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Abstract: A non-destructive methodology based on Fourier Transformed Infrared 

Spectroscopy (FTIR) is proposed in this research to estimate the age of documents of 

different ages. Due the variability in the samples caused by their different chemical 

compositions, chemometric approaches were proposed to build one unique regression 

model able to determine the age of the paper regardless of its composition. PLS models 

were built employing Generalized Least Squares Weighting (GLSW) and Orthogonal 

Least Squares (OLS) filters to reduce the variability of samples from the same year. 

Afterwards, sparse PLS, which is an extension of the PLS model including a variable 

selection step, was applied to compare its performance with the preprocessing filters. All 

techniques proposed were compared to the initial PLS models, showing the potential of 

the chemometric approaches applied to FTIR data to estimate the age of unknown 

documents. 
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1. Introduction 

Document dating is still a major challenge in forensic document examination field 

[1]. Not only the variety of inks and papers, but also the mechanisms of degradation are 

some of the issues that make the study of the aging process a very complex topic. 

Although a number of research groups have studied the ink aging process, document 

dating focused on the paper aging process is still open for the development of new 

methodologies [2]. 

Paper samples are very complex mixtures. Although, the major compound in 

paper is cellulose, inorganic fillers are added during the paper manufacturing to provide 

proper characteristics such as whiteness, brightness and texture. Among the common 

inorganic compounds found in paper composition, calcium carbonate (CaCO3) and 

kaolinite (Si2Al2O5(OH)4) are the most common. Cellulose is a linear polymer mostly 

linked by β-1,4-glycosidic bonds. Due to its ability to aggregate and form highly structural 

entities its Degree of Polymerization (DP) may be defined. This is a parameter that 

measures uniformity, depending both on the vegetable fiber from which it originated and 

also changes over the time [3]. 

Overall, paper behavior over time can be very difficult to predict. During the paper 

aging process, several structural changes occur, including degradation of carbohydrates, 

cellulose, degradation by biological agents and oxidations. Evaluating those processes, 

including the variability in paper composition and storage conditions, certainly poses a 

challenge to the field of document analysis [3]. Cellulose being one of the major 

compounds in paper manufacturing means that there is a good deal of research in the 

literature employing different methods to evaluate cellulose degradation over time. 

Those studies are extremely informative and important for document date estimation. 

Schedl and coworkers proposed a methodology employing mass spectrometry to 

quantify 2,5-dihydroxyacetophenone (DHAP) chromophore in cellulose samples and 

documents both artificially and naturally aged [4]. The authors used factorial design to 

evaluate how different conditions influenced the paper composition, using the 

concentration of DHAP as criteria to monitor paper aging under different temperatures, 

humidity, and iron ions presence. Preliminary works were developed in order to evaluate 

the kinetics of the reactions occurring in paper over time [5,6]. Those studies established 

a relationship between artificial and natural aging processes. They reported different 

behavior in the degree of cellulose polymerization when factors such as temperature and 

acidity were modified. Other groups employed different analytical techniques in order to 

monitor cellulose DP as well as other inorganic compounds present in paper [[7], [8], [9]]. 



Due to the added value of using non-destructive analysis to maintain document 

integrity, vibrational spectroscopy, such as infrared, has become seen as an appropriate 

analytical approach [10]. Ali and coworkers [11] evaluated the potential of Near and 

Middle Infrared (NIR and MIR, respectively) spectroscopy for dating artificially aged 

papers. Nine different papers were analyzed, in which spectral comparison and ratio 

between characteristic bands were identified and evaluated to monitor the changes in 

cellulose crystallinity over time. The authors also stated that NIR spectroscopy was able 

to differentiate paper from different sources in their “as-received” state. 

Hajji and coworkers employed MIR spectroscopy, X-ray diffraction, and energy 

dispersive X-ray fluorescence to evaluate artificially aged documents. They compared 

the results with restored documents from different centuries, which had been stored 

under extreme conditions. Although the research was not in a forensic context, the 

analysis of the documents' spectral features under different conditions allowed the 

authors to identify changes in the paper composition and the storage conditions [7]. 

Trafela and coworkers [12] employed MIR spectroscopy and Partial Least 

Squares Regression in order to date and quantify the degree of polymerization of the 

cellulose, pH, ash, and lignin content in paper samples dated from 1850 to 2007. The 

authors commented on the difference in paper composition of documents pre-1850 and 

post-1850, making it necessary to build a different model for each period. For the age 

estimation models, the authors achieved standard error of prediction values of 8.6 years 

for documents pre and post 1850. 

