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ABSTRACT

Sometimes, it is of interest to single out the fluctuations associated to a given frequency. We propose a
new variant of SSA, Circulant SSA (CiSSA), that allows to extract the signal associated to any frequency
specified beforehand. This is a novelty when compared with other SSA procedures that need to iden-
tify ex-post the frequencies associated to the extracted signals. We prove that CiSSA is asymptotically
equivalent to these alternative procedures although with the advantage of avoiding the need of the subse-
quent frequency identification. We check its good performance and compare it to alternative SSA methods
through several simulations for linear and nonlinear time series. We also prove its validity in the nonsta-
tionary case. We apply CiSSA in two different fields to show how it works with real data and find that it
behaves successfully in both applications. Finally, we compare the performance of CiSSA with other state
of the art techniques used for nonlinear and nonstationary signals with amplitude and frequency varying
in time.

AM-FM Signals
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1. Introduction

Singular Spectrum Analysis (SSA) is a nonparametric procedure
based on subspace algorithms for signal extraction [1]. The main
task in SSA is to extract the underlying signals of a time series like
the trend, cycle, seasonal and irregular components. It has been
applied to a wide range of time series problems, besides signal
processing [2], like forecasting [3], missing value imputation [4] or
functional time series [5] among others. SSA builds a trajectory
matrix by putting together lagged pieces of the original time series
and works with the Singular Value Decomposition of this matrix.
It can be viewed as applying Principal Component (PC) analysis to
the columns of the trajectory matrix.

SSA has been applied in different disciplines as several authors
illustrate (see [6] and the references therein). For instance, there
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are recent applications in biometrics [7], climatology [8], energy
[9] or volcanic activity [10].

In business and economics, SSA applications focus on fore-
casting and business cycle analysis [11]. Applications in this field
range from analyzing the effect of the 2008 recession in forecast-
ing [12,13], to predicting inflation dynamics [14] or the industrial
production with multivariate SSA [15]. Related to the business cy-
cle, SSA has also been used to track the US cycle [16], to analyze
the real time nowcasting of the output gap [17] and the economic
cycles and their synchronization in three European countries [18].
SSA has also been applied to estimate stochastic volatility models
[19] and intraday data forecasting [20].

The common practice when applying SSA is to extract the prin-
cipal components of the trajectory matrix and to identify after-
wards the frequencies associated to them, by analyzing their es-
timated periodogram [17,21,22] or frequency response [23,24] just
to cite a few methods. Though there are fast computing algorithms
for the eigenvalues and eigenvectors of Toeplitz matrices [25,26],
the use of circulant matrices has a great advantage as their eigen-
values and eigenvectors have a closed form. Circulant matrices
have also been used in a different context, within the MUSIC al-
gorithm, restricted to signals that are approximately periodic and
deterministic [27].
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We propose a new SSA methodology (CiSSA), that can be ap-
plied to any time series signal, based on circulant matrices that,
once the user has decided beforehand the frequency of interest, it
automatically matches this frequency with specific principal com-
ponents. Circulant matrices become relevant in this setup, as their
eigenstructure can be obtained as a function of the frequency and,
therefore, we can automatically match their eigenvalues and eigen-
vectors with any particular frequency. Our approach, CiSSA, valid
in a general setting, automatically identifies the eigenvalues and
eigenvectors associated to any particular frequency using circu-
lant matrices. Moreover, we obtain an easy way to evaluate the
power spectral density since the eigenvalues approximate it at the
matched frequencies.

CiSSA seems to perform and compare well with previous ver-
sions of SSA, like Basic or Toeplitz SSA, despite introducing its
automatization. In order to show this, first, we have proved that
CiSSA is asymptotically equivalent to these alternative procedures.
Second, we have checked its performance in practice through sev-
eral sets of simulations for linear and nonlinear models. Finally, we
have extended its validity for nonstationary time series. Although
SSA has been successfully used in nonstationary time series pre-
viously, e.g., [28], our value added is that we apply it in an auto-
mated way and also provide a theoretical background overcoming
the assumption of stationarity.

In summary, our contribution is to propose a new version of
SSA, Circulant SSA, for signal extraction in an automated way valid
for any type of signal. With this new version, we make heavy use
of circulant matrices and obtain reliable components associated to
any pre-specified frequency, both for stationary and nonstationary
time series.

We illustrate this new procedure by applying it to the Indus-
trial Production Index (IP) of six developed countries and to the
signal produced by the word "Alleluia”. IP is a relevant indicator
to track the business cycle and its seasonally adjusted signal is fol-
lowed in real time to monitor the economy. We check that our es-
timated cycles match the official dating of recessions provided by
the OECD and check the strong separability of the estimated com-
ponents. Regarding the application to speech processing, we find
that CiSSA identifies and reproduces the main characteristics of the
word under study.

Finally, we check the validity of CiSSA to represent other non-
linear and nonstationary signals in the form of varying amplitude
or frequency along time that are frequent in other fields. In order
to do so, first, we apply CiSSA to a synthetic example previously
used in the literature of AM-FM multicomponent models and, sec-
ond, we compare the performance of CiSSA and various state of
the art techniques [29-31] when applied to a real data set.

The structure of this paper is as follows: Section 2 briefly de-
scribes SSA. Section 3 proposes our new SSA procedure, named af-
ter Circulant SSA, proves its asymptotic equivalence to Basic and
Toeplitz SSA and extends its use for nonstationary time series.
Section 4 presents a set of simulations to check the properties
of the proposed methodology. Section 5 applies it to the estima-
tion of the business cycle of the industrial production index in
six countries and to the signal produced by the word "Alleluia”.
Section 6 compares CiSSA with other models applied to nonlinear
and nonstationary signals with varying amplitude and frequency.
Finally, Section 7 concludes.

2. SSA Methodology

The origin of SSA dates back to 1986 with the publication of
the papers by Broomhead and King [32,33] and Fraedrich [34]. In
1989, Vautard and Ghil [35] introduce Toeplitz SSA for stationary
time series and, three years later, Vautard et al. [22] derive the al-
gorithm called diagonal averaging to obtain the extracted compo-
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nents with the length of the original series. At the same time, and
independently, the so-called Caterpillar technique was developed
in the former Soviet Union [36]. As pointed out by Golyandina and
Zhigljavsky [1], SSA is also related to subspace methods as ESPRIT,
MUSIC or Min-Norm, and all the literature that started with the
seminal work of Pisarenko [37]. See, for instance Ortigueira and
Lagunas [38] that compare the eigendecomposition procedures ap-
plied to second moments of the data versus the singular value de-
composition of the data matrix, being the two methods used in
different versions of SSA.

In this section we briefly describe the steps used in SSA to de-
compose a time series in its unobserved components (trend, cy-
cles,...). Basically, SSA is a technique in two stages: decomposition
and reconstruction. In the first stage, decomposition, we transform
the original vector of data into a related trajectory matrix and per-
form its singular value decomposition to obtain the so called el-
ementary matrices. This corresponds to steps 1 and 2 in the al-
gorithm. In the second stage, reconstruction, (steps 3 and 4 of the
algorithm) we classify the elementary matrices into disjoint groups
associating each group to an unobserved component (trend, cy-
cles,...). Finally, we transform every group into an unobserved com-
ponent of the same size of the original time series by diagonal av-
eraging.

