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ABSTRACT 

This work used chemical imaging in the short-wave infrared region for analysing gunshot residues (GSR) 

patterns in cotton fabric targets shot with conventional and non-toxic ammunition. It presents a non-

destructive, non-toxic, highly visual and hiperspectral-based approach. The method was based on 

classical least squares regression, and was tested with the ammunition propellants and their standard 

components’ spectra. The propellants’ spectra were satisfactorily used (R2 > 0.966, and CorrCoef > 

0.982) for identifying the GSR irrespective of the type of ammunition used for the shooting. In a more 

versatile approach, nitrocellulose, the main component in the ammunition propellants, resulted an 

excellent standard for identifying GSR patterns (R2 > 0.842, and CorrCoef > 0.908). In this case, the 

propellants’ stabilizers (diphenilamine and centralite), and its nitrated derivatives as well as 

dinitrotoluene, showed also high spectral activity. Therefore, they could be recommended as 

complementary standards for confirming the GSR identification. These findings establish the proof of 

concept for a science-based evidence useful to support expert reports and final court rulings. This 

approach for obtaining GSR patterns can be an excellent alternative to the current and traditional 

chemical methods, which are based in presumptive and invasive colour tests. 
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1. Introduction 

Gunshot residues (GSR) are particles produced when a firearm is discharged. They are composed of 

complex mixtures of inorganic and organic compounds that can be recovered from the crime scene and 

used as evidence during a court trial [1]. This is possible because they may adhere to the hands of the 

shutter, the victim clothes, the surface hit by the bullet, the firearm, and the environment in where the 

shooting took place [2-4]. The GSR composition results from the partial or total combustion of the 

ammunition primer, propellant gunpowder and metals from the projectile. Other compounds like 

grease, lubricants and metals from the firearm barrel may be also present [5]. 

 

Cartridges containing the projectile use smokeless gunpowders as propellants, which are essentially low 

explosives with a reaction rate slow enough to serve as projectiles’ propellants. The bulk material in 

single-base smokeless gunpowders is mainly nitrocellulose. The propellant materials in double- and 

triple-base smokeless gunpowders may also include, but are not limited to, nitroglycerin, diglycol 

dinitrate, isomers of dinitrotoluene, nitroguanidine, and others [6-13] . Phthalates are added as 

plasticizers, and one or more stabilizers are always added to the gunpowder for preventing the 

spontaneous, exothermic and acid-catalysed decomposition of nitrocellulose, nitroglycerine, and similar 

nitric acid esters. Diphenylamine acts as a pure stabilizer that reacts with the nitrogen oxides formed by 

the slow nitrocellulose decomposition. As a consequence, the oxides are converted into their 

corresponding N-nitroso and nitro-derivates [14]. Other substances, such as methyl-centralite and ethyl-

centralite, simplify the manufacturing of smokeless gunpowders because they can have both a 

stabilizing or gelatinizing effect [7]. The primer used to ignite the propellant in cartridges may contain 

inorganic compounds as nitrates, nitrites or heavy metals. In this respect, in conventional ammunition, 

any metal of the Pb, Sb, and Ba triade is accepted as specific marker of GSR. 

 

Nowadays, there are non-tox ammunition (aka lead-free, heavy-metal-free, clean, or non-toxic-

containing ammunition), which are being actively adopted all over the ammunition market [15]. They 

are slowly replacing the traditional heavy metal- or lead-containing ammunition. Interestingly, many 

type of re-manufactured/modified/re-loaded ammunition may include any type of commercially 

available primers. As a consequence, both lead containing and lead-free primers can be found in 

nowadays GSR [16]. This is a major concern for the forensic analysts who routinely use energy-dispersive 

X-ray spectroscopy (SEM-EDX) for the GSR identification based on their elemental composition. In order 

to achieve a valid GSR identification, the SEM-EDX method relays on detecting at least one compound of 

the triad Pb-Sb-Ba, which is available in the lead-containing ammunitions. 
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In recent years, Raman or Fourier transform infrared (FTIR) spectroscopy, have proved to be powerful 

techniques for acquiring the chemical signature of explosives, including those used as propellants [1, 

17]. Raman spectroscopy has enabled the detection of lead sulphate and barium carbonate in the 

analysis of GSR [9]. This vibrational technique has proved to be very useful for identifying the organic 

components of GSR [9, 10]. In addition, it is an ideal technique when a non-destructive evidence analysis 

is required [2]. Accordingly, a Raman imaging system was recently used to study GSR particles in targets 

with and without blood contamination, as well as in police sample-collecting devices officially used for 

collecting GSR in suspect´s hands or clothing [18]. However, only few GSR particles were analysed at a 

time because the technique cannot be used on large areas as those exposed to GSR from real shootings. 

