + 1 > 0, γ3 + 2 > 0, γ2 + γ3 + 2 ≥ 0, γ1 ≥ γ3 + 2.

Let f ∈ F d(ν,β,µ) and aγ1(τ,m) continuous on (Sd ∪ D(0, ρ)) × R, holomorphic w.r.t τ on Sd ∪
D(0, ρ) such that

(44) |aγ1(τ,m)| ≤ 1

(1 + |τ |)γ1

for all τ ∈ Sd ∪D(0, ρ), m ∈ R.
Then, the function

(45) Φf (τ,m) := aγ1(τ,m)τ

∫ τ

0
(τ − s)γ2sγ3f(s,m)ds

belongs to F d(ν,β,µ). In addition to this, there exists a constant D4 > 0 such that

(46) ‖Φf (τ,m)‖(ν,β,µ),d ≤ D4 ‖f(τ,m)‖(ν,β,µ),d .

Proof We give details to clarify the conditions declared in the statement of the result.
Let f ∈ F d(ν,β,µ). We write Φf (τ,m) in terms of the parametrization s = τu for 0 ≤ u ≤ 1:

(47) Φf (τ,m) = aγ1(τ,m)τγ2+γ3+2

∫ 1

0
(1− u)γ2uγ3f(τu,m)du

for τ ∈ Sd ∪D(0, ρ) and m ∈ R. As γ2 + γ3 + 2 ≥ 0 and the regularity conditions on aγ1(τ,m)
and f(τ,m) we guarantee that Φf (τ,m) is holomorphic on Sd ∪D(0, ρ) w.r.t τ , continuous on
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the closure of the previous set, and continuous with respect to m ∈ R. In addition to this, for
all τ ∈ D(0, ρ) and m ∈ R one has

|f(τ,m)| ≤ ‖f(τ,m)‖(ν,β,µ),d

|τ |
1 + |τ |2

exp(ν|τ | − β|m|)(1 + |m|)−µ.

Therefore, taking into account the representation (47) and in view of Beta function formula
(see [1], Appendix B3) one has

|Φf (τ,m)| ≤ Γ(γ2 + 1)Γ(γ3 + 2)

Γ(γ2 + γ3 + 3)
|aγ1(τ,m)| ‖f(τ,m)‖(ν,β,µ),d

(48) × sup
u∈D(0,ρ),m∈R

|u|γ2+γ3+3 exp(ν|u| − β|m|)(1 + |m|)−µ

for all τ ∈ D(0, ρ), m ∈ R.
Let τ ∈ Sd × R. From the fact that f ∈ F d(ν,β,µ), one derives

|Φf (τ,m)| ≤ ‖f(τ,m)‖(ν,β,µ),d

|τ |
(1 + |τ |)γ1

(1 + |m|)−µ
∫ |τ |

0
(|τ | − h)γ2hγ3+1 exp(νh− β|m|)dh

for all τ ∈ Sd, all m ∈ R.
Let B(x) be defined by

(49) B(x) =

∫ x

0
exp(νh)h1+γ3(x− h)γ2dh

for x ≥ 0. An analogous argument as in the proof Proposition 1 [18] yields

B(x) ≤ K2x
γ3+1eνx, x ≥ 1,

for some K2 > 0. The previous estimation, together with the assumptions in (43) yield the
conclusion. 2

Lemma 15 Let the auxiliary equation (17) be constructed as described in Section 2. Let β, ν,$ >
0 and µ > 1 and assume there exist ε0, ξ̃ψ, rQ,RD > 0 such that Cψ ≤ ξ̃ψ (Cψ is the constant in
(12) and rQ,RD , rQ,R0 > 0 are chosen in accordance with the conditions described in Remark 6 .
Then, if one defines for every ε ∈ D(0, ε0) the operator

(50)

H̃ε(ω(τ,m)) := τ δ0
e−τk0R0(im)

D2(τ,m)
ω(τ,m, ε) +

1

(2π)1/2

∑
`∈I

∫ ∞
−∞

C`(m−m1, ε)R`(im1)ε∆`−δ`+d`

×

 τ

D2(τ,m)Γ(d`,1)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s
+

∑
1≤p≤d`−1

Ad`,p
τ

D2(τ,m)Γ(d`,1 + d` − p)

×
∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s

)
dm1 +

1

D2(τ,m)
ψ(τ,m, ε),

one has:
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1. H̃ε : D(0, $)→ D(0, $), where D(0, $) stands for the closed disc of radius $ in F d(ν,β,µ).

2. For every ω1, ω2 ∈ D(0, $) ⊆ F d(ν,β,µ), one has∥∥∥H̃ε(ω1)− H̃ε(ω2)
∥∥∥

(ν,β,µ),d
≤ 1

2
‖ω1 − ω2‖(ν,β,µ),d .