To proceed with the algorithm, let {x;} denote a stochastic pro-
cess t € 7 and let {x}_, be a realization' of x; of length T, x =
(X1.....x7)", where the prime denotes transpose and L a positive
integer, called the window length, such that 1 < L < T/2. The Ba-
sic SSA or Broomhead-King (BK) procedure involves the following
4 steps:

1st step: Embedding. From the original time series we will ob-
tain an L x N trajectory matrix X, N=T — L+ 1, as follows

X1 X2 X3 . XN
X2 X3 X4 oo XN41
X=Xq|...[xn) =] . . . . . (M
XL X1 Xp42o - XT
where X; = (xj, ... ,xj+L_1)/ indicates the L x 1 vector with origin

at time j. Notice that the trajectory matrix X is Hankel and both,
by columns and rows, we obtain subseries of the original one.

2nd step: Decomposition. In this step, we perform the singu-
lar value decomposition (SVD) of the trajectory matrix X = UD/?V/
where U is the L x L matrix whose columns u, are the
L x 1 eigenvectors of the second moment matrix S = XX/, D=
diag(ty,.... 1), T1 = ... > 1, > 0, are the eigenvalues of S and V
is the N x L matrix whose L columns v, are the N x 1 eigenvec-
tors of X’X associated to nonzero eigenvalues. This decomposition
allows to write X as the sum of the so-called elementary matrices
X of rank 1 or dyads,

r r
X= ZXk = Zukw;(,
k=1 k=1

where wy, = X'uy, = /TVy, being /T, the singular values of the X
matrix, and r = maxy, . o{k}=rank(X).

3rd step: Grouping. Under the assumption of weak separabil-
ity given in [39], we group the elementary matrices X, into G
disjoint groups summing up the matrices within each group. Let
Ij,j=1,...,G be each disjoint group of indexes associated to the
corresponding eigenvectors. The matrix X, = Zke,j X, is associated

to the I; group. The decomposition of the trajectory matrix into

1 For simplicity, we use the same notation for the stochastic process and for the
observed time series. It will be clear from the context if we are referring to the
population or to the sample. If it were not, we would explicitly clarify it in the
main text.



J. Bégalo, P. Poncela and E. Senra

these groups is given by X = X, + ...+ X|.. The contribution of the
component coming from matrix X,j is given by 3, T/ ket Tk
4th step: Reconstruction. Let X,j = ()7,-]-). In this step, each ma-
trix X,J, is transformed into a new time series of the same length
T as the original one, denoted as X\) = ()7%1‘), ... ,?Tj))’ by diagonal
averaging. This is equivalent to averaging the elements of X,J, over

its antidiagonals, that is, the hankelization of this matrix with the
operator H(-) as follows

1yt ¥
T it Xit—isls

XD =H(X,) = L3 R

1<t<lL
L<t<N

T-N+1 3
T Dol N Xi—it1s N<t=<T

The alternative Toeplitz SSA or Vautard-Ghil (VG) relies on the
assumption that x is stationary and zero mean and it performs
the orthogonal diagonalization in step 2 from an alternative ma-
trix Sy= (s;j) where

T—li-j
1 li—jl

Sii=m=— 77— XmX, i—1ils
ij T—|l—]| mZ:; mam+|i—j|

I<ij=<L (2)

In this case, the matrix St is the sample lagged variance-covariance
matrix of the original series, a symmetric Toeplitz matrix. The set
(Tg w, wy) is named the k -th eigentriple. The rest of the algo-
rithm remains unchanged.

3. Circulant SSA

SSA in any of its variants requires to identify the harmonic fre-
quencies of the extracted components and this makes necessary
the analysis of the periodogram. To try to automate SSA, several
strategies have been proposed such as finding the correlations at
different lags between the elements of two eigenvectors, associ-
ated to almost identical eigenvalues to test if they are in quadra-
ture [40]; testing if a pair of eigenvectors are associated to the
same harmonic based on the periodogram [22]; grouping eigen-
vectors linked to nearby frequencies in order to assign them to the
same harmonic by the introduction of optimal thresholds [21,41];
performing a spectral-based Fisher g test to asses certain prin-
cipal components to the business cycle frequency [17]; consider-
ing eigenvectors as filters [23] and grouping the outputs according
to their frequency response [24]; and even applying cluster tech-
niques for grouping the elementary components based on k-means
[42] or hierarchical clustering [43]. Nevertheless, whatever proce-
dure is used, the grouping of frequencies is made after the elemen-
tary components are extracted. Since the pairs of eigenvalues and
eigenvectors are obtained, not as a function of the frequency, but
rather on a decreasing magnitude, this means that the grouping
is done with uncertainty. A partial solution is provided by com-
puting the eigenvalues-eigenvectors as functions of the frequency
for symmetric positive definite Toeplitz matrices [10]. However, the
analytic form of the eigenvalues for this type of matrices is only
known for heptadiagonal matrices [44]|. We generalize the link be-
tween the eigenstructure of a matrix and the associated frequen-
cies by the use of circulant matrices allowing non-periodic signals.

In this section, we propose an automated version of SSA based
on circulant matrices. First, we deal with the stationary case and,
later on, we will extend our proposal to the nonstationary case.

3.1. Stationary case

In this subsection we propose to apply SSA to an alternative
matrix of second moments that is circulant. In this case, we have
closed solutions form eigenvalues-eigenvectors that are linked to
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the desirable specific frequencies. We show the asymptotic equiv-
alence between the traditional Toeplitz matrices used in SSA and
our proposed circulant matrices. Based on all the previous results
we propose a new alghorithm that we name Circulant SSA (CiSSA).

Toeplitz matrices appear when considering the population sec-
ond order moments of the trajectory matrix. Let {x;} be an infi-
nite, zero mean stationary time series whose autocovariances are
given by ym = E(XcX—m), m=0,1,... and its power spectral den-
sity function, a real continuous and 2 -periodic function, denoted
by f. Let

Yo "1 Y2 R
Yo 12! cee V2
nH=|" L (3)
Yi-r Vi-2 V-3 ... Yo

be the L x L matrix that collects these second moments. Notice
that T'/(f) is a symmetric Toeplitz matrix that depends on the
power spectral density f through the covariances ym,. Recall that
Ym = fol f(w) exp(i2mrmw)dw for any integer m where w € [0,1] is
the frequency in cycles per unit of time.

Analytic expressions for the eigenvalues of Toeplitz matrices
are only known up to heptadiagonal matrices. To be able to have
closed solutions of the eigenvalues and eigenvectors for any di-
mension, we use a special case of Toeplitz matrices that are the
circulant ones. In a circulant matrix every row is a right cyclic shift
of the row above as follows:

Co Cq C .. Cr-1
k-1 G € ... C-2
C(f) =
C1 C C3 .. Co

The eigenvalues and eigenvectors of a circulant matrix have a
closed form [45]. The k-th eigenvalue of the L x L circulant matrix
C;(f) is given by

= k—1
ALk =Y CmeXp (iZﬂmL> (4)
m=0
for k=1,...,L and its associated eigenvector can be written as
=L () (5)

where uy ; = exp (—i27 (j — 1) ¥71).
In particular, if we consider the circulant matrix of order L x L
with elements ¢, defined as:

L-1 . .
cm=12f<i)exp(i2nmi>, m=0,1,....,L—1, (6)
=0

we have two interesting results [4G]. First, the eigenvalues of this
circulant matrix coincide with the power spectral density evalu-

ated at points wy, = 71,

M= f<kL1> ™)

And, second, the matrices I';(f) and C,(f) are asymptotically equiv-
alent as L — oo, ['[(f) ~ Ci(f), in the sense that both matrices have

bounded eigenvalues [47] and lim I D-CG WDl 0, where || - ||f
L—oo VL

is the Frobenius norm. Moreover, the eigenvalues of both matrices
I (f) and C;(f) are asymptotically equally distributed in the sense
of Weyl? as a consequence of the fundamental theorem of Szegd
[48, p. 64] as it is shown in [49].