Some of the works reported changes in the degree of the polymerization of 

cellulose, and several others mentioned degradation processes that could be identified 

related to the age of the paper [3,13]. In some cases, the decrease in the magnitude of 

signal at 1425 cm−1, 1370 cm−1, and 900 cm−1 in the MIR spectral region were 

identified and related to the cellulose crystallinity [7]. The decrease of intensity in the 

absorption bands at 1010 cm−1 and 1420 cm−1, and the 1086/1096 cm−1 ratio were 

also associated with the paper degradation [14]. In fact, the majority of works dealing 

with paper degradation are focused in specific bands rather the whole spectrum. 

Although important information can be achieved, the complex composition of paper may 

have been disregarded due the selection of only few (usually two) specific bands. 

Due the complexity and variety of paper samples, multivariate analysis can 

contribute to the study by evaluating the complete spectrum of each sample from the 

dataset. The information contained in the entire spectrum is more precise (technical 

term) and can provide valuable knowledge about the samples. One major question that 



arises with the application of multivariate techniques to such complex datasets is how to 

account for variability among the samples in the analysis. Most of methodologies 

proposed follow one of two approaches, either for naturally aged documents or 

artificially-aged documents. When naturally-aged documents are evaluated, the paper 

variety of document from the same year is not taken into consideration, which can lead 

to misinterpretation. Although differences between papers of different years are also 

related to the degradation process, paper composition due differences in raw material 

and the manufacturing process also show up in the model. On the other hand, for 

artificially-aged documents, most studies usually analyze the same sample as it has 

aged over time. This process, artificial aging, is out of the scope of the present work. 

At the present time, the study of variations in sheet paper composition of 

documents from the same date has not been well explored, although this study forms 

the basis of future forensic applications. For non-destructive methods, which usually do 

not need sample preparation, variations in paper composition can be established by 

studying the spectral features, or by using multivariate techniques [15,16]. These are 

important since variations can be found both in the raw material used to produce the 

paper as well as among the inorganic compounds used for filling and coating the paper 

related to the purpose of use. 

The goal of the present work is to propose a preliminary study to demonstrate the 

complexity of document dating problems and sample variability in a forensic context and 

employ different chemometric approaches to analyze these. To do this, Fourier 

Transformed Infrared (FTIR) spectroscopy was used for spectral acquisition and 

techniques such as preprocessing and variable selection were employed to deal with the 

high variability in sheet paper samples to estimate the age of the paper of a document. 

 

2. Theory 

PCA [17,18] is a popular exploratory analysis technique for describing the 

maximum variability of a dataset in a new space of reduced dimensionality. The X matrix 

containing the acquired data is decomposed into two other matrices T and PT, called 

scores and loadings matrices, respectively (Equation (1)): 

(1) X = TPT + Ex 

 



The dimensions for X, T, and PT are (N x J), (N x A), and (A x J), respectively. A 

is the number of Principal Components needed to described the useful information in the 

data; N and J are the number of samples and variables, respectively; Ex is the residual 

matrix, with same dimensions as X. A PCA model aims to maximize the variance of the 

dataset and the spectral features that are related to the variance sources. As an 

exploratory technique, PCA is not able to estimate the age for an unknown sample. 

However, PLS can be employed for this purpose. 

PLS is a well-known multivariate technique [19,20] that aims at building a 

mathematical model based on the covariance between the spectral information and the 

parameter of interest (y), in this particular case, document age. After building a model 

defined by an optimized number of Latent Variables (LV), a vector of regression 

coefficients is defined. This in turn, is used to estimate the by, which is the predicted 

value for the parameter of an unknown sample with a given spectrum. In this case, the 

model will be built maximizing the covariance between X and y ruled by Equations (2), 

(3), (4), (5)), as described by Wold [20]. Initially, the X matrix is decomposed in X-scores 

(T) and X-loadings (PT), the product of which, when summed with X-residuals (Ex) serves 

as a good predictor of the X matrix (Equation (1)). However, in PLS T must also be a 

good predictor of the parameter y, therefore Equation (3) is valid, in which q (A x 1) is 

the y-loading and ey is the y-residual. T is a linear combination of the original variables 

of X, in which the coefficients are stored in a weight matrix W (J x A), that can be used 

to obtain the regression coefficients (b) of the PLS model as shown in Equation (4). Now, 

the unknown y value of a new sample can be estimated (by) by its spectrum xunk, 

according Equation (5). 

