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Abstract

A family of linear singularly perturbed Cauchy problems is studied. The equations defining the prob-
lem combine both partial differential operators together with the action of linear fractional transforms.
The exotic geometry of the problem in the Borel plane, involving both sectorial regions and strip-like
sets, gives rise to asymptotic results relating the analytic solution and the formal one through Gevrey
asymptotic expansions. The main results lean on the appearance of domains in the complex plane which
remain intimately related to Lambert W function, which turns out to be crucial in the construction of
the analytic solutions.

On the way, an accurate description of the deformation of the integration paths defining the analytic
solutions and the knowledge of Lambert W function are needed in order to provide the asymptotic
behavior of the solution near the origin, regarding the perturbation parameter. Such deformation varies
depending on the analytic solution considered, which lies in two families with different geometric features.

Key words: asymptotic expansion, Lambert W function, Borel-Laplace transform, Fourier transform,
initial value problem, formal power series, singular perturbation. 2010 MSC: 35C10, 35C20.

1 Introduction

This work is devoted to the study of a family of linear singularly perturbed Cauchy problems
combining partial differential operators together with the action of linear fractional transforms.
More precisely, we deal with equations of the form

QO:)ult, 2, €) = P (£20,)" R (8- )ult, 2, €) + €™ ((120,) Ro(0:)u) (Ht,” 2, )
0
(1) + ) et ey (2, ) Ry(D:)u (t, 2, €) + f(t 2, €),
lel

under null initial data u(0, z,e) = 0, and where € is a small perturbation complex parameter.

I C N stands for a finite set of indices, Q(X), Ro(X), Re(X), Rp(X) € C[X], do, ¢, A¢,dp,0p



and kg are positive integers, and the coefficients ¢;(z, €) and f(¢, z, €) are holomorphic functions
defined on Hg x D(0,¢y) and D(0,7¢) x Hg x D(0,¢€p), respectively, for some r¢, 3',e9 > 0,
where

Hg ={z € C:|Im(z)| < f'}.

The precise nature of each of the elements involved in the equation are detailed in Section

It is worth mentioning at this point that we are dealing with the case dp > 0 in the present
work. However, there is no additional theoretical difficulty on considering the case d9 = 0, which
only entangles a different geometry, explained in Section However, we have decided to omit
further duplicated computations in this particular case for the sake of clarity.

The point of depart of the present study is the recent work [16] by the authors, where
a family of nonlinear singularly perturbed equations combining linear fractional transforms,
partial derivatives and differential operators of infinite order, was studied. More precisely, in
that previous study we considered equations of the form

(2) Q(9)u(t,z,e) = exp(ozekth“lat)R(@Z)u(t, z,€) + P(t,e,{mpt.c}rer, O, 0:)u(t, 2, €)
Ql(az)u(ta 2, E)QQ(az)u(ta 2, 6) + f(t7 Z, 6)7

where @ € C[X] and the polynomial P admits holomorphic coefficients in some neighborhood
of the origin with respect to the perturbation parameter e. We write my, ;. for the operator

(t ) t
m u(t,z,¢) =u | ——,2,€ | .
kite 7 1—|—]<:6t7 ’

The term exp(ae®t*19;) is the exponential formal differential operator of infinite order with
respect to ¢
(ce®)?

p' (thrlat)(p)'

exp(aettht19,) = Z

p=>0

Here, (t°119;)(P) represents the p—th iterate of t*+19;.

The main result in that work establishes the existence of a formal power series 4(t, z,€) =
Ym0 hm(t, 2)e™ € E[[€]], where (E, ||-||z) is certain Banach space of functions, which is the com-
mon asymptotic expansion of a family of sectorial solutions (€ — u,(t, z, €))o<p<c—1, defined on
finite sectors which conform a good covering (€p)o<p<c—1 (see Definition [d]), and with coefficients
in E. The previous asymptotic expansion is of Gevrey order 1/k, i.e. for every 0 < p < ¢ —1
there exist C), M, > 0 such that

n—1
up(t, 2 €)= D bt 2)e™ | < Cy(0)"T (14 %) B
m=0 E

for all n > 1 and € € &,. In the case that there exists 0 < py < ¢ — 1 such that the aperture of
the corresponding sector of the good covering is larger than 7 /k, then the map € — u,, (¢, z, €)
is indeed the k—sum of (¢, z, €) on such sector. We refer to the reference [I] for further details
on the classical theory of Gevrey asymptotic expansions in sectors of the complex plane.

In that previous study, £ was assumed to be a parameter smaller than 1. The techniques
used did not succeed when applied to the limit case k = 1, and were postponed to a future
study. As a matter of fact, our first hypotheses (see the introduction of [16]) based on pre-
vious experiences [20, [14] pointed to the existence of double scale structures involving 1 and
14+ Gevrey estimates. Contrary to our expectations, this work reveals that this setting has a



limit behavior which is reflected in its exotic geometry, rather than the asymptotic expansions
involved. Therefore, the present study stands as a limit setup in [16].

For the sake of clarity, we have decided to deal with the case of a single shift operator,
whereas the general case can be treated in a similar manner, carrying cumbersome and heavy
calculations which may avoid the reader to have a clear idea of the main purpose of the study.

The statements of the main problem under study are displayed in Section [2} The first step
in the research is to search for solutions of the problem in the form of inverse Fourier and
Laplace-like transformations of an unknown function

1 o — zzmdu
(3) u(t,z,€) = W/_Oo/ﬁw(u,m,e)e cte ;dm,

where £ is an infinite path which becomes effective in different forms through the two alternative
directions followed in the work. The problem turns out to be in some sense symbolic, before
establishing the description of the convergence conditions on appropriate domains. An auxiliary
problem satisfied by w(r,m,€) (see(l7)) allows to distinguish the two independent options in
order to give rise to analytic solutions to the problem.

Section |3|is devoted to construct a first family of analytic solutions of . The assumptions
made on the elements involved in the main problem and on its geometry give rise to certain
geometric conditions on the domains where the function w(7,m,¢€) is well defined. The precise
knowledge of the behavior of Lambert W function is essential in order to describe such domains.
We have decided to include a particular case of this study, displayed in Section in which the
details of this geometry can be easily illustrated. Once the adequate domains of w(7,m,€) are
established, we prove the existence of the solution of the auxiliary problem within a Banach space
of function (see Section . The elements belonging to that Banach space satisfy exponential
growth/decay at infinity with respect to certain variables, giving an analytic meaning to (3)).

A parallel path is traced in Section [4] where a second framework for the main problem is
established. The auxiliary equation is rewritten in order to search for analytic solutions of
the main problem in this novel situation. This second setting is closer to that of the classical
results obtained on the solutions of analytic solutions to singularly perturbed differential equa-
tions in the complex domain. More precisely, the solution of the auxiliary problem, w(r, m,€),
turns out to be holomorphic in a neighborhood of the origin, and can be extended to an infinite
sector with exponential growth, w.r.t. 7. The path £ in takes the form of a half-line with
endpoint at the origin, contained in such infinite sector. Analyticity of u(t, z,€), as defined in
makes sense, describing a second family of analytic solutions to the main problem.

The two families of analytic solutions of the main problem, independently acquired, turn out
to be holomorphic functions on sets of the form 7 x Hg x &, where T, are certain bounded
sectors in the complex plane, and 0 < 5’ < 3 (see Proposition [5| and Proposition .

The existence of asymptotic results at the origin with respect to the perturbation parameter,
i.e. relating each of the analytic solutions to some formal power series in the perturbation
parameter €, needs that both approaches converge into one. As a matter of fact, it is hopeless to
cover a full punctured neighborhood of the origin with a finite number of domains (£,)o<p<c—1
obtained from ¢ analytic solutions coming from just one of the approaches described above. A
finite family of solutions of the main problem (u,(t, 2, €))o<p<c—1, With u,(t, 2, €) being analytic
on T x Hg x &,, for every 0 < p < ¢ — 1, and where (&,)o<p<c—1 defines a good covering of
the origin (see Definition , is constructed. We observe that a set of such functions comprises
solutions to the main problem coming from both approaches.

The first main result of the work (Theorem [1)) states that for every pair of indices 0 < p,q <
¢ — 1 with p # ¢ and such that £, N &, # 0, then the difference of the corresponding analytic



solutions wy(t, 2, €) and uq(t, 2, €) is exponentially small with respect to € € &, N &;, uniformly
with respect to the rest of the variables. More precisely, there exist C, D > 0 such that

D
sup ’up(tazae) _Uq(t,z, 6)‘ S CeXp <_> ,
t67'7zeHﬁ, ‘6’

for all e € &, N &;. The proof of this result faces three cases, depending on the nature of
up and u,. The work concludes with the application of the classical Ramis-Sibuya Theorem
(Theorem (RS)), achieving the existence of a common formal power series in €, say 4(t, 2, €),
with coefficients in the Banach space of holomorphic and bounded functions in 7 x Hpgr, say E.
This formal power series is the asymptotic expansion of u,(t, z, €) of Gevrey order 1 in &, for
every 0 < p < ¢ — 1, when considering u, as a function of £, and values in E.

We notice that the appearance of the particular linear fractional transform ¢ > %ko&t, ie.
an homography, in the main equation under study is motivated by the fact that the change
of variable ¢t = 1/s, and therefore the change of the unknown function u(t, z,e) = X(1/t, z, €),
transforms equation into a singularly perturbed PDE combined with small shift operator
Tho e X (8, 2,€) = X (s+koe, z, €), which has been studied in the literature in the field of asymptotic
analysis of functional equations. We refer to [6, 8, 9], also [2I] in the framework of singularly
perturbed elliptic partial differential equations, and [2], B} [7], [T}, 12} 13] as examples of advances
in the study of difference equations.

The paper is organized as follows: in Section [2| the precise statement of the main problem
and auxiliary problem are established. Sections|3|and [4] describe the construction of two
families of analytic solutions of . In both sections, the geometry of the problem is analysed
together with the definition and main properties of the Banach space where the solutions belong.
The construction of the analytic solutions to the main problem in Section [5|is made regarding
their different nature. Section [f] is devoted to the study of the main asymptotic results of the
work (Theorems [If and [3) in which the existence of a formal solution is attained, being the
common formal Gevrey asymptotic expansion of all the analytic solutions, with respect to the
perturbation parameter near the origin. The work concludes with two final sections on known
facts on Fourier transform and Lambert W function.