2 Two sets of bounded real numbers {a,”(}ﬁ:l and {b,,_k}zzlare asymptotically
equally distributed in the sense of Weyl if for a given continuous function F on
3" (F(@n0—F(bn)
the interval [—K, K], it holds that "lim B =0
o0

n
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To obtain a more operational version of the procedure, we con-
sider the circulant matrix C;(f) whose elements ¢, are given by
[50]:

L—m m
Cm:Tym'i_TyL—m, m=0,1,....L-1, (8)

where the generating function f is an approximation of the power
spectral density f. Besides that, [50] shows that I';(f) is asymptot-
ically equivalent to C;(f). By the transitivity property, the three
matrices I';(f), C.(f) and C,(f) are asymptotically equivalent.

Therefore, our proposal will consist on using the eigenstructure
of a circulant matrix C;(f) with elements given by (8) and, by (7),
associate the k' eigenvalue and corresponding eigenvector to the
frequency wy, = "%1 Moreover, again by (7) the spectral density is
easily evaluated at frequencies wy by the eigenvalues of the matrix
CL(D.

Finally, going to the sample we have to work with estimated,
rather than population, quantities. So, we substitute the population
autocovariances {ym}5 1), by the sample second moments {Pm}5 ")
where Yn,m=0,...,L—1 is defined as

1 T-m
Ym = T—m Z XeXtym - (9)
t=1

Since the sample autocovariances converge in probability to the
population autocovariances, we define S with elements given by

/C\mZLTmi/\m‘F%?L—m, m=0,1,....,L—-1. (10)

In what follows, we describe our new proposed algorithm,
named Circulant SSA. Given the time series data {x;}|_;:

1st step: Embedding. This step is as before.

2nd step: Decomposition. Compute the circulant matrix Sc
whose elements are given in (10). Find the eigenvalues A, of S¢
and based on (7), associate the k-th eigenvalue and corresponding
eigenvector to the frequency w;, = "% k=1,...,L

3rd step: Grouping. Given the symmetry of the power spectral
density, we have that A, = A, ,_;. Their corresponding eigenvec-
tors given by (5) are complex, therefore, they are conjugated com-
plex by pairs, u;, = w where v* indicates the complex conju-
gate of a vector v, and uLX and ui X correspond to the same
harmonic period. We proceed as follows to transform them in pairs
of real eigenvectors in order to compute the associated compo-
nents.

To form the elementary matrices we first form the groups of
2 elements B, = {k,L+2 -k} for k=2,...,M with By = {1} and
B%+1 = {5 +1} if L is even. Second, we compute the elementary

matrix by frequency Xp as the sum of the two elementary ma-

trices X, and X, ,_j, associated to eigenvalues A, and A;,,_, and

frequency wy, = 471,

Xp, = Xy + Xr2-k
= wuX+u i, X
= (mu! + wu)X
= 2(RuRy, +In I, )X

where Ry, denotes the real part of uy, Iy, its imaginary part and
vl indicates the conjugate transpose of a vector v. Notice that the
matrices Xp . k=1,..., L, are real.

4th step: Reconstruction. As before.

Notice that the elementary reconstructed series by frequency
can be automatically assigned to a component according to the
goal of our analysis. Fig. 1 shows the related flowchart to better
illustrate the overall automated procedure and its pseudo-code is
provided in Algorithm 1.

Signal Processing 179 (2021) 107824

Algorithm 1 Pseudo-code of Circulant SSA.

Require: Time series x; and window length L
Ensure: Reconstructed series associated with each disjoint group
of frequencies

: Construct the trajectory matrix X by (1)

:form=0toL-1do > Estimated autocovariances

Compute Y, given in (9)

: end for

form=0toL—-1do
Compute ¢, given in (10)

end for

: Build the circulant matrix S¢

: for k=1 to L do ~ Unitary diagonalization of Sc and elementary

matrices R

10: Find the eigenvalue A, of S¢ based on (4)

11: Calculate its corresponding eigenvector u; by (5)

12: The pair (A4, u) is associated with the frequency wy = "%1

13: Determine the contribution of the frequency wy, X,{/ sz

14: Compute the elementary matrix X = ukuEX associated
with the frequency wy,

15: end for

16: Set the group By = {1} and the matrix Xp, = X;
pairs and matrices by frequency

17: fork=2to M= | 51| do

18: Compose elementary pair by frequency By = {k,L+ 2 — k}

19: Compute elementary matrix by frequency Xp, = Xj +Xp,5_¢

20: end for

21: if L is even then

22:  Setthe group By = {4 +1} and the matrix X5, =X
7+l %Jrl

> First row of circulant matrix Sc

CWNDU R WY 2

> Elementary

51

23: end if

24: Determine the G disjoint groups I; of the pairs By with the sig-
nificant or interesting frequencies w; for the non-zero contri-
butions

25: for j=1to G do > Matrices associated with the disjoint groups

26: Compute the matrix X,j associated with each group I; by

X = Xpyel; Xs,

27: end for
28: for j=1to G do > Reconstructed series
29: Calculate the reconstructed series )?f]) by the diagonal aver-

aging or hankelization of matrix Xy, XD = H(X,j.)
30: end for

3.2. Asymptotic equivalence of Basic, Toeplitz and Circulant SSA

Toeplitz and Circulant SSA are modifications of the original Ba-
sic SSA. In this section, we will prove that the three versions of
SSA (Basic, Toeplitz and Circulant) are asymptotically equivalent ac-
cording to the definition given in [46]. Later on, we will run some
simulations to compare the performance of the three versions in
finite samples.

Theorem 1. Given the L x N trajectory matrix X defined in (1), let
Sg = XX'/N, Sy the Toeplitz matrix with elements defined by (2) and
Sc the circulant matrix with elements given in (10). Consider the se-
quence of matrices {Sg}, {St} and {Sc} as L —> oo. Then Sg ~ St ~ Sc.

Proof. The proof is given in the appendix O

This theorem gives the basis to understand the similar results
obtained in practice between Basic and Toeplitz SSA when the win-
dow length is very large (the larger, the better as the result is
asymptotic). This was empirically shown using stationary time se-
ries in climate and geophisics [51,52]. Here, we provide a theoreti-
cal basis for these empirical findings. Additionally, we also extend
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Trajectory matrix

S,

For m=0to L-1
’?i” % é?lf

Y

Fork=1toL
O 4)(5\1 ’“k)’ik/zik X =uuX

B ={1}.X,; =X,

Fork=2to M
B, ={kL+2-k} X, =X, +X, .,

G disjoint groups / ;

Yes | B, ={4+1}
@ XB_' o X%-l

No

L

Forj=1to G
X’_- :Zs%e( Xb’e
Forj=1to G
i;jl :H(XI.)

End

Fig. 1. Flowchart of Circulant SSA algorithm.

the result for the new version of SSA that we have introduced in
this paper, CiSSA.

3.3. Nonstationary case

In economics, many time series are nonstationary in the sense
that the power spectral density function has discontinuities. This
has important consequences in our analysis and we have to show
that Circulant SSA can be applied to nonstationary time series. The
next theorem, a generalization of the analogous Gray’s theorem
[53, Theorem 3], provides the theoretical background needed to
apply CiSSA to nonstationary time series.