(2) X= TPT + Ex 

(3) y= Tq + ey 

(4) b= W (PTW)-1 q 

(5) by= xnew b 

Several extensions of PLS models can also be found in the literature. Among 

them, the sparse PLS (sPLS) uses a penalty term to force an optimized number of 

regression coefficients to zero [21]. The main idea behind sPLS is to perform variable 

selection whilst reducing the noise generated by uninformative variables. The sPLS 

methods uses a Lasso approach to add a constraint to the sum of the squares criterium 

for regression purposes, as discussed by Refs. [22,23]. In this case, the regression 

vector is constrained to zeros to improve the performance of the regression model. Not 



only the number of sparse Latent Variables (sLV) must be optimized like in PLS, but also 

the number of regression coefficients which are forced to zero must be optimized. The 

percentage of regression coefficients that are forced to zero is known as the sparsity 

level. 

To assess the model performance and decide which is the most adequate, 

several figures of merit for the built models can be used as criteria. Examples of these 

parameters are the Root Mean Square Error (RMSE), the determination coefficient (R2) 

and bias for calibration, cross validation, and prediction sets. 

Prior to building the model, spectral corrections are needed. The acquisition of 

spectral data provides relevant information about the presence (or absence) and the 

concentration of chemical compounds. The dataset would also include a large amount 

of information regarding physical phenomena, noise and/or errors, depending on such 

things as the technique employed, equipment, experimental conditions, and accessories. 

Irrelevant information can obscure the information related to the property of interest. 

Therefore, to avoid this problem, several mathematic tools known as preprocessing 

techniques can be used on the samples or variables. 

Usually, preprocessing techniques such as normalization, baseline correction, 

smoothing and derivatives are extremely useful [24]. In some cases, a different kind of 

information related to interfering compounds needs to be attenuated; therefore, 

advanced preprocessing techniques are needed. Examples of such techniques are 

Orthogonal Signal Correction (OSC) [25,26] and Generalized Least Squares Weighting 

(GLSW) [[27], [28], [29]]. 

OSC is based in the concept that most variability present in a dataset have a 

small predictive value. Thus, it is possible to find and remove from the dataset the 

component that represent the maximum variability, which is orthogonal to the parameter 

of interest. On the other hand, GLSW aims to estimate a filtering matrix to down-weight 

clutter contribution, i.e., interfering related information. This information is estimated 

based on the differences between the samples that should be similar, and afterwards it 

is filtered from the original data. The filtering matrix G can be calculated using Equation 

(6):  

(6) G= VD-1 Vt 

In which V is the eigenvector matrix, and D is the weighted version of singular 

values that can be calculated by Equation (7): 

 



(7) 

  

In which S is the diagonal matrix of singular values, and the α-value is a scalar 

value settled to weigh the filtering matrix, which will depend upon the dataset. High α-

values show less effect from the filter, while low α-values impose more filtering effect. 

For further information about both techniques, the reader is encouraged to perform 

additional reading [25,26,28,30]. 

 

3. Materials and methods 

To perform this study, reports from 15 different years (1985, 1986, 1987, 1990, 

1991, 1992, 1995, 1996, 1997, 2001, 2002, 2003, 2010, 2011, 2012) were provided by 

the Spanish General Commissary of Scientific Police (Documentoscopy section, Spain). 

For each year, five reports were provided, each containing different number of sheets, 

but having an average of five sheets each. Different regions of each paper sheet (top, 

bottom, left, and right sides) were sampled to obtain two spectra (a duplicate) for every 

region; resulting in eight spectra per sheet, around, but not equal to, 3000 spectra in 

total. The samples were divided into Calibration and Prediction sets, with two Prediction 

sets built separately: (1) one whole report from each year, namely the Report Prediction 

set and (2) one sheet from each of the remaining reports, namely the Sheet Prediction 

set. The Report Prediction set was chosen in two ways: (1) dataset-PCA: for the 

individual report, a PCA was performed for each year and one complete report was 

chosen to include its variability within the total variability for that year. This is to guarantee 

that the variability of the prediction set was included in the model and no extrapolations 

were made; (2) dataset-RANDOM: a random choice among the individual reports was 

made, in order to challenge model performance and test its application to a forensic 

context. Thus, two datasets were employed, and after outlier removal, the number of 

spectra in the Calibration, Report Prediction and Sheet Prediction were 1883 (64%), 591 