2 Statement of the main problem and related auxiliary prob-
lems

Let 6p > 2 be an integer. Let I C N be a finite set of indices. For every ¢ € I, we choose
non-negative integers Ay, dy and dy. We assume that

(4) Ay > 6y — dy,
and
(5) 8¢ > 2dy, b6p >di+2,

for every ¢ € I. We also choose positive integers &g and kg.
Let Q(X),Rp(X), Ro(X) € C[X], and Ry(X) € C[X] for every ¢ € I, under the following

conditions

Q(im)
Ry (im)

(6) € SQ,Rm RO(Zm) 7é 0, m € R,



where
Sq.ro = {2 € C:aqr, <arg(z) < Bo,ryy TQ,Ro < |2| < RQ.Ro}

for some 0 < rg r, < Rg.r, and ag.r, < 5Q,R,-

For all £ € I one has that
(7) deg(Ry) < deg(Rp)-
In addition to this,

Q(im)

] R
(8) Ro(im) € So.rps Rp(im) #0, m € R,

where
Sqo.rp ={2 € Craqr, <arg(z) < Bo.rp, TRy < |2l < RQRp}

for some 0 < rg r, < Rg,r, and ag r, < Bg,r,- Observe from the previous assumptions that

9) deg(Ry) < deg(Q)

for every £ € I.
We consider the main problem under study

QD) u(t, z,€) = P (£20,)°P Rp (8. )u(t, z, €) + €% <(t28t)50R0(8Z)u> <1+tk:oet’ z, e)

(10) + et ey (2, € Re(0:)u (t, 2, €) + f(t, 2,€),
el

for null initial data u(0, z, €) = 0. In the previous equation, € acts as a small complex perturbation
parameter, and the coefficients ¢y(z, €) and the forcing term f(¢, z, €) are constructed as follows.
Let €y, 8 > 0. For every ¢ € I, the function ¢(z,€) is holomorphic on Hg x D(0, €g) for all
0 < B < 3, where
Hy ={z € C:[Im(2)| < 8'},

and it is constructed as the inverse Fourier transform
co(z,€) = o /Oo Cy(m, €)e*™dm,
en? ) .

with m — Cy(m, €) being a continuous function for m € R and satisfying uniform bounds with
respect to the perturbation parameter € in D(0,€p). More precisely, there exists C, > 0 such
that

(11 sup |Cy(m,e §7eexp —Blm|), meR,
) by O NS e PP

for some p > 1. Observe from Annex 1 that the previous property coincides with

sup [[m = Co(m,e€)|lg,, < Co,
e€D(0,ep)

forall ¢ € 1.
Let ¢ : C x R x D(0,eg) — C be an entire function with respect to its first variable,
continuous on R in its second variable, and holomorphic on the disc D(0, ¢p) with respect to its



third variable. Moreover, we assume there exists Cy, 3, > 0 such that 1) satisfies the following
upper bounds:

C
(12) |¢(T7 m, 6)‘ S mefﬂm\ eXp(V’TD’T‘7
for every (1,m,e) € C x R x D(0,¢y). We define the function

1 o U\ o du
F(T,z¢) := (27T)1/2/—oo . Y(u, m, €) exp (_T) e ;dm,

where Ly = [0, oo)edﬁ can spin around the origin in order to guarantee that I is a holomorphic
function on D(0,rp) for 0 < rp < 1/v, with respect to T by analytic continuation. The forcing
term f(¢, z, €), defined by

(13) f(t,z,€) = F(et, z,¢)

turns out to be holomorphic on D(0,7¢) x Hg x D(0, ), for every 0 < ' < 3, where ry > 0
satisfies egry < 1.

We search for solutions of in the form u(t, z,€) = U(et, 2, €), for some function U (T, z, €)
which becomes a solution the auxiliary problem

71+k0T’Z’6

(14) + ) ettt deriglie, (2, €) Ry(0:)U (T, 2, €) + F(T, 2,€).
lel

Q(O)U(T, z,€) = (T?07)°P Rp(8,)U(T, z, €) + ((TQOT)‘SORO(@Z)U) < a )

In addition to this, we explore solutions of (and consequently of the main problem )
in the form of a Laplace-like and Fourier transform, i.e.

1 > w
(15) UT,z€):= W/_m/ﬁw(u,m, e)e_Tezzmd;udm,

where £ is an infinite path which can be of different nature, to be described in the work. As a
matter of fact, the auxiliary function w(u, m,€) turns out to be a solution of a second auxiliary
equation, on certain domains to be specified.

We display some relations provided by the action of the operators involved in . At first,
these properties are considered to be symbolic, but they will become analytic provided that
convergence is guaranteed in the sequel.

Lemma 1 Given U(T, z,¢€) in the form , it holds that

1 > w o du
2 — 1zm
r“orU(T, z,¢€) = 7(2 )1/2 /_ / uw(u,m,e)e” Te o dm,

and for all positive m € N

m 1 o0 u v el ds\ _u ;,du
T"U(T, z,€) = 2m)1/2 /M/C<F(m)/0 (u—29)""w(s,m,e) S)e Te udm

In addition to this, one has

T 1 o —uk -z zzmdu
U(W,Z,€> _(27r)1/2/_oo/£e Ow(u,m,e)e Te ;dm



The following lemma ([22],p. 3630) will help on finding an auxiliary writing of our main
problem.

Lemma 2 Let m € N be a positive integer. Then it holds that

PO = (T200)™ + Y App T P(T?0r)P,
1<p<m-—1

for some real numbers Ay, p, 1 <p<m—1.

In view of , we define the positive integer dg; by
(16) d¢ =2dg+dg,

for every £ € I.

Taking into account , one can apply Lemmatogether with Lemma and the properties
of Fourier transform (see Section [7]) in order to have that w(7, m,¢€) solves the following second
auxiliary problem

(17) Q(im)w(T,m,€) = TdDRD(im)w(T, m,e) + Tdoe_TkORo(im)w(T, m,€)

1 = _ ; Ag—bp+de T /T _ \dei—1.de @
T (2m)1/2 ZGZI/_OO Co(m —ma, €) Ry(ima )e T(den) Jy (1—19) s%w(s,mq,e€) .

’

d

+ Z Adg,p T / (T - S)dé,1+de*p*1$pw(8’ my, e)j dml + w(Ta m, 6)7
1<p<dy—1 D(dey +de =p) Jo 5

at least from a formal point of view. The analytic functional spaces in which the solution of
is defined will be described subsequently in the paper. In that framework, defines a holo-
morphic function in adequate domains, providing an actual solution of , and consequently
of .

Two different families of solutions of the auxiliary problem will be provided. We give
detail on each type of solution and describe the situation for each case separately. The elements
in the first family, studied in Section [3| are related to different branches of Lambert W function
whereas the elements of the second family, analysed in Section [4 are linked to the classical
Borel-Laplace summability procedure.

3 First family of analytic solutions of ((17))

We depart from the main and auxiliary problems described in Section together with the
assumptions made on the elements in their construction.

In a first subsection, Section we describe the geometry of the problem. It is worth
mentioning a particular case, considered in Section whose geometry serves as a model for
the more complicated geometry of the general setting. For this reason, we provide a detailed
proof of Lemma [5| within the particular case, which can be adapted to the general one under
minor modifications.



3.1 Geometry of the problem
Under the assumptions made on the problem, equation reads as follows:

(gﬂ 1/2 Z/ Co(m — mq, €)Ry(imy)

el

D(1, m)w(r,m,€) = 7P Rp(im)w(r, m, €) +

-
Ag—bg+d, T / dg1—1 odg ds T
X € T—8)5 "s™tw(s,my, € + Ay ,
F(dg’l) 0 ( ) ( ) 1<p§:d£ ) ZPF dél +d2 )

T d
(18) x / (1 — s)d@’ﬁd‘_p_lspw(s,ml, e)j) dmy + (T, m,€),
0

where

D(r,m) = Q(im) — %€~ Ry (im).

In the next result, we show that the roots of D(7,m) are related to Lambert W function.
Lemma 3 Let U be some neighborhood of the origin in C. We define
H :=Uper{r € C:D(1,m) =0}
Then, provided that rq r, > 0 is large enough, it holds that
HnNH=0,

with H :=U U (UkeZ Lk), and where the set Ly consists of the complex numbers with negative
real part which belong to a horizontal strip-like set, for every k € Z.

Proof Let m € R. It holds that D(r,m) = 0 if and only if

19 oo ,—Tko — Q(Zm) .
(19) Te Ro(im)
Therefore, we¥ = A(m), with w = —T’g—g, A(m) = —lg—gB(m), and B(m) stands for one Jp root

of Q(im)/Ro(im). In other words, w = W (A(m)), where W is Lambert W function. In view of
(@, and the properties of Lambert W function (see Section , we derive that

1
ko ko | Q(im) |50 _ ko 355 5
A =|—% == —Top, =: >0
A = |- 52 )| = 2| 2N > D00y —
In addition to this,
219 219
IZO0QR g A(m)) < 2T P2t
do do
for j € {0,1,...,80—1}. The two previous conditions describe &g sectors, say {Sq,r,; }j=0....50—1-
Therefore,
do—1
U Am) € U Sa.ros-
meR j=0
We write

SQ.Roj = {2 €C:agRry; < arg(z) < BoRroj> TQ.Ro < |2}



for each j = 0,...,99 — 1, for certain ag g, ;, 5Q,R,,; With

0 < aQ,ro0 < PQ.R00 < @Q,Ro1 < BQ.Ro1 < --+ < AQ.Ry50-1 < BQ,Ry80-1 < 27

At this point, we describe the set W (Sg gr,;) for j = 0,...,00 — 1. For this purpose, let
j €10,...,80 — 1} and write z = pexp(v/—10) € Sg g, ;. We have g r, < p and ag g, <
0 < Bg,Ry,;- For the sake of simplicity, we write 7, o; and 3; for 7g Rr,, aQ,Rr,,; and B Rry.;
respectively. Let w = W (z) and write w = £ +nv/—1. Then, one has

pcos(f) = exp(&)(§ cos(n) —nsin(n)),  psin(d) = exp(£)(n cos(n) + £ sin(n)).