Theorem 2. Let T;(s) be a sequence of Toeplitz matrices with s(w)
a real, continuous and 2m-periodic, such that s(w) > 0, where the
equality is reached in a finite number of points H = {W?, i=1,....1}.
Given a finite 8, consider the disjoint sets

1 .
Qiz{WE[W?—ai,W?+ai]|S(W)§ —},aieR+, i=1,...,1

)
and let g(w) be a function defined as

_ 1
g(w) = {}fl F("Vv‘/))_ s(w)

if w ¢ Uiz
ifwe Q,‘

where h;j(w) is any real valued bounded function continuous in ;
and symmetric around W?. Let My, = sup h; < oo and my, = inf h; =
h,(W? — a,-) = hl(WfJ + ai) =34.

Let p . k=1,...,L, be the eigenvalues of (TL(s))’] sorted in de-

creasing order and let F(x) be a continuous function in [Mis max; Mh,-]
with Mg = sup s, then

L 1
lim 7 S F(min(py . max @ 3)) = [ Fewnaw.

where g are the values of g(k*Tl) sorted in descending order.
Proof. The proof is given in the appendix O

Notice that while Gray’s Theorem [53] approximates the
speudo-spectrum by a constant value, Theorem 2 allows for a bet-
ter separation of the components around the spectrum disconti-
nuities that is specially relevant for low frequencies. In a similar
way to [53], the theorem states that the sequence of eigenvalues of
the sequence of matrices (T (s))_] are asymptotically equally dis-
tributed (in the sense of Weyl) as the eigenvalues of the sequence
of matrices T;(g) up to a finite value § as L tends to infinity. More-
over, the matrices T;(g) ~ C,(g) and, by Szegd’s theorem, the eigen-
values of the sequence of matrices T;(g) are asymptotically equally
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distributed as the eigenvalues of the sequence of matrices C;(g) up
to a finite value § as L tends to infinity.

As a result, for a nonstationary series, the union of the esti-
mation of the pseudo-power spectral density in a point of dis-
continuity with the estimations in the adjoint frequencies through
segments is an easy way of building the functions h;. If all the
functions h; are constant and equal to a particular value § finite,
we have the particular case proved in [53, Theorem 3]. Therefore,
the generalization to functions h; allows a better approximation of
the pseudo-power spectral density when we increase the window
length. Fig. 1 and the pseudo-code in Algorithm 1 previously intro-
duced for the description of CiSSA are also valid in the nonstation-
ary case.

4. Simulations

In this section we check the performance of our new proposal,
Circulant SSA, in finite samples and compare it with the competing
SSA algorithms, i.e. Basic SSA and Toeplitz SSA for a linear as well
as a nonlinear time series model. Even though SSA is nonparamet-
ric and therefore model free, in this section we generate time se-
ries following a known model and check the basic statistical prop-
erties related to the signal extraction procedure. In particular, we
check if the extracted signals are unbiased. These simulations gen-
eralize previous exercises [54] by including CiSSA, but also using
more complex time series models in a linear and nonlinear frame-
work.

4.1. Linear time series

The first model is a basic structural time series model
Xx=T+C+s+e (12)

where T; is the trend component, c; is the cycle, s; is the seasonal
component and e; is the irregular component. We assume an inte-
grated random walk for the trend [55] given by

T =T+ B (13)
B =B+

with 7 ~ N(O, o,%). The cyclical and seasonal components are
specified according to [56], where the cycle is given by the
first component of the bivariate Vector Autoregressive of order 1,

VAR(1), model
(g) _ ,0c< co_s(2nwc) sin(anc)) <£t1> N (it> (14)
Ct —sin2rw:) cosmrwe) ) \C_1 &t

with (‘,Zf) ~N(0,02) and - the period, wc € [0, 1]. And, the sea-
t

sonal component is given by

[s/2]

St =) aj; COS(2Twjt) + by, sinRrw;t) (15)
j=1

with w; = % j=1,...,[s/2] and s the seasonal period, where [-] is

the integer part and a;, and b;, are two independent random walks
with noise variances equal to ajz. Finally, the irregular component

is white noise with variance o2. All the components are indepen-
dent of each other. We set p. = 1, so the trend, cycle and seasonal
components may have poles of module 1 and therefore are non-
stationary. We consider that the series are monthly with s =12
and cyclical period equal to w% = 48 months. The sample size is
T =193 and the noise variances of the different components are
given by o7 = 0.0006%, 07 = 0.004%, 0 = 0.008* and 07 = 0.067.
We choose as window length L = 48 because this value of L is mul-
tiple of the seasonal period, it is equal to the cyclical period and

T — 1 is multiple of L [1].
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The trend is related to frequency 0, the cycle to frequency 1/48
and the seasonal components to frequencies 1/12, 1/6, 1/3, 1/4,
5/12 and 1/2. Given (7), we can recover the signal associated to a
frequency w = "%1 by using the elementary components associated

to eigenvalues k and k' =L+2 —k, the latter by the symmetry
of the spectral density. Therefore, the trend is reconstructed with
eigentriple 1, the cyclical component with eigentriples 2 and 48,
and the seasonal components with eigentriples 5, 9, 13, 17, 21, 25,
29, 33, 37, 41 and 45. For example, for the frequency w = 5. we
have that "*Tl = 11—2 and therefore, we sum the elementary compo-
nents k=4 y1=5and kK =L+2 k=48 +2-5=45

If the procedure for signal extraction works well, the simulated
component y; (y; can be the trend, cycle or seasonal component)
could be written as

Ve=VYe+u

where u; is the noise and y; is the extracted signal. Then, in the
regression

Yo =a+by +u (16)

a=0 (unbiasedness) and b=1 (the scale is not changed). No-
tice that y; and y; should be cointegrated. We simulate 10,000
times the model and perform signal extraction with Circulant SSA.
Table 1 shows the percentiles of the empirical distribution of the
estimated coefficients of the regression in (16).

Table 1 shows that the median of the estimated intercept is
almost zero for the three estimated components (cycle, seasonal
component and trend). The median for the scale parameter b is al-
most one for the three components, but looking at the values for
different quantiles, the empirical distribution for the estimated b
associated to the cycle indicates a larger dispersion.

The estimated residuals from Eq. (12) are given by e = x; — T —
G —3; ., and should be white noise, where T;, ¢;, and §; are the es-
timates of the trend, cycle and seasonal component respectively.
In order to check this, we fit an AR(1) to €. Table 2 shows the
quantiles of the empirical distributions of the mean, standard error
and autoregressive coefficient of the residuals of the 10,000 repli-
cations. The median of the mean and autoregressive coefficient are
close to zero. The median of the standard deviation is 0.0529 (the
value used for the simulations was 0.06).

The results from the simulations seem very good. In order to
compare Circulant SSA with alternative algorithms as Basic and
Toeplitz SSA we also simulate the linear model given by (12) and
extract the trend, cycle and seasonal components for 10,000 simu-
lations. Basic and Toeplitz SSA require first to calculate the prin-
cipal components and then to identify the frequency they rep-
resent with some procedure as stated in the first paragraph of
this section. However, given that we are using simulated time
series and we know beforehand the frequencies that might be
more informative, we proceed in a heuristic way. According to
model (12), we know that the informative frequencies are 2 =
{0,1/48,1/12,1/6,1/4,1/3,5/12,1/2} and the window length L =
48 coincides with the cycle periodicity and is multiple of the sea-
sonal periodicity of a monthly time series. Also each eigenvector
generates a linear subspace associated to a frequency. In this way,
we calculate the periodogram for each eigenvector and obtain the
frequency associated with the maximum. If that frequency belongs
to the set €2, the associated component to that eigenvector is as-
signed to the trend, cycle or seasonal component and, on the con-
trary it is assigned to the residual é;.

