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a b s t r a c t 

Sometimes, it is of interest to single out the fluctuations associated to a given frequency. We propose a 

new variant of SSA, Circulant SSA (CiSSA), that allows to extract the signal associated to any frequency 

specified beforehand. This is a novelty when compared with other SSA procedures that need to iden- 

tify ex-post the frequencies associated to the extracted signals. We prove that CiSSA is asymptotically 

equivalent to these alternative procedures although with the advantage of avoiding the need of the subse- 

quent frequency identification. We check its good performance and compare it to alternative SSA methods 

through several simulations for linear and nonlinear time series. We also prove its validity in the nonsta- 

tionary case. We apply CiSSA in two different fields to show how it works with real data and find that it 

behaves successfully in both applications. Finally, we compare the performance of CiSSA with other state 

of the art techniques used for nonlinear and nonstationary signals with amplitude and frequency varying 

in time. 

© 2020 The Authors. Published by Elsevier B.V. 
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. Introduction 

Singular Spectrum Analysis (SSA) is a nonparametric procedure 

ased on subspace algorithms for signal extraction [1] . The main 

ask in SSA is to extract the underlying signals of a time series like 

he trend, cycle, seasonal and irregular components. It has been 

pplied to a wide range of time series problems, besides signal 

rocessing [2] , like forecasting [3] , missing value imputation [4] or 

unctional time series [5] among others. SSA builds a trajectory 

atrix by putting together lagged pieces of the original time series 

nd works with the Singular Value Decomposition of this matrix. 

t can be viewed as applying Principal Component (PC) analysis to 

he columns of the trajectory matrix. 

SSA has been applied in different disciplines as several authors 

llustrate (see [6] and the references therein). For instance, there 
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re recent applications in biometrics [7] , climatology [8] , energy 

9] or volcanic activity [10] . 

In business and economics, SSA applications focus on fore- 

asting and business cycle analysis [11] . Applications in this field 

ange from analyzing the effect of the 2008 recession in forecast- 

ng [12,13] , to predicting inflation dynamics [14] or the industrial 

roduction with multivariate SSA [15] . Related to the business cy- 

le, SSA has also been used to track the US cycle [16] , to analyze

he real time nowcasting of the output gap [17] and the economic 

ycles and their synchronization in three European countries [18] . 

SA has also been applied to estimate stochastic volatility models 

19] and intraday data forecasting [20] . 

The common practice when applying SSA is to extract the prin- 

ipal components of the trajectory matrix and to identify after- 

ards the frequencies associated to them, by analyzing their es- 

imated periodogram [17,21,22] or frequency response [23,24] just 

o cite a few methods. Though there are fast computing algorithms 

or the eigenvalues and eigenvectors of Toeplitz matrices [25,26] , 

he use of circulant matrices has a great advantage as their eigen- 

alues and eigenvectors have a closed form. Circulant matrices 

ave also been used in a different context, within the MUSIC al- 

orithm, restricted to signals that are approximately periodic and 

eterministic [27] . 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1 For simplicity, we use the same notation for the stochastic process and for the 

observed time series. It will be clear from the context if we are referring to the 

population or to the sample. If it were not, we would explicitly clarify it in the 

main text. 
We propose a new SSA methodology (CiSSA), that can be ap- 

lied to any time series signal, based on circulant matrices that, 

nce the user has decided beforehand the frequency of interest, it 

utomatically matches this frequency with specific principal com- 

onents. Circulant matrices become relevant in this setup, as their 

igenstructure can be obtained as a function of the frequency and, 

herefore, we can automatically match their eigenvalues and eigen- 

ectors with any particular frequency. Our approach, CiSSA, valid 

n a general setting, automatically identifies the eigenvalues and 

igenvectors associated to any particular frequency using circu- 

ant matrices. Moreover, we obtain an easy way to evaluate the 

ower spectral density since the eigenvalues approximate it at the 

atched frequencies. 

CiSSA seems to perform and compare well with previous ver- 

ions of SSA, like Basic or Toeplitz SSA, despite introducing its 

utomatization. In order to show this, first, we have proved that 

iSSA is asymptotically equivalent to these alternative procedures. 

econd, we have checked its performance in practice through sev- 

ral sets of simulations for linear and nonlinear models. Finally, we 

ave extended its validity for nonstationary time series. Although 

SA has been successfully used in nonstationary time series pre- 

iously, e.g., [28] , our value added is that we apply it in an auto-

ated way and also provide a theoretical background overcoming 

he assumption of stationarity. 

In summary, our contribution is to propose a new version of 

SA, Circulant SSA, for signal extraction in an automated way valid 

or any type of signal. With this new version, we make heavy use 

f circulant matrices and obtain reliable components associated to 

ny pre-specified frequency, both for stationary and nonstationary 

ime series. 

We illustrate this new procedure by applying it to the Indus- 

rial Production Index (IP) of six developed countries and to the 

ignal produced by the word ”Alleluia”. IP is a relevant indicator 

o track the business cycle and its seasonally adjusted signal is fol- 

owed in real time to monitor the economy. We check that our es- 

imated cycles match the official dating of recessions provided by 

he OECD and check the strong separability of the estimated com- 

onents. Regarding the application to speech processing, we find 

hat CiSSA identifies and reproduces the main characteristics of the 

ord under study. 

Finally, we check the validity of CiSSA to represent other non- 

inear and nonstationary signals in the form of varying amplitude 

r frequency along time that are frequent in other fields. In order 

o do so, first, we apply CiSSA to a synthetic example previously 

sed in the literature of AM-FM multicomponent models and, sec- 

nd, we compare the performance of CiSSA and various state of 

he art techniques [29–31] when applied to a real data set. 

The structure of this paper is as follows: Section 2 briefly de- 

cribes SSA. Section 3 proposes our new SSA procedure, named af- 

er Circulant SSA, proves its asymptotic equivalence to Basic and 

oeplitz SSA and extends its use for nonstationary time series. 

ection 4 presents a set of simulations to check the properties 

f the proposed methodology. Section 5 applies it to the estima- 

ion of the business cycle of the industrial production index in 

ix countries and to the signal produced by the word ”Alleluia”. 

ection 6 compares CiSSA with other models applied to nonlinear 

nd nonstationary signals with varying amplitude and frequency. 

inally, Section 7 concludes. 

. SSA Methodology 

The origin of SSA dates back to 1986 with the publication of 

he papers by Broomhead and King [32,33] and Fraedrich [34] . In 

989, Vautard and Ghil [35] introduce Toeplitz SSA for stationary 

ime series and, three years later, Vautard et al. [22] derive the al- 

orithm called diagonal averaging to obtain the extracted compo- 
2 
ents with the length of the original series. At the same time, and 

ndependently, the so-called Caterpillar technique was developed 

n the former Soviet Union [36] . As pointed out by Golyandina and 

higljavsky [1] , SSA is also related to subspace methods as ESPRIT, 

USIC or Min-Norm, and all the literature that started with the 

eminal work of Pisarenko [37] . See, for instance Ortigueira and 

agunas [38] that compare the eigendecomposition procedures ap- 

lied to second moments of the data versus the singular value de- 

omposition of the data matrix, being the two methods used in 

ifferent versions of SSA. 

In this section we briefly describe the steps used in SSA to de- 

ompose a time series in its unobserved components (trend, cy- 

les,...). Basically, SSA is a technique in two stages: decomposition 

nd reconstruction. In the first stage, decomposition, we transform 

he original vector of data into a related trajectory matrix and per- 

orm its singular value decomposition to obtain the so called el- 

mentary matrices. This corresponds to steps 1 and 2 in the al- 

orithm. In the second stage, reconstruction, (steps 3 and 4 of the 

lgorithm) we classify the elementary matrices into disjoint groups 

ssociating each group to an unobserved component (trend, cy- 

les,...). Finally, we transform every group into an unobserved com- 

onent of the same size of the original time series by diagonal av- 

raging. 

To proceed with the algorithm, let { x t } denote a stochastic pro- 

ess t ∈ T and let { x t } T t=1 be a realization 

1 of x t of length T , x =
x 1 , . . . , x T ) 

′ , where the prime denotes transpose and L a positive

nteger, called the window length, such that 1 < L < T /2. The Ba-

ic SSA or Broomhead-King (BK) procedure involves the following 

 steps: 

1st step: Embedding. From the original time series we will ob- 

ain an L × N trajectory matrix X , N = T − L + 1 , as follows 

 = ( x 1 | . . . | x N ) = 

⎛ 

⎜ ⎜ ⎝ 

x 1 x 2 x 3 . . . x N 
x 2 x 3 x 4 . . . x N+1 

. . . 
. . . 

. . . 
. . . 

. . . 
x L x L +1 x L +2 . . . x T 

⎞ 

⎟ ⎟ ⎠ 

(1) 

here x j = (x j , . . . , x j+ L −1 ) 
′ 

indicates the L × 1 vector with origin 

t time j . Notice that the trajectory matrix X is Hankel and both, 

y columns and rows, we obtain subseries of the original one. 