On the contrary, near-infrared (NIR), short-wave-infrared (SWIR), and mid-infrared (MIR) spectroscopy 

techniques, in the form of hyperspectral imaging (HSI) systems, are becoming very important because 

they can provide reliable chemical information from each space point regardless of the area (from mm2 

to Km2) being analysed. Infrared HSI is a technology with key applications ranging from satellite 

based/airborne remote sensing and military target detection to industrial quality control and lab 

applications in food, medicine, biophysics, and others. However, HSI analysis has never been used for 

GSR analysis in spite of its suitability to analyse explosives like smokeless gunpowders [19, 20]. 

Therefore, the aim of this work was to stablish a proof of concept of using SWIR HSI chemical imaging 

for a non-destructive, non-toxic, rather quick, and highly visual chemical analysis of GSR patterns 

regardless of the type of ammunition (conventional and non-toxic) used for the shooting. 

 

2. Material and methods 

2.1. Samples and standards 

All the analyses were performed on GSR obtained after firing guns with standard 9 mm ammunition on 

various types of targets. Both, lead ammunition known as S&B 9x19 08 (Sellier & Bellot AS, Vlašim, 

Czech Republic), and unleaded or "green" ammunition known as Geco SX 9x19 Sintox (RUAG, Berlin, 

Germany), were provided and shot by ballistic experts at the Spanish Police General Commissary. Due to 

patents and confidentiality reasons, the ammunitions composition is quite concealed, too varied, and 

not well-known. Nevertheless, Supplemental Table 1 collects the declared compositions of the S&B and 

Sintox ammunitions according to two official Safety Data Sheets and other references [5, 7, 13, 21-25]. 

In this study, the isolated propellants of both ammunitions were used as standards. Supplemental Table 

2 shows some common compounds found in ammunitions. In this work, these compounds were also 

used as “pure” standards. Cellulose was obtained from Aldrich-Chemie (Steinheim, Germany), fabrics 

were acquired at local markets in Alcalá de Henares (Madrid, Spain), whereas other compounds were 

kindly provided by the Spanish Guardia Civil [26]. 

 

Each target (test sample, evidence-like) was made with a 40 x 40 cm cardboard base entirely covered 

with a piece of either white, black, or white-stamped cotton fabric. These fabrics were prewashed to 

eliminate potential contaminants. The different fabric colours were used to study whether there was 

any spectral difference and response due to the fabric or the dye in the fabric. 
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First, the targets were placed one by one in a clean shooting room at a 10 cm shooting distance. Then 

the firearms were fired with their corresponding lead-containing or lead-free ammunition. After every 

shot, and prior their HSI analysis, the targets were retrieved and stored in sealed bags to avoid any 

contamination. 

 

2.2. Hyperspectral analysis 

For the IR analysis of the targets, each one of those targets was taken out of its bag and placed on the 

analysis stage of the HSI system. Then, every target was exposed to the controlled IR diffused 

illumination of the HSI system. The standards spectra (all contributing species) were obtained by 

measuring them (so-called direct mode) directly from either the propellants or the pure compounds, not 

by estimating them from mixture spectra (so-called indirect mode). Hence, a reasonable amount of each 

granulated standard was deposited into the well of a microscope slide. Then, the slide was placed on the 

camera stage, illuminated and measured as the targets were. Dark and white references were also 

measured for every analysed sample. The different HSI analyses of both the targets and the standards 

were performed with a SWIR (1000 - 2500 nm) spectral camera (Specim, Spectral Imaging Ltd., Oulu, 

Finland) kindly provided by INFAIMON (Barcelona, Spain). The camera had a Mercury Cadmium Telluride 

(MCT) cryogenically cooled detector. All the data (HSI image) was gathered and then saved in binary 

hdr-raw ENVI format (Exelis, Boulder, Colorado, USA) with the in-built capture software of the HSI 

system.  

 

A HSI image is a spatial and spectral representation of an object. Each pixel represents a physical point in 

the image, and contains the chemical information of the object at the pixel coordinates. This is because 

every pixel contains one spectrum. The global effect of a pixel/spectrum is seen when all other 

pixels/spectra are put together in a big image section or the whole image [27, 28]. This HSI images are 

nowadays huge 3D objects called hypercubes or cubes. The spectral resolution in these hypercubes is 

the number of individual wavelengths contained in each pixel, that is, the chemical information within 

the wavelength range (λ axis) for each pixel in the 2D digital image. 