Proof
Let ε ∈ D(0, ε0), ω ∈ F d(ν,β,µ). We first observe from Lemma 12, Lemma 13 and Lemma 14,

together with the assumptions (4), (5) and (41) that for all ` ∈ I one has

(51)

∥∥∥∥∫ ∞
−∞

C`(m−m1, ε)R`(im1)ε∆`−δ`+d` τ

D2(τ,m)

∫ τ

0
(τ − s)d`,1−1sd`ω(s,m1, ε)

ds

s

∥∥∥∥
(ν,β,µ),d

≤ ‖C`(m, ε)‖(β,µ) ε
∆`−δ`+d`
0 sup

m∈R

∣∣∣∣ R`(im)

RD(im)

∣∣∣∣ 1

M δD−1
1 M2r

1/δD
Q,RD

D4$,

and

(52)∥∥∥∥∫ ∞
−∞

C`(m−m1, ε)R`(im1)ε∆`−δ`+d` τ

D2(τ,m)

∫ τ

0
(τ − s)d`,1+d`−p−1spω(s,m1, ε)

ds

s

∥∥∥∥
(ν,β,µ),d

≤ ‖C`(m, ε)‖(β,µ) ε
∆`−δ`+d`
0 sup

m∈R

∣∣∣∣ R`(im)

RD(im)

∣∣∣∣ 1

M δD−1
1 M2r

1/δD
Q,RD

D4$.

Taking into account Lemma 11 and Lemma 12 one obtains that

(53)

∥∥∥∥τ δ0e−τk0R0(im)

D2(τ,m)
ω(τ,m)

∥∥∥∥
(ν,β,µ),d

≤ C̃1(0) ‖ω(τ,m)‖(ν,β,µ),d ,

for every ` ∈ I. Also, one gets from (12), Lemma 12 and (41) that∥∥∥∥ 1

D2(τ,m)
ψ(τ,m, ε)

∥∥∥∥
(ν,β,µ),d

≤

(
sup

τ∈(Sd∪D(0,ρ)),m∈R

1

|D2(τ,m)|

)
C̃ψ

≤ 1

minm∈R |RD(im)|
1

M δD−1
1 M2r

1/δD
Q,RD

ξ̃ψ = C̃2ξψ.(54)

We choose small enough ε0 > 0 and ξψ > 0, and large enough rQ,RD , rQ,R0 > 0 chosen
according to Remark 6, such that for all ` ∈ I

(55) C̃1(0)$ +
1

(2π)1/2

1

M δD−1
1 M2r

1/δD
Q,RD

D4

∑
`∈I
C` sup

m∈R

∣∣∣∣ R`(im)

RD(im)

∣∣∣∣ ε∆`−δ`+d`
0

(
1

Γ(d`,1)

+
∑

1≤p≤d`−1

|Ad`,p|
1

Γ(d`,1 + d` − p)

$ + C̃2ξψ ≤ $.
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The first part of the proof follows from this choice and (51), (52), (53) together with (54).
For the second part of the proof, let ω1, ω2 ∈ D(0, $) ⊆ F d(ν,β,µ). Under the assumption that
ε0 > 0, ξψ > 0 are small enough, and rQ,RD > 0 is chosen according to the facts described in
Remark 6 (and therefore C̃1(0) is close to zero) such that

(56) C̃1(0) +
1

(2π)1/2

1

M δD−1
1 M2r

1/δD
Q,RD

D4

∑
`∈I
C` sup

m∈R

∣∣∣∣ R`(im)

RD(im)

∣∣∣∣ ε∆`−δ`+d`
0

×

 1

Γ(d`,1)
+

∑
1≤p≤d`−1

|Ad`,p|
1

Γ(d`,1 + d` − p)

 ≤ 1

2
.

Then, analogous estimates as before yield the second statement of the result. 2

The proof of the next result is analogous to that of Proposition 2.

Proposition 3 Under the hypotheses of Lemma 15, then the auxiliary equation (17) admits a
solution ωd(τ,m, ε) for every ε ∈ D(0, ε0) with ωd(τ,m, ε) ∈ F d(ν,β,µ) and ‖ωd(τ,m, ε)‖(ν,β,µ),d ≤
$.

5 Analytic solutions of the main problem

In this section, we construct analytic solutions of the main problem (10). Regarding Section 3
and Section 4, two different situations arise in this respect, which are described in the following
subsections.