2nd step: Decomposition. In this step, we perform the singu- 

ar value decomposition (SVD) of the trajectory matrix X = UD 

1 / 2 V 

′ 
here U is the L × L matrix whose columns u k are the 

 × 1 eigenvectors of the second moment matrix S = XX 

′ , D = 

iag(τ1 , . . . , τL ) , τ1 ≥ . . . ≥ τL ≥ 0 , are the eigenvalues of S and V 

s the N × L matrix whose L columns v k are the N × 1 eigenvec-

ors of X 

′ X associated to nonzero eigenvalues. This decomposition 

llows to write X as the sum of the so-called elementary matrices 

 k of rank 1 or dyads, 

 = 

r ∑ 

k =1 

X k = 

r ∑ 

k =1 

u k w 

′ 
k , 

here w k = X 

′ u k = 

√ 

τk v k , being 
√ 

τk the singular values of the X

atrix, and r = max τk > 0 
{ k } = rank( X ). 

3rd step: Grouping. Under the assumption of weak separabil- 

ty given in [39] , we group the elementary matrices X k into G 

isjoint groups summing up the matrices within each group. Let 

 j , j = 1 , . . . , G be each disjoint group of indexes associated to the

orresponding eigenvectors. The matrix X I j 
= 

∑ 

k ∈ I j X k is associated 

o the I j group. The decomposition of the trajectory matrix into 
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2 Two sets of bounded real numbers { a n,k } n k =1 and { b n,k } n k =1 are asymptotically 

equally distributed in the sense of Weyl if for a given continuous function F on 

the interval [ −K, K ] , it holds that lim 

n ∑ 
k =1 

( F (a n,k ) −F (b n,k ) ) 
= 0 . 
hese groups is given by X = X I 1 
+ . . . + X I G 

. The contribution of the

omponent coming from matrix X I j 
is given by 

∑ 

k ∈ I j 
τk / 
∑ r 

k =1 τk . 

4th step: Reconstruction. Let X I j 
= ( ̃  x i j ) . In this step, each ma-

rix X I j 
is transformed into a new time series of the same length 

 as the original one, denoted as ̃  x ( j) = ( ̃  x 
( j) 
1 

, . . . , ̃  x 
( j) 
T 

) ′ by diagonal

veraging. This is equivalent to averaging the elements of X I j 
over 

ts antidiagonals, that is, the hankelization of this matrix with the 

perator H( ·) as follows 

 

 

( j) 
t = H 

(
X I j 

)
= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 
t 

∑ t 
i =1 ̃

 x i,t−i +1 , 1 ≤ t < L 

1 
L 

∑ L 
i =1 ̃

 x i,t−i +1 , L ≤ t ≤ N 

1 
T −t+1 

∑ T −N+1 
i = L −N+1 ̃

 x i,t−i +1 , N < t ≤ T 

The alternative Toeplitz SSA or Vautard-Ghil (VG) relies on the 

ssumption that x is stationary and zero mean and it performs 

he orthogonal diagonalization in step 2 from an alternative ma- 

rix S T = ( s i j ) where 

 i j = 

1 

T − | i − j| 
T −| i − j| ∑ 

m =1 

x m 

x m + | i − j| , 1 ≤ i, j ≤ L. (2) 

n this case, the matrix S T is the sample lagged variance-covariance 

atrix of the original series, a symmetric Toeplitz matrix. The set 

 τ k , u k , w k ) is named the k -th eigentriple. The rest of the algo-

ithm remains unchanged. 

. Circulant SSA 

SSA in any of its variants requires to identify the harmonic fre- 

uencies of the extracted components and this makes necessary 

he analysis of the periodogram. To try to automate SSA, several 

trategies have been proposed such as finding the correlations at 

ifferent lags between the elements of two eigenvectors, associ- 

ted to almost identical eigenvalues to test if they are in quadra- 

ure [40] ; testing if a pair of eigenvectors are associated to the 

ame harmonic based on the periodogram [22] ; grouping eigen- 

ectors linked to nearby frequencies in order to assign them to the 

ame harmonic by the introduction of optimal thresholds [21,41] ; 

erforming a spectral-based Fisher g test to asses certain prin- 

ipal components to the business cycle frequency [17] ; consider- 

ng eigenvectors as filters [23] and grouping the outputs according 

o their frequency response [24] ; and even applying cluster tech- 

iques for grouping the elementary components based on k-means 

42] or hierarchical clustering [43] . Nevertheless, whatever proce- 

ure is used, the grouping of frequencies is made after the elemen- 

ary components are extracted. Since the pairs of eigenvalues and 

igenvectors are obtained, not as a function of the frequency, but 

ather on a decreasing magnitude, this means that the grouping 

s done with uncertainty. A partial solution is provided by com- 

uting the eigenvalues-eigenvectors as functions of the frequency 

or symmetric positive definite Toeplitz matrices [10] . However, the 

nalytic form of the eigenvalues for this type of matrices is only 

nown for heptadiagonal matrices [44] . We generalize the link be- 

ween the eigenstructure of a matrix and the associated frequen- 

ies by the use of circulant matrices allowing non-periodic signals. 

In this section, we propose an automated version of SSA based 

n circulant matrices. First, we deal with the stationary case and, 

ater on, we will extend our proposal to the nonstationary case. 

.1. Stationary case 

In this subsection we propose to apply SSA to an alternative 

atrix of second moments that is circulant. In this case, we have 

losed solutions form eigenvalues-eigenvectors that are linked to 
3 
he desirable specific frequencies. We show the asymptotic equiv- 

lence between the traditional Toeplitz matrices used in SSA and 

ur proposed circulant matrices. Based on all the previous results 

e propose a new alghorithm that we name Circulant SSA (CiSSA). 

Toeplitz matrices appear when considering the population sec- 

nd order moments of the trajectory matrix. Let { x t } be an infi-

ite, zero mean stationary time series whose autocovariances are 

iven by γm 

= E(x t x t−m 

) , m = 0 , 1 , . . . and its power spectral den-

ity function, a real continuous and 2 π-periodic function, denoted 

y f . Let 

L ( f ) = 

⎛ 

⎜ ⎜ ⎝ 

γ0 γ1 γ2 . . . γL −1 

γ1 γ0 γ1 . . . γL −2 

. . . 
. . . 

. . . 
. . . 

. . . 
γL −1 γL −2 γL −3 . . . γ0 

⎞ 

⎟ ⎟ ⎠ 

(3) 

e the L × L matrix that collects these second moments. Notice 

hat �L ( f ) is a symmetric Toeplitz matrix that depends on the 

ower spectral density f through the covariances γ m 

. Recall that 

m 

= 

∫ 1 
0 f (w ) exp ( i 2 πmw ) dw for any integer m where w ∈ [0, 1] is

he frequency in cycles per unit of time. 

Analytic expressions for the eigenvalues of Toeplitz matrices 

re only known up to heptadiagonal matrices. To be able to have 

losed solutions of the eigenvalues and eigenvectors for any di- 

ension, we use a special case of Toeplitz matrices that are the 

irculant ones. In a circulant matrix every row is a right cyclic shift 

f the row above as follows: 

 L ( f ) = 

⎛ 

⎜ ⎜ ⎝ 

c 0 c 1 c 2 . . . c L −1 

c L −1 c 0 c 1 . . . c L −2 

. . . 
. . . 

. . . 
. . . 

. . . 
c 1 c 2 c 3 . . . c 0 

⎞ 

⎟ ⎟ ⎠ 

. 

The eigenvalues and eigenvectors of a circulant matrix have a 

losed form [45] . The k -th eigenvalue of the L × L circulant matrix 

 L ( f ) is given by 

L,k = 

L −1 ∑ 

m =0 

c m 

exp 

(
i 2 πm 

k − 1 

L 

)
(4) 

or k = 1 , . . . , L and its associated eigenvector can be written as 

 k = L −1 / 2 (u k, 1 , . . . , u k,L ) 
′ (5) 

here u k, j = exp 

(
−i 2 π( j − 1) k −1 

L 

)
. 

In particular, if we consider the circulant matrix of order L × L 

ith elements c m 

defined as: 

 m 

= 

1 

L 

L −1 ∑ 

j=0 

f 

(
j 

L 

)
exp 

(
i 2 πm 

j 

L 

)
, m = 0 , 1 , . . . , L − 1 , (6)

e have two interesting results [46] . First, the eigenvalues of this 

irculant matrix coincide with the power spectral density evalu- 

ted at points w k = 

k −1 
L , 

L,k = f 

(
k − 1 

L 

)
. (7) 

nd, second, the matrices �L ( f ) and C L ( f ) are asymptotically equiv-

lent as L → ∞ , �L ( f ) ~ C L ( f ), in the sense that both matrices have

ounded eigenvalues [47] and lim 

L →∞ 

‖ �L ( f ) −C L ( f ) ‖ F √ 

L 
= 0 , where ‖ · ‖ F 

s the Frobenius norm. Moreover, the eigenvalues of both matrices 

L ( f ) and C L ( f ) are asymptotically equally distributed in the sense

f Weyl 2 as a consequence of the fundamental theorem of Szegö

48, p. 64] as it is shown in [49] . 
n →∞ n 
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Algorithm 1 Pseudo-code of Circulant SSA. 