 

2.3. Data treatment 

All data treatments were accomplished in a PC computer with an Intel Core-i7 processor, MS Windows 

(Redmond, WA, USA), and 16 GB of RAM. All the pre-treatments and analyses were performed with in-

house algorithm sequences assisted by some freely-available HYPERTools, and Classification toolbox for 

Matlab [29, 30] functions programmed in Matlab (Matrix Laboratory, Natick, USA). 

The large spectral data in a hypercube needs to be cleaned (pre-treated) in order to eliminate possible 
signal defects and artefacts (illumination defects, cosmic rays, dead pixels and wavelengths), high noise 
levels, baseline drifts or offsets, non-informative image regions, etc., while improving its quality [28]. 
First, and regardless of the type of hypercubes (targets and standards), the original illumination 
artefacts of all cubes was minimised using their corresponding dark and white references [31]:  
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Normalised Image = (Measured Image – Dark Ref.) / (White Ref. – Dark Ref.) 
 
Afterwards, several functions offered by HYPERTools were executed for pre-processing the cubes. This 

way, both the dead wavelengths and pixels were eliminated with their appropriate filters. Next, each HSI 

image was spatially cropped for discarding most of the useless peripheral image areas, like non-relevant 

objects (surfaces, areas, etc.) outside the standard particles or the shot target. Then, the images 

underwent a masking step by graphical Principal Component Analysis (PCA), using the functions and 

methods also available in HYPERTools. A mask is a binary design/object/layer/pattern that adopts any 

specific shape arranged to further isolate the regions of interest (ROI) or image portions containing only 

the actual target or standards’ signal, without altering the actual image being masked. In these cases, by 

means of PC1, all heavily shadowed, overexposed, and remaining non-ROI areas highlighted by the 

masks were left out of the images. Only a small, representative well-illuminated part of each standard 

was kept for the spectra extraction, thus guarantying the availability of the corresponding pure spectra.  

The target (evidence) images did not receive any extensive cropping or further masking, in order to keep 

as much test (evidence-like) area as possible for the subsequent matching/resolution step. This was 

opted despite that such a large amount of target pixels was known to immensely increase the 

matching/computing time. Nevertheless, the target samples had to resemble any medium size real case 

evidence samples. 

 

Finally, in order to obtain the lowest prediction error and the best signal-to-noise response with minimal 

spectra modification, all newly cleaned standard and target images underwent further spectral pre-

processing: i) baseline correction (second-degree polynomial fitting and subtraction), ii) normalisation 

(Standard Normal Variate, SNV), and iii) smoothing (Savitzky-Golay filtering) [27, 28]. The smoothing 

used a symmetrical window value of 5, and a second-degree polynomial. All these mathematical 

treatments are well-known for providing very good results while being easy to apply to IR and other 

spectroscopy data [19, 28, 32-35]. 

After the main spectral pre-treatment, the whole process was handled in two large phases, to uncover 

the chemical information buried in the spectra data: a) The calibration and Classical Least Squares (aka 

K-matrix method, CLS), model creation using the pre-isolated standards’ spectra collection (both 

standards and propellant spectra); and b) The matching of the target (shot) samples against the 

previously created models. 

 

2.4. Calibration 

Each standard or ammunition propellant type was designated as the calibration class (family, type, or 

group) working as an internal library of well-known compounds possibly present in the evidence sample. 

For assembling the calibration set, at least 5 spectra from every masked standard image were randomly 

selected covering a random mesh-like region on the standard’s ROI surface. From those spectra, the 

most common spectrum was chosen as the pure standard spectrum. Likewise, 10 spectra from each 

ammunition propellant image were obtained randomly and directly from the ammunition image. This 

was decided so because the propellant powder was a dry mixture of components, hence the obtained 

spectra corresponded to different unlabelled compounds. From that spectra assembly, only those which 
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generated better ammunition propellant differentiation in a fabric were chosen based on their intensity 

differences. 

Since the calibration images were different from the evidence (target) images, the library spectra were 

never used again for the actual matching/resolution steps, thus avoiding the “double dipping” mistake. 

Hence, the entire library combining the propellants and pure compounds spectra contained 38 known 

standard spectra. 

After assembling the calibration set, the corresponding global CLS regression models were created 

applying no-negativity constraints. The initial spectra for the CLS analyses, were taken from the 

calibration set. 