From the previous equalities we derive

. (@) — ncos(n) + & sin(n)
p=exp(E)VE+12,  tan(0) §cos(n) — nsin(n)’

Therefore,

(20) W(Sq,r,j) = {w =¢+nV-1€C:exp(§)VE+12 >

_ neos(n) + Esin(n)
§ cos(n) — nsin(n)

tan(6) ,for 0 € (aj,ﬁj)} .

On the one hand, the set {& +nv/—1 € C : exp(£)y/€2 +n? > 7} is an infinite domain with
boundary given by the curve {(£,71) € R? : exp(£)\/€2 + n? = 7} which intersects the vertical
axis at the points 7 = +7, and the horizontal axis at the unique positive solution of exp(§)§ = 7,
which tends to infinity when 7 tends to infinity. The domain contains the positive semiplane,
except from a bounded set. An example of such domain for # = 1 is represented in Figure
(left). On the other hand, we are interested in the subset of {(&,7) € R? : £ > 0} determined by

_ ncos(n) + £ sin(n)
§ cos(n) — nsin(n) 7

tan () for 6 € (o, 5;)
which is an infinite domain consisting of an infinite union of horizontal strip-like sets. Figure
(right) shows such subset for tan(f) € (—3,3), together with the ranges of the branches of
Lambert W function. It is worth remarking that the principal branch of Lambert W function
is contained in the horizontal strip {w € C: —7 < Im(w) < 7} and its boundary tends to the
boundary of that strip, when the real part becomes larger. Let M > 0. The set of complex
numbers contained in the set {w € C : Re(w) > M} which belong to the k—th branch of Lambert
W function, for k € Z\ {0}, are contained in the horizontal strip {w € C : 2kr —§(M) < Im(w) <
(2k + 1)m + 6(M)} for positive k (resp. in {w € C: (2k — 1) — §(M) < Im(w) < 2km + (M)}
for negative k). Here, § = §(M) is a positive decreasing function of M, which tends to 0
if M approaches infinity. A similar behavior can be observed when restricting the branches
of Lambert W to the complex numbers of arguments in (a;, ;). It is worth mentioning the
asymptotic behavior of Lambert W function resembling the complex logarithmic function at
infinity.

Taking into account the previous remarks and the fact that w is defined by w = —Tlg—g, we
conclude the result.

O
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. o

Figure 1: Domains exp(£)\/€2 4+ 72 > 7 =1 (left) and —§ < % < % (right)

CEREET

Figure 2: Example of domain H, resembling an octopus!

Definition 1 One can slightly diminish the size of H in such a way that the distance from H to
H is positive, while preserving its geometry. Let {Ly}rez denote the set of strip-like sets which
conform H. We have

(21) Ly ={2€C: Re(z) <0,ax(z) < Im(z) < Br(z)},

for some real functions ay(z) < Br(z). We remark that several strip-like sets may arise within
each branch, depending on the arguments of the elements in S r,. We maintain the same
notation for the strips for the sake of simplicity. We write H for the connected component of
H which contains U. Figure@ illustrates the geometric configuration of H.

Remark 1: Observe that the number of horizontal strip-like sets conforming H is a positive
increasing function of rg gr,, which tends to infinity when rg g, becomes larger. As a matter
of fact, we will assume that rg g, is large enough in order that the strip-like set contains a
horizontal strip. Observe this is always possible due to the geometry of Lambert W function is
asymptotically as that of the logarithm. Therefore, and for practical reasons, one can choose
the functions ag(z) and Si(z) in to be constants, say ax(z) = a < = Br(z).

The details proof of Lemma [4] are postponed after Lemma 5], which states the same result in
a particular case which helps to illustrate the technique of the proof of Lemma [4]
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Lemma 4 There exists C; > 0 such that

T6D RD (zm)
Q(im) — 1% e=7ko Ry (im)

< 017

for allmeR and T € H.

In the next subsection, we describe the geometry in a particular case in which the strip-like
sets Ly are indeed horizontal strips.
3.2 A particular case

This subsection is devoted to the particular case, under the further assumption
(22) b0 = 0.

We find this is a situation which helps to illustrate the geometry of the problem. Under assump-

tion , we have
D(r,m) = Q(im) — e~ "* Ry (im).

It holds that D(7,m) = 0 if and only if

et o 2] () ) ). bz

Under condition @, one has that the roots of D(7,m), 7, i, for k € Z and m € R, belong to a
family of horizontal strips { Hx }rcz, where

2k 2k
Hi ={r € C:Re(1) < —M, Oz+—7r<1m(7—)<5+i}’

ko ko
for M = %log(rQRO) > 0, which does not depend on m € R nor k € Z, and o = —%BQRO,
B= _%O‘Q,Ro;

We write H for
I:[:{TG(C:—M<R6(T)<O}U<ULk>7
kEZ
where
2k 2(k+1
(23) Lk:{fecc:Re(T)<o,5+k”<1m(7)<a+(:)W}
0 0

One may slightly reduce H in such a way that its distance to Umer{T : D(1,m) = 0} is positive.
Figure 3| illustrates the geometric situation. Let R > 0.

We write H for the connected component of D(0, R) (Ugez Li) containing the origin of
coordinates.

Remark 2: We observe that the number of horizontal strips in H grows to infinity when
R — o0.

Remark 3: The previous sets have already appeared as natural domains of solutions of problems
previously studied by the authors, [14].
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Hy

Figure 3: Example of configuration of the family {Hy}rez

Lemma 5 There exists C; > 0 such that

' 790 Rp (im)
Q(im) — e~k Ry (im)

‘SCh
for allm e R, and T € H.

Proof Let k € Z, 7 € L; and m € R. One can write 7 = 7, + (a + i6) for a well chosen 6 in

Qi
Ro(i

a bounded interval and a € (—o0, Clog‘ m)) ‘] for some C' > 0, since the real part of 7, is

—1/kolog ‘ I%(gnm)) ’ This entails that

Q(im) — e Ry (im) = Q(im) — e~ (TmaFatiOko Roim) = A.
We observe that D(7,, ;, m) = 0 which yields
A= Qim)(1 — e=+0o),

and therefore
790 Rp(im) B |Tm7k—|—a—|—i0|5D|RD(im)|
Q(im) — e~k Ry (im) a |1 — e—(at+i®ko||Q(im)|

By construction of Ly, we get a constant C7; > 0 with

(24) |1 _ e—(a-‘rie)k‘o‘ Z Cll
Q(im)
Ro(im)
more, since e grows exponentially as a tends to —oo, and since 7y, ;, remains in a bounded
domain for all m € R (see assumption @), we deduce that the quantity

for all a € (—o0,C'log | ], all m € R, all § € I (a well chosen bounded interval). Further-

—ako

[T +a+ i9|5D
|]_ _ e—(a+i9)k0’
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remains bounded provided that a < —M for some fixed M > 0, for all m € R, all § € I. On the

other hand, provided that a € (=M, C'log | }% ((iim)) |], the quantity

[T +a+ i9|5D
remains bounded (again from @), for all m € R, all # € I. As a result, from , the quotient

| T +a+ i9|5D
1 — e—(atidko|

remains bounded for all m € R, all 6 € I and all a € (=M, C'log| g}((i;;)) ].
At last, when 7 € D(0, R). According to @ and provided that rg r, > 0 is large enough,

we get a constant C1; > 0 with

Q(im)
Roy(im)

— 677k0| > C~'11

for all 7 € D(0, R), all m € R. As a result, the quotient

790 Rp(im)
Q(im) — ek Ry(im)

Rptim), o)

Ry (im) |1§0((iimm)) _ e—Thko

remains bounded, for all m € R, all 7 € D(0, R).
a

proof of Lemma [J):

Let 7 € Ly, m € R. Let 7,1, be a solution of associated to the k—th branch of Lambert
W function. We can write 7 = 7, + a + i for some well chosen a (on an interval detailed
below) and 6 on a well chosen bounded interval I. Furthermore,

Q(im) — e~k Ry (im)

(Tmye +a +i6)% 5

= Q(im) — % Tk €XP(— (T + a + i) ko) Ro(im)
Tm,k
. m.k +a+ 0 )
= Q(im) <1 — (T’k7_—)50 exp(—(a + 19)k0)>
m,k
Therefore,
790 Rp (im) B [Tk +a + i6|°p Rp(im)
Q(im) — Toe~Tho Ry (im) | |1 — (Tmb 0005 o—(atib)ko| | Q(im)
Tm,k
By construction, we know that
)
Tm,k = _?OWk(A(m))
0
where A(m) € U?OZ_IISQ, Ro,; satisfies in particular
ko | Q(im) |/
[A(m)| = = |5
50 R()(Zm)
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We recall that Wy(7) is close to the k—branch of the logarithm log(z) + 2ink as |z| tends to
infinity where log(z) denotes the principal branch of the logarithm. Provided that rg g, > 0 is
large enough, we deduce that 7, is close to the quantity
do .
—k—(log(A(m)) + 2imk)
0

for all m € R. From now on, the proof follows similar arguments as the one of Lemma
However, we provide sharp bounds that will have crucial importance later on in the work.

Since e~ %0 grows exponentially as a tends to —oo, we deduce the next bounds for the
quotient
. dp! P 0|4
|,k + a + i6]°P Zp+q:5D p!q!’Tmﬂk‘ ja+ )| ; ; 5
— < : < Dq(l R
m,k m,k

provided that a € (—oo, C'log |Q(im)/Ro(im)|] for a well chosen constant C, Dy > 0 and § > 0
(depending on 0y, ko, k,6p) for all m € R. As a result, we get bounds of the form
79D Rp(im)
Q(im) — T%e~7ko Ry (im)

] < Dy (log [Q(im)/Ro(im)])?