Require: Time series x t and window length L 

Ensure: Reconstructed series associated with each disjoint group 

of frequencies 

1: Construct the trajectory matrix X by (1) 

2: for m = 0 to L − 1 do � Estimated autocovariances 

3: Compute ̂ γm 

given in (9) 

4: end for 

5: for m = 0 to L − 1 do � First row of circulant matrix S C 
6: Compute ̂  c m 

given in (10) 

7: end for 

8: Build the circulant matrix S C 
9: for k = 1 to L do � Unitary diagonalization of S C and elementary 

matrices 

10: Find the eigenvalue ̂  λk of S C based on (4) 

11: Calculate its corresponding eigenvector u k by (5) 

12: The pair ( ̂  λk , u k ) is associated with the frequency w k = 

k −1 
L 

13: Determine the contribution of the frequency w k , ̂
 λk / 
∑ ̂ λk 

14: Compute the elementary matrix X k = u k u 

H 
k 

X associated 

with the frequency w k 

15: end for 

16: Set the group B 1 = { 1 } and the matrix X B 1 
= X 1 � Elementary 

pairs and matrices by frequency 

17: for k = 2 to M = 

⌊
L +1 

2 

⌋
do 

18: Compose elementary pair by frequency B k = { k, L + 2 − k } 
19: Compute elementary matrix by frequency X B k 

= X k + X L +2 −k 

20: end for 

21: if L is even then 

22: Set the group B L 
2 +1 

= 

{
L 
2 + 1 

}
and the matrix X B L 

2 +1 

= X L 
2 +1 

23: end if 

24: Determine the G disjoint groups I j of the pairs B k with the sig- 

nificant or interesting frequencies w k for the non-zero contri- 

butions 

25: for j = 1 to G do � Matrices associated with the disjoint groups 

26: Compute the matrix X I j 
associated with each group I j by 

X I j 
= 

∑ 

B k ∈ I j X B k 

27: end for 

28: for j = 1 to G do � Reconstructed series 

29: Calculate the reconstructed series ̃  x 
( j) 
t by the diagonal aver- 

aging or hankelization of matrix X I j 
, ̃  x 

( j) 
t = H 

(
X I j 

)
30: end for 

3

s
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To obtain a more operational version of the procedure, we con- 

ider the circulant matrix C L ( ̃
 f ) whose elements ˜ c m 

are given by 

50] : 

 

 m 

= 

L − m 

L 
γm 

+ 

m 

L 
γL −m 

, m = 0 , 1 , . . . , L − 1 , (8)

here the generating function 

˜ f is an approximation of the power 

pectral density f . Besides that, [50] shows that �L ( f ) is asymptot-

cally equivalent to C L ( ̃
 f ) . By the transitivity property, the three 

atrices �L ( f ), C L ( ̃
 f ) and C L ( f ) are asymptotically equivalent. 

Therefore, our proposal will consist on using the eigenstructure 

f a circulant matrix C L ( ̃
 f ) with elements given by (8) and, by (7) ,

ssociate the k th eigenvalue and corresponding eigenvector to the 

requency w k = 

k −1 
L . Moreover, again by (7) the spectral density is 

asily evaluated at frequencies w k by the eigenvalues of the matrix 

 L ( ̃
 f ) . 

Finally, going to the sample we have to work with estimated, 

ather than population, quantities. So, we substitute the population 

utocovariances { γm 

} L −1 
m =0 , by the sample second moments { ̂  γm 

} L −1 
m =0 

here ̂ γm 

, m = 0 , . . . , L − 1 is defined as 

 m 

= 

1 

T − m 

T −m ∑ 

t=1 

x t x t+ m 

. (9) 

ince the sample autocovariances converge in probability to the 

opulation autocovariances, we define S C with elements given by 

 

 m 

= 

L − m 

L 
̂ γm 

+ 

m 

L 
̂ γL −m 

, m = 0 , 1 , . . . , L − 1 . (10)

In what follows, we describe our new proposed algorithm, 

amed Circulant SSA. Given the time series data { x t } T t=1 : 

1st step: Embedding. This step is as before. 

2nd step: Decomposition. Compute the circulant matrix S C 
hose elements are given in (10) . Find the eigenvalues ̂ λk of S C 

nd based on (7) , associate the k -th eigenvalue and corresponding 

igenvector to the frequency w k = 

k −1 
L , k = 1 , . . . , L . 

3rd step: Grouping. Given the symmetry of the power spectral 

ensity, we have that ̂  λk = ̂

 λL +2 −k . Their corresponding eigenvec- 

ors given by (5) are complex, therefore, they are conjugated com- 

lex by pairs, u k = u 

∗
L +2 −k 

where v ∗ indicates the complex conju- 

ate of a vector v , and u 

′ 
k 
X and u 

′ 
L +2 −k 

X correspond to the same

armonic period. We proceed as follows to transform them in pairs 

f real eigenvectors in order to compute the associated compo- 

ents. 

To form the elementary matrices we first form the groups of 

 elements B k = { k, L + 2 − k } for k = 2 , . . . , M with B 1 = { 1 } and

 L 
2 

+1 
= 

{
L 
2 + 1 

}
if L is even. Second, we compute the elementary 

atrix by frequency X B k 
as the sum of the two elementary ma- 

rices X k and X L +2 −k , associated to eigenvalues ̂  λk and ̂

 λL +2 −k and 

requency w k = 

k −1 
L , 

 B k = X k + X L +2 −k 

= u k u 

H 
k X + u L +2 −k u 

H 
L +2 −k X 

= (u k u 

H 
k + u 

∗
k u 

′ 
k ) X 

= 2(R u k R 

′ 
u k 

+ I u k I 
′ 
u k 

) X 

here R u k denotes the real part of u k , I u k its imaginary part and

 

H indicates the conjugate transpose of a vector v . Notice that the 

atrices X B k 
, k = 1 , . . . , L, are real. 

4th step: Reconstruction . As before. 

Notice that the elementary reconstructed series by frequency 

an be automatically assigned to a component according to the 

oal of our analysis. Fig. 1 shows the related flowchart to better 

llustrate the overall automated procedure and its pseudo-code is 

rovided in Algorithm 1 . 
4 
.2. Asymptotic equivalence of Basic, Toeplitz and Circulant SSA 

Toeplitz and Circulant SSA are modifications of the original Ba- 

ic SSA. In this section, we will prove that the three versions of 

SA (Basic, Toeplitz and Circulant) are asymptotically equivalent ac- 

ording to the definition given in [46] . Later on, we will run some 

imulations to compare the performance of the three versions in 

nite samples. 

heorem 1. Given the L × N trajectory matrix X defined in (1) , let

 B = XX 

′ /N, S T the Toeplitz matrix with elements defined by (2) and 

 C the circulant matrix with elements given in (10) . Consider the se- 

uence of matrices { S B }, { S T } and { S C } as L −→ ∞ . Then S B ~ S T ~ S C .

roof. The proof is given in the appendix �

This theorem gives the basis to understand the similar results 

btained in practice between Basic and Toeplitz SSA when the win- 

ow length is very large (the larger, the better as the result is 

symptotic). This was empirically shown using stationary time se- 

ies in climate and geophisics [51,52] . Here, we provide a theoreti- 

al basis for these empirical findings. Additionally, we also extend 
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Fig. 1. Flowchart of Circulant SSA algorithm. 
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he result for the new version of SSA that we have introduced in 

his paper, CiSSA. 

.3. Nonstationary case 

In economics, many time series are nonstationary in the sense 

hat the power spectral density function has discontinuities. This 

as important consequences in our analysis and we have to show 

hat Circulant SSA can be applied to nonstationary time series. The 

ext theorem, a generalization of the analogous Gray’s theorem 

53, Theorem 3] , provides the theoretical background needed to 

pply CiSSA to nonstationary time series. 

heorem 2. Let T L ( s ) be a sequence of Toeplitz matrices with s ( w )

 real, continuous and 2 π-periodic, such that s ( w ) ≥ 0, where the

quality is reached in a finite number of points H = { w 

0 
i 
, i = 1 , . . . , l} .

iven a finite δ, consider the disjoint sets 

i = 

{ 
w ∈ 

[
w 

0 
i − a i , w 

0 
i + a i 

]| s (w ) ≤ 1 

δ

} 
, a i ∈ R 

+ , i = 1 , . . . , l 

nd let g ( w ) be a function defined as 

 ( w ) = 

{
f ( w ) = 

1 
s ( w ) 

if w / ∈ 

⋃ l 
i =1 �i 

h i ( w ) if w ∈ �i 
5 
here h i ( w ) is any real valued bounded function continuous in �i 

nd symmetric around w 

0 
i 
. Let M h i 

= sup h i < ∞ and m h i 
= inf h i =

 i 

(
w 

0 
i 

− a i 
)

= h i 
(
w 

0 
i 

+ a i 
)

= δ. 