 

2.5. Validation 

The prediction power of the CLS models or the measure of fit, was calculated using the squared 

correlation coefficient (R2, aka coefficient of determination, or the fraction of the variability in the 

response that is accounted for by the model)[36]. Besides, the goodness of fit was also assessed by 

calculating the lack of fit of the model (LOF)[37, 38], and the Pearson Correlation Coefficients of any CLS-

predicted spectrum against its well-known counterpart [32]. The significance level used for these tests 

was always 0.05. 

 

2.6. Matching 

All the pre-treated spectra from each target (evidence) image were compared against all the pre-treated 

spectra present in the calibration set using the CLS (aka K-matrix method) models that designates the 

spectral response acting as the dependent variable in the Beer-Lambert’s law equation [39]. This very 

effective regression tool requires that all the components of the system must be known and measurable 

to discern the individual contributions to the mixture response [39-41]. The procedure renders 

individual coloured chemical maps locating every detectable standard or propellant spectrum on the 

image. These relative (aka pseudo-concentration or concentration) maps are equivalent to the 

estimated weight of each component (standard or propellant) in the test sample. The algorithms were 

set to show only those chemical maps having a threshold of relative weight over 10 %. Furthermore, the 

CLS algorithm also estimated the relative density of each standard in the target chemical map by 

counting the number of standard pixels found in the entire image with respect to 100 existing pixels in 

that image. In this case, a value close to zero would indicate the absence of a particular standard, while 

a value near 100 (or 1 in the 0-1 scale) would imply the total presence of that standard in the target. 

Similarly, the colours in the chemical map represent the intensity and location of each matched 

standard, ranging from 0 to 1 (or 0 to 100, in a percentage scale). This way, blue is the smallest value, 

indicating the absence of the matched standard in the image, whereas red is the highest value, showing 

a total presence of the matched standard. Note that the two parameters (relative weight and density) 

are contributory, i.e., they are not cumulative, thus, the total value might slightly exceed the top limit.  
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It is worth stressing that all the large target test images this study worked with were cropped down to a 

size of 512x318x238 (310001664 bytes). Despite that, the evidence images were still huge, containing 

162816 spectra. This size typically surpasses the usual computational power of common computers. 

Therefore, the algorithm had to be flexible enough to handle such amount of data and processing load. 

 

3. Results and discussion 

To develop a SWIR-HSI chemical imaging method was essential for studying different multivariate data 

analysis (MVA) techniques. There are many of such relevant and well-established MVA procedures 

useful to uncover the chemical information buried in the spectral data. Examples of these are Principal 

Component Analysis, Classical Least Squares, Projection to Latent Structures, Multivariate Curve 

Resolution - Alternating Least Squares, Fuzzy C-Means, etc. In this work, CLS was chosen for being a very 

effective regression tool for the analyses of SWIR images of GSR patterns in cotton fabric targets shot 

with conventional and non-toxic ammunition. The main requirement for the use of CLS with this aim, as 

in other similar chemical imaging applications within pharmaceutical or food science [27, 32, 34, 35, 42], 

were the knowledge of the pure analytes spectra and their guaranteed orthogonality. Therefore, CLS 

could be safely applied to create regression models which provide a rather easy, simple, and reliable 

approximation of the analytes concentration within each pixel. 

Moreover, CLS was chosen because its speed. When using the three fabric’s library spectra as the initial 

estimations/standards, the CLS script using the light HYPERTools CLS functions processed those evidence 

images in about 11 – 16 min. When using 21 standard spectra from the library, the CLS algorithm took 

about 8 – 16 min on the same target sample. Therefore, the CLS algorithm showed rather good speed. 

 

Hence, the first analysis method developed on the basis of SWIR HSI chemical imaging focused on 

detecting the differences between various fabrics potentially occurring as supports in real GSR cases. 

Accordingly, three different targets made with white, black, or white-stamped fabrics, shot at 10 cm 

with either S&B and Sintox ammunition, were studied. 

 

All targets were matched against the standards’ spectra of white, black, or white-stamped cotton 

fabrics. Figure 1 represents the CLS results showing the comparison of the chemical images of white-

cotton-fabric targets shot at 10 cm with either S&B (top row) or Sintox (middle row) ammunition. The 

standard´s spectra used for the matching corresponded to the white, black, or white-stamped cotton 

fabrics (bottom row). It can be seen that regardless of the ammunition shot on the white-cotton-fabric 

target, the only standard detected with high relative weight and density values corresponded to the 

white-cotton-fabric material. However, some traces of the stamped-cotton-fabric were detected on the 

white-cotton-fabric. This occurred probably because both fabrics (white- and stamped-cotton) were 

white-cotton-based, and thus their spectra were very similar even despite the stamping process. That is, 

the stamping dye did not properly hide the spectrum of the white-cotton fibres underneath, which is the 

case in the black-cotton-fabric. Interestingly, the areas around the shot hole in the black-cotton-fabric 

did show some presence of the white-cotton-fabric spectrum. In this case, it looked like the high-speed 
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bullet passed scratching somehow the fabric dye, thus exposing some of the white-cotton-fabric 

material that it was originally made off. 