5.1 First family of analytic solutions of the main problem

Let (10) be the main problem under study, whose elements are detailed in Section 2. We depart
from the situation described in Section 3, and consider the auxiliary problem (17). Following
the results achieved in Section 3, one can guarantee the existence of a solution of (17), say
ω(τ,m, ε), which is defined in D(0, ρ)×R×D(0, ε0) for some ρ > 0 and ε0 > 0. Let β, ν,$ > 0
and µ > 1. As a result of Proposition 2, such solution can be extended to ωL(τ,m, ε), defined
in (U ∪L)×R×D(0, ε0), where U = D(0, ρ) and L is a horizontal strip contained in one of the
strip-like domains Lk related to Lambert W function. This extension satisfies that there exists
Cω > 0 with

(57) |ωL(τ,m, ε)| ≤ Cω
1

(1 + |m|)µ
|τ |

1 + |τ |2
exp(−β|m|+ ν|τ |),

for all τ ∈ U ∪ L, m ∈ R and ε ∈ D(0, ε0). At this point, we define LL as the following path,

contained in U ∪L: LL = LL,1 +LL,2, where LL,1 stands for the segment [0, rLe
√
−1θL ], for some

π/2 < θL < 3π/2 and rL < ρ such that rLe
√
−1θL ∈ L; and LL,2 is a horizontal ray departing

from rLe
√
−1θL . More precisely, LL,2 can be parametrized by [−s0,+∞) 3 s 7→ −s+

√
−1h, for

some fixed s0, h ∈ R with s0 < 0 and h 6= 0.

Proposition 4 In the previous situation, let 0 < β′ < β , and let T and E be bounded sectors
in C? with E ⊆ D(0, ε0) and T ⊆ D(0, rT ), for some small enough rT > 0 and such that there
exists ∆ > 0 with

(58) |arg(εt)− arg(u)| ≤ π

2
−∆,
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for every ε ∈ E, t ∈ T and all u ∈ LL. Then, the expression

(59) u(t, z, ε) =
1

(2π)1/2

∫ ∞
−∞

∫
LL
ωL(u,m, ε)e−

u
εt eizm

du

u
dm

defines a holomorphic function on T ×Hβ′ ×E, where the set Hβ′ stands for the horizontal strip

Hβ′ = {z ∈ C : |Im(z)| < β′}.

Proof Bearing in mind (57), and the parametrization of LL,1 [0, rL] 3 ρ 7→ ρ exp(
√
−1θL), one

has that for every (t, z, ε) ∈ T ×Hβ′ × E

(60)

∣∣∣∣∣
∫ ∞
−∞

∫
LL,1

ωL(u,m, ε)e−
u
εt eizm

du

u
dm

∣∣∣∣∣ ≤ Cω
(∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm

)
×
∫ rL

0

1

1 + ρ2
exp(νρ− ρ

|εt|
cos(θL − arg(tε)))dρ.

If rT > 0 is small enough, then in view of (58), it holds that

νε0rT < cos(θL − arg(tε)),

for every ε ∈ E and t ∈ T . Therefore, one has∫ rL

0

1

1 + ρ2
exp(νρ− ρ

|εt|
cos(θL − arg(tε)))dρ ≤

∫ ∞
0

1

1 + ρ2
exp(ρ(ν − 1

|εt|
cos(θL − arg(tε)))dρ

≤
∫ ∞

0

1

1 + ρ2
dρ <∞.

The definition of Hβ′ yields

(61)

∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm <∞.

On the other hand, we parametrize LL,2 by [−s0,∞) 3 s 7→ −s+
√
−1h, for some constant

h ∈ R, and where s0 = rL cos(θL) < 0. We have

(62)

∣∣∣∣∣
∫ ∞
−∞

∫
LL,2

ωL(u,m, ε)e−
u
εt eizm

du

u
dm

∣∣∣∣∣ ≤ C̃ω
(∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm

)
×
∫ ∞
−s0

1

1 + s2 + h2
exp

(√
s2 + h2

(
ν − cos(arctan(−h/s)− arg(tε))

|εt|

))
ds,

for some C̃ω > 0. Taking into account (58), we derive that if rT > 0 is small enough then

cos(arctan(−h/s)− arg(tε))

|εt|
− ν ≥ ∆0 > 0

for all s ∈ [−s0,∞), t ∈ T and ε ∈ E ⊆ D(0, ε0). The bound in (61) also holds in this situation.
Moreover, the last integral in (62) can be upper bounded by∫ ∞

−s0

1

1 + s2 + h2
exp

(
−∆0

√
s2 + h2

)
ds <∞.

2

Remark 7: Observe that in order that (58) holds, the arguments of εt, for all t ∈ T and ε ∈ E
should be close enough to direction π. This comes as a consequence of the manner that LL
approaches infinity following horizontal strips with negative real part.
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Proposition 5 Under the assumptions of Proposition 4, the function u(t, z, ε) constructed in
Proposition 4, which is holomorphic on T ×Hβ′ × E, is a solution of (10) in T ×Hβ′ × E.