Let ρL,k , k = 1 , . . . , L, be the eigenvalues of ( T L (s ) ) 
−1 

sorted in de-

reasing order and let F ( x ) be a continuous function in 
[

1 
M s 

, max i M h i 

]
ith M s = sup s, then 

lim 

 →∞ 

1 

L 

L ∑ 

k =1 

F ( min (ρL,k , max ( ̃  g k , δ))) = 

∫ 1 

0 

F (g(w )) dw, (11) 

here ̃  g k are the values of g( k −1 
L ) sorted in descending order. 

roof. The proof is given in the appendix �

Notice that while Gray’s Theorem [53] approximates the 

peudo-spectrum by a constant value, Theorem 2 allows for a bet- 

er separation of the components around the spectrum disconti- 

uities that is specially relevant for low frequencies. In a similar 

ay to [53] , the theorem states that the sequence of eigenvalues of 

he sequence of matrices ( T L (s ) ) 
−1 

are asymptotically equally dis- 

ributed (in the sense of Weyl) as the eigenvalues of the sequence 

f matrices T L ( g ) up to a finite value δ as L tends to infinity. More-

ver, the matrices T L ( g ) ~ C L ( g ) and, by Szegö’s theorem, the eigen-

alues of the sequence of matrices T ( g ) are asymptotically equally 
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istributed as the eigenvalues of the sequence of matrices C L ( g ) up

o a finite value δ as L tends to infinity. 

As a result, for a nonstationary series, the union of the esti- 

ation of the pseudo-power spectral density in a point of dis- 

ontinuity with the estimations in the adjoint frequencies through 

egments is an easy way of building the functions h i . If all the

unctions h i are constant and equal to a particular value δ finite, 

e have the particular case proved in [53, Theorem 3] . Therefore, 

he generalization to functions h i allows a better approximation of 

he pseudo-power spectral density when we increase the window 

ength. Fig. 1 and the pseudo-code in Algorithm 1 previously intro- 

uced for the description of CiSSA are also valid in the nonstation- 

ry case. 

. Simulations 

In this section we check the performance of our new proposal, 

irculant SSA, in finite samples and compare it with the competing 

SA algorithms, i.e. Basic SSA and Toeplitz SSA for a linear as well 

s a nonlinear time series model. Even though SSA is nonparamet- 

ic and therefore model free, in this section we generate time se- 

ies following a known model and check the basic statistical prop- 

rties related to the signal extraction procedure. In particular, we 

heck if the extracted signals are unbiased. These simulations gen- 

ralize previous exercises [54] by including CiSSA, but also using 

ore complex time series models in a linear and nonlinear frame- 

ork. 

.1. Linear time series 

The first model is a basic structural time series model 

 t = T t + c t + s t + e t (12) 

here T t is the trend component, c t is the cycle, s t is the seasonal

omponent and e t is the irregular component. We assume an inte- 

rated random walk for the trend [55] given by 

T t = T t−1 + βt−1 (13) 

t = βt−1 + ηt 

ith ηt ∼ N(0 , σ 2 
η ) . The cyclical and seasonal components are 

pecified according to [56] , where the cycle is given by the 

rst component of the bivariate Vector Autoregressive of order 1, 

AR(1), model 

c t ˜ c t 

)
= ρc 

(
cos (2 πw c ) sin (2 πw c ) 

− sin (2 πw c ) cos (2 πw c ) 

)(
c t−1 ˜ c t−1 

)
+ 

(
ε t ˜ ε t 

)
(14) 

ith 

(ε t ˜ ε t 

)
∼ N(0 , σ 2 

ε I) and 

1 
w c 

the period, w c ∈ [0 , 1] . And, the sea-

onal component is given by 

 t = 

[ s/ 2] ∑ 

j=1 

a j,t cos (2 πw j t) + b j,t sin (2 πw j t) (15) 

ith w j = 

j 
s , j = 1 , . . . , [ s/ 2] and s the seasonal period, where [ ·] is

he integer part and a j,t and b j,t are two independent random walks 

ith noise variances equal to σ 2 
j 
. Finally, the irregular component 

s white noise with variance σ 2 
e . All the components are indepen- 

ent of each other. We set ρc = 1 , so the trend, cycle and seasonal

omponents may have poles of module 1 and therefore are non- 

tationary. We consider that the series are monthly with s = 12 

nd cyclical period equal to 1 
w c 

= 48 months. The sample size is 

 = 193 and the noise variances of the different components are 

iven by σ 2 
η = 0 . 0 0 06 2 , σ 2 

j 
= 0 . 0 04 2 , σ 2 

ε = 0 . 0 08 2 and σ 2 
e = 0 . 06 2 .

e choose as window length L = 48 because this value of L is mul-

iple of the seasonal period, it is equal to the cyclical period and 

 − 1 is multiple of L [1] . 
6 
The trend is related to frequency 0, the cycle to frequency 1/48 

nd the seasonal components to frequencies 1/12, 1/6, 1/3, 1/4, 

/12 and 1/2. Given (7) , we can recover the signal associated to a 

requency w = 

k −1 
L by using the elementary components associated 

o eigenvalues k and k 
′ = L + 2 − k, the latter by the symmetry

f the spectral density. Therefore, the trend is reconstructed with 

igentriple 1, the cyclical component with eigentriples 2 and 48, 

nd the seasonal components with eigentriples 5, 9, 13, 17, 21, 25, 

9, 33, 37, 41 and 45. For example, for the frequency w = 

1 
12 , we

ave that k −1 
L = 

1 
12 , and therefore, we sum the elementary compo- 

ents k = 

48 
12 + 1 = 5 and k 

′ = L + 2 − k = 48 + 2 − 5 = 45 . 

If the procedure for signal extraction works well, the simulated 

omponent y t ( y t can be the trend, cycle or seasonal component) 

ould be written as 

 t = ̂

 y t + u t 

here u t is the noise and 

̂ y t is the extracted signal. Then, in the 

egression 

 t = a + b ̂  y t + u t (16) 

 = 0 (unbiasedness) and b = 1 (the scale is not changed). No- 

ice that y t and 

̂ y t should be cointegrated. We simulate 10,0 0 0 

imes the model and perform signal extraction with Circulant SSA. 

able 1 shows the percentiles of the empirical distribution of the 

stimated coefficients of the regression in (16) . 

Table 1 shows that the median of the estimated intercept is 

lmost zero for the three estimated components (cycle, seasonal 

omponent and trend). The median for the scale parameter b is al- 

ost one for the three components, but looking at the values for 

ifferent quantiles, the em pirical distribution for the estimated b 

ssociated to the cycle indicates a larger dispersion. 

The estimated residuals from Eq. (12) are given by ̂  e t = x t −̂ T t −
 

 t −̂ s t , and should be white noise, where ̂ T t , ̂  c t , and ̂

 s t are the es- 

imates of the trend, cycle and seasonal component respectively. 

n order to check this, we fit an AR(1) to ̂ e t . Table 2 shows the

uantiles of the empirical distributions of the mean, standard error 

nd autoregressive coefficient of the residuals of the 10,0 0 0 repli- 

ations. The median of the mean and autoregressive coefficient are 

lose to zero. The median of the standard deviation is 0.0529 (the 

alue used for the simulations was 0.06). 

The results from the simulations seem very good. In order to 

ompare Circulant SSA with alternative algorithms as Basic and 

oeplitz SSA we also simulate the linear model given by (12) and 

xtract the trend, cycle and seasonal components for 10,0 0 0 simu- 

ations. Basic and Toeplitz SSA require first to calculate the prin- 

ipal components and then to identify the frequency they rep- 

esent with some procedure as stated in the first paragraph of 

his section. However, given that we are using simulated time 

eries and we know beforehand the frequencies that might be 

ore informative, we proceed in a heuristic way. According to 

odel (12) , we know that the informative frequencies are � = 

 0 , 1 / 48 , 1 / 12 , 1 / 6 , 1 / 4 , 1 / 3 , 5 / 12 , 1 / 2 } and the window length L =
8 coincides with the cycle periodicity and is multiple of the sea- 

onal periodicity of a monthly time series. Also each eigenvector 

enerates a linear subspace associated to a frequency. In this way, 

e calculate the periodogram for each eigenvector and obtain the 

requency associated with the maximum. If that frequency belongs 

o the set �, the associated component to that eigenvector is as- 

igned to the trend, cycle or seasonal component and, on the con- 

rary it is assigned to the residual ̂  e t . 