Table 1 shows the statistical parameters calculated to validate the CLS analyses on the targets made 

with the three cotton fabrics, and shot at 10 cm with both S&B or Sintox ammunitions. These three 

statistic parameters useful to show the goodness-of-fit of the CLS model are: LOF, R2, and the Pearson 

Correlation Coefficient with its standard deviation. In the case of the white-cotton targets, the LOF 

values (from 9.40 to 25.00) for the CLS model may evidence some noise in the spectra [36, 43, 44], 

nevertheless, the high prediction power of the CLS models was shown with high squared correlation 

coefficients (R2 > 0.94). Furthermore, the mean values of the Pearson Correlation Coefficients calculated 

for the original target white-cotton-fabric spectrum vs. at least 500 white-cotton calculated spectra 

were also high (CorrCoef > 0.965). Similar results were also calculated for the black- and pattern-cotton-

fabrics.  All the p-values were p <<< 0.05. Thus, the calculated CLS models were highly valid for 

estimating both the relative weight and density maps shown in Figure 1. 

 

 

Figure 1. CLS results showing the GSR patterns of (A) S&B and (B) Sintox ammunition shot on white-cotton-fabric targets at 
10 cm. Each target, which is the same in all horizontal images, was matched against the white, black or white-stamped cotton 
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fabrics working as standards’ spectra, placed at the bottom row (C).  Relative weight and density are the quantitative values 
indicated inside parenthesis. 

 

As a result of these findings, and in order to establish the proof-of-concept for a fast, easy, reliable, and 

distinctive way for obtaining GSR patterns by SWR-HSI, only both white- and black-cotton-fabrics were 

used as targets in the subsequent studies.  Hence, the next step was to study the GSR patterns of both 

lead-containing (S&B) and non-tox (Sintox) ammunitions fired at 10 cm distance on the white- and black-

cotton-fabrics. As an initial approach, the matching was performed using their own ammunition 

propellant as standards for the identification of GSR in targets. 

 

Table 1. Statistical parameters calculated to validate the CLS analyses on the targets made with white-, black, and pattern-cotton fabrics, and 

shot at 10 cm with either S&B or Sintox ammunitions. 

  CLS 

Target Ammunition LOF R
2
 Pearson Correlation Coefficients* 

 

White-cotton 

S&B 19.700 0.960 0.999 ± 0.001 

Sintox 9.400 0.990 0.997 ± 0.002 

Black-cotton 

S&B 25.000 0.940 0.965 ± 0.082 

Sintox 13.100 0.980 0.992 ± 0.014 

Stamped-cotton S&B 12.240 0.990 0.993 ± 0.012 

LOF = Lack of fit of the CLS model. 
* Calculated for the original target white-cotton-fabric spectrum vs. at least 500 white-cotton calculated spectra. 
p <<< 0.05. 

Figure 2 represents the CLS results showing the relative weight and density chemical maps of white- and 

black-cotton fabrics shot at 10 cm with either S&B or Sintox ammunitions. The targets were matched 

against the spectrum of the target’s fabric and the 20 spectra of both propellants. Figures 2A and 2C 

represent the targets shot with the S&B ammunition, while Figures 2B and 2D show the targets shot 

with the Sintox ammunition. It can be seen, as was the case in Figure 1, that each fabric standard was 

properly detected in its corresponding target. Hereafter, the strongest detected standards from both 

S&B and Sintox propellants occurred in the targets shot with the S&B ammunition (Figures 2A and 2C). 

Here the GSR patterns observed seemed to be bigger than the patterns observed in the targets shot 

with the Sintox ammunition. It is important to mention that every propellant’s chemical map shown 

here resulted from the accumulation of all the ten individual sub-maps created from each propellant’s 

spectrum (Supplemental Figure 1, left). In other words, the chemical heterogeneity of each powdered 

propellant rendered ten individual chemical maps. This way, the entire matching produced 21 chemical 

sub-maps belonging to the corresponding cotton-fabric and 20 ammunition standards. Such number of 

chemical maps does not properly fit in a comprehensible single picture. Hence, all the individual 

chemical maps pertaining to the same propellant were added to create one single accumulated 

chemical map, which was also more self-explanatory and visually conclusive. Although shooting with the 