In analogous way to Circulant SSA, we perform regressions as in
(16) between simulated an estimated components and check a =
0 and b= 1.Table 1 shows the quantiles of the 10,000 estimated
values for a and b. Results are very similar for the three versions
of SSA and it can be accepted that the estimated values are close to
a=0 and b = 1. These simulations allow to conclude that, at least
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Statistics related to the goodness of fit of the extracted signals for the different methods. Simulations for the linear model, N=10000.
Columns show the quantiles of the empirical distribution of the estimated coefficients of the regression of the generated components over

the estimated ones.

Quantiles
Statistic Component
5 25 50 75 95

Circulant SSA

a Trend -0.0613 -0.0209 -0.0006 0.0194 0.0600
Cycle -0.0109 -0.0043 0.0000 0.0045 0.0108
Seasonal -0.0015 -0.0006 0.0000 0.0006 0.0015

b Trend 0.9748 0.9951 1.0032 1.0143 1.0651
Cycle 0.8481 0.9569 1.0029 1.0476 1.1340
Seasonal 0.9451 0.9819 1.0049 1.0277 1.0630

Basic SSA

a Trend -0.0610 -0.0206 -0.0006 0.0191 0.0598
Cycle -0.0165 -0.0066 0.0001 0.0065 0.0167
Seasonal -0.0033 -0.0010 0.0000 0.0010 0.0033

b Trend 0.9881 1.0063 1.0153 1.0326 1.1292
Cycle 0.7891 0.9618 1.0177 1.0794 1.2793
Seasonal 0.9471 0.9911 1.0166 1.0431 1.0867

Toeplitz SSA

a Trend -0.0588 -0.0203 -0.0007 0.0186 0.0566
Cycle -0.0178 -0.0061 0.0001 0.0062 0.0170
Seasonal -0.0017 -0.0007 0.0000 0.0007 0.0018

b Trend 0.9820 1.0003 1.0088 1.0264 1.1415
Cycle 0.7852 0.9863 1.0537 1.1310 1.2754
Seasonal 0.9554 0.9982 1.0273 1.0605 1.1207

Table 2

Statistics related to the residual term €, in Circulant SSA: Average, standard de-
viation and autoregressive coefficient of AR(1). Simulations for the linear model,
N=10000.

Quantiles
Statistic

5 25 50 75 95
Average -0.0033 -0.0012 0.0000 0.0011 0.0033
Standard deviation 0.0478 0.0508 0.0529 0.0551 0.0581
AR(1) coefficient -0.1693 -0.0870 -0.0313 0.0285 0.1075

for the proposed linear model, empirically, the three versions of
SSA are equivalent. However, some differences can be found in the
estimation of the cycle, where the distributions of the estimates of
a and b show less dispersion around 0 and 1 with CiSSA.

4.2. Nonlinear time series

For the case of nonlinear time series, we borrow the model
from [56] for UK travellers given by

X =T +c+explap+aiT)y: +e

where T; is the trend, c; is the cycle and ys; is the seasonal com-
ponent specified as in (13), (14) and (15), respectively. The parame-
ters ag and a; are unknown fixed coefficients. Coefficient ag scales
the seasonal component. The sign of the coefficient a; determines
whether the seasonal variation increases or decreases when a pos-
itive change in the trend occurs. The overall time varying ampli-
tude of the seasonal component is determined by the combination
Ao + A M.

As for the linear case, we simulate the model 10,000 times for
series of length T = 193 observations. We set ay and a; such that
for each replication 0.5 < exp(ag +a;u¢) < 1.5, with a; > 0. We
apply Circulant SSA with a window length L = 48. Table 3 shows
the quantiles of the empirical distribution of the estimated coeffi-
cients of the regression in (16) and again we can see that the val-
ues of a and b estimated are located around O and 1 respectively
with low dispersion.

In order to check that the estimated residuals are white noise,
we fit an AR(1) to e as in the linear case. Table 4 shows the quan-
tiles of the empirical distribution of the mean, standard error and
autoregressive coefficient of the residuals of the 10,000 replica-
tions. The median of the mean and autoregressive coefficient are
close to zero. The median of the standard deviation is 0.053 (the
value used for the simulations was 0.06).

As in the linear case, the results from the simulations seem very
good. To compare Circulant SSA with alternative algorithms as Ba-
sic and Toeplitz SSA, we repeat the simulations described in the
previous section and apply the same steps to obtain their trend,
cycle and seasonal components. Again, we perform regressions as
in (16) between simulated an estimated components and check
a=0 and b=1. Table 3 shows the quantiles of the 10,000 esti-
mated values for a and b. The same conclusions as in the linear
case apply: it can be accepted that the estimated values are close
to a =0 and b = 1; empirically, the three versions of SSA are equiv-
alent for the proposed linear model; and some differences can be
found in the cycle estimations, where the distribution of the esti-
mates of a and b show less dispersion around 0 and 1 with CiSSA.

5. Applications
5.1. Industrial production

We consider monthly series of Industrial Production (IP), index
2010=100, of six countries: France, Germany, Italy, UK, Japan and
US. Industrial Production is widely followed since it is pointed out
in the definition of a recession by the National Bureau of Economic
Research (NBER), as one of the four monthly indicators series to
check in the analysis of the business cycle. The sample covers from
January 1970 to September 2014, so the sample size is T = 537.
The data source is the IMF database. As it can be seen in Fig. 2,
these indicators show different trend, seasonality and cyclical be-
havior, and our goal is to extract these components and discuss
about the results.

The first step is to establish the window length. Due to the
monthly periodicity and seasonality, we select a window length
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Statistics related to the goodness of fit of the extracted signals for the different methods. Simulations for the nonlinear model,
N=10000. Columns show the quantiles of the empirical distribution of the estimated coefficients of the regression of the

generated components over the estimated ones.

Quantiles
Statistic Component
25 50 75 95

Circulant SSA

a Trend -0.0603 -0.0199 0.0004 0.0202 0.0609
Cycle -0.0111 -0.0045 -0.0001 0.0043 0.0112
Seasonal -0.0015 -0.0006 0.0000 0.0006 0.0015

b Trend 0.9742 0.9951 1.0037 1.0154 1.0682
Cycle 0.8442 0.9567 1.0029 1.0475 1.1353
Seasonal 0.9241 0.9779 1.0072 1.0335 1.0720

Basic SSA

a Trend -0.0602 -0.0198 0.0005 0.0199 0.0605
Cycle -0.0167 -0.0065 0.0000 0.0066 0.0163
Seasonal -0.0035 -0.0010 0.0000 0.0009 0.0030

b Trend 0.9880 1.0064 1.0158 1.0337 1.1284
Cycle 0.7626 0.9588 1.0158 1.0763 1.2660
Seasonal 0.9269 0.9888 1.0236 1.0561 1.1084

Toeplitz SSA

a Trend -0.0581 -0.0191 0.0002 0.0195 0.0602
Cycle -0.0176 -0.0063 -0.0001 0.0064 0.0185
Seasonal -0.0019 -0.0007 -0.0001 0.0006 0.0016

b Trend 0.9814 1.0004 1.0093 1.0284 1.1424
Cycle 0.7609 0.9812 1.0513 1.1279 1.2767
Seasonal 0.9351 0.9977 1.0315 1.0667 1.1316

Table 4

Statistics related to the residual term € in Circulant SSA: Average, standard devi-
ation and autoregressive coefficient of AR(1). Simulations for the nonlinear model,
N=10000.