In analogous way to Circulant SSA, we perform regressions as in 

16) between simulated an estimated components and check a = 

 and b = 1 . Table 1 shows the quantiles of the 10,0 0 0 estimated 

alues for a and b . Results are very similar for the three versions 

f SSA and it can be accepted that the estimated values are close to 

 = 0 and b = 1 . These simulations allow to conclude that, at least
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Table 1 

Statistics related to the goodness of fit of the extracted signals for the different methods. Simulations for the linear model, N = 10 0 0 0. 

Columns show the quantiles of the empirical distribution of the estimated coefficients of the regression of the generated components over 

the estimated ones. 

Statistic Component 

Quantiles 

5 25 50 75 95 

Circulant SSA 

ˆ a Trend -0.0613 -0.0209 -0.0006 0.0194 0.0600 

Cycle -0.0109 -0.0043 0.0000 0.0045 0.0108 

Seasonal -0.0015 -0.0006 0.0000 0.0006 0.0015 
ˆ b Trend 0.9748 0.9951 1.0032 1.0143 1.0651 

Cycle 0.8481 0.9569 1.0029 1.0476 1.1340 

Seasonal 0.9451 0.9819 1.0049 1.0277 1.0630 

Basic SSA 

ˆ a Trend -0.0610 -0.0206 -0.0006 0.0191 0.0598 

Cycle -0.0165 -0.0066 0.0001 0.0065 0.0167 

Seasonal -0.0033 -0.0010 0.0000 0.0010 0.0033 
ˆ b Trend 0.9881 1.0063 1.0153 1.0326 1.1292 

Cycle 0.7891 0.9618 1.0177 1.0794 1.2793 

Seasonal 0.9471 0.9911 1.0166 1.0431 1.0867 

Toeplitz SSA 

ˆ a Trend -0.0588 -0.0203 -0.0007 0.0186 0.0566 

Cycle -0.0178 -0.0061 0.0001 0.0062 0.0170 

Seasonal -0.0017 -0.0007 0.0000 0.0007 0.0018 
ˆ b Trend 0.9820 1.0003 1.0088 1.0264 1.1415 

Cycle 0.7852 0.9863 1.0537 1.1310 1.2754 

Seasonal 0.9554 0.9982 1.0273 1.0605 1.1207 

Table 2 

Statistics related to the residual term ̂

 e t in Circulant SSA: Average, standard de- 

viation and autoregressive coefficient of AR(1). Simulations for the linear model, 

N = 10 0 0 0. 

Statistic 

Quantiles 

5 25 50 75 95 

Average -0.0033 -0.0012 0.0000 0.0011 0.0033 

Standard deviation 0.0478 0.0508 0.0529 0.0551 0.0581 

AR(1) coefficient -0.1693 -0.0870 -0.0313 0.0285 0.1075 
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or the proposed linear model, empirically, the three versions of 

SA are equivalent. However, some differences can be found in the 

stimation of the cycle, where the distributions of the estimates of 

 and b show less dispersion around 0 and 1 with CiSSA. 

.2. Nonlinear time series 

For the case of nonlinear time series, we borrow the model 

rom [56] for UK travellers given by 

 t = T t + c t + exp (a 0 + a 1 T t ) γt + e t 

here T t is the trend, c t is the cycle and γ s t is the seasonal com-

onent specified as in (13), (14) and (15) , respectively. The parame- 

ers a 0 and a 1 are unknown fixed coefficients. Coefficient a 0 scales 

he seasonal component. The sign of the coefficient a 1 determines 

hether the seasonal variation increases or decreases when a pos- 

tive change in the trend occurs. The overall time varying ampli- 

ude of the seasonal component is determined by the combination 

 0 + a 1 μt . 

As for the linear case, we simulate the model 10,0 0 0 times for 

eries of length T = 193 observations. We set a 0 and a 1 such that

or each replication 0 . 5 ≤ exp (a 0 + a 1 μt ) ≤ 1 . 5 , with a 1 > 0. We

pply Circulant SSA with a window length L = 48 . Table 3 shows

he quantiles of the empirical distribution of the estimated coeffi- 

ients of the regression in (16) and again we can see that the val-

es of a and b estimated are located around 0 and 1 respectively 

ith low dispersion. 
7 
In order to check that the estimated residuals are white noise, 

e fit an AR(1) to ̂  e t as in the linear case. Table 4 shows the quan-

iles of the empirical distribution of the mean, standard error and 

utoregressive coefficient of the residuals of the 10,0 0 0 replica- 

ions. The median of the mean and autoregressive coefficient are 

lose to zero. The median of the standard deviation is 0.053 (the 

alue used for the simulations was 0.06). 

As in the linear case, the results from the simulations seem very 

ood. To compare Circulant SSA with alternative algorithms as Ba- 

ic and Toeplitz SSA, we repeat the simulations described in the 

revious section and apply the same steps to obtain their trend, 

ycle and seasonal components. Again, we perform regressions as 

n (16) between simulated an estimated components and check 

 = 0 and b = 1 . Table 3 shows the quantiles of the 10,0 0 0 esti-

ated values for a and b . The same conclusions as in the linear 

ase apply: it can be accepted that the estimated values are close 

o a = 0 and b = 1 ; empirically, the three versions of SSA are equiv-

lent for the proposed linear model; and some differences can be 

ound in the cycle estimations, where the distribution of the esti- 

ates of a and b show less dispersion around 0 and 1 with CiSSA. 

. Applications 

.1. Industrial production 

We consider monthly series of Industrial Production (IP), index 

010 = 100, of six countries: France, Germany, Italy, UK, Japan and 

S. Industrial Production is widely followed since it is pointed out 

n the definition of a recession by the National Bureau of Economic 

esearch (NBER), as one of the four monthly indicators series to 

heck in the analysis of the business cycle. The sample covers from 

anuary 1970 to September 2014, so the sample size is T = 537 . 

he data source is the IMF database. As it can be seen in Fig. 2 ,

hese indicators show different trend, seasonality and cyclical be- 

avior, and our goal is to extract these components and discuss 

bout the results. 

The first step is to establish the window length. Due to the 

onthly periodicity and seasonality, we select a window length 
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Table 3 

Statistics related to the goodness of fit of the extracted signals for the different methods. Simulations for the nonlinear model, 

N = 10 0 0 0. Columns show the quantiles of the empirical distribution of the estimated coefficients of the regression of the 

generated components over the estimated ones. 

Statistic Component 

Quantiles 

5 25 50 75 95 

Circulant SSA 

ˆ a Trend -0.0603 -0.0199 0.0004 0.0202 0.0609 

Cycle -0.0111 -0.0045 -0.0001 0.0043 0.0112 

Seasonal -0.0015 -0.0006 0.0000 0.0006 0.0015 
ˆ b Trend 0.9742 0.9951 1.0037 1.0154 1.0682 

Cycle 0.8442 0.9567 1.0029 1.0475 1.1353 

Seasonal 0.9241 0.9779 1.0072 1.0335 1.0720 

Basic SSA 

ˆ a Trend -0.0602 -0.0198 0.0005 0.0199 0.0605 

Cycle -0.0167 -0.0065 0.0000 0.0066 0.0163 

Seasonal -0.0035 -0.0010 0.0000 0.0009 0.0030 
ˆ b Trend 0.9880 1.0064 1.0158 1.0337 1.1284 

Cycle 0.7626 0.9588 1.0158 1.0763 1.2660 

Seasonal 0.9269 0.9888 1.0236 1.0561 1.1084 

Toeplitz SSA 

ˆ a Trend -0.0581 -0.0191 0.0002 0.0195 0.0602 

Cycle -0.0176 -0.0063 -0.0001 0.0064 0.0185 

Seasonal -0.0019 -0.0007 -0.0001 0.0006 0.0016 
ˆ b Trend 0.9814 1.0004 1.0093 1.0284 1.1424 

Cycle 0.7609 0.9812 1.0513 1.1279 1.2767 

Seasonal 0.9351 0.9977 1.0315 1.0667 1.1316 

Table 4 

Statistics related to the residual term ̂

 e t in Circulant SSA: Average, standard devi- 

ation and autoregressive coefficient of AR(1). Simulations for the nonlinear model, 

N = 10 0 0 0. 

Statistic 

Quantiles 

5 25 50 75 95 

Average -0.0034 -0.0011 0.0000 0.0012 0.0033 

Standard deviation 0.0476 0.0508 0.0531 0.0554 0.0590 

AR(1) coefficient -0.1727 -0.0899 -0.0339 0.0250 0.1066 
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Table 5 

Contribution of the different signals to IP in the six countries in percentage. 