Rotin)
Q(im)

for all 7 € Ly, all m € R.
In the last part of the proof, we provide bounds for 7 on . According to @, provided that
TQ,R, is taken large enough, we get a constant C11 > 0 with

Q(Zm) 6o ,—koT

Ro(im) —T77e > C11

for all 7 € U, all m € R. As a result, the quotient

1

| %((i%)) _ 76pe—Tko

(25) 70 Rp (im) ’ _ ‘RD(im)

: - —| = : ‘ |7|°P
Q(im) — T9e~7ko Ry (im) Ry (im)

remains bounded, for all m € R, all 7 € U.
O
Taking into account @, the proof of Lemma can also be directly applied to the next result.

Lemma 6 Let v; > 0 and let a € C be a complex number. For every £ € I, there exists
Ci(m1,a,€) > 0 such that

(a+ 7)™ Ry(im)
Q(im) — Toe=7ko Ry (im)

g 01(717 a, E)

for allm € R, allT € H.

Remark 4: Observe that the constant € in Lemma [ (also in Lemma [5) depends on rg g,
(see (8))) in such a way that C; — 0 if rg g, — 0.
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3.3 Auxiliary Banach spaces of functions and solution of the auxiliary prob-
lem

Let U be some convex neighborhood of the origin in C, for example ¢« := D(0, R) for some R > 0.
From the assumptions made on the geometry of the problem, one can restrict the domain of
study to a horizontal strip, as in Figure

Let L be a horizontal strip of the form

(26) L={zeC:Re(z) <0,a <Im(z) <f},
with a < 3. Moreover, we assume that U N L # (.

Definition 2 Let p,5,v > 0. The set F({J/ﬁu) consists of all continuous functions (1,m)
h(r,m) defined on U x R, holomorphic on U with respect to the first variable, such that

1) For every m € R, the function T — h(7,m) can be extended analytically to L.

2) For every h € FLVﬁ it holds that

(v:B:1)

14|72
W mllopr = suwp (U fm) 2L exp(gim] — vl iair, m)] < oo.
T€(UUL),meR |T’

The pair (F(Lyﬂju), lw,,0),) s @ complex Banach space.

One has the following result, whose proof is a direct consequence of the definition of the
previous Banach space.

Lemma 7 Let pu, 8,v > 0. Let (1,m) — a(1,m) be a continuous function defined on (UUL) xR,
holomorphic with respect to the first variable on U U L such that

sup a(7,m)|
(T;m)e(UUL) xR

is upper bounded. Then, for every f € F(ﬁﬁu) it holds that (T,m) — a(r,m)f(r,m) belongs to
Fi g » and

la(r,m) f(r,m), < sup la(r,m)| | [[f(m,m)|, :
B, L (r;m)e(UUUL) xR W Bop).L

The next result describes continuous operators regarding the previous Banach space and
(E(B,,u)a ||||(5’“)) (See Annex 1)

Lemma 8 Let > 1 and B,v > 0. For every f € Eg ) and g € F(I;Bu)’ the function ¢(T,m)
defined by

(o]
o(rom) = [~ flm)g(r,m — mr)dm,
—o0
belongs to F(ﬁﬁu)' In addition to this, there exists D1 > 0 such that

(T, m)“(y,ﬁ,u),L <D ”f”(@u) ||g||(1/7/8,;1,),L‘
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Proof Let f € Eg ) and g € F(ﬁﬁvu)' From the definition of the Banach spaces F(ﬁﬁ,#) and
Ep,u) we get

27)  llo(mm)ll g,z

2 oo
= s @l el - o7 [ ) exp(Blm Dl
(r,m)EUUL) xR |T’ —00
#1—|—|7'|2
< 0 S expBfm = | = sl m = )G m, ),
with
1 1 |7

g(r,m,mq) = A+ m)” exp(—pi|ma]) A+ m—mi)F L+ exp(—B|m —ma| + v|7]).

This entails that

* 1
o(r,m)l|, < sup(l+ |m “/
” ( )H( Byu),L mEp( ‘ ’) (

d
- 1+ ]m1|)ﬂ(1 n ‘m — m1|)“ mi HfH(ﬁ“u) HgH(y,IB,u),L

At this point, one can apply Lemma 2.2 in [5] or Lemma 4 in [19] to conclude the result. O

The following Proposition can be proved under minor modifications following analogous
arguments as those in Proposition 5, [I§], or Propositionl [I5]. We give the details of the proof
for a self-contained presentation.

Proposition 1 Let v; > 0, 1o > —1 be real numbers. Let vo > 0 be an integer. We also
consider the function a~, (T), holomorphic on U U L, continuous up to its boundary, such that

1
a < eUUL.
| ’Yl(T)’ — (1+ ’T‘)’Yl T
We assume that v1 > vo +n2 + 1. Then, there exists Dy > 0 which only depends on the values
of the previous parameters, such that

a, (7) /OT(T —5)"s"2 f(s,m)ds

< Do |lf(msm) |,

(v,B,1),L

for every f(r,m) € F(V,B BE In the previous bounds, the integral is performed along a path totally
contained in U U L.

Proof Let f(r,m) € F(ﬁﬁ ) From the definition of the norm, one has

(28)
a, (T) /0 (1 —s)Ps f(s,m)ds

1 2
= sup (L4 mpr

exp(B|lm| —v|T|)
(v,B,1),L TeUUL,meR ‘T|

T 2
fann() [ by e explls) T o) |
0
with X
F(r,s,m) = 7675‘m‘exp(y|s|)‘ |(T — s)Ps"2.

(14 [m[)# 1+ |sf?
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The path of integration relying 0 and 7 is given by the next construction. When 7 € U,
the path is merely given by the segment [0,7]. When 7 € L, take some 71 € U such that
Im(7) = Im(71), then the path is given by the union of the two segment L; = [0,71] and
Ly = [r,7]. The integral in can be parametrized by splitting the integration path as
described above. We show upper bounds in the two following cases:

a) If 7 € U, we are reduced to give upper estimates for

1 2 1 |7 vh
+ |7 o VIT] / € 2h1+l’2(\7'| — h)™dh
7l A+l Jo 1+h

which is bounded by a constant since U is bounded.

b) In the case that 7 € L, the integration along L; implies to give bounds for the next
quantity

1+ ‘7_‘2 ] 1 /|7’1 euh -
e v h™2(|r| — h)™dh
] Tr o TamtUr=h)

for |7| > 1. The previous expression is upper bounded by
2 71
1+ |T| eu(|71|7|7\) 1 |T‘1+V2+n2 / ! 1 th?
7] (L+[r)n o 1+h
which is upper bounded for any value of the parameters involved.

On the other hand, for the integration along Lo, we parametrize Ly by h +— s(h) =
—h + +v/—1Im(7;) on the segment [|Re(71)|, |Re(7)|]. We are reduced to give bounds for
the quantity

L[ 1 ROl exp(v(y/h2 + (Im())?)
RN /lRe(T1)| 14 h? + (Im(m1))?
x (VA2 4 (Im(7))2)"2! x |7 — (=h + V/—1Im(7))|[™dh
for 7 € L. The expression in is upper estimated by

1+ |7]? 1 < dh vot1 "
BRI /0 Ty pe ) I ™

One concludes the proof regarding the assumption made on the parameters.

(29)

a

Lemma 9 Let the auziliary equation be constructed as in Section @ and let k € Z such
that Ly \U # (. Here, Ly, and U stand for the sets of C of Lemmal3. Let B,v,@0 >0 and u > 1.
Then, there exists & > 0 and rq r;, such that if Cy < &y (Cy is the constant in , then for
every € € D(0,€y) the following properties of the map

790 Rp (im)w(T, m, €) 1 o0 , Ay—§4d
He(w(r,m)) == Dir.m) + (@)1 ;e[ /_OO Co(m —mu, €)Ry(imq )=t 00T
T T do1—1 dy ds T
X | =———=— T — )1 s%w(s, my, €)— + A
S J, ¢ 0T B A

0 S

_ 1
D(7,m)
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hold:

1. He : D(0,w) — D(0,w), where D(0,w) stands for the closed disc of radius w in the
Banach space F(f/’“ )

2. For every wi,ws € D(0,w) C FEx it holds that

(v,8,1)’

1
Fe(wr) = He(w2)ll g0, < 5 It —w2ll 0,2, -

Proof Let € € D(0,¢), w € F-*

(n.Bop)" In view of Lemma 4| and Lemma |7| we derive that

790 Rp (im)

(30) Dlr.m) w(T,m)

< Cl HLU(T, m)H(U,B“LL),Lk :
(V’/ga.u')»Lk

In view of Lemma [8 we observe for every £ € I

o0 T d
(31) HT/ Cg(m—ml,e)Rg(iTm)/ (T—s)dé’lflsdlw(s,ml,e)—s
Dlrm) Jo 0 S M w,B.u),Li
TR@(Zm) T dr1—1 d ds
< Dy ) | et [ (= sy (s, ) i
PN D m) Jo s (v,B41) L
and for every 1 < p <dp— 1,
(32) HT/ C’g(m—ml,e)RZ(z’ml)/ (7'—s)dfa1+dl_p—lspw(s,m1,e)ﬁdml
Drm) Jooo 0 5 (v:8,11), Li
TRe(itm) [T do +tdy—p1 ds
< Dy [|Co(m)]| / (1 — s)bateeP=LgPyy(s m, €)—
P Dr.m) Jo S 1180,

for some constant Dy > 0.
Let a € C be a complex number with dist(Lg UU, —a) > 0. From Lemma |§|, for any given
~v1 > 0, we get a constant C1(y1 + 1,a,¢) > 0 with

-
(a4 )M+l

(a+ )" R (im) ' Ci(y1 +1,a,f)
D(r,m) =T W

7Ry(im) ‘ _
D(r,m)

for every ¢ € I, some D3 > 0, provided that 7 € Ly UU.
We apply Lemma m and Proposition |1| to and with 1 > maxger{dy — dy + 1} to

arrive at

(33}3 (im) [T d
Tearm / (r s)d“*lsdlw(s m,€) Sdm < D:C
—_ - ' , M, €)—amq < D3Ci(mi+1,a,£) Dy [Jw(r, m)|| v )
D(r,m) Jo s (.8 L (v,8,1),L
and
(34}% (im) [T d
Tiievm dg1+dg—p—1 s
D(r,m) /0 (1 — s)deatde=p=1gp,(g m, 6)? i L < D3Cy(y1+1,a,€)Ds Hw(T,m)H(Vﬁ’u),Lk .
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On the other hand, in view of (12)), Lemma [7| and the slight diminishing of H we get

1

(35) B

(T, m,€)

< sup Y7yl
(v,B,1),L T€(UULL),meR |D(T> m

for some Cy > 0.