Quantiles
Statistic

5 25 50 75 95
Average -0.0034 -0.0011 0.0000 0.0012 0.0033
Standard deviation 0.0476 0.0508 0.0531 0.0554 0.0590
AR(1) coefficient -0.1727 -0.0899 -0.0339 0.0250 0.1066

multiple of 12. Assuming that the period of the cycle in these se-
ries goes from 1 year and a half to 8 years, we choose a window
length multiple of 8 x 12=96 months. From the two available
options, 96 and 192 months, we select the second one since it is
larger.

According to (7) for k =1, we have w; = kfl =0 and it will be
associated to the trend. In the same way, for k = 2, we have w, =
1/192 , that corresponds to 192 months or 16 years that are be-
yond cyclical movements between 1.5 and 8 years. Therefore, given
(7) and the symmetry of the power spectral density, the trend is
reconstructed with the eigentriples 1, 2 and L+ 2 — k = 192 with
the elementary groups by frequencies from B; and B, respectively.
In an analogous way, assuming that the business cycle goes from
1.5 to 8 years, this component is associated to frequencies wy =
1/96,1/64,1/48,5/192,1/32,7/192, 1/24, 3/64, 5/96 and the cycle
signal is reconstructed with the eigentriples 3 to 11 and 183 to
191, with the elementary groups by frequencies from B; to Byj.
Finally, the seasonal component is associated to the frequencies
w, =1/12,1/6,1/4,1/3,5/12,1/2 and reconstructed in a similar
way with the eigentriples 17, 33, 49, 65, 81, 97, 113, 129, 145, 161
and 177 and with the elementary groups by frequencies Bi7, Bs3,
Byg, Bss, Bg1, and Bgy.

Table 5 shows the contributions of the signals to the original
IP variations in percentage. First, we highlight that the contribu-
tion of the irregular component (those oscillations not explained
by the trend, cyclical or seasonal components) is smaller than 3.5%
in all the countries. Main contributions come from the trend and

Table 5
Contribution of the different signals to IP in the six countries in percentage.
Country
Component
France Germany Italy Japan UK USA
Trend 52.1 77.3 42.7 79.0 72.0 87.9
Cycle 9.5 12.6 7.8 13.8 11.1 103
Seasonal 35.6 6.7 47.3 5.1 135 0.3
Irregular 2.8 34 2.2 2.1 34 1.5

seasonality, that account for more than 84% in all the countries.
As expected, the contribution of the seasonal component is almost
negligible in US, and quite small in Japan and Germany, while it is
very relevant in Italy and France. Finally, the cycle contributes in a
range between 7.8% in Italy to 13.8% in Japan.

Fig. 2 shows the estimated trends for every country. The trend
is a smooth component that has shown a decreasing evolution
since the last decade for France, Italy and UK as a consequence of
the last economic crisis. On the contrary, in Germany and US, the
trend shows an upward evolution in all the sample period.

Fig. 3 shows the cyclical component where the shaded areas
correspond to recessions as dated by the OECD?. We can see that
the extracted cycle reflects quite well the business cycle for all
countries.

5.1.1. Separability of the estimated components with CiSSA

One desirable property of the signal extraction method is that
the resulting components should be orthogonal. However, in prac-
tice, they usually exhibit cross-correlation. Residual seasonality in
seasonal adjusted time series is another concern in any signal ex-
traction method from very early times [57,58], and it is still a mat-
ter of interest nowadays. Findley et al. [59] point out that "The
most fundamental seasonal adjustment deficiency is detectable
seasonality after adjustment”. This is also a concern for policy
makers [60].

3 https://www.oecd.org/sdd/leading-indicators/

oecdcompositeleadingindicatorsreferenceturningpointsandcomponentseries.htm
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Fig. 2. Original IP and trend for the different countries.

Separability of the elementary series as well as those grouped
by frequencies is an assumption of SSA and should also be a char-
acteristic of the estimated components. This characteristic is im-
portant since many signal extraction procedures assume zero cor-
relation between their underlying components, whereas the esti-
mated signals can be quite correlated. The SSA decomposition can
be successful only if the resulting additive components of the se-
ries are quite separable from each other [39].

For a fixed window length L, given two series {xgl)} and {x§2>}
extracted from the series {x;}, we say that they are weakly sepa-
rable if both their column as well as row spaces are orthogonal,
that is X (X@)" = 0,,; and (XM)'X@ = 0y, . Furthermore, we

say that two series {xt(])} and {x§2)} are strongly separable if they

are weakly separable and the two sets of singular values of the
trajectory matrices X(1) and X2 are disjoint. When the trajectory
matrix of the original time series has no multiple singular values
or, equivalently, each elementary reconstructed series belongs to a
different harmonic, strong separability is guaranteed according to
the previous definition.

Usually, separability is measured in terms of w-correlation
[1,39] that it is given by

(xD, x®)
w

[, x>,

w

Py =
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Fig. 3. Estimated IP cycles and OECD announced recessions (shadowed areas).

where the called

(x,x@) — o

product,
diag (1,2,---, L,---
——

EDOywx® s
”x(l) ||w = (X(U, x(1)>w

,2,1). Note

W=
that the window

w-inner and

L

T—2(L-1) times

length L enters the definition of w-correlation. We are interested

on producing components with w-correlation (ideally) zero be-

cause, in this case, we can conclude that the component series are
w-orthogonal, i. e. (x1),x@) '=0 and separable [39].

To show that Circulant SSA produces components that are

strongly separable, first notice that the real eigenvectors ﬁRuk

10

and +/2Iy, (linked to eigenvalues A and A;,, . respectively, A; =
Aiok) are orthogonal and have information associated only to fre-
quency ¥1. Those are the only eigenvectors that have information
related to this frequency. As eigenvectors can be considered filters
[23,24], these pair of eigenvectors extract elementary series linked
to the same frequency without mixing harmonics of other frequen-
cies. As a result, the two elementary series, when reconstructed in
step 4, have spectral correlation close to 1 between them and close
to zero with the remaining ones. Taking into account the pairs
of reconstructed series per frequency, any grouping of the recon-
structed series results in disjoint sets from the point of view of
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Fig. 4. w-correlation matrix for the IP elementary reconstructed series for the 30 greatest eigenvalues.

the frequency. Then, Circulant SSA produces components that are
approximately strongly separable.

To quickly check how separable the components are, Fig. 4 plots
the matrix of the absolute values of the w-correlations for all the
IP components, coloring in white the absence of w-correlation, in
black w-correlations in absolute value equal to 1 and in a scale of
grey colors the remaining intermediate values. It can be seen that,
as expected, Circulant SSA produces components that are strongly
separable.

Furthermore, seasonal adjusted time series for Industrial Pro-
duction are largely followed by real time analysts, and one desir-
able property is that they have no remaining seasonality. To check
the quality of seasonal adjustment by Circulant SSA, we have ap-
plied the combined test for seasonality [61] used in X12-ARIMA. We
found that there were no signs of any remaining seasonality in any
of the seasonal adjusted time series for the different countries®.

5.2. Speech processing

To further illustrate CiSSA, we consider a segment of voiced
speech from the file handel.mat available in Matlab Central. The
segment takes the first 2.08 seconds that reproduces the word “Al-
leluia” when it appears for the first time. The segment length con-
sists of 17,000 observations and a sample frequency of 8192 Hz and
it is represented by the blue line in Fig. 5.

We consider L = 8192, that is the frequency sample, a value be-
low T/2 that will pick the existing oscillations®. Fig. 6 shows the
estimated power spectral density (PSD) in dB. The black line sep-
arates positive PSD values. These values correspond to normalized

4 Results are available from the authors upon request.

5 Results are robust to other values of L, like for instance L = 1024 or L = 4096
(chosen to be a multiple or a fraction of the frequency sample) and are available
from the authors upon request.