Component 

Country 

France Germany Italy Japan UK USA 

Trend 52.1 77.3 42.7 79.0 72.0 87.9 

Cycle 9.5 12.6 7.8 13.8 11.1 10.3 

Seasonal 35.6 6.7 47.3 5.1 13.5 0.3 

Irregular 2.8 3.4 2.2 2.1 3.4 1.5 
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3 https://www.oecd.org/sdd/leading-indicators/ 

oecdcompositeleadingindicatorsreferenceturningpointsandcomponentseries.htm 
ultiple of 12. Assuming that the period of the cycle in these se- 

ies goes from 1 year and a half to 8 years, we choose a window

ength multiple of 8 × 12 = 96 months. From the two available 

ptions, 96 and 192 months, we select the second one since it is 

arger. 

According to (7) for k = 1 , we have w 1 = 

k −1 
L = 0 and it will be

ssociated to the trend. In the same way, for k = 2 , we have w 2 =
 / 192 , that corresponds to 192 months or 16 years that are be-

ond cyclical movements between 1.5 and 8 years. Therefore, given 

7) and the symmetry of the power spectral density, the trend is 

econstructed with the eigentriples 1, 2 and L + 2 − k = 192 with

he elementary groups by frequencies from B 1 and B 2 respectively. 

n an analogous way, assuming that the business cycle goes from 

.5 to 8 years, this component is associated to frequencies w k = 

 / 96 , 1 / 64 , 1 / 48 , 5 / 192 , 1 / 32 , 7 / 192 , 1 / 24 , 3 / 64 , 5 / 96 and the cycle

ignal is reconstructed with the eigentriples 3 to 11 and 183 to 

91, with the elementary groups by frequencies from B 3 to B 11 . 

inally, the seasonal component is associated to the frequencies 

 k = 1 / 12 , 1 / 6 , 1 / 4 , 1 / 3 , 5 / 12 , 1 / 2 and reconstructed in a similar

ay with the eigentriples 17, 33, 49, 65, 81, 97, 113, 129, 145, 161 

nd 177 and with the elementary groups by frequencies B 17 , B 33 , 

 49 , B 65 , B 81 , and B 97 . 

Table 5 shows the contributions of the signals to the original 

P variations in percentage. First, we highlight that the contribu- 

ion of the irregular component (those oscillations not explained 

y the trend, cyclical or seasonal components) is smaller than 3.5% 

n all the countries. Main contributions come from the trend and 
8 
easonality, that account for more than 84% in all the countries. 

s expected, the contribution of the seasonal component is almost 

egligible in US, and quite small in Japan and Germany, while it is 

ery relevant in Italy and France. Finally, the cycle contributes in a 

ange between 7.8% in Italy to 13.8% in Japan. 

Fig. 2 shows the estimated trends for every country. The trend 

s a smooth component that has shown a decreasing evolution 

ince the last decade for France, Italy and UK as a consequence of 

he last economic crisis. On the contrary, in Germany and US, the 

rend shows an upward evolution in all the sample period. 

Fig. 3 shows the cyclical component where the shaded areas 

orrespond to recessions as dated by the OECD 

3 . We can see that 

he extracted cycle reflects quite well the business cycle for all 

ountries. 

.1.1. Separability of the estimated components with CiSSA 

One desirable property of the signal extraction method is that 

he resulting components should be orthogonal. However, in prac- 

ice, they usually exhibit cross-correlation. Residual seasonality in 

easonal adjusted time series is another concern in any signal ex- 

raction method from very early times [57,58] , and it is still a mat- 

er of interest nowadays. Findley et al. [59] point out that ”The 

ost fundamental seasonal adjustment deficiency is detectable 

easonality after adjustment”. This is also a concern for policy 

akers [60] . 

https://www.oecd.org/sdd/leading-indicators/oecdcompositeleadingindicatorsreferenceturningpointsandcomponentseries.htm
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Fig. 2. Original IP and trend for the different countries. 
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Separability of the elementary series as well as those grouped 

y frequencies is an assumption of SSA and should also be a char- 

cteristic of the estimated components. This characteristic is im- 

ortant since many signal extraction procedures assume zero cor- 

elation between their underlying components, whereas the esti- 

ated signals can be quite correlated. The SSA decomposition can 

e successful only if the resulting additive components of the se- 

ies are quite separable from each other [39] . 

For a fixed window length L , given two series { x (1) 
t } and { x (2) 

t }
xtracted from the series { x t }, we say that they are weakly sepa-

able if both their column as well as row spaces are orthogonal, 

hat is X 

(1) (X 

(2) ) 
′ = 0 L ×L and (X 

(1) ) 
′ 
X 

(2) = 0 N×N . Furthermore, we
9 
ay that two series { x (1) 
t } and { x (2) 

t } are strongly separable if they

re weakly separable and the two sets of singular values of the 

rajectory matrices X 

(1) and X 

(2) are disjoint. When the trajectory 

atrix of the original time series has no multiple singular values 

r, equivalently, each elementary reconstructed series belongs to a 

ifferent harmonic, strong separability is guaranteed according to 

he previous definition. 

Usually, separability is measured in terms of w -correlation 

1,39] that it is given by 

w 

12 
= 

〈
x 

(1) , x 

(2) 
〉
w ∥∥x 

(1) 
∥∥ ∥∥x 

(2) 
∥∥ , 
w w 



J. Bógalo, P. Poncela and E. Senra Signal Processing 179 (2021) 107824 

Fig. 3. Estimated IP cycles and OECD announced recessions (shadowed areas). 
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here 
〈
x (1) , x (2) 

〉
w 

= (x (1) ) ′ Wx (2) is the so called 

-inner product, 
∥∥x (1) 

∥∥
w 

= 

√ 〈
x (1) , x (1) 

〉
w 

and W = 

iag ( 1 , 2 , · · · , L, · · · , L ︸ ︷︷ ︸ 
T −2 ( L −1 ) times 

, · · · , 2 , 1 ) . Note that the window 

ength L enters the definition of w -correlation. We are interested 

n producing components with w -correlation (ideally) zero be- 

ause, in this case, we can conclude that the component series are 

 -orthogonal, i. e. 
〈
x (1) , x (2) 

〉
w 

= 0 and separable [39] . 

To show that Circulant SSA produces components that are 

trongly separable, first notice that the real eigenvectors 
√ 

2 R u k 
10 
nd 

√ 

2 I u k (linked to eigenvalues λk and λL +2 −k , respectively, λk = 

L +2 −k ) are orthogonal and have information associated only to fre- 

uency k −1 
L . Those are the only eigenvectors that have information 

elated to this frequency. As eigenvectors can be considered filters 

23,24] , these pair of eigenvectors extract elementary series linked 

o the same frequency without mixing harmonics of other frequen- 

ies. As a result, the two elementary series, when reconstructed in 

tep 4, have spectral correlation close to 1 between them and close 

o zero with the remaining ones. Taking into account the pairs 

f reconstructed series per frequency, any grouping of the recon- 

tructed series results in disjoint sets from the point of view of 
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Fig. 4. w-correlation matrix for the IP elementary reconstructed series for the 30 greatest eigenvalues. 
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he frequency. Then, Circulant SSA produces components that are 

pproximately strongly separable. 

To quickly check how separable the components are, Fig. 4 plots 

he matrix of the absolute values of the w -correlations for all the 

P components, coloring in white the absence of w -correlation, in 

lack w -correlations in absolute value equal to 1 and in a scale of 

rey colors the remaining intermediate values. It can be seen that, 

s expected, Circulant SSA produces components that are strongly 

eparable. 

Furthermore, seasonal adjusted time series for Industrial Pro- 

uction are largely followed by real time analysts, and one desir- 

ble property is that they have no remaining seasonality. To check 

he quality of seasonal adjustment by Circulant SSA, we have ap- 

lied the combined test for seasonality [61] used in X12-ARIMA. We 

ound that there were no signs of any remaining seasonality in any 

f the seasonal adjusted time series for the different countries 4 . 

.2. Speech processing 

To further illustrate CiSSA, we consider a segment of voiced 

peech from the file handel.mat available in Matlab Central. The 

egment takes the first 2.08 seconds that reproduces the word “Al- 

eluia” when it appears for the first time. The segment length con- 

ists of 17,0 0 0 observations and a sample frequency of 8192 Hz and

t is represented by the blue line in Fig. 5 . 

We consider L = 8192 , that is the frequency sample, a value be-

ow T/2 that will pick the existing oscillations 5 . Fig. 6 shows the 

stimated power spectral density (PSD) in dB. The black line sep- 

rates positive PSD values. These values correspond to normalized 
4 Results are available from the authors upon request. 
5 Results are robust to other values of L , like for instance L = 1024 or L = 4096 

chosen to be a multiple or a fraction of the frequency sample) and are available 

rom the authors upon request. 

H

f

[

k

p

C

11 
requencies around 0.07, 0.13 and 0.14 and values of k = 574 , 1065 

nd 1148 respectively. 