In addition to this, the remark after the proof of Lemma |4 we derive that if the geometry
of the problem is such that rg r, > 0 is large enough, then the constant C7 can be chosen
arbitrary small. In this situation, assume that £, > 0 and ¢y are small enough in such a way
that

1 _ 1
(36) Clw + WD1D2D3 Z GOAZ 6é+d401(’}/1 + 1, a, K) HCEH(BvN) <F(d“)w
lel )

1
+ A + 9y < w.
Z ’ d(yp‘r(de,l 4 dZ _p)w 2§¢ Sw

1<p<d,—1

Then, the application of , , , , , , and to the definition of H.

yields the first part of the proof. For the second part, let wi,ws € D(0,w) C F(ikﬁ )" Then,

analogous estimates as in the first part of the proof guarantee that if C1, ¢y are small enough so
that

1 ‘Adeap’

Ag—b+dy
€ Ci(mi+1,a,0)|C, -y

D1D2Ds

C
1+ (21)172

1
< —.
2
1<p<d;—

then the second statement is attained. We recall that if rg g, > 0 is large enough, then C;
becomes closer to 0.

Proposition 2 Under the hypotheses of Lemma [9, for every w > 0 and ey > 0 there ex-
ists & > 0 such that if Cy < & and ro.r, 1s large enough, then the auziliary equation

17) admits a solution wr, (T,m,€) for every e € D(0,e9) with wr, (T,m,€) € F(ikﬁu) and

oz, (7 m, )l 4,101, < -

Proof In view of Lemma @ for every € € D(0, ¢), the map H, is contractive from D(0,w) into
itself. The fixed point theorem in Banach spaces guarantees the existence of a fixed point for
He, say wr, (7,m,€). The function wy, (7,m,€) belongs to F(iicﬁ,p) for every € € D(0,¢), with
llwr, (T, m, e)H(Vﬁ?M),Lk < w. The definition of H, guarantees that wy, is a solution of , and
also the holomorphy with respect to € in D(0, ). O

4 Second family of analytic solutions of ((17))

We depart from the construction of the main and auxiliary problems described in Section
together with the assumptions made on the elements involved therein. The structure of this
section is similar to that of Section [
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4.1 Geometry of the problem II
We rewrite equation in the form

(37) Dol(r,m)w(r,m,e) = %% Ry (im)w(r, m, €)

Ap—dordg [T ! de1—1 gdo ds
+ o) 1/22/ Co(m —my, €)Ry(imy e < (d“)/ (1 —3) w(s,my, )s

lel
+ Z Ad T /T(T — s)de,1+de—p_1spw(87mlve)ﬁ dmy + (7, m, €),
“’Fd“—Fde— ) ’
1<p<dg 1

with
Do(1,m) = Q(im) — 7°P Rp (im).
The next result describes the geometry of the roots of Dy(r,m). The technique used for

dealing with this case resembles that of [I7]. We provide a detailed proof of the results for the
sake of completeness in a self-contained work.

Lemma 10 There exists d € R and p > 0 such that if the opening of the sector Sq g, in (@ s
small enough, then there exist positive constants My, Mo such that

(38) sup |Da(7,m)]

5p—1 1/
7€(D(0,p)USy) W > MP My 5] D ‘RD(Zm)‘

for every m € R. Here, Sy stands for an unbounded sector of bisecting direction d, and small
opening, i.e. Sq = {1 € C: |arg(t) — d| < n}, for some n > 0.

Proof We factorize the polynomial 7+ Dy(7,m) in the form

op—1

Dy(r,m) = —Rp(im) ] (r — a(m)),

=0

where )
|Q(im)] >50 < < Q(im) | 1 27r€)>
m)=|—=——" exp|v—1]ar — 4+ —1,
qe( ) <|RD(Zm)| p g(RD( ))6D 5D
for every 0 < ¢ < ép — 1 and m € R. We choose small enough p > 0 and S; with small enough
opening satisfying the following properties:

1) There exists a constant M; > 0 such that
(39) |7 = qe(m)| = My (1 +|7])
for every m € R and 7 € S; U D(0, p).

Proof The condition guarantees the existence of p > 0 such that for every 0 < ¢ <
dp — 1 one has |g/(m)| > 2p for all m € R. We observe that the set Up,er{qe(m)bo<i<s,—1
is contained in the union of unbounded sectors with vertex at the origin that do not cover a
punctured neighborhood of the origin, provided that the opening of Sg r,, is small enough.
Condition 1) follows from here. O
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2) There exists a constant My > 0 and 0 < ¢; < §p — 1 such that

(40) |7 = g, (m)| = Mz|ge, (m)]

for every m € R and 7 € S; U D(0, p).

Proof Observe that the previous choice of Sq and p > 0 guarantees that for any fixed
0 < ¢ <dp — 1, the distance from the set {7/qs, (m) : 7 € (S U D(0,p)),m € R} to the
complex number 1 is positive. Therefore, statement 2) holds for some My > 0. O

Taking into account , , and the factorization of Da(7,m), we conclude that

m 1o
[Da(rm)| > [Rp(im) [M{?~ (1 + [r])°2 M <M>

. op—1 1/6 —
(41) > [Rp(im)|M{P ™ Marg 92 (1 + |7[)°P 1

for every 7 € SqU D(0, p) and m € R. The result follows directly from the previous inequality.
(]

Remark 5: Observe from the proof of Lemma [10] that the direction d € R can be chosen such
that —§ <d < 3.

Lemma 11 Let p > 0 and —% < d < T from Lemma |10 Then, there exists C1(0) > 0 such
p 2 2
that
5 e~ TR0 Ro(im)
DZ(Ta m)

’ < C1(0),

for allm € R and 7 € SqU D(0, p).

Proof In view of the choice of d, if the opening of Sy is small enough, there exists Ay > 0 such
that Re(7) > Ay|7| for every 7 € S4. Therefore, the expression

50 60
r _
= sup Agr

— €
>0 (14 7)00~1

.
(. €
T+

sup —7ko

TESY

is bounded from above by a positive constant, say C1.1. In addition to this, we observe that the
same holds for

sup
T€D(0,p)

for some C~'1_2 > 0. Taking into account the previous statements, and Lemma one derives
that for all m € R and 7 € Sy U D(0, p) one has

b e—TkoRo(im)‘ < max{Cy.1,C12} | Ro(im)| — G1(0)
Dorim) | = 25T agyy 8 ik [Rp(im)
for every £ € I. O

Remark 6: In the work, for technical reasons, we need that both constants C'y > 0 introduced
in Lemma {4 (from the geometry of the problem I) and the above constant C1(0) > 0 from
Lemma [L1] (from the geometry of the problem IT) must be chosen small enough (at least strictly
less than 1/2). We explain now how to achieved both constraints. Namely, from the proof of
Lemma M4 together with @, the next two conditions are required :
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A) Condition 1: ]
(log(Rq.r,))’/7Q.Rp
is small (stemming from the bounds on L),
B) Condition 2:
RqQ.ry/TQ.Rp
is small (stemming from the bounds on U). Furthermore, from Lemma and @, ,

the next condition must hold:

C) Condition 3:

Ro Ry 1
1/0p
TQ, D TQvRO

is small.

In order to have both constants C; and C1(0) small, we will need to make rQ,Rp large enough
(as in the problem I) but also rg r, > 0 must be chosen large in a related manner as explained
below.

Indeed, we make the assumption that Rg gr,, is very close to rg r, and that Rg g, is very
close to rq g, in other words the annulus Sg r,, from and Sg g, from @ are very thin.

We assume that

(42) RQ,Ry = 7Q,Rp/10.

In other words, Rg g, (and hence rg g,) is proportional to rg r,, with a small factor of propor-
tionality.
From , we see that Condition 2 above is fulfilled. For the condition 1 above, observe that

(log(Ra,r,)) /ro,rp = (log(1/10) + log(rg,ry))’ /ro.Rp

is small provided that rg g, is taken large enough. In concern with the condition 3, we see that

Rq,rp % 1 ~ "Q,Rp 1 -~ "Q,Rp 1 ~ 10
rga TQRe  TQR (rQrp)'°P CRQR (rQ.rp)P  (rqrp)Y/°P

which is small whenever rg g, is chosen large enough (where the symbol ~ means that the
quantities are comparable).

4.2 Auxiliary Banach spaces of functions and solution of the auxiliary prob-
lem IT

The structure and results of this section is analogous to that of Section[3.3] We omit unnecessary
repetitions. Let d € R with —F < d < 7, and Sy be an infinite sector with bisecting direction
d. We also choose p > 0.

Definition 3 Let u, 5,v > 0. We write F(Cflﬁ ) for the set of all continuous functions (1, m)

h(t,m) defined on (SqUD(0, p)) xR, holomorphic with respect to the first variable on SqUD(0, p)
and such that

1+ 7|2
W mlppmar= s (14 ) e Bim] — vl hgr, m)]| < co.

TE€(SqUD(0,p)),meER |7—|

The pair (F(‘f,ﬂ’#), l(,8,),4) 5 @ complex Banach space.
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Lemma 12 Let pu,5,v > 0. Let (1,m) +— a(1,m) be a continuous function defined on (Sq U
D(0,p)) x R, holomorphic with respect to the first variable on SqU D(0, p) such that

sup la(T,m)],
(1,m)€(SquUD(0,p)) xR

s upper bounded. Then, for every f € F(Cf,ﬁu) it holds that (1, m) — a(r,m)f(r,m) belongs to
F(Cll/ﬁu) , and

a(T, m)f(7-7m)”(y”8“u)’d < < sup la(T, m)|) | f (T, m)H(l/,ﬁ,u),d‘
(1,m)€(SquUD(0,p)) xR

The proof of the next lemma follows the same lines as that of Lemma |8, so its proof is
omitted.