1

frequencies around 0.07, 0.13 and 0.14 and values of k = 574, 1065
and 1148 respectively.

Summing up the reconstructed components with positive PSD
around these values we obtain the red line in Fig. 5 that captures
the first vowel "a”, [&/, that is high-pitched and persistent. They
represent 26.5% of the original voice signal variability. To deeper
understand this signal we calculate the amplitude of the recon-
structed components as the result of a low-pass Butterworth filter
of order 4 and cutoff normalized frequency 0.01 to the module of
their Hilbert Transform. Fig. 7 confirms the high-pitched and the
persistence of the vowel &/ during the first second of the record-
ing and the slowly fading in the next second.

Finally, the red line in Fig. 6 indicates PSD values over per-
centile 95% and the green line over percentile 90%. The sum of the
reconstructed components over percentile 95% accounts for 69.7%
of total variability and allows to recognize the full word “Alleluia”.
Finally, taking as reference percentile 90%, the corresponding sum
of the reconstructed components accounts for 84% of the total vari-
ability of the original signal and reproduces the word with clarity.

6. Comparison with other signal extraction procedures

In this section we compare CiSSA with other state-of-the art
techniques for signal extraction applied in different research fields
like voice recognition [30,62], medicine [31], finance [63], or art
and logo design [64| among others. The signals in these appli-
cations can be nonlinear and nonstationary in the form of am-
plitude and frequency changing in time. Such signals are mod-
elled by multicomponent AM-FM decomposition methods like the
Hilbert Huang Transform (HHT) [29,65], the Iterative Hilbert Trans-
form (IHT) [30,62] or the Hilbert Vibration Decomposition (HVD)
[31,66]. For this type of signals, alternative versions of SSA are ac-
knowledged as useful tools to represent a slowly changing am-
plitude [2]. The simulations in Section 4.2 already illustrate that
CiSSA also performs well with changing amplitude signals. In this
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Fig. 5. Original voice segment for the word Alleluia (blue line) and sum of reconstructed CiSSA components (red line) with positive PSD. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Estimated CiSSA power spectral density in dB (L = 8192) for the word Alleluia.
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Fig. 8. Spectral density estimation of the synthetic signal x(t).
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Fig. 9. Synthetic components x;(t) and x,(t) (in blue) and the corresponding CiSSA estimation (in red). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

section we show that CiSSA is also suitable to capture FM signals
and illustrates its functioning in this context by understanding its
performance with the application to a synthetic signal previously
used in the literature where it has been shown that AM-FM tech-
niques work well [31]. Additionally, we also compare the behaviour
of CiSSA and the above mentioned methods extracting the signals
of a real economic time series that is characterized by evolving
trend, strong seasonality and business cycle oscillations.

We consider a synthetic example taken from [31] that results
from the sum of a simple AM signal and another one that is
both amplitude and frequency modulated. Let x(t) = x1 (t) + x,(t)
where x; (t) = aq(t)cos(wyt) and x,(t) = ap(t)cos(wy ot + Wy q %)
with a(t) =1+ 0.2sin(wy 1t) and ay(t) = 0.1 +0.05cos(wg »t).
See that x,(t) shows linearly increasing frequency in time as
Wy (t) =Wy o+ Wy % In this particular example, the authors
choose the following values f; =5Hz, f,¢=40Hz, f,1=25Hz,
fa1=1Hz and f4, =10Hz, being w =2mf. We apply CiSSA
choosing as window length L = 200.

Fig. 8 shows the estimation of the power spectral density of x(t)
measured in dB. We clearly see a peak at the normalized frequency
0.005 that corresponds to x;(t). Regarding the modulated signal
described by x,(t), it appears in the spectrum as a constant gain
around a central value. Therefore, CiSSA is able to capture the vari-
ability of the frequency by adding several components of adjacent
frequencies.

Fig. 9 shows the generated components and their estimations
by CiSSA. The first component x;(t) corresponds to k=2 and its

frequency w, = "% The second signal x,(t) appears as the sum
of the reconstructed components associated to the plateau (k=6
to k=17 and their frequencies). This range of adjacent frequencies
should be selected as one of the G disjoint groups determined in
line 24 of the pseudo-code presented in Algorithm 1. As it can be
seen, CiSSA is able to characterize signals with both constant and
varying frequencies.

To further discuss and compare the characteristics of the alter-
native methods, we apply CiSSA, HHT, IHT and HVD to a real data
set. HHT works in two steps: first, it decomposes the signal into a
small number of intrinsic mode functions (IMF) by means of the
Empirical Mode Decomposition (EMD); and, second, it applies the
Hilbert transform to the IMFs estimated in the first step to obtain
instantaneous frequencies as a function of time. The first compo-
nent extracted by EMD is highly oscillating and the last compo-
nent is referred to a constant mean or a trend if there is one, just
opposite to SSA since the trend typically corresponds to the lead-
ing components of the decomposition. IHT iteratively applies the
Hilbert transform to a filtered version of the amplitude envelopes.
In a second step, it obtains the instantaneous frequencies by lin-
ear regression over time intervals applied to the extracted phases.
The number of iterations is the number of estimated components.
HVD is also an iterative algorithm. It estimates one component
in each iteration by computing the instantaneous frequency and
amplitude of the current residual signal. It obtains the instanta-
neous frequency by applying a low-pass filter to the argument of
the Hilbert transform and the instantaneous amplitude by coher-
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ent demodulation. Biagetti et al. [31] enhance previous HVD ver-
sions eliminating the distortions at the beginning and the end of
the sample by mirrored convolution.

We consider the monthly Spanish Production Index (IP),
2010=100. The sample covers from January 1970 to December
2018, and the data source is the International Monetary Fund
database. As it can be seen in Fig. 10, it is a time series with evolv-
ing trend, strong seasonality and business cycle oscillations (be-
tween 1.5 and 8 years). Business cycle fluctuations trigger differ-
ent economic measures from policy makers depending on the state
of the economy: expansion or recession. They are characterized by
long and slow expansions and short and deep recessions. In this
sense, it seems that the analysis made through AM-FM methods
can be a good alternative to pick up this component.

We apply CiSSA with a window length L = 192. Regarding HHT
we use Ensemble EMD (EEMD) [67], implemented in Matlab [68],
that solves the mixing-mode problems present in the original tech-
nique. Similar results are also obtained with the solutions pro-

14

2000

Fig. 11. Spanish IP business cycle estimated by CiSSA and EEMD.

2010

posed in [69]6. For IHT we have used a low pass digital Butter-
worth filter and the Hilbert transform iteratively. Finally, for HVD
we have used the matlab code in [70].

Fig. 10 shows the estimated trend. We can see that all the
methods are able to capture the trend in a very similar way, al-
though the trend extracted by IHT shows some remaining season-
ality and instability at the beginning and the end of the sample.

IHT and HVD extract components with mixed seasonal
and business cycle oscillations. Regarding CiSSA and EEMD,
Fig. 11 shows the corresponding estimations of the business cycle
as well as recession dates (shadowed areas in blue) estimated by
the OECD’. See that both signals look quite similar and are able
to identify the well-known recessions of the first oil-crisis, the one
due to the industrial re-conversion, the recession at the beginning

6 Results are available from the authors upon request.
7 https://fred.stlouisfed.org/series/ESPREC
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Fig. 12. Spanish IP seasonal component estimated by CiSSA and EEMD.

of the 90s, the one at the beginning of the 21st century and the
last Great Recession and subsequent sovereign debt crisis. How-
ever, at the end of the sample CiSSA and EEMD are providing a dif-
ferent assessment of the business cycle momentum. While CiSSA,
in line with the OECD estimation recession dates, is showing a de-
celeration of the business cycle, EEMD shows an increasing path.
The reason for this difference is the discrepancy in the estimation
of the trend at the end of the sample where EEMD could be un-
derestimating the trend given that it is below the local average of
the last observations. Fig. 12 shows a very similar estimation of
the seasonality by CiSSA and EEMD, though the signal estimated
by EEMD seems to be incorporating also short-run noise.