Sintox ammunition did not leave large GSR in both fabrics, the propellants’ presence was indeed 

detected with reasonable intensities in both targets (Figures 2B and 2D). Regarding the black-cotton 

fabric, it seemed that at least the black dye appeared to hinder somehow the detection of both 

propellants. Nevertheless, it is noteworthy to stress that all the GSR were anyway detected regardless of 
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the ammunition and fabric used in the shooting. This is a relevant result and an advantage of the SWIR-

HSI method proposed in this study when compared to the routinely used SEM-EDX, which results in false 

negatives when analysing lead-free residues. This limitation is due to the lack of Pb and other heavy 

metals in those samples. Such residues were here successfully identified as GSR when using SWIR-HSI 

and the standards’ spectra of the whole powdered propellant. 

Table 2 shows the statistical parameters calculated to evaluate the CLS analyses on the targets made 

with white- and black cotton fabrics, shot at 10 cm with both S&B or Sintox ammunitions, but matched 

only against the corresponding cotton fabric and the 20 propellant spectra. In this entire propellant-

based approach, when considering the case of the white-cotton targets (Figures 2A and 2B), the values 

of the LOF (from 8.30 to 18.52) for the CLS models could indicate again some noise in the spectra. 

Nevertheless, the high values of the squared correlation coefficients (R2 > 0.966) for the CLS models 

showed again high prediction power. In addition, the models showed also good mean values for the 

Pearson Correlation Coefficients (CorrCoef > 0.982) calculated for the original target white-cotton-fabric 

spectra vs. all the propellants’ calculated spectra. Similar values were also obtained for the black-cotton 

fabric.  All the p-values were p <<< 0.05. Hence, the calculated CLS models were highly valid for 

estimating both the relative weight and density maps shown in Figure 2. 

 

Table 2. Statistical parameters calculated to evaluate the CLS analyses on the targets made with the white- and black cotton fabrics, shot at 10 

cm with both S&B or Sintox ammunitions, but matched against the corresponding cotton fabric and the 20 propellant spectra. 

   CLS 

Target Shot 
Ammunition 

Matching STDs LOF R
2
 Pearson Correlation Coefficients* 

White-cotton 

S&B 

White-cotton 

13.00 0.980 

0.992 ± 0.021 

S&B 0.989 ± 0.025 

Sintox 0.990 ± 0.025 

Sintox 

White-cotton 

8.30 0.990 

0.997 ± 0.003 

S&B 0.997 ± 0.004 

Sintox 0.997 ± 0.003 

Black-cotton 

S&B 

Black-cotton 

18.52 0.966 

0.982 ± 0.035 

S&B 0.982 ± 0.036 

Sintox 0.982 ± 0.036 

Sintox 

Black-cotton 

10.00 0.990 

0.995 ± 0.007 

S&B 0.995 ± 0.007 

Sintox 0.995 ± 0.007 

LOF = Lack of fit of the CLs model. 
* Calculated for the original target white-cotton-fabric spectra vs. all the propellants’ calculated spectra. 
p <<< 0.05. 

 

Although this approach provided satisfactory results, not all forensic laboratories have a reasonable 

large sample library containing several types of ammunition propellants to be used as HSI standards. 

Consequently, a more versatile method based on the use of standards from available commercial 

ammunition components (Supplemental Table 2) was also tested for obtaining reliable SWIR-HSI 

chemical images of GSR patterns. 
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Figure 3 shows the relative weight and density chemical maps of white- and black-cotton fabrics shot at 

10 cm with either S&B or Sintox ammunitions. The targets were matched against the spectra of the 

standards shown in Supplemental Table 2. Figures 3A and 3B show the white-cotton-fabric targets, 

whilst Figures 3C and 3D show the black-cotton-fabric targets. Figures 3A and 3C represent the targets 

shot with the S&B ammunition, while Figures 3B and 3D show the targets shot with the Sintox 

ammunition.  



12 

 

 

Figure 2 CLS results showing the GSR patterns in white- and black-cotton fabrics shot at 10 cm with either S&B or Sintox 
ammunitions when targets were matched against both propellants’ spectra and the corresponding target’s spectrum. A) White-
cotton-fabric shot with S&B; B) White-cotton-fabric shot with Sintox; C) Black-cotton-fabric shot with S&B; and D) Black-cotton-
fabric shot with Sintox. Relative weight and density are the quantitative values indicated into parenthesis. 
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As occurred in the ammunition propellant-approach, the strongest spectral signals were detected in the 

targets shot with the S&B ammunition (Figures 3A and 3C). Contrarily, the material deposited by 

shooting the Sintox ammunition produced smaller GSR patterns in both fabric types (Figures 3B and 3D). 