(20%) and 472 (16%), respectively for the Report Prediction set chosen by PCA and 

1946 (66%), 600 (20%) and 400 (13%), for the random choice. Table 1 describes both 

datasets: 

 

 



Table 1. Number of spectra in Calibration and prediction sets chosen for Dataset-PCA 

and Dataset-RANDOM. 

 

Number of samples  Dataset-PCA  Dataset-RANDOM 

Calibration   1883 (63%)  1946 (66%) 

Report Prediction  591 (20%)  600 (20%) 

Sheet Prediction  472 (16%)  400 (13%) 

Total number of samples: 2946 

 

The spectra were acquired in the MIR region with a Nicolet iS10 spectrometer 

(ThermoFisher Scientific, MA, USA) using the ATR accessory Smart iTR diamond. The 

spectral range employed was 4000-650 cm−1, with a resolution of 4 cm−1, 0.482 cm−1 

of increment, and 32 scans per spectrum. No sample pretreatment was needed since 

the extremities of the paper sheets could easily be inserted in the ATR accessory without 

damaging the document. The 2450-2235 cm−1 region, related to the CO2 absorption, 

was removed to eliminate this variability from the dataset. 

Afterwards, both datasets were preprocessed and the PLS models were built 

aiming to estimate the manufacturing year of the paper for each document. To assess 

the RMSE values for all models, the predicted y-values were rounded to its nearest 

integer. Different models were compared in order to identify differences among them, 

using the F-test to compare the RMSE values and the t-test to evaluate the bias of each 

model. 

Different preprocessing techniques were evaluated to identify and minimize the 

differences between documents from the same year. To do this, OSC and GLSW filters 

were employed before the PLS modelling. Then, the results were then compared. The 

sparse method was also applied as a variable selection technique for comparison. 

To build a sPLS models, two parameters must be optimized to define the best 

level of sparsity in the model: the number of sLV and the sparsity level. The models were 

built using 1 to 20 sLV with sparsity levels varying from 99 to 91%, i.e. including from 5 

to 150 variables. To define the optimum sPLS models, two parameters were evaluated: 

the response surfaces to monitor the RMSEP, and R2 for the models. For all the models 

built, a cross validation was performed using the leave-one-document-out approach. 



All the multivariate analyses were performed in Matlab using the PLS_Toolbox 

(Eigenvector Research Inc., USA). The sPLS algorithm was used as described in Ref. 

[31]. 

 

4. Results and discussion 

4.1. Spectral features 

After the data acquisition, the spectra were compressed to increase the spectral 

increment. This compression was performed using the average of intensity defined in a 

window of 4 points, reducing the spectral channel to ¼ of the original amount. This step 

was performed to minimize the noise (Fig. 1). 

 

 

Fig. 1. Average compressed spectra of several documents from different years. The 

detailed 1000–700 cm−1 range emphasizes the calcium carbonate absorption region. 

 

The MIR spectra revealed the spectral features associated with both calcium 

carbonate and kaolinite. In addition, different organic compounds present in the paper 

composition were expected to show up because of the variety of raw materials used in 

paper production. Characteristic bands for kaolinite can be seen at 3690 cm−1, 

3620 cm−1, and 910 cm−1 in the 1986 and 1987 documents, and a small contribution in 

the paper manufactured in 1985. In fact, those documents are especially different from 

the others, since they were used for typewriters, and probably had a different 

composition. In addition, carbonate contribution can be noticed at 875 cm−1 in all 



documents except the ones from 1985 to 1990 and 1996. The absorptions at 1410-

1420 cm−1 could be attributed to calcium carbonate. However, this absorption band can 

be also overlapped with the cellulose bands that appear around 1420-1430 cm−1 

[14,32,33], and are related to the cellulose crystallinity. 