7. Conclusions

In this paper we propose CiSSA, Circulant SSA, an automated
procedure that allows to extract the signal associated to any given
frequency specified beforehand. This is different to previous ver-
sions of SSA that, after extracting the principal components of the
trajectory matrix, they need to identify their frequency of oscilla-
tion and group them in order to form the desired signals.

CiSSA relies on the eigenstructure of a circulant matrix related
to the second moments of the time series. Circulant matrices have
closed form solutions for their eigenvalues and eigenvectors. Addi-
tionally, we can use them to evaluate the power spectral density at
specific frequencies. We prove that CiSSA is asymptotically equiva-
lent to Basic and Toeplitz SSA.

We also extend the algorithm of Circulant SSA to the nonsta-
tionary case providing a generalization of Gray’s theorem.

The properties of Circulant SSA have been checked through a
set of simulations for linear and nonlinear time series models as
well as through empirical applications in economics and speech
processing. Regarding the application to Industrial Production, we
find that CiSSA does a good job extracting the business cycle and
estimates cycles that match the dating proposed by the OECD.
Within speech processing CiSSA is able to identify the main fea-
tures of the word under study and to reproduce it.

Finally, we have illustrated the possibility of using CiSSA in the
context of time-varying amplitude and frequency and compared its
results with other state of the art models commonly used for AM-
FM signals.
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Appendix A. Theorems and Proofs

The proof of Theorem 1 relies on a set of lemmas and propo-
sitions that need to be proven before. Proposition 1 shows the
asymptotic equivalence between the Toeplitz matrices of sample
and population second moments, Sy ~ I';(f). Proposition 2 shows
that the sequence of matrices Sg are also asymptotically equiva-
lent to the Toeplitz matrix of population second moments I';(f).
We also need two auxilliary lemmas regarding probability conver-
gence of sample and population second moments.

Lemma 3. For a stationary time series, the sequence S; =
Z,Ln;lo (Pm — ym)? converges in probability to 0 when L —> oc.

Proof. The sum S; can be decomposed as

-1 . -1 L-1 -1
SL:Z(PM_Vm) = yn21+ Arg_zzym)?m~
m=0 m=0 m=0 m=0

The first term in the previous equation is finite when L — oo by
Parseval’s Theorenm, that is Yoo, 2 = K. Preserving L < T/2, L is
a monotonically increasing sequence as a function of T so L — oo
when T — oo. Thus if L — oo means that T — oo and, therefore,
the sum of infinite addends of the second term converges in proba-
bility to K given that ¥ —> 4 in probability when T — oo. And,
because of the same reasoning, the third term converges in proba-
bility to 2K when L — oco. As a consequence, the sum S; converges
in probability to K+ K—2K=0asL — oco. O

Proposition 4. Let {St} and {I';(f)} be two sequences of matrices de-
fined in function of the window length defined by (2) and (3) respec-
tively. Then, St ~ T'(f).

Proof. We know that the eigenvalues of the Toeplitz matrix I';(f)
are bounded [47]. The matrices Sy are Toeplitz and symmetric,
therefore their real eigenvalues are also bounded. We must proof
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that lim HIST = TL(f)llF = 0. We can write
—>00

L-1 R
[ C=m)Pn-

m=1-L

—

1
0 < ;lISr—Tu(Dllf = Ym)? <

5222———%%n ¥Ym)® <

<2 Z (Vin = Ym)?
m=0

By the Squeeze Theorem and the previous Lemma, we obtain
that Llim %||ST—1"L(f)||F=O and therefore it is proved that
—> 00

Sr~ (). O

In Basic SSA, it is possible to substitute the matrix S = XX’ by
Sg = XX'/N for stationary time series [39]. Matrices S and Sg, with
dimension L x L, have the same eigenvalues and the eigenvectors
of Sg are those of § multiplied by 1/N. The elements of matrix Sg
are given by §;; = & Yo XtX¢, j_i and, under stationarity, it holds
that §;; converges to Yit—j| @ N —> oo, it is, when T — oo. From
matrix Sg we obtain a sequence of symmetric matrices {Sg} as a
function on the window lenght L. To relate this sequence {Sg} of
matrices symmetric with the sequence of Toeplitz symmetric ma-
trices {I';(f)} we must proof the following Lemma.

Lemma 5. Under stationarity, the sequence SL=
L1, max {(5;—ym)?} converges in probability to 0 when
1<i, j<L
li—jl=m
L — oo

Proof. The sum §; verifies that

L-1 L-1
0<S. <> ya+>, max {3}-2 Z min {yms,]}
m=0 m=01§l:]<L —ol<i, j<L
|li—jl=m li—jl=m

By Parseval’s Theorem, the first term on the right is finite as
L — oo, it is quadratic summable, Y51 12 — K. We know that
N=T-L+1. Given that L < T/2, N> T/2+1 and, further L and
N are monotonically increasing sequences as functions of T, so
L N — oo, as T —> oo. Therefore, if L — oo means that T — oo
and the sum of infinite addends of the second term converges in
probability to K because §;; — Vji—j).for all i, j, when N — oo,
that is, when T — oo. And, following the same reasoning, the
third term converges in probability to 2K when L — oo. There-
fore the right term of the inequality converges to 0 in probability.
Finally by the Squeze Theorem, S; converges in probability to 0. O

Proposition 6. Let {Sg} and {I';(f)} be the sequences of matrices de-
fined as a function of the window length L. Then, Sg ~ ' (f).

Proof. The eigenvalues of the Toeplitz matrix I';(f) are bounded
[47]. The symmetric matrices Sg converge to Toeplitz matrix
in probability. Then, their eigenvalues are bounded in probabil-
ity. Now we must proof that Lli_r)nooﬁHSB —~T(f)|lF =0. We can

write,

1 N LIRS 2
0 < 7185~ Te(HllF =7 23 (s = vien) =

i=1 j=1
By m
<2 Z I max {(51] ym)z} =
m=0 1<i, j<L
li—jl=m
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L1

<2 max {G;-
m= 01<l ]
li—jl=m

ym)?}.

Therefore, by the Squeeze Theorem and previous Lemma, it holds
that lim LISs = TL(f)|IF = 0 and Sp ~ T;().
—> 00

Proof of Theorem 1: We have that Sy ~ I';(f) and Sz ~ I';(f) by
Propositions 4 and 6 respectively, and that together with the tran-
sitive property lead to Sg ~ St. Given that by construction St ~ S¢
[50] and, again, by transitive property we have that Sg ~ Sc.

Proof of Theorem 2: As defined, the function g(w) is real, con-
tinuous and 27w -periodic. Its image is [Mis,max,-M,.,i] being dif-
ferent from zero in the whole interval. Then, by the properties
of the inverse of Toeplitz matrices (TL(gfl))fl ~ T (g). Moreover,
if F(x) is continuos in [, max; My ], then F(}) is continuos in
[WM% Ms]. Since the assumption of g(w) being a Wiener's class
function relaxes to a continuous and 2m-periodic function [71],
Szegd's theorem leads to (11).
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