Summing up the reconstructed components with positive PSD 

round these values we obtain the red line in Fig. 5 that captures 

he first vowel ”a”, /æ/, that is high-pitched and persistent. They 

epresent 26.5% of the original voice signal variability. To deeper 

nderstand this signal we calculate the amplitude of the recon- 

tructed components as the result of a low-pass Butterworth filter 

f order 4 and cutoff normalized frequency 0.01 to the module of 

heir Hilbert Transform. Fig. 7 confirms the high-pitched and the 

ersistence of the vowel /æ/ during the first second of the record- 

ng and the slowly fading in the next second. 

Finally, the red line in Fig. 6 indicates PSD values over per- 

entile 95% and the green line over percentile 90%. The sum of the 

econstructed components over percentile 95% accounts for 69.7% 

f total variability and allows to recognize the full word “Alleluia”. 

inally, taking as reference percentile 90%, the corresponding sum 

f the reconstructed components accounts for 84% of the total vari- 

bility of the original signal and reproduces the word with clarity. 

. Comparison with other signal extraction procedures 

In this section we compare CiSSA with other state-of-the art 

echniques for signal extraction applied in different research fields 

ike voice recognition [30,62] , medicine [31] , finance [63] , or art 

nd logo design [64] among others. The signals in these appli- 

ations can be nonlinear and nonstationary in the form of am- 

litude and frequency changing in time. Such signals are mod- 

lled by multicomponent AM-FM decomposition methods like the 

ilbert Huang Transform (HHT) [29,65] , the Iterative Hilbert Trans- 

orm (IHT) [30,62] or the Hilbert Vibration Decomposition (HVD) 

31,66] . For this type of signals, alternative versions of SSA are ac- 

nowledged as useful tools to represent a slowly changing am- 

litude [2] . The simulations in Section 4.2 already illustrate that 

iSSA also performs well with changing amplitude signals. In this 
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Fig. 5. Original voice segment for the word Alleluia (blue line) and sum of reconstructed CiSSA components (red line) with positive PSD. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Estimated CiSSA power spectral density in dB ( L = 8192 ) for the word Alleluia. 

Fig. 7. Amplitude of the sum of reconstructed components with positive PSD for the word Alleluia. 

12 
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Fig. 8. Spectral density estimation of the synthetic signal x ( t ). 

Fig. 9. Synthetic components x 1 ( t ) and x 2 ( t ) (in blue) and the corresponding CiSSA estimation (in red). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ection we show that CiSSA is also suitable to capture FM signals 

nd illustrates its functioning in this context by understanding its 

erformance with the application to a synthetic signal previously 

sed in the literature where it has been shown that AM-FM tech- 

iques work well [31] . Additionally, we also compare the behaviour 

f CiSSA and the above mentioned methods extracting the signals 

f a real economic time series that is characterized by evolving 

rend, strong seasonality and business cycle oscillations. 

We consider a synthetic example taken from [31] that results 

rom the sum of a simple AM signal and another one that is 

oth amplitude and frequency modulated. Let x (t) = x 1 (t) + x 2 (t)

here x 1 (t) = a 1 (t) cos (w 1 t) and x 2 (t) = a 2 (t) cos (w 2 , 0 t + w 2 , 1 
t 2 

2 T )

ith a 1 (t) = 1 + 0 . 2 sin (w A, 1 t) and a 2 (t) = 0 . 1 + 0 . 05 cos (w A, 2 t) .

ee that x 2 ( t ) shows linearly increasing frequency in time as 

 2 (t) = w 2 , 0 + w 2 , 1 
t 

2 T . In this particular example, the authors 

hoose the following values f 1 = 5 Hz, f 2 , 0 = 40 Hz, f 2 , 1 = 25 Hz,

f A, 1 = 1 Hz and f A, 2 = 10 Hz, being w . = 2 π f . . We apply CiSSA

hoosing as window length L = 200 . 

Fig. 8 shows the estimation of the power spectral density of x ( t )

easured in dB. We clearly see a peak at the normalized frequency 

.005 that corresponds to x 1 ( t ). Regarding the modulated signal 

escribed by x 2 ( t ), it appears in the spectrum as a constant gain

round a central value. Therefore, CiSSA is able to capture the vari- 

bility of the frequency by adding several components of adjacent 

requencies. 

Fig. 9 shows the generated components and their estimations 

y CiSSA. The first component x ( t ) corresponds to k = 2 and its
1 

13 
requency w 2 = 

k −1 
L . The second signal x 2 ( t ) appears as the sum

f the reconstructed components associated to the plateau (k = 6 

o k = 17 and their frequencies). This range of adjacent frequencies 

hould be selected as one of the G disjoint groups determined in 

ine 24 of the pseudo-code presented in Algorithm 1. As it can be 

een, CiSSA is able to characterize signals with both constant and 

arying frequencies. 

To further discuss and compare the characteristics of the alter- 

ative methods, we apply CiSSA, HHT, IHT and HVD to a real data 

et. HHT works in two steps: first, it decomposes the signal into a 

mall number of intrinsic mode functions (IMF) by means of the 

mpirical Mode Decomposition (EMD); and, second, it applies the 

ilbert transform to the IMFs estimated in the first step to obtain 

nstantaneous frequencies as a function of time. The first compo- 

ent extracted by EMD is highly oscillating and the last compo- 

ent is referred to a constant mean or a trend if there is one, just

pposite to SSA since the trend typically corresponds to the lead- 

ng components of the decomposition. IHT iteratively applies the 

ilbert transform to a filtered version of the amplitude envelopes. 

n a second step, it obtains the instantaneous frequencies by lin- 

ar regression over time intervals applied to the extracted phases. 

he number of iterations is the number of estimated components. 

VD is also an iterative algorithm. It estimates one component 

n each iteration by computing the instantaneous frequency and 

mplitude of the current residual signal. It obtains the instanta- 

eous frequency by applying a low-pass filter to the argument of 

he Hilbert transform and the instantaneous amplitude by coher- 
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Fig. 10. Spanish IP and Trends estimated by different methods. 

Fig. 11. Spanish IP business cycle estimated by CiSSA and EEMD. 
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6 Results are available from the authors upon request. 
7 
nt demodulation. Biagetti et al. [31] enhance previous HVD ver- 

ions eliminating the distortions at the beginning and the end of 

he sample by mirrored convolution. 

We consider the monthly Spanish Production Index (IP), 

010 = 100. The sample covers from January 1970 to December 

018, and the data source is the International Monetary Fund 

atabase. As it can be seen in Fig. 10 , it is a time series with evolv-

ng trend, strong seasonality and business cycle oscillations (be- 

ween 1.5 and 8 years). Business cycle fluctuations trigger differ- 

nt economic measures from policy makers depending on the state 

f the economy: expansion or recession. They are characterized by 

ong and slow expansions and short and deep recessions. In this 

ense, it seems that the analysis made through AM-FM methods 

an be a good alternative to pick up this component. 

We apply CiSSA with a window length L = 192 . Regarding HHT 

e use Ensemble EMD (EEMD) [67] , implemented in Matlab [68] , 

hat solves the mixing-mode problems present in the original tech- 

ique. Similar results are also obtained with the solutions pro- 
14 
osed in [69] 6 . For IHT we have used a low pass digital Butter- 

orth filter and the Hilbert transform iteratively. Finally, for HVD 

e have used the matlab code in [70] . 

Fig. 10 shows the estimated trend. We can see that all the 

ethods are able to capture the trend in a very similar way, al- 

hough the trend extracted by IHT shows some remaining season- 

lity and instability at the beginning and the end of the sample. 

IHT and HVD extract components with mixed seasonal 

nd business cycle oscillations. Regarding CiSSA and EEMD, 

ig. 11 shows the corresponding estimations of the business cycle 

s well as recession dates (shadowed areas in blue) estimated by 

he OECD 

7 . See that both signals look quite similar and are able 

o identify the well-known recessions of the first oil-crisis, the one 

ue to the industrial re-conversion, the recession at the beginning 
https://fred.stlouisfed.org/series/ESPREC 

https://fred.stlouisfed.org/series/ESPREC
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Fig. 12. Spanish IP seasonal component estimated by CiSSA and EEMD. 
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f the 90s, the one at the beginning of the 21st century and the 

ast Great Recession and subsequent sovereign debt crisis. How- 

ver, at the end of the sample CiSSA and EEMD are providing a dif-

erent assessment of the business cycle momentum. While CiSSA, 

n line with the OECD estimation recession dates, is showing a de- 

eleration of the business cycle, EEMD shows an increasing path. 

he reason for this difference is the discrepancy in the estimation 

f the trend at the end of the sample where EEMD could be un- 

erestimating the trend given that it is below the local average of 

he last observations. Fig. 12 shows a very similar estimation of 

he seasonality by CiSSA and EEMD, though the signal estimated 

y EEMD seems to be incorporating also short-run noise. 

. Conclusions 

In this paper we propose CiSSA, Circulant SSA, an automated 

rocedure that allows to extract the signal associated to any given 

requency specified beforehand. This is different to previous ver- 

ions of SSA that, after extracting the principal components of the 

rajectory matrix, they need to identify their frequency of oscilla- 

ion and group them in order to form the desired signals. 