Proof It is a direct consequence of the properties of Fourier and the Laplace-like transform and
Proposition 4. 2

5.2 Second family of analytic solutions of the main problem

We now depart from the assumptions made in Section 4. The results in that section guarantee
that for well chosen d ∈ (−π/2, π/2) as described in Lemma 10, if the opening of the sector Sd
is small enough, a solution of (17) exists, say ωd(τ,m, ε), defined in (D(0, ρ)∪Sd)×R×D(0, ε0),
for some ρ > 0. In addition to this, there exists C̃ω > 0 such that

(63) |ωd(τ,m, ε)| ≤ C̃ω
1

(1 + |m|)µ
|τ |

1 + |τ |2
exp(−β|m|+ ν|τ |),

for all τ ∈ D(0, ρ) ∪ Sd, m ∈ R and ε ∈ D(0, ε0).

Proposition 6 Let 0 < β′ < β, and let T and E be bounded sectors in C? with E ⊆ D(0, ε0)
and T ⊆ D(0, rT ), for some small enough rT > 0 and such that there exists ∆ > 0 with

(64) |arg(εt)− d| < π

2
−∆,

for every ε ∈ E and t ∈ T . Then, the expression

u(t, z, ε) =
1

(2π)1/2

∫ ∞
−∞

(∫
γd

ωd(u,m, ε)e
− u
εt
du

u

)
eizmdm

defines a holomorphic function on T ×Hβ′ × E. Here, γd stands for the half line [0,∞)e
√
−1d.

Proof
We observe that the inner integral in the definition of u(t, z, ε) is the classical Laplace trans-

form along direction d. The result is a direct consequence of the condition (58) and (63). As a
matter of fact, one has

(65)

∣∣∣∣∫ ∞
−∞

(∫
γd

ωd(u,m, ε)e
− u
εt

)
du

u
eizmdm

∣∣∣∣ ≤ C̃ω (∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm

)
×
∫ ∞

0

1

1 + s2
exp(s(ν − cos(d− arg(tε))

|εt|
))ds <∞,

for every t ∈ T , ε ∈ E and z ∈ Hβ′ , for any fixed 0 < β′ < β. 2

Proposition 7 Under the assumptions of Proposition 6, the function u(t, z, ε), constructed in
Proposition 6, which is holomorphic on T ×Hβ′ × E, is a solution of (10) in T ×Hβ′ × E.

Proof It is a direct consequence of the properties of Fourier transform, and Laplace transform,
together with Proposition 6 when taking L = γd in Lemma 1. 2
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6 Asymptotic results on the analytic solutions of the main prob-
lem

This section is devoted to the study of the asymptotic behavior of the analytic solution of (10)
with respect to the perturbation parameter, near the origin. In Section 5.1 and Section 5.2, we
have constructed two different families of analytic solutions of (10). One may be tempted to
search for asymptotic results independently, i.e. considering analytic solutions as constructed in
Section 5.1, and in a parallel way treat the asymptotic solutions of the analytic ones constructed
in Section 5.2. This independent approach is not feasible, due to geometric restrictions on the
problem.

Indeed, regarding the condition (58) one realizes that the argument of εt differs from the
arguments of the elements in LL less than π/2. Taking into account that LL is contained in
the left half-plane, direction θ = 0 is not attained by ET = {εt : ε ∈ E , t ∈ T }, and therefore,
there is some direction in the complex plane not attained by E . The conclusion is that it is not
possible to cover a punctured disc at the origin by means of sectors only satisfying condition
(58).

On the other hand, the fact that any direction of integration d associated to a sector E
satisfies that −π/2 < d < π/2, together with (64) implies the existence of some directions which
can not be attained. Any finite set of sectors under this condition can not conform a good
covering of C? (see Definition 4).

Let us consider the main problem under study (10), under the assumptions and construction
of its elements described in Section 2.

In order to describe the asymptotic behavior of the analytic solutions of the main problem
with respect to the perturbation parameter near the origin, we need to introduce the concept of
good covering and family associated to a good covering.

Definition 4 Let ς ≥ 2 be an integer. A set (Ep)0≤p≤ς−1 of finite open sectors with vertex at
the origin is said to conform a good covering of C? if the following properties hold:

� Ep ∩ Ep+1 6= ∅, for all 0 ≤ p ≤ ς − 1. We identify the indices ς and 0.

� The intersection of three different sectors of (Ep)0≤p≤ς−1 is empty.

� ∪ς−1
p=0Ep = U \ {0}, where U stands for a neighborhood of the origin in C.