The inorganic and other organic compounds used in paper manufacturing have 

changed over the years and also among the types of paper produced by different 

companies. Nonetheless, cellulose is still the major compound, and its spectral 

contributions are present in the paper compositions regardless of brand or type. The 

absorptions at 1025 cm−1, 1160 cm−1, 1315 cm−1, and 2890 cm−1, related to different 

C-H, C-OH, C-CH2, C-O-C vibrations can also be found. Intramolecular vibrations from 

the H bond in OH-O can be seen at 3400 cm−1, while the absorbed water molecules 

provide an absorption band at 1635 cm−1. All these bands agreed with those reported 

in the literature for the most important compounds found in the paper spectrum (Table 

2) [14,33]. 

 

Table 2. Important IR absorption bands present in paper compounds [14,33]. 

 

IR absorption bands (cm−1)  Assignment 

712 and 870     Calcium carbonate 

900–1200     CO and CC stretching 

1500–1200     COH in plane bending;  

CCH and OCH def. stretching;  

HCH bending 

1635      H2O absorbed 

2800–2950     CH stretching in CH, CH2, CH3, symmetric 

3400      OH-O intramolecular H bond 

3690 and 3620    Kaolinite 

 

 

 



 

4.2. Preprocessing and PCA 

Different preprocessing techniques were evaluated in this study, and the results 

from their corresponding PLS models were used as criteria to choose the best technique. 

However, prior to building the PLS models, PCA models were carried out to investigate 

the spectral variability of the documents. Techniques such as SNV (Standard Normal 

Variate) normalization and Savitzky-Golay smoothing (2nd order polynomial and a 21-

point window width) were applied to minimize the scattering and noise effects of the raw 

spectra. 

Initial analysis of the samples did not show significant variance between the 

regions of each sheet (top, bottom, left and right). Although there were differences 

between sheets among sheets of paper from the same report, the differences were not 

significant when compared to the variability among the documents. The results from the 

PCA models showed that the two initial principal components (PCs) explained 77% and 

11% of data variability, respectively. 

Fig. 2a showed two clusters in the scores scatter plot; and their corresponding 

loadings plot are shown in Fig. 2b. The positive values of the scores in PC1 are related 

to the absorption at 875 cm−1 and 1415 cm−1 (Fig. 2b). As previously mentioned, those 

contributions can be associated to the presence of calcium carbonate and its absorption 

at 1415 cm−1. The other cluster showing negative contribution in PC1 is related to the 

absorptions at 910 cm−1, 1000 cm−1, 3620 cm−1, and 3690 cm−1, which are related to 

kaolinite [14,32,33]. 

 

 



Fig. 2. Principal Component Analysis for all documents: (a) score and (b) loading plots 

for PC1 and PC2. Dataset preprocessed with SNV, smoothing filter and mean center. 

 

In PC2, the positive contributions would relate to the absorption bands at 

1000 cm−1, 1055 cm−1, and 1160 cm−1, which are associated to the cellulose vibrations. 

The negative contributions in PC2 are associated to the absorptions at 1106 cm−1 and 

913 cm−1, which can be related to cellulose and kaolinite, respectively. 

It is important to notice that the maximum variability among the datasets is related 

to inorganic fillers, i.e., the documents that had been coated with either calcium 

carbonate or kaolinite. Use of a coating compound depends on the type and brand of the 

sheet paper sample analyzed, which can vary significantly within documents from the 

same year. Indeed, as expected, the documents from 1991 showed a variability as high 

as the total (red stars in Fig. 2a), considering the two initial PCs of the dataset 

preprocessed with SNV, smoothing filter and mean center. This variability is not related 

to document age, and therefore, the changes related to the cellulose along the aging 

process must be evaluated separately from these interfering compounds. For this 

reason, one possibility is to employ different methods (OSC and GLSW filters) to 

suppress the interfering contributions from the data and access the information related 

to the aging process. 

As previous described, two different datasets were chosen to evaluate model 

performance regarding Report Prediction set. Dataset-PCA was built by choosing one 

whole report according to PCA results for each year. No extrapolation regarding an 

unexpected variability of prediction set was found, thus all the variability in the dataset 

was taken into account. From a forensic point of view, however, it was important to 

evaluate model robustness for predicting samples with an unexpected variability. The 

dataset-RANDOM was built. Some of the documents chosen to compose the Report 

Prediction set showed a high variability when compared to the other documents from the 

same year. Fig. 3 shows the results of a PCA model for documents from 2003, from 

which Document 5 was chosen. Document 5 differed from the others regarding the 

absorption at 1410 and 870 cm−1, which is found, in the literature as being the region 

associated to calcium carbonate content. 