Again, it was possible to infer that the black-cotton fabric might have hampered somewhat the 

detection of the calibration standards. Nonetheless, all the GSR patterns were detected regardless of 

the ammunition and fabric used in the shooting. 

 

The strongest signals found in all targets belonged to nitrocellulose (Supplemental Figure 1, right). This is 

not surprising since nitrocellulose is the largest propellant’s component in both S&B and Sintox 

ammunitions (ca. 70, and 73 to 85 %, respectively, according to Supplemental Table 1). However, it is 

very interesting to see that the detection of all the other strongest standards found also seemed to 

depend on the type of cotton-fabric in the targets. Those components were mainly diphenylamine, 

nitroguanidine, 4-nitro-ethyl-centralite, and 2,6-dinitrotoluene (Supplemental Figure 1, right).  These 

findings were striking, albeit are very important because such standards can be used to focus 

exploratory searches towards GSR, or to confirm their presence. With regard to the white-cotton-fabric 

chemical maps, the stabiliser diphenylamine and various of its derivatives (maps not shown) were 

expected since they are mixed within the propellants, and are commonly found in GSR [8, 45]. 

Nitroguanidine is reported as part of the primers in several lead-free ammunition [9-11]. However, 

despite that this component is reported as not so common in single- and double-base ammunition, it 

resulted fairly curious to indeed find it in the GSR of the S&B ammunition. These results can be accepted 

because many commercial propellants may be the mixed products of recycling other military-grade 

propellants. 

 

Regarding the black-cotton-fabric chemical maps shot with the S&B ammunition, finding 4-nitro-ethyl-

centralite and 2,6-dinitrotoluene (Supplemental Figure 1, right) is quite anticipated as centralite and 

dinitrotoluene are already reported as components of that ammunition. However, as centralite was not 

declared in the Sintox ammunition, finding its nitrated derivatives was surprising. Nonetheless, these 

type of GSR have been already reported in lead-free ammunitions [45], and in fact, they might be 

already part of them as well as other diphenylurea-based compounds [7, 12]. Consequently, the use of 

nitrocellulose and dinitrotoluene as standards in the SWIR-HSI analysis may also provide reliable 

information for the identification of GSR. 

 

Table 3 shows the statistical parameters calculated to evaluate the CLS analyses on the targets made 

with white- and black cotton fabrics, shot at 10 cm with S&B or Sintox ammunitions, but matched 

against the individual pure spectra reported as part of the S&B and Sintox ammunitions (Figure 3).  
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Figure 3. CLS results showing the GSR patterns in white- and black-cotton fabrics shot at 10 cm with either S&B or Sintox 
ammunitions when targets were matched against the spectra of the pure standards. The cotton-fabrics, cellulose, and the 
ammunition standards were kept out in order to keep the images as uncrowded as possible. A) White-cotton-fabric shot with 
S&B; B) White-cotton-fabric shot with Sintox; C) Black-cotton-fabric shot with S&B; and D) Black-cotton-fabric shot with Sintox. 
Relative weight and density are the quantitative values indicated into parenthesis. 
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When considering the case of the white-cotton targets (Figures 3A and 2B), the LOF values (from 21.27 

to 39.79) of the CLS models may evidence noise in the spectra. Still, the squared correlation coefficients 

values (R2 > 0.842) for the CLS models presented again rather good prediction power. Moreover, the 

models showed also good mean values for the Pearson Correlation Coefficients (CorrCoef > 0.908) 

calculated for the original target white-cotton-fabric spectra vs. all the calculated spectra of the 

standards (Supplemental Table 2). Similar values were also calculated for the black-cotton fabric.  All the 

p-values were p <<< 0.05. Therefore, the calculated CLS models were valid for estimating both the 

relative weight and density maps shown in Figure 3. 

 

Table 3. Statistical parameters calculated to evaluate the CLS analyses on the targets made with the white- and black cotton fabrics, shot at 10 

cm with both S&B or Sintox ammunitions, but matched against the individual pure spectra reported as part of the S&B and Sintox ammunitions 

(Table 2). 