Definition 5 Let T be a bounded sector with vertex at the origin, T ⊆ D(0, rT ). Let (Ep)0≤p≤ς−1

be a good covering in C?. We assume that the set {0, . . . , ς − 1} is the union of two nonempty
sets with empty intersection, say J1 and J2. For every p1 ∈ J1 let Lp1 be a strip of the form (26)
which is contained in one of the strip-like domains Lk constructed in Lemma 3 and described in
Definition 1; and for every p2 ∈ J2 let Sdp2 be an infinite sector with vertex at the origin and
bisecting direction dp2, for some dp2 ∈ (−π/2, π/2) and small opening, satisfying the constraints
(39) and (40). We say that the set {T , (Ep)0≤p≤ς−1, (Lp1)p1∈J1 , (Sdp2 )p2∈J2} is admissible if the
following conditions hold:

� For all p1 ∈ J1, there exists ∆ > 0 with

(66) |arg(εt)− arg(u)| ≤ π

2
−∆,

for every t ∈ T , ε ∈ Ep1 and all u belonging to a path LLp1 ⊆ Lp1 ∪U , which might depend
on t and ε.
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� For all p2 ∈ J2, there exists ∆ > 0 such that

(67) |arg(εt)− ξp2 | ≤
π

2
−∆,

for all t ∈ T , ε ∈ Ep2, and some ξp2 ∈ R, which might depend on t and ε, such that

eξp2
√
−1 ∈ Sdp2 .

Theorem 1 Let {T , (Ep)0≤p≤ς−1, (Lp1)p1∈J1 , (Sdp2 )p2∈J2} be an admissible set. For all p1 ∈
J1 the function up1(t, z, ε), as constructed in Proposition 4 for L = Lp1 and E = Ep1, is a
holomorphic function in T × Hβ′ × Ep1, for all 0 < β′ < β. For all p2 ∈ J2 the function
up2(t, z, ε), as constructed in Proposition 6 for d = dp2 and E = Ep2, is a holomorphic function
in T ×Hβ′ × Ep2, for all 0 < β′ < β.

Moreover, for every p, q ∈ {0, . . . , ς − 1}, with p 6= q and such that Ep ∩ Eq 6= ∅, there exist
C,D > 0 such that

(68) sup
t∈T ,z∈Hβ′

|up(t, z, ε)− uq(t, z, ε)| ≤ C exp

(
−D
|ε|

)
for all ε ∈ Ep ∩ Eq.

Proof The first part of the proof has been checked in Proposition 5 and Proposition 7, respec-
tively. We give proof for (68) regarding three different possible frameworks.

Case (A): p, q ∈ J1.
Let ε ∈ Ep ∩ Eq. Then, the integration path LLp can be split as LLp,1 + LLp,2, where

LLp,1 = [0, rLp exp(
√
−1θLp)] and LLp,2 is a horizontal ray contained in Lp, departing from

rLp exp(
√
−1θLp) with decreasing real part. Both paths are detailed in the proof of Proposition 4.

We proceed analogously with LLq = LLq ,1 + LLq ,2. Taking into account that the function ω is
holomorphic with respect to its first variable in D(0, ρ), one can perform a deformation path
which transforms the integral along LLp,1−LLq ,1 as the integral along a regular arc Cp,q contained
in {τ ∈ C : Re(τ) < 0} ∩D(0, ρ) joining the points rLp exp(

√
−1θLp) and rLq exp(

√
−1θLq) (see

Figure 4, left).
One has

(69) up(t, z, ε)− uq(t, z, ε) = I1 + I2 − I3,

where

(70) I1 =
1

(2π)1/2

∫ ∞
−∞

∫
LLp,2

ωLp(u,m, ε)e
− u
εt eizm

du

u
dm,

I2 =
1

(2π)1/2

∫ ∞
−∞

∫
Cp,q

ω(u,m, ε)e−
u
εt eizm

du

u
dm,

I3 =
1

(2π)1/2

∫ ∞
−∞

∫
LLq,2

ωLq(u,m, ε)e
− u
εt eizm

du

u
dm,

for every t ∈ T , z ∈ Hβ′ . We first give upper bounds for |I1|, which can be also applied to |I3|.
We observe from (57) that

(71) |I1| ≤
Cω

(2π)1/2

(∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm

)
×
∫ ∞
−s0

1

1 + s2 + h2
exp

(√
s2 + h2

(
ν − cos(arctan(−h/s)− arg(tε))

|εt|

))
ds.
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Here, we have used the parametrization of the path LLp,2 in the proof of Proposition 4. From
(66), we know that

cos(arctan(−h/s)− arg(tε)) > rT

for rT > 0 small enough, for all s ∈ [−s0,+∞), t ∈ T , ε ∈ Ep ∩ Eq. We deduce that

(72) |I1| ≤ Cω,2
∫ +∞

−s0
exp(

√
s2 + h2(ν − rT

|εt|
))ds ≤ Cω,2

∫ +∞

−s0
exp(

√
s2 + h2(− rT

2|εt|
))ds

provided that |εt| < rT
2ν . We deduce that

(73) |I1| ≤ Cω,2
∫ +∞

−s0
exp(

√
s2 + h2(− 1

2|ε|
))ds

≤ Cω,2
[∫ 1

−s0
exp(

√
s2 + h2(− 1

2|ε|
))ds+

∫ +∞

1
exp(

√
s2 + h2(− 1

2|ε|
))ds

]
≤ Cω,2

[∫ 1

−s0
exp(− |h|

2|ε|
)ds+

∫ +∞

1
exp(− |s|

2|ε|
)ds

]
= Cω,2

[
exp(− |h|

2|ε|
)(1 + s0) + 2|ε| exp(− 1

2|ε|
)

]
.