CiSSA relies on the eigenstructure of a circulant matrix related 

o the second moments of the time series. Circulant matrices have 

losed form solutions for their eigenvalues and eigenvectors. Addi- 

ionally, we can use them to evaluate the power spectral density at 

pecific frequencies. We prove that CiSSA is asymptotically equiva- 

ent to Basic and Toeplitz SSA. 

We also extend the algorithm of Circulant SSA to the nonsta- 

ionary case providing a generalization of Gray’s theorem. 

The properties of Circulant SSA have been checked through a 

et of simulations for linear and nonlinear time series models as 

ell as through empirical applications in economics and speech 

rocessing. Regarding the application to Industrial Production, we 

nd that CiSSA does a good job extracting the business cycle and 

stimates cycles that match the dating proposed by the OECD. 

ithin speech processing CiSSA is able to identify the main fea- 

ures of the word under study and to reproduce it. 

Finally, we have illustrated the possibility of using CiSSA in the 

ontext of time-varying amplitude and frequency and compared its 

esults with other state of the art models commonly used for AM- 

M signals. 
15 
eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ppendix A. Theorems and Proofs 

The proof of Theorem 1 relies on a set of lemmas and propo- 

itions that need to be proven before. Proposition 1 shows the 

symptotic equivalence between the Toeplitz matrices of sample 

nd population second moments, S T ~ �L ( f ). Proposition 2 shows 

hat the sequence of matrices S B are also asymptotically equiva- 

ent to the Toeplitz matrix of population second moments �L ( f ). 

e also need two auxilliary lemmas regarding probability conver- 

ence of sample and population second moments. 

emma 3. For a stationary time series, the sequence S L = 

 L −1 
m =0 ( ̂  γm 

− γm 

) 2 converges in probability to 0 when L −→ ∞ . 

roof. The sum S L can be decomposed as 

 L = 

L −1 ∑ 

m =0 

(
ˆ γm 

− γm 

)2 = 

L −1 ∑ 

m =0 

γ 2 
m 

+ 

L −1 ∑ 

m =0 

ˆ γ 2 
m 

− 2 

L −1 ∑ 

m =0 

γm ̂

 γm 

. 

he first term in the previous equation is finite when L −→ ∞ by 

arseval’s Theorenm, that is 
∑ ∞ 

m =0 γ
2 

m 

= K. Preserving L < T /2, L is 

 monotonically increasing sequence as a function of T so L −→ ∞ 

hen T −→ ∞ . Thus if L −→ ∞ means that T −→ ∞ and, therefore,

he sum of infinite addends of the second term converges in proba- 

ility to K given that ̂ γm 

−→ γm 

in probability when T −→ ∞ . And, 

ecause of the same reasoning, the third term converges in proba- 

ility to 2 K when L −→ ∞ . As a consequence, the sum S L converges

n probability to K + K − 2 K = 0 as L −→ ∞ . �

roposition 4. Let { S T } and { �L ( f )} be two sequences of matrices de-

ned in function of the window length defined by (2) and (3) respec- 

ively. Then, S T ~ �L ( f ) . 

roof. We know that the eigenvalues of the Toeplitz matrix �L ( f ) 

re bounded [47] . The matrices S T are Toeplitz and symmetric, 

herefore their real eigenvalues are also bounded. We must proof 
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hat lim 

L −→∞ 

1 
L ‖ S T − �L ( f ) ‖ F = 0 . We can write 

 ≤ 1 

L 
‖ 

S T − �L ( f ) ‖ 

2 
F = 

1 

L 

L −1 ∑ 

m =1 −L 

( L − m ) ( ̂  γm 

− γm 

) 
2 ≤

≤ 2 

L −1 ∑ 

m =0 

L − m 

L 
( ̂  γm 

− γm 

) 
2 ≤

≤ 2 

L −1 ∑ 

m =0 

( ̂  γm 

− γm 

) 
2 
. 

y the Squeeze Theorem and the previous Lemma, we obtain 

hat lim 

L −→∞ 

1 
L ‖ S T − �L ( f ) ‖ F = 0 and therefore it is proved that 

 T ~ �L ( f ). �

In Basic SSA, it is possible to substitute the matrix S = XX 

′ by 

 B = XX 

′ 
/N for stationary time series [39] . Matrices S and S B , with

imension L × L , have the same eigenvalues and the eigenvectors 

f S B are those of S multiplied by 1/ N . The elements of matrix S B 
re given by ̃  s i j = 

1 
N 

∑ i + N−1 
t=1 x t x t+ j−i and, under stationarity, it holds 

hat ˜ s i j converges to γ| t− j | as N −→ ∞ , it is, when T −→ ∞ . From

atrix S B we obtain a sequence of symmetric matrices { S B } as a

unction on the window lenght L . To relate this sequence { S B } of

atrices symmetric with the sequence of Toeplitz symmetric ma- 

rices { �L ( f )} we must proof the following Lemma. 

emma 5. Under stationarity, the sequence S L = 

 L −1 
m =0 max 

1 ≤i, j ≤L 

| i − j| = m 

{ ( ̃  s i j − γm 

) 2 } converges in probability to 0 when 

 −→ ∞ . 

roof. The sum S L verifies that 

 ≤ S L ≤
L −1 ∑ 

m =0 

γ 2 
m 

+ 

L −1 ∑ 

m =0 

max 
1 ≤i, j ≤L 
| i − j| = m 

{ ̃  s 2 i j } − 2 

L −1 ∑ 

m =0 

min 

1 ≤i, j ≤L 
| i − j| = m 

{ γm ̃

 s i j } . 

y Parseval’s Theorem, the first term on the right is finite as 

 −→ ∞ , it is quadratic summable, 
∑ L −1 

m =0 γ
2 

m 

= K. We know that 

 = T − L + 1 . Given that L < T /2, N > T / 2 + 1 and, further L and

 are monotonically increasing sequences as functions of T , so 

, N −→ ∞ , as T −→ ∞ . Therefore, if L −→ ∞ means that T −→ ∞
nd the sum of infinite addends of the second term converges in 

robability to K because ˜ s i j −→ γ| i − j | , for all i, j , when N −→ ∞ ,

hat is, when T −→ ∞ . And, following the same reasoning, the 

hird term converges in probability to 2 K when L −→ ∞ . There-

ore the right term of the inequality converges to 0 in probability. 

inally by the Squeze Theorem, S L converges in probability to 0. �

roposition 6. Let { S B } and { �L ( f )} be the sequences of matrices de-

ned as a function of the window length L. Then, S B ~ �L ( f ) . 

roof. The eigenvalues of the Toeplitz matrix �L ( f ) are bounded 

47] . The symmetric matrices S B converge to Toeplitz matrix 

n probability. Then, their eigenvalues are bounded in probabil- 

ty. Now we must proof that lim 

L −→∞ 

1 √ 

L 
‖ S B − �L ( f ) ‖ F = 0 . We can

rite, 

 ≤ 1 

L 
‖ 

S B − �L ( f ) ‖ 

2 
F = 

1 

L 

L ∑ 

i =1 

L ∑ 

j=1 

(˜ s i j − γ| i − j | 
)2 ≤

≤ 2 

L −1 ∑ 

m =0 

L − m 

L 
max 

1 ≤i, j ≤L 
| i − j| = m 

{ ( ̃  s i j − γm 

) 2 } ≤
16 
≤ 2 

L −1 ∑ 

m =0 

max 
1 ≤i, j ≤L 
| i − j| = m 

{ ( ̃  s i j − γm 

) 2 } . 

herefore, by the Squeeze Theorem and previous Lemma, it holds 

hat lim 

L −→∞ 

1 
L ‖ S B − �L ( f ) ‖ 2 F = 0 and S B ~ �L ( f ). 

Proof of Theorem 1: We have that S T ~ �L ( f ) and S B ~ �L ( f ) by

ropositions 4 and 6 respectively, and that together with the tran- 

itive property lead to S B ~ S T . Given that by construction S T ~ S C 
50] and, again, by transitive property we have that S B ~ S C . 

Proof of Theorem 2: As defined, the function g ( w ) is real, con-

inuous and 2 π-periodic. Its image is 
[

1 
M s 

, max i M h i 

]
being dif- 

erent from zero in the whole interval. Then, by the properties 

f the inverse of Toeplitz matrices 
(
T L (g −1 ) 

)−1 ∼ T L (g) . Moreover, 

f F ( x ) is continuos in 

[
1 

M s 
, max i M h i 

]
, then F ( 1 x ) is continuos in

 

1 
max i M h i 

, M s 

] 
. Since the assumption of g ( w ) being a Wiener’s class 

unction relaxes to a continuous and 2 π-periodic function [71] , 

zegö’s theorem leads to (11) . 
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