 

 

 



 

 

 

Fig. 3. Principal Component Analysis for 2003 documents: (a) score and (b) loading plots 

for PC1 and PC2. Dataset preprocessed with SNV, smoothing filter and mean center. 

 

4.3. PLS models, preprocessing and variable selection 

To predict document age, the models were built and subsequently tested using 

the calibration and prediction sets, respectively. Table 3 shows the results for the four 

models built: (1) model 1: PLS model with data preprocessed with SNV, smoothing and 

mean-centering; (2) model 2: PLS model with SNV, smoothing, OSC and mean-

centering; (3) model 3: PLS model with SNV, smoothing GLSW and mean-centering; (4) 

model 4: sPLS model with SNV, smoothing and mean-centering. 

 

Table 3. Results from PLS models using different preprocessing techniques Model 1 

(PLS model with SNV, smoothing and mean-centering); model 2 (PLS model with SNV, 

smoothing, OSC and mean-centering); model 3 (PLS model with SNV, smoothing GLSW 

and mean-centering); model 4 (sPLS model with SNV, smoothing and mean-centering). 

 

 

 

 



 

Dataset-PCA 

Training Set    Report Prediction    SHEET Prediction 

Model LV RMSEC R2cal bias RMESCV R2cv biascv RMSEP R2pred bias RMSEP

 R2pred bias 

1 4 4.4 0.86 −0.01 4.7 0.83 0.04 3.8 0.90 0.35 4.3  

2 1 2.5 0.96 −0.00 4.5 0.85 0.02 4.0 0.89 0.32 3.7  

3 2 4.2 0.87 0.01 4.6 0.86 0.01 3.6 0.91 0.22 4.2  

4 5 (105*) 4.2 0.87 0.01 4.5 0.88 −0.06 4.0 0.88 0.15 4.5  

R2pred bias 

0.86 0.05 

0.90 0.24 

0.87 0.07 

0.85 0.00 

 

Dataset-RANMDOM 

Training Set    Report Prediction    SHEET Prediction 

Model LV RMSEC R2cal bias RMESCV R2cv biascv RMSEP R2pred bias RMSEP

 R2pred bias 

1 4 4.1 0.77 0.00 4.4 0.74 0.01 5.1 0.74 2.11 4.0  

2 1 2.6 0.90 0.00 4.5 0.74 0.04 4.3 0.80 1.46 3.6  

3 3 3.8 0.80 0.00 4.2 0.76 −0.00 5.0 0.75 1.95 3.7  

4 5 (100*) 4.4 0.86 0.00 4.3 0.73 0.87 4.7 0.86 0.64 4.3  

 

RP2pred bias 

0.78 0.44 

0.82 0.22 

0.82 0.34 

0.87 0.97 

 

 

 

 



 

4.3.1. PLS (Model 1) 

PLS model was built using as preprocessing only Savitzky-Golay smoothing filter, 

SNV and mean centering as previously described. In general, it is possible to notice that 

regarding the criteria for choosing the prediction set, both models shows similar results 

with respect to error, except for the RMSEP value for the Report prediction set. RMSEP 

value for Report prediction set can change significantly with respect to the way the 

dataset has been chosen. This is due the fact that, with the dataset-RANDOM, the 

variability of some of the documents selected to compose the dataset is not included in 

the model, as previously discussed. This reflects an important error for the Report 

Prediction set (RMSEP = 5.1 years) and also for bias (see Table 3), which according a t-

test was significant for the Report Prediction set in model 1 using the Dataset-RANDOM. 

 

4.3.2. OSC filter (Model 2) 

The OSC filter was employed using one component to attenuate differences 

between samples from the same year. The model built for both datasets provide similar 

results, except for the Report Prediction set, due the high variability in the prediction set 

for dataset-RANDOM. The bias value for dataset-RANDOM was high and significant, 

according the t-test results. On the other hand, the Sheet Prediction set was well 

predicted independently of how the dataset is built. 

 

4.3.3. GLSW filter (Model 3) 

As previously mentioned for GLSW, the α value needed to be adjusted to remove 

information from the interfering compounds without losing relevant variability among the 

data. However, since the variability of the documents from the same year had the same 

order of the variability in the whole dataset, the α value was kept as high as possible, 

otherwise to prevent noisy spectral profiles from the filter effect. 