This entails that

(74) |I1| ≤ Ĉ1 exp

(
−D̂1

|ε|

)
,

for some Ĉ1, D̂1 > 0. The same argument can be applied to arrive at

(75) |I3| ≤ Ĉ3 exp

(
−D̂3

|ε|

)
,

for some Ĉ3, D̂3 > 0.
Let us consider I2. The continuity of Cpq yields the existence of dC > 0 such that the distance

dist(Cp,q, 0) > dC > 0. Let [s1, s2] 3 s 7→ ĥ(s) be a parametrization of Cp,q. By construction of
the path Cp,q, we have in particular that

cos(arg(ĥ(s))− arg(εt)) > rT

for all s ∈ [s1, s2], provided that rT is small enough. In view of (57), one gets

(76) |I2| ≤
1

(2π)1/2

(∫ +∞

−∞

1

(1 + |m|)µ
exp((|Im(z)| − β)|m|)dm

)
×
∫ s2

s1

1

1 + |ĥ(s)|2
exp(ν|ĥ(s)| − |ĥ(s)|

|εt|
cos(arg(ĥ(s))− arg(εt)))|ĥ′(s)|ds

≤ C̃2 max
s∈[s1,s2]

|ĥ′(s)|
∫ s2

s1

exp(|ĥ(s)|(ν − rT
|εt|

))ds ≤ C̃2.1

∫ s2

s1

exp(|ĥ(s)|(− rT
2|εt|

))ds

≤ C̃2.1(s2 − s1) exp(− dC
2|ε|

)

provided that |εt| < rT
2ν .
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We conclude that

(77) |I2| ≤ Ĉ2 exp

(
−D̂2

|ε|

)
,

for some Ĉ2, D̂2 > 0.
The statement (68) follows from (74), (75) and (77) applied to (69).
Case (B): p, q ∈ J2.
Let ε ∈ Ep ∩ Eq. The integration path γp is written as γp,1 + γp,2, where γLp,1 is the segment

[0, rp,q]e
√
−1dp , for some 0 < rp,q < ρ, and γp,2 stands for the half line [rp,q,∞)e

√
−1dp . The path

γq can be divided into analogous parts, namely γq = γq,1 + γq,2. The function ω is holomorphic
with respect to its first variable in D(0, ρ). Therefore, the integration with respect to that
variable in γp,1 − γp,2 can be deformed as the integral in C̃p,q, where C̃p,q is the arc of circle

joining the points rp,qe
√
−1dp and rp,qe

√
−1dq (see Figure 4, center).

One has

(78) up(t, z, ε)− uq(t, z, ε) = Ĩ1 + Ĩ2 − Ĩ3,

for

(79) Ĩ1 =
1

(2π)1/2

∫ ∞
−∞

∫
γp,2

ωdp(u,m, ε)e
− u
εt eizm

du

u
dm,

Ĩ2 =
1

(2π)1/2

∫ ∞
−∞

∫
C̃p,q

ω(u,m, ε)e−
u
εt eizm

du

u
dm,

Ĩ3 =
1

(2π)1/2

∫ ∞
−∞

∫
γq,2

ωdq(u,m, ε)e
− u
εt eizm

du

u
dm,

for every t ∈ T , z ∈ Hβ′ . It holds

|Ĩ1| ≤
C̃ω

(2π)1/2

(∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm

)∫ ∞
rp,q

1

1 + s2
exp

(
s

(
ν − cos(dp − arg(tε))

|εt|

))
ds.

The choice of an admissible set (see (67)) guarantees that

cos(dp − arg(tε)) ≥ rT

for small enough rT > 0. Hence,

(80) |Ĩ1| ≤ C̃ω,2
∫ +∞

rp,q

exp(s(ν − rT
|εt|

))ds

≤ C̃ω,2
∫ +∞

rp,q

exp(− srT
2|εt|

)ds ≤ C̃ω,2
∫ +∞

rp,q

exp(− s

2|ε|
)ds = C̃ω,22|ε| exp(−rp,q

2|ε|
)

provided that |εt| < rT
2ν . The same bounds apply for Ĩ3.