Lemma 13 Let p > 1 and B,v > 0. For every f € Epg,) and g € F(dyﬁ 1) the function ¢(1,m)
defined by

(o9}
¢(,m) 12/ fma)g(r,m —mq)dmy
—0o0
belongs to F(”ll/ﬁ ) Moreover, there exists D1 > 0 such that
(M)l gm0 < Drllflics 19160,
Lemma 14 Let v > 0, 72,73 be real numbers such that
(43) Y+1>0, 13+2>0, 12+y3+2>0, m>3+2

Let f € F(Cflﬁu) and a~, (T, m) continuous on (Sq U D(0,p)) X R, holomorphic w.r.t 7 on Sy U
D(0, p) such that

1
(44) |ay, (T,m)] < aAx
for all 7 € SqUD(0,p), m € R.
Then, the function
(45) D (1,m) := ay, (T, m)T/ (1 — 5)7257% f(s5,m)ds
0

belongs to F(Ull/b’u)' In addition to this, there exists a constant Dy > 0 such that
(46) 15 (e 500 < Dt I -

Proof We give details to clarify the conditions declared in the statement of the result.
Let f € F(”lllﬁ )" We write ®¢(7,m) in terms of the parametrization s = 7u for 0 < u < 1:

1
(47) O ¢(1,m) = a, (1, m)7'72+73+2/ (1 —u)”?u” f(Tu, m)du
0

for 7 € S4UD(0,p) and m € R. As 72 + 73 + 2 > 0 and the regularity conditions on a, (7, m)
and f(7,m) we guarantee that ®¢(7,m) is holomorphic on Sq U D(0, p) w.r.t 7, continuous on
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the closure of the previous set, and continuous with respect to m € R. In addition to this, for
all 7 € D(0, p) and m € R one has

1+’ TR exp(v|r] = Blm|)(1 + [m])~"

[f(r,m)| < F(mm)ll g0
Therefore, taking into account the representation and in view of Beta function formula
(see [1], Appendix B3) one has

['(y2 + 1)I'(y3 +2)

Pr(r,m)| <
(7. m) L(y2 +73+3)

@y (rym)[ L F (7, m) 8,10y,

(48) xosup [P exp(vlul — Blml[)(1 + [m])7H
u€D(0,p),meR

for all 7 € D(0,p), m € R.

Let 7 € Sg x R. From the fact that f € F one derives

(v,B,1)?

7| g
¢ (m,m)| < F(Tom)lyp.p).a W(l + |ml) ﬂ/o (I7| = R)2R3* exp(vh — Bm|)dh
for all 7 € Sy, all m € R.
Let B(x) be defined by
(49) B(x) = / exp(vh) W3 (2 — h)72dh
0

for > 0. An analogous argument as in the proof Proposition 1 [18] yields
B(x) < Kox3tte?® 2 >1,

for some Ky > 0. The previous estimation, together with the assumptions in (43) yield the
conclusion. O

Lemma 15 Let the auziliary equation (.) be constructed as described in Sectzon@ Let B,v,w >
0 and p > 1 and assume there exist €y, &y, 7Q,Rp > 0 such that Cy < 51/1 (Cy is the constant in

and rQ.Rp,TQ,Ry > 0 are chosen in accordance with the conditions described in Remark 6 .
Then, if one defines for every e € D(0,€p) the operator

(50)
—7ko ;
-  5e TRy (im) Ap—8p+d
Halelrm) = e Ut )+ Z/ Colm =, el
T ! do1—1 . dp ds T

X T —8)%1 s w(s, mq, + A
Bt Jy Gt B At )
X /T(T — g)deatdemp=lgp,(s my e)@ dmy + #1/1(7 m,e€)
0 s Do(r,m) " 77

one has:



25

1. H.: D(0,w) — D(0,w), where D(0,w) stands for the closed disc of radius @ in F(Cll/ﬁ“).

2. For every wi,ws € D(0,w) C F(Cf/,Bu)f one has

‘ﬁww%m

iy = 2190 T2l

Proof

Let € € D(0,¢p), w € F¢ (.5, u) We first observe from Lemma Lemma 13| and Lemma
together with the assumptions (|4} and ( . ) that for all £ € I one has

(51) H / Crom =, Refim) 0L [ =9yt s, 0%
o 0

Dy(1,m S 1 (w,8.m)
(Dbt Ry(im) 1
<|Celm, )l g0 e S‘é% Ro(i )’ 20— 7,1/5D Dy,
m 1 2"Q,Rp

and
(52)
o T d
H/ Cg(m—ml,e)Rg(iml)eA"_‘S”d@T/ (T—s)d"'vﬁde_p_lspw(s,ml,e)—s
—00 DQ(T7 m) 0 § (Vzﬁnu‘)7d
Ry(im) 1
< ||Cp(m, € Af Ortde oy Dyw.
|| Z( )H(ﬁ mGII?& RD( ) M(SD 1M27-1/6D 4

Taking into account Lemma [11| and Lemma [12| one obtains that

< C1(0) [|w(T,m) |1 6,11),a -
(v,B,1),d

for every ¢ € I. Also, one gets from , Lemma (12| and that

7907k Ry (im)

(53) Dao(7,m)

w(T,m)

1

< 1 &
< sup —— | Cy
WBp)d  \re(SaUD(0,p)),mer | D2(Tm)]

1 1

54
(54) = Witpc [Ro (m)] A0z

1/5D &y = Caly.

We choose small enough €9 > 0 and &, > 0, and large enough rg r,,7Qr, > 0 chosen
according to Remark 6, such that for all £ € T

1 1

TSV

Ry(im)
RD (zm)

(55) C1(0)w + Dy Cysup

meR

1 ~
+ Z | Adypl w+ C28y < w.
\<pd1 I'(de1 + de — p)
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The first part of the proof follows from this choice and , , together with .
For the second part of the proof, let wi,ws € D(0,w) C F(‘lyﬁ#). Under the assumption that
eo > 0, & > 0 are small enough, and rg r,, > 0 is chosen according to the facts described in
Remark 6 (and therefore C1(0) is close to zero) such that

1 1

Dy Cy sup
(2m)1/2 MfDilMgrclg/f;DD ; meR

Ry(im)

EAZ —0p+dy
RD (zm)

(56) C1(0) +

IN
l\').\ —

1 1
I'(dea) 13%12—1 “P'T(de +de —p)

Then, analogous estimates as before yield the second statement of the result. O

The proof of the next result is analogous to that of Proposition

Proposition 3 Under the hypotheses of Lemma then the auxiliary equation admits a
solution wq(T,m,€) for every e € D(0,€y) with wg(T,m,€) € F(liﬂu) and ||wa(T,m,€)ll, 5,0 <
w.

5 Analytic solutions of the main problem

In this section, we construct analytic solutions of the main problem . Regarding Section
and Section [ two different situations arise in this respect, which are described in the following
subsections.

5.1 First family of analytic solutions of the main problem

Let be the main problem under study, whose elements are detailed in Section [2. We depart
from the situation described in Section |3 and consider the auxiliary problem . Following
the results achieved in Section [3| one can guarantee the existence of a solution of ([17)), say
w(1,m,€), which is defined in D(0, p) x R x D(0, €y) for some p > 0 and ¢y > 0. Let g,v,w >0
and p > 1. As a result of Proposition |2 such solution can be extended to wy (7, m,€), defined
in (YUL) xR x D(0,€), where U = D(0, p) and L is a horizontal strip contained in one of the
strip-like domains Ly related to Lambert W function. This extension satisfies that there exists
C,, > 0 with

1 7]
(14 [m)# 1+ |72

(57) wi(r,m, )| < C. exp(—Blm| + v|7]),

forall e UUL, m € R and € € D(0,€p). At this point, we define £, as the following path,
contained in YU L: L, = L1+ L1 2, where Ly, 1 stands for the segment [0, rLeﬁeL], for some
/2 < 0 < 37/2 and r, < p such that rLe‘/ij € L; and L 2 is a horizontal ray departing
from rreY~1%2. More precisely, L1, 2 can be parametrized by [—sg, +00) 3 s + —s + y/—1h, for
some fixed sg,h € R with sy < 0 and h # 0.

Proposition 4 In the previous situation, let 0 < ' < 8, and let T and £ be bounded sectors
in C* with € C D(0,¢9) and T C D(0,ry), for some small enough r+ > 0 and such that there
exists A > 0 with

W—A,

(58) |arg(et) — arg(u)| < 5
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for everye e £, t €T and allu € L;,. Then, the expression

1 > w o du
59 13 = —7 w e —d
(59) u(t, z,€) (2r)1/2 /_Oo /LL L(u,m,e)e” e —dm

defines a holomorphic function on T x Hg x £, where the set Hg: stands for the horizontal strip
Hg ={z € C:|Im(z)] < 8'}.

Proof Bearing in mind , and the parametrization of Ly, 1 [0,71] 3 p — pexp(v/—101), one
has that for every (t,z,€) € T x Hg x &

oo 1
< (Im(z)|-8)|m|
C, (/_ a ‘m’)ue dm

" 71 _r 0; — d
X exp(v cos arg(te .
/0 1+ 2 p(vp El (O g(te)))dp

e uw o du
(60) / / wr(u,m,e)e” e —dm
—ooJLr 1 U

If r7 > 0 is small enough, then in view of , it holds that
veorT < cos(0r — arg(te)),

for every e € £ and t € T. Therefore, one has
o o o q 1
exp(vp — — cos(0r, — arg(te)))dp < (e exp(p(v — — cos(0r, — arg(te)))dp
0 0

1+ p? |et| |et|
o
1
< dp < 0.
/0 1+ p?

The definition of Hpg yields

oo 1
= (Im@)-p)m|
(61) /OO i+ |m|)“€ dm < oo.

On the other hand, we parametrize Ly, 2 by [—sg,00) 3 s — —s + y/—1h, for some constant
h € R, and where sy = 71, cos(0) < 0. We have
du

00 o B 0o 1 I B
62 / / wr,(u,m, e)e” e —dm| < C, (/ = (im() B)mdm>
(62 ‘ ey, ) u o (L D"

. /oo - ( AT (V  cos(arctan(~h/s) - arg(te)))) s

o L+ 52+ A2 |et|

for some C,, > 0. Taking into account , we derive that if r+ > 0 is small enough then
cos(arctan(—h/s) — arg(te))
|et]

for all s € [—sp,00),t €T and € € £ C D(0,¢€p). The bound in also holds in this situation.
Moreover, the last integral in can be upper bounded by

/00 ;e p(—Ag\/52+h2)ds<oo.