To evaluate the effect of α in the results, RMSEC and RMSECV from the PLS 

models were monitored whilst varying the α-values (Fig. 4) for both datasets. Fig. 4 

shows the effect of the GLSW filter in the spectral profile, for the dataset-PCA, although 

dataset-RANDOM showed the same behavior. It is possible to visualize how the model 

error changed with the α-value. When α had a high value (α = 6 or higher), the effect of 



the filter decreased and the interfering contribution was higher, leading to models that 

still needed to be improved, in fact a model similar to the PLS without any filtering. When 

α was equal to 1.66, RMSEC and RMSECV were not only similar but minimum, providing 

the best model for both datasets. However, as this value decreased, the effect of the 

filter produced noisier spectral profiles, in which the RMSEC and RMSECV showed a 

sudden increase when the α-value was set to 0.001. This means, as expected, that at 

some point the filter effect was so strong it started to remove part of the relevant 

information from the data, leading to poorer models. 

 

 

Fig. 4. (a) RMSECV and RMSEP values for various α‑values when using the GLSW 

preprocessing; (b) spectral differences for several α‑values. Results for Dataset-PCA. 

 

In this work, the α-value chosen as the most suitable for the dataset was 1.66, for 

both dataset-PCA and dataset-RANDOM. Although the model built was not significantly 

improved, according the F-test for RMSE values, when compared to the PLS model 

without the filters, the contribution from the interfering compounds was attenuated 

without noticeable loss of the significant information. 



 

4.3.4. sPLS model (Model 4) 

Another approach performed to compare the prediction ability of the models was 

to employ variable selection methods. For this reason, sPLS models were built using the 

preprocessed spectra with SNV, smoothing, and mean centering, as previously 

described. To reach the best model, not only the number of LVs had to be optimized, but 

also the sparsity level, i.e. the percentage of regression coefficients that are forced to be 

zero. 

Fig. 5a shows the map of RMSECV values for the models built with 1–15 sLV (y-

axes) and sparsity level varying from 98 to 91% (x-axes). High values of RMSECV are 

represented in red, while the best models are marked with a dark blue color. It is possible 

to notice a stability region after 3 sLV. Although there are no expressive changes 

according to the sparsity levels, there can be seen a minimum value for RMSECV with 

sparsity levels lower than 94% for models with 5 and 6 sLV. The models in the stability 

region have similar performance, however the model with 5 sLV and 94% of sparsity 

level was chosen as the simplest one. In this case, the RMSECV obtained was 4.5 years, 

R2 of 0.88 and bias of −0.06 years, considered not significant according to the t-test. Fig. 

5b shows the included variables in the chosen model, while Fig. 5c shows the RMSEC 

and RMSECV according sLV with sparsity level of 94%. 

 



 

Fig. 5. (a) RMSECV map for the models built with sLV from 1 to 15 against the sparsity 

level; (b) the average spectra the variables included in the model; (c) RMSEC and 

RMSECV value according to sLV. 

 

4.3.5. Comparing models 

The different models were built and used to compare not only regarding the 

different preprocessing techniques mentioned above, but also how the datasets were 

built (Table 3). Regarding the table of results (Table 3), it is possible to notice the change 

in the number of LVs in the PLS models with and without the OSC and GLSW filters. 

This decrease of LV when applying the filters is due the fact that the filters removed part 

of the variance in X, which is not related to the age of paper, leading to a simplification 

of both datasets. It is important to emphasize that, at a 95% of confidence level, the bias 

of the Report Prediction set was considered significant for all models built with dataset-

RANDOM, except for the sPLS model. 



 

Without any filters, the PLS model built provided a RMSECV value of 4.7 years 

for dataset-PCA while, for the dataset-RANDOM the RMSECV was equal to 4.4 years. 

It is clear that the cross-validation step for dataset-PCA has taken into account the 

document papers with the highest number of variations for each year studied; but when 

a leave-one-document-out validation was performed, that variability was easily detected 

in the high value of RMSECV. As a consequence, prediction sets are more successful 

when compared with the dataset-RANDOM. When a filter was applied, however, that 

behavior was not observed. Regarding the errors, it is possible to notice certain stability 

when comparing the results of dataset-PCA and dataset-RANDOM for each model. 