   CLS 

Target Shot Ammunition Matching STDs LOF R
2
 Pearson Correlation Coefficients* 

 

White-cotton 

S&B 

'Nitroguanidine' 

39.790 0.842 

0.908 ± 0.110 

'Diphenylamine' 0.912 ± 0.108 

'Nitrocellulose' 0.917 ± 0.045 

Sintox 

'Nitroguanidine' 

39.310 0.845 

0.920 ± 0.010 

'Diphenylamine' 0.920 ± 0.010 

'Nitrocellulose' 0.920 ± 0.011 

Black-cotton 

S&B 

'2,6-Dinitrotoluene' 

31.320 0.902 

0.954 ± 0.050 

'4-Nitro-Etilcentralite' 0.966 ± 0.014 

'Nitrocellulose' 0.948 ± 0.077 

Sintox 

'2,6-Dinitrotoluene' 

21.270 0.955 

0.978 ± 0.007 

'4-Nitro-Etilcentralite' 0.978 ± 0.004 

'Nitrocellulose' 0.978 ± 0.007 

LOF = Lack of fit of the CLs model. 
* Calculated for the original target white-cotton-fabric spectrum vs. all the standards calculated spectra (Supplemental Table 2). 
p <<< 0.05. 

 

4. Conclusions 

This work proves that chemical imaging in the NIR region (1000 - 2500 nm) is an important future tool 

for a non-destructive, non-toxic, highly visual and fast analysis of GSR patterns in targets.  

 

Although the propellant spectra were successfully used for identifying the GSR regardless of the type of 

ammunition employed for the shooting (conventional or non-tox ammunition), the use of nitrocellulose 

as standard makes this approach more versatile for laboratories. This is because nitrocellulose is the 

largest component in the ammunition’s propellant, and so it was easily detected in the chemical images. 

This standard-based approach can be complemented by using some of the common stabilisers found in 
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the ammunition’s propellant. Compounds like diphenylamine and/or centralite, and its nitrated 

derivatives, and dinitrotoluene, show high spectral activity, and can well be used as complementary 

standards for identifying GSR.  

 

The propellant´s component standard-based approach presents the added value of its applicability 

regardless of the type of ammunition employed for the shooting. This is because it focuses on the 

propellant components, which are mainly organic compounds. 

 

These findings establish the proof of concept for a science-based evidence useful to support expert 

reports and final court rulings. This that can be an excellent alternative to the current and traditional 

chemical methods for obtaining gunshot patterns, which are based in presumptive and invasive colour 

tests. 
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Figure 1. CLS results showing the GSR patterns of (A) S&B and (B) Sintox ammunition shot on white-

cotton-fabric targets at 10 cm. Each target, which is the same in all horizontal images, was matched 

against the white, black or white-stamped cotton fabrics working as standards’ spectra, placed at 
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the bottom row (C).  Relative weight and density are the quantitative values indicated inside 

parenthesis. 

Figure 2. CLS results showing the GSR patterns in white- and black-cotton fabrics shot at 10 cm with 

either S&B or Sintox ammunitions when targets were matched against both propellants’ spectra 

and the corresponding target’s spectrum. A) White-cotton-fabric shot with S&B; B) White-cotton-

fabric shot with Sintox; C) Black-cotton-fabric shot with S&B; and D) Black-cotton-fabric shot with 

Sintox. Relative weight and density are the quantitative values indicated into parenthesis. 

Figure 3. CLS results showing the GSR patterns in white- and black-cotton fabrics shot at 10 cm with 

either S&B or Sintox ammunitions when targets were matched against the spectra of the pure 

standards. The cotton-fabrics, cellulose, and the ammunition standards were kept out in order to 

keep the images as uncrowded as possible. A) White-cotton-fabric shot with S&B; B) White-cotton-

fabric shot with Sintox; C) Black-cotton-fabric shot with S&B; and D) Black-cotton-fabric shot with 

Sintox. Relative weight and density are the quantitative values indicated into parenthesis. 

Supplemental Figure 1. Left: S&B and Sintox ammunition propellant spectra sets used for the matching 

in the entire propellant-based approach. The median spectra (in orange) are shown only as visual 

references, since they were not used for any matching. Right: The most abundant spectra detected 

in the propellant’s standards by the CLS models. 

 

 

 

Highlights 

 The use of chemical imaging in the SWIR region for analysing gunshot residues patterns in cotton-

fabric targets shot with conventional and non-toxic ammunition. 

 A non-destructive, non-toxic, rather fast, visual and HSI-based approach based on classical least 

squares regression, and tested with the ammunition propellants and their components’ spectra. 

 Nitrocellulose resulted an excellent standard for identifying GSR patterns; likewise, the propellants’ 

spectra were satisfactorily used irrespective of the type of ammunition shot. 

 The propellants’ stabilizers, and its nitrated derivatives as well as DNT, could be recommended as 

complementary standards for confirming the GSR identification. 

 This approach can be an alternative to the current and traditional chemical methods, based in 

presumptive and invasive colour tests. 
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