Finally, we provide upper estimates for |Ĩ2| as follows:

(81) |Ĩ2| ≤
C̃ω

(2π)1/2

(∫ ∞
−∞

1

(1 + |m|)µ
e(|Im(z)|−β)|m|dm

)
rp,q

1 + r2
p,q

exp(νrp,q)

×
∫ dq

dp

exp

(
−rp,q cos(θ − arg(εt))

|εt|

)
dθ.
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Under the constraint (67), we know that

cos(θ − arg(tε)) ≥ rT

for some small rT > 0, all θ ∈ (dp, dq). We conclude that

(82) |Ĩ2| ≤ Ĉ5 exp

(
−D̂5

|ε|

)
,

for some Ĉ5, D̂5 > 0.
Case (C): p ∈ J2 and q ∈ J1.
This case is equivalent to that in which p ∈ J1 and q ∈ J2, and can be reduced to cases

(A) and (B). Indeed, let ε ∈ Ep ∩ Eq and consider the splitting of the path γp as the sum of
γp,1 + γp,2, where γp,2 resembles the corresponding path of Case (B), departing from some point

rp,qe
√
−1dp with 0 < rp,q < ρ and direction dp to infinity, and γp,1 is the segment [0, rp,q]e

√
−1dp .

The path LLq is written as the sum of LLq ,1 + LLq ,2, where LLq ,2 stands for the horizontal ray

contained in Lq, having rp,qe
√
−1θLq as its endpoint, for some π/2 < θLq < 3π/2. The path LLq ,1

is the segment joining the origin and rp,qe
√
−1θLq . The fact that ω is holomorphic on D(0, ρ),

the integral along the path γp,1 − LLq ,1 allows to deform the path as Ĉ1 + Ĉ2, where Ĉ1 is

an arc of circle joining rp,qe
√
−1dp and some point rp,qe

√
−1θp ∈ U (see Section 5.1), for some

θp ∈ (π/2, 3π/2). The path Ĉ2 is a finite path contained in U , which avoids 0, is contained in

the left half-plane, and with endpoints rp,qe
√
−1θp and rp,qe

√
−1θLq . This path can be omitted in

the splitting in the case that θp = θLq . Figure 4 (right) illustrates an example of this splitting.
Observe that the difference of the solutions can be written in the form

up(t, z, ε)− uq(t, z, ε) = Î1 + Î2 − Î3,

where

(83) Î1 =
1

(2π)1/2

∫ ∞
−∞

∫
γp,2

ωdp(u,m, ε)e
− u
εt eizm

du

u
dm,

Î2 =
1

(2π)1/2

∫ ∞
−∞

∫
Ĉ1+Ĉ2

ω(u,m, ε)e−
u
εt eizm

du

u
dm,

Î3 =
1

(2π)1/2

∫ ∞
−∞

∫
LLq,2

ωLq(u,m, ε)e
− u
εt eizm

du

u
dm,

for every t ∈ T , z ∈ Hβ′ . The expression |Î1| can be estimated as |Ĩ1| (see Case (B)). The

expression |Î2| can be estimated in the same way as |I2| (see Case (A)) together with |Ĩ1| (see
Case (B)). Finally, |Î3| is upper bounded in the same way as |I1| (see Case (A)). This entails
that (68) holds.

2

The next cohomological result has been widely applied in the version of functional spaces
with coefficients in a Banach space to guarantee the existence of a common asymptotic expan-
sion related to the analytic solutions, with respect to the perturbation parameter. Here, the
asymptotic behavior is preserved whereas summability results can not be attained, as it has
been mentioned above. The classical Ramis-Sibuya theorem can be found in [1], p. 121 and [10],
Lemma XI-2-6.
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Figure 4: Example of the deformation of paths in Case (A) (left) Case (B) (center) and Case
(C) (right)

Theorem 2 (RS) Let (E, ‖·‖E) be a Banach space over C, and let (Ep)0≤p≤ς−1 be a good cov-
ering in C?. For every 0 ≤ p ≤ ς − 1, let Gp : Ep → E be a holomorphic function, and define
Θp := Gp+1 −Gp defined on Zp = Ep ∩ Ep+1 (with the conventions Gp := G0 and Ep := E0). We
assume that

� The function Gp(ε) is bounded for ε ∈ Ep approaching the origin of C for every 0 ≤ p ≤ ς−1.

� For all 0 ≤ p ≤ ς − 1, the function Θp(ε) is exponentially flat in Zp, i.e. there exist
Cp, Dp > 0 such that

‖Θp(ε)‖E ≤ Cpe
−Dp|ε| .