Although the RMSE values shows stability, the bias for the Report Prediction set of 

dataset-RANDOM, on the other hand, reflects a variability that was not included in the 

models. As stated before, those values were considered significant at the 95% 

confidence level. 

In a fair comparison between models, dataset-PCA is indeed the most 

appropriated to be considered. In a real-life application, it is mandatory to perform 

previous tests to check if the variations in an unknown specimen, in this case paper, are 

within the model. Fig. 6 shows the regression models for dataset-PCA. The scores of 

Variable Importance in Projection (VIP) in Fig. 3 show that the absorptions bands at 

1483 cm−1, 1415 cm−1, 1026 cm−1, 914 cm−1, and 887 cm−1 were, in general, the most 

important for the model building. The interfering compounds had also high contributions 

in the model building, except for model 2 (built with the OSC filter). In fact, model 2 

showed the best results in a general point of view and is the only model that does not 

include variables related to the filling compounds, only cellulose-related absorption 

bands are important in this scenario. 

 



 

Fig. 6. Results for the regression models using (a-b) model 1: PLS model; (c-d) model 

2: PLS with OSC (1 component); (e-f) model 3: PLS with GLSW (α = 1.660); (g-h) model 

4: sPLS model. 



 

The effect of the filter is noticeable in the regression plots and VIP scores of the 

PLS models (Fig. 6). The VIP scores plot shows the difference between the variable 

importance in each model. For the model built with the OSC filter, the variables 

responsible for the model building were related to the 1412 and 914 cm−1, which 

according the literature [7], shows a modification during the aging process due the loss 

of cellulose crystallinity. Some other research reports have stated that these absorptions 

are related to filling compounds [14,33], making the regions ambiguous regarding 

determination of the paper's aging process. Although all models showed the mentioned 

variables as important, models 1, 3 and 4 showed the influence of other spectral regions, 

such as 3690 and 870 cm−1, suggesting that the models were still under influence of the 

inorganic compounds. 

Looking the results in Table 3 and the regression plots in Fig. 6, we can see that 

the OSC filter is the most successful in attenuating the variations between documents 

from paper manufactured in the same year. The reflection of the filter can be observed 

not only for the cross-validation step in dataset-PCA, but also for all values for dataset-

RANDOM. 

 

5. Conclusions 

In the present study, a non-destructive methodology using infrared spectroscopy 

and chemometric techniques is proposed for dating the sheet paper used in documents 

from different years. A PCA model was built to identify the differences on the spectral 

features of the document pages, identifying an important influence from the inorganic 

fillers used in paper manufacturing. Compounds such as kaolinite and calcium carbonate 

were identified in the samples analyzed. They showed a high influence on the initial PLS 

models, which made them poor for any prediction purposes. 

Three chemometric approaches were proposed to overcome variations in the 

sample set, which was built in different ways: (i) employing a variable selection method 

(sPLS); and exploring different preprocessing techniques such as (ii) OSC and (iii) 

GLSW. The preprocessing techniques, especially the OSC filter, had a very important 

role in the model building. The high variability among the documents from the same year 

was attenuated with the GLSW and OSC filters, providing adequate models for document 

dating. Although, acceptable values for RMSECV and RMSEP were obtained (around 4 

years), the VIP scores for the models showed that the inorganic compounds were still 



influencing the models, suggesting that other techniques need to be explored to improve 

the results. 

The model employing OSC filter showed superior performance compared to the 

models previously built. In fact, it was also more robust since the different ways of 

building the dataset did not show a significative influence on model performance with 

respect to error. Bias value, however, was proven to be significative when the dataset 

was randomly built. The complexity of the model also decreased with the use of the OSC 

filter. 

Dating documents by analyzing only the information about the paper they are 

written or printed on can be tricky due to the chemical differences caused by the paper 

composition. Different chemical characteristics can lead to differences in the aging 

process, and for forensic applications, this variability must be explored. The main 

objective of this research is to open a discussion about the advantages and drawbacks 

when implementing analytical techniques in forensic contexts, more specifically for 

document analysis, providing also chemometric approaches to deal with real problems 

faced by forensic experts. This study shows not only the potential of infrared 

spectroscopy, already discussed in the literature, but also how chemometric techniques 

can be useful for document dating, providing analytical methodologies that can be 

employed in scientific laboratories on a daily basis. 
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