X
_sp L+ 82+ h?

—v>A/A0>0

|

Remark 7: Observe that in order that holds, the arguments of et, for all t € T and € € £
should be close enough to direction w. This comes as a consequence of the manner that Ly,
approaches infinity following horizontal strips with negative real part.
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Proposition 5 Under the assumptions of Proposition |4}, the function u(t,z,€) constructed in
Proposition which is holomorphic on T x Hg x &, is a solution of @) inT x Hg x E.

Proof It is a direct consequence of the properties of Fourier and the Laplace-like transform and
Proposition [ O

5.2 Second family of analytic solutions of the main problem

We now depart from the assumptions made in Section [l The results in that section guarantee
that for well chosen d € (—n/2,7/2) as described in Lemma [10} if the opening of the sector Sy
is small enough, a solution of exists, say wq(T,m, €), defined in (D(0, p) USz) x R x D(0, ),
for some p > 0. In addition to this, there exists C,, > 0 such that

1 7]
(14 [m))# 1+ |72

(63) jwa(r,m, )| < C,, exp(—pB|m| + v|r]),

for all 7 € D(0,p) U Sy, m € R and € € D(0, ¢p).

Proposition 6 Let 0 < 5/ < 3, and let T and £ be bounded sectors in C* with £ C D(0, €)
and T C D(0,r7), for some small enough r7 > 0 and such that there exists A > 0 with

(64) |arg(et) — d| < g — A,

for every e € £ and t € T. Then, the expression

1 > _udu izm
u(t,z,€) = W/OO ([de(u,m,e)e o ) e”*™dm

defines a holomorphic function on T x Hg x £. Here, vq stands for the half line [0, oo)eﬁd.

Proof

We observe that the inner integral in the definition of u(t, z, €) is the classical Laplace trans-
form along direction d. The result is a direct consequence of the condition and . As a
matter of fact, one has

(65) ‘ / ( / wd(u,m,e)e?ﬁ) d“eizmdm‘ <C, < / 1e<1m<z)|a>|m|dm>
0 7d u —00 (1 + |m‘)#

< 1 cos(d — arg(te))
X /0 mexp(s(y — ] ))ds < o0,

for every t € T, e € £ and z € Hy, for any fixed 0 < 5/ < S. O

Proposition 7 Under the assumptions of Pmposition@ the function u(t, z,€), constructed in
Proposition@ which is holomorphic on T x Hg x &, is a solution of @) inT x Hg x E.

Proof It is a direct consequence of the properties of Fourier transform, and Laplace transform,
together with Proposition [f] when taking £ = 74 in Lemma O
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6 Asymptotic results on the analytic solutions of the main prob-
lem

This section is devoted to the study of the asymptotic behavior of the analytic solution of
with respect to the perturbation parameter, near the origin. In Section [5.1]and Section [5.2], we
have constructed two different families of analytic solutions of . One may be tempted to
search for asymptotic results independently, i.e. considering analytic solutions as constructed in
Section [5.1] and in a parallel way treat the asymptotic solutions of the analytic ones constructed
in Section This independent approach is not feasible, due to geometric restrictions on the
problem.

Indeed, regarding the condition one realizes that the argument of et differs from the
arguments of the elements in £, less than 7/2. Taking into account that £y is contained in
the left half-plane, direction 6 = 0 is not attained by ET = {et : € € £,t € T}, and therefore,
there is some direction in the complex plane not attained by £. The conclusion is that it is not
possible to cover a punctured disc at the origin by means of sectors only satisfying condition
[©3)-

On the other hand, the fact that any direction of integration d associated to a sector £
satisfies that —7/2 < d < 7/2, together with implies the existence of some directions which
can not be attained. Any finite set of sectors under this condition can not conform a good
covering of C* (see Definition [4).

Let us consider the main problem under study , under the assumptions and construction
of its elements described in Section [21

In order to describe the asymptotic behavior of the analytic solutions of the main problem
with respect to the perturbation parameter near the origin, we need to introduce the concept of
good covering and family associated to a good covering.

Definition 4 Let ¢ > 2 be an integer. A set (Ep)o<p<c—1 of finite open sectors with vertex at
the origin is said to conform a good covering of C* if the following properties hold:

e E,NEp1 £ 0, for all0 < p < —1. We identify the indices s and 0.
e The intersection of three different sectors of (Ep)o<p<c—1 is empty.

. U;;%)Sp =U\ {0}, where U stands for a neighborhood of the origin in C.

Definition 5 Let T be a bounded sector with vertez at the origin, T C D(0,rr). Let (Ep)o<p<c—1
be a good covering in C*. We assume that the set {0,...,¢ — 1} is the union of two nonempty
sets with empty intersection, say J1 and Ja. For every py € Ji let Ly, be a strip of the form (@
which is contained in one of the strip-like domains Ly, constructed in Lemma[3 and described in
Definition ' and for every py € Jy let Sq,, be an infinite sector with vertex at the origin and
bisecting direction d,, for some d,, € (—n/2,m/2) and small opening, satisfying the constraints

and @) We say that the set {T, (Ep)o<p<s—1s (Lpy )preis (Sap, Jpoets b is admissible if the
following conditions hold:

e For all py € Jq, there exists A > 0 with
(66) larg(et) — arg(u)| < g — A,

for everyt € T, e € &, and all u belonging to a path Ly, C L, UU, which might depend
ont and e.
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o For all po € Jo, there exists A > 0 such that
T
(67 Janglet) — | < T A,

forallt € T, € € &,, and some &, € R, which might depend on t and €, such that
€§P2\/_71 € Sdp

Theorem 1 Let {T,(Ep)o<p<s—1, (Lpi)presis (Say, )psesn} be an admissible set. For all py €
J1 the function uy, (t,z,€), as constructed in Proposition |4 I for L = L, and &€ = &, is a
holomorphic function in T x Hg x &, for all 0 < ' < B. For all py € Jo the function
Up, (t, 2,€), as constructed in Proposition @fm" d=d,, and £ = &,,, is a holomorphic function
inT x Hg x &,, for all0 < ' < p.

Moreover, for every p,q € {0,...,¢ — 1}, with p # q and such that E, N E; # 0, there exist
C,D > 0 such that

D
(63) sup gt 216) ~ gt 2,6)| < Cexp (7 )
teT ,z€Hg le]

foralle € E,NE,.

Proof The first part of the proof has been checked in Proposition [5] and Proposition [7], respec-
tively. We give proof for regarding three different possible frameworks.

Case (A): p,q € J;.

Let ¢ € & N &;. Then, the integration path L, can be split as L, 1 + Lr, 2, where
Lr,1 = [0,7L, exp(F@L )] and L, 2 is a horlzontal ray contained in L,, departing from
L, exp(yv/—10 1,) With decreasing real part. Both paths are detailed in the proof of Prop081t10nl
We proceed analogously with £, = £r,1 + £, 2. Taking into account that the function w is
holomorphic with respect to its ﬁrst variable in D(0, p), one can perform a deformation path
which transforms the integral along £, 1 —£Lp,, 1 as the integral along a regular arc C}, ; contained
in {7 € C:Re(r) <0} N D(0,p) joining the points rr, exp(v/—10r,) and rr, exp(v/—10z,) (see
Figure [4] left).

One has

(69) up(t, z, 6) - uq(t, Z, 6) =L +1—1I,

where
1 > - izmdu
(70) Il:(271)1/2/ /ﬁ wr, (u,m,e)e” e ;dm,
_ L2

B dud
Ih = 1/2 . umeeete m,

/ / ) dud
I3 = wr, (u,m,€)e” @ dm,
27‘(’ 1/2 EL 2 a u ’

for every t € T, z € Hg. We first give upper bounds for |I;|, which can be also applied to |I3|.
We observe from that

C 0 1
D o< Ge _ b (Ime)-8)m]
(7 ) | 1‘ = (27T>1/2 </_Oo (1 + ’m‘)ue dm

. /°° I R ( I (,,  cos(arctan(—h/s) — arg(te)))) n

_so L+ 82+ h2 |et|
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Here, we have used the parametrization of the path Ly, o in the proof of Proposition @ From

, we know that

cos(arctan(—h/s) — arg(te)) > rr
for 77 > 0 small enough, for all s € [—sg, +00),t € T, € € £, N E;. We deduce that

(72) rm<cw2/ exp(v/s? - R (v s<cw2/ exp(V/s? + B2 (— L ))ds

2|et|

provided that |et| < 5T. We deduce that

(73) || <cw2/ exp! 32+h2(—2|1|))ds
.
1 —+00
<Cus [/ exp(V/s + hQ(—2’1|))ds +/ exp(V/s + h2(—2|1|))ds}
—S0 € 1 €

<Cus [/_Zoexp( “")dw/ . ““)ds]:cw,g [eXp( 2’?’|)(1+80)+2|e|exp( 2’1’)}

This entails that

5 D
(74) 11| < Clexp <_!|1> ,
€
for some C’l, Dy > 0. The same argument can be applied to arrive at
5 D
(75) I3] < Csexp <—’T’> ,
€

for some C’g, 153 > 0.

Let us consider . The continuity of Cy, yields the existence of dc > 0 such that the distance
dist(Cpq,0) > do > 0. Let [s1, s2] 3 5+ h(s) be a parametrization of C,,. By construction of
the path Cp 4, we have in particular that

cos(arg(h(s)) — arg(et)) > rr

for all s € [s1, s2], provided that r is small enough. In view of , one gets

+oo
1) 181 = i ([ e ()] - Bl

(2 —oo (L4 |m[)r

[ eptelits)] — T cos(arg (i) — arg(et) I s) s

1+ |h(s)]? et
52
<C max h’ /ex h d<C’ / exp(|h(s _T ds
2 W) [ esph(s)| (v = 70)ds < o [~ exph(s)(—70)
~ d
< C.1(s2 Sl)exp(—fo)
2|e]

provided that |et| < ZT.
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We conclude that
R D
(77) |I| < Cyexp <—’€|2> ,

for some C’g, ﬁg > 0.