Then, there exists a common formal power series Ĝ(ε) =
∑

n≥0Hnε
n ∈ E[[ε]] which satisfies that

Ĝ is the common Gevrey asymptotic expansion of order 1 of the function Gp, for all 0 ≤ p ≤ ς−1
on Ep. This means that for every 0 ≤ p ≤ ς − 1 there exist Ap, Bp > 0 such that∥∥∥∥∥Gp(ε)−

N−1∑
n=0

Hnε
n

∥∥∥∥∥
E

≤ Ap(Bp)NN !|ε|N ,

for every N ≥ 1 and ε ∈ Ep.

Let E be the banach space of holomorphic and bounded functions defined on T ×Hβ′ , for
some fixed 0 < β′ < β. As a consequence of (RS) Theorem and Theorem 1 we conclude the
following:

Theorem 3 Under the assumptions of Theorem 1, there exists a formal power series

(84) û(t, z, ε) =
∑
n≥0

Hn(t, z)
εn

n!
∈ E[[ε]]
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which is the common asymptotic expansion of the solution of (10) up(t, z, ε) of Gevrey order 1
in Ep, for every 0 ≤ p ≤ ς − 1, when considering up as a function on Ep, with values in E.

Proof Let {up(t, z, ε)}0≤p≤ς−1 be the family of solutions of (10) constructed in Theorem 1. For
all 0 ≤ p ≤ ς − 1, we put Gp(ε) := (t, z) 7→ up(t, z, ε), which defines a holomorphic and bounded
function defined in Ep with values in E, fixed above. We observe that (68) entails that for all
0 ≤ p ≤ ς − 1, the difference Θp := Gp+1−Gp is exponentially flat in Zp := Ep ∩ Ep+1. Theorem
(RS) can be applied to guarantee the existence of a formal power series Ĝ(ε) ∈ E[[ε]], which is
the common Gevrey asymptotic expansion of up(t, z, ε) in Ep, for all0 ≤ p ≤ ς − 1. We conclude
the result by putting û := Ĝ.

2

7 Annex I: Fourier transform and related properties

In this section, we recall the definition of inverse Fourier transform, together with some algebraic
properties held when applied on the elements of certain Banach spaces of functions of exponential
decay at infinity, introduced in [17], and successfully applied in previous works by the authors.

Definition 6 Let β, µ ∈ R. We consider the vector space E(β,µ) of continuous functions h :
R→ C satisfying

‖h(m)‖(β,µ) := sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)| <∞.

The pair (E(β,µ), ‖·‖(β,µ)) is a Banach space.

We refer to [17] for further details on the proof of the next properties satisfied by inverse
Fourier transform acting on the elements of the previous Banach space.

Definition 7 Let β > 0 and µ > 1. Given f ∈ E(β,µ), the inverse Fourier transform of f is
defined by

F−1(f)(x) =
1

(2π)1/2

∫ ∞
−∞

f(m) exp(ixm)dm, x ∈ R.

The domain of definition of F−1(f) can be extended to the set

Hβ′ = {z ∈ C : |Im(z)| < β′},

for any 0 < β′ < β, providing an analytic and bounded function on Hβ′. Moreover, the following
properties hold:

� Let ϕ be given by m 7→ ϕ(m) = imf(m). Then, ϕ ∈ E(β,µ−1) and it holds that the function
∂zF−1(f) coincides with F−1(ϕ), in Hβ.

� Let g ∈ E(β,µ) and consider the convolution product of f and g, namely

ψ(m) =
1

(2π)1/2

∫ ∞
−∞

f(m−m1)g(m1)dm1, m ∈ R.

Then ψ ∈ E(β,µ), and it holds that F−1(ψ) coincides with F−1(f) · F−1(g) in Hβ, with ·
being the usual product.
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Figure 5: Branches of Lambert W function

8 Annex II: On Lambert W function

In this section, we provide some information of Lambert W function to be used in the work. We
only focus on the elements used in the present study, and refer to [4] and the references therein
for further details.

Lambert W function is defined as the complex function satisfying

W (z)eW (z) = z.

Lambert W function turns out to be a multivalued function, partitioning the w = W (z) plane
into an infinite countable number of regions, corresponding to each branch of the function. Each
of the branches of Lambert W function is denoted by Wk for k ∈ Z. It holds that W0(z), the
principal branch of Lambert W function is defined in C \ (−∞,−e−1] whereas Wk(z) for k 6= 0,
displays a branch cut along the negative real axis, and is defined in C \ (−∞, 0]. The curves
defining the boundary of the different branches, as curves in R2 are given by

{(−t cot(t), t) ∈ R2 : −π < t < π}

for the principal branch. The curve separating W1 and W−1 is the half line (−∞,−1], and all
the other branches are distinguished by the curves

{(−t cot(t), t) ∈ R2 : 2kπ < ±t < (2k + 1)π}, k ∈ Z \ {0}

The image of each branches of Lambert W function and the curves separating the different
branches are shown in Figure 5.

Each branch as described above is a holomorphic bijective map, when restricted to the
domains described above.
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