The statement follows from , and applied to (69)).

Case (B): p,q € Jo.

Let € € £, N &;. The integration path v, is written as vy 1 + vp,2, where vz, 1 is the segment
[0, rp,q]eﬁdp, for some 0 < 1,4 < p, and 7, 2 stands for the half line [rp 4, oo)eﬁdp. The path
74 can be divided into analogous parts, namely 74 = 74,1 + 7¢,2. The function w is holomorphic
with respect to its first variable in D(0,p). Therefore, the integration with respect to that
variable in 7,1 — 7p2 can be deformed as the integral in CN’p,q, where C~'p7q is the arc of circle
joining the points rpvqeﬁdp and rpyqe\/jldq (see Figure [4f center).

One has
(78) up(t, z,€) —ug(t, z,€) = L+ -1,
for
. 1 o0 w o dU
(79) I = / / wa, (u, m, €)e” e’ —dm
(271')1/2 - Vp,2

B mdu
L= 1/2 (u,m,€)e” el ;dm,

Ij=——— wq (u,m,e)e” e —dm,
3 (27T)1/2 /;OO /YqY2 dq( ) u
for every t € T, z € Hg. It holds

- C., o0 1 _ <1 cos(d, — arg(te))
file Cuw b iIme)-)im| / _ cos(dy .
L] < (2m)12 (/_OO i+ ’mD#e dm 1 p exp|s|v ] ds

The choice of an admissible set (see ) guarantees that

cos(d, — arg(te)) > r1

for small enough r7 > 0. Hence,

I rr
(80) || < ng/ exp(s(v — @))ds
Tp,q

~ oo sro ~ oo s ~ Tpq
<C, 2/ exp(— )ds < ng/ exp(—=—)ds = C,, 22|e| exp(—==1)
2) et 2) 2l ’ 20
p,q p,q
provided that |et| < 5Z. The same bounds apply for Is.
Finally, we provide upper estimates for |I2| as follows:

. C o 1 r
< 2w = J(Im()-B)m| _"pa
(81) 1%l = 5 50 (/Oo P dm T exp(vrp,q)

d 0 — t
X / ¢ exp <_,rp7q COS( arg(e ))) de.
ay

|et]
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Under the constraint , we know that
cos(0 — arg(te)) > r1

for some small 77 > 0, all 8 € (dp, d,;). We conclude that

. . D
(82) || < Cs exp <—’T> ,
€

for some C’g,, Ds > 0.

Case (C): pe Jyand g € Ji.

This case is equivalent to that in which p € J; and ¢ € Ja, and can be reduced to cases
(A) and (B). Indeed, let € € £, N &, and consider the splitting of the path ~, as the sum of
Yp,1 + Vp,2, Where v, o resembles the corresponding path of Case (B), departing from some point
rpge¥ 1% with 0 < r,, < p and direction d,, to infinity, and 7, is the segment [0, 7, 4]e¥ 1.
The path Ly, is written as the sum of L, 1 + L, 2, where Ly, 2 stands for the horizontal ray
contained in L,, having rp,qeﬁo% as its endpoint, for some 7/2 < 6, < 3m/2. The path L1
is the segment joining the origin and rp7qeﬁ9Lq. The fact that w is holomorphic on D(0, p),
the integral along the path v,1 — £, 1 allows to deform the path as C’l + C’z, where C’l is
an arc of circle joining rpvqe\iﬁdp and some point rp7qeﬁep € U (see Section , for some
0, € (r/2,3w/2). The path C3 is a finite path contained in ¢/, which avoids 0, is contained in
the left half-plane, and with endpoints rp,qeﬁep and rp7qeﬁ9Lq. This path can be omitted in
the splitting in the case that 6, = 0r,. Figure {4 (right) illustrates an example of this splitting.
Observe that the difference of the solutions can be written in the form

up(t, z,€) — ug(t, z,€) = Iy + Iy — I,

63 h=cmn [ [ wnlumae bty
= — wq, (u, m,€)e” e —dm,
1 (27.[.)1/2 o0 Sy d:ﬂ u

N

1 &0 w oo d
I, = 12/ / w(u,m,e)e_ée”m—udm,
2m)/2 oo Jer 4, u
~ 1 o0 u o du
I3 = / / wr, (u,m,e)e e —dm,
(2m)1/2 J_ Lo u

for every t € T, z € Hg. The expression |I;| can be estimated as || (see Case (B)). The
expression |I»| can be estimated in the same way as |I5| (see Case (A)) together with |I;| (see
Case (B)). Finally, |I3] is upper bounded in the same way as |I1| (see Case (A)). This entails

that holds.

|

The next cohomological result has been widely applied in the version of functional spaces
with coeflicients in a Banach space to guarantee the existence of a common asymptotic expan-
sion related to the analytic solutions, with respect to the perturbation parameter. Here, the
asymptotic behavior is preserved whereas summability results can not be attained, as it has
been mentioned above. The classical Ramis-Sibuya theorem can be found in [1], p. 121 and [10],
Lemma XI-2-6.
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Figure 4: Example of the deformation of paths in Case (A) (left) Case (B) (center) and Case
(C) (right)

Theorem 2 (RS) Let (E,|-||g) be a Banach space over C, and let (Ep)o<p<c—1 be a good cov-
ering in C*. For every 0 < p < ¢ —1, let G, : £, — E be a holomorphic function, and define
O, := Gpi1 — Gy defined on Zy = E, N Epi1 (with the conventions Gy, == Gy and &, := &)). We
assume that

e The function Gp(e) is bounded for e € &, approaching the origin of C for every0 < p < ¢—1.

e For all 0 < p < ¢ — 1, the function ©y(€) is exponentially flat in Z,, i.e. there exist
Cp, Dp > 0 such that

_Dp
||@p(€)||E S Cpe lel

Then, there exists a common formal power series G(e) = Y >0 Hn€e™ € E[[€]] which satisfies that

G is the common Gevrey asymptotic expansion of order 1 of the function Gy, for all0 <p <¢—1
on &,. This means that for every 0 < p < ¢ —1 there exist Ay, B, > 0 such that

S AP(BP)NNWE‘N?
E

for every N > 1 and € € &,.

Let E be the banach space of holomorphic and bounded functions defined on 7 x Hg, for
some fixed 0 < 8’ < 8. As a consequence of (RS) Theorem and Theorem [1f we conclude the
following:

Theorem 3 Under the assumptions of Theorem[1}, there exists a formal power series

(84) it 5e) = 3 Halt, z)% € E[[¢]

n>0
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which is the common asymptotic expansion of the solution of (@ up(t, z,€) of Gevrey order 1
in &y, for every 0 < p < ¢ — 1, when considering u, as a function on &,, with values in E.

Proof Let {u,(t, z, €) Jo<p<c—1 be the family of solutions of constructed in Theorem |1| For
all 0 <p <¢—1, we put Gy(e€) := (t, 2) = up(t, 2, €), which defines a holomorphic and bounded
function defined in &, with values in E, fixed above. We observe that entails that for all
0 < p << —1, the difference ©, := G,1 — Gy, is exponentially flat in Z, := £, N &,41. Theorem
(RS) can be applied to guarantee the existence of a formal power series G(e) € E[[¢]], which is
the common Gevrey asymptotic expansion of uy(t, z,€) in &, for all0 < p < ¢—1. We conclude
the result by putting 4 := G.

Od

7 Annex I: Fourier transform and related properties

In this section, we recall the definition of inverse Fourier transform, together with some algebraic
properties held when applied on the elements of certain Banach spaces of functions of exponential
decay at infinity, introduced in [I7], and successfully applied in previous works by the authors.

Definition 6 Let 3, € R. We consider the vector space Eg ) of continuous functions h :
R — C satisfying

[P(m)ll 1) = 51;%(1 + [m|)"* exp(Blm|)|h(m)| < oo.

The pair (E(g ), ||ll(g,)) is @ Banach space.

We refer to [17] for further details on the proof of the next properties satisfied by inverse
Fourier transform acting on the elements of the previous Banach space.

Definition 7 Let 8 > 0 and p > 1. Given f € Eg ), the inverse Fourier transform of f is
defined by

F () = (273)1/2 /_Oo f(m) exp(izm)dm, x €R.
The domain of definition of F~1(f) can be extended to the set
Hg/ = {Z eC: |Im(z)| < ,3/},

for any 0 < 8/ < B, providing an analytic and bounded function on Hg. Moreover, the following
properties hold:

e Let ¢ be given by m — @(m) = imf(m). Then, ¢ € Eg,_1) and it holds that the function
0, FL(f) coincides with F~1(p), in Hg.

e Let g € Eg, and consider the convolution product of f and g, namely
zp(m)—l/oof(m—m)(m)dm m e R
T ez ) 1)glmi 1s :

Then ¢ € Eg,,), and it holds that F () coincides with F~1(f) - F(g) in Hg, with -
being the usual product.
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Figure 5: Branches of Lambert W function

8 Annex II: On Lambert W function

In this section, we provide some information of Lambert W function to be used in the work. We
only focus on the elements used in the present study, and refer to [4] and the references therein
for further details.

Lambert W function is defined as the complex function satisfying

W(z)e") = 2.

Lambert W function turns out to be a multivalued function, partitioning the w = W(z) plane
into an infinite countable number of regions, corresponding to each branch of the function. Each
of the branches of Lambert W function is denoted by Wy, for k € Z. It holds that Wy(z), the
principal branch of Lambert W function is defined in C \ (—oo, —e~!] whereas W},(z) for k # 0,
displays a branch cut along the negative real axis, and is defined in C\ (—o00,0]. The curves
defining the boundary of the different branches, as curves in R? are given by

{(—tcot(t),t) e R*: -7 <t < 7}

for the principal branch. The curve separating W7 and W_; is the half line (—oo, —1], and all
the other branches are distinguished by the curves

{(~tcot(t),t) € R? : 2kw < £t < (2k + 1)7}, kez\{0}

The image of each branches of Lambert W function and the curves separating the different
branches are shown in Figure

Each branch as described above is a holomorphic bijective map, when restricted to the
domains